
The

ProIcon
Programming Language

for Apple Macintosh Computers

Version 2.0

The ProIcon Group: Salida Colorado and Tucson, Arizona

The ProIcon Programming Language for Apple Macintosh Computers,
© 1989, 1990, 1994 The Bright Forest Company. ISBN 0-939693-
08-3.

Version 2.0

No part of this manual may be reproduced in any form by any means
without permission in writing from The Bright Forest Company.

Apple is a trademark of Apple Computer, Inc.
HyperCard is a registered trademark of Apple Computer, Inc.

Lightspeed is a registered trademark of Lightspeed, Inc.
Macintosh is a trademark licensed to Apple Computer, Inc.

MPW is a registered trademark of Apple Computer, Inc.
Symantec is a trademark of Symantec Corporation

Some material in this manual is adapted from the MaxSPITBOL
manual with the permission of Catspaw, Inc.

The Bright Forest Company
P.O. Box 12076
Tucson, Arizona
85732-2076

CONTENTS

iii

1 Getting Started 1-1

Read this First 1-1

Knowing Your Macintosh 1-1

Installing ProIcon 1-2

A Guide to the Manual 1-3

2 More About ProIcon 2-1

If You’re New to Icon ... 2-1

Icon for SNOBOL4 Programmers 2-4

About the Name “Icon” 2-10

User’s Manual

3 A Quick Tour 3-1

4 Compiling and Running Programs 4-1

Compilation and Linking 4-1

Libraries 4-2

Icon Applications 4-3

Program Options 4-3

Parameter Strings 4-5

Path Names 4-7

Library Folders 4-7

Input and Output 4-9

Memory Management 4-11

iv

Output Limiter 4-16

Persistent Settings 4-17

Launching Executable Files 4-17

Stopping ProIcon 4-17

MultiFinder 4-17

5 Online Help 5-1

6 Entering and Editing Text 6-1

The Editor 6-1

The Interactive Window 6-11

Window Management 6-12

Startup Options 6-13

7 Menu Reference 7-1

Keyboard Shortcuts 7-6

Window Shortcuts 7-8

The Icon Programming Language

8 Icon Language Overview 8-1

Introduction 8-1

Strings 8-2

Character Sets 8-3

Expression Evaluation 8-4

String Scanning 8-7

Structures 8-8

Procedures 8-11

An Example 8-12

v

 9 Version 8 of Icon 9-1

10 ProIcon Extensions 10-1

String Comparison 10-1

Function Tracing 10-1

Termination Dump 10-2

System-Dependent Features 10-3

Window Functions 10-3

Other Functions 10-7

External Functions 10-8

11 Mini Reference Manual 11-1

Functions 11-3

Prefix Operations 11-108

Infix Operations 11-121

Other Operations 11-155

Keywords 11-164

Control Structures 11-176

vi

 Appendices and Index

Character Codes A-1

Keyboard Chart A-3

String Comparison B-1

Default Comparison B-1

International Comparison B-2

Icon Language Checklists C-1

Operator Precedence C-1

Reserved Words C-3

Generators C-4

Run-Time Error Messages C-5

External Functions D-1

Locating External Functions D-1

Managing Resources D-2

Global and Static Data D-2

Accessing QuickDraw D-4

Interfacing XCMDs and XFCNs D-5

Interfacing Other Code Resources D-8

Conclusion D-14

Memory Monitoring E-1

Storage Management E-1

Allocation History Files E-3

Memory Displays E-5

Running MemMon E-9

Further Reading F-1

Index I-1

1
Getting Started

Getting Started 1-1

Getting Started

Read this First
Welcome to ProIcon, a powerful programming language

that’s packed with features to help you solve complex
problems quickly.

ProIcon is a high-level, general-purpose programming
language that’s rich in string and list processing capabilities.
ProIcon’s novel expression-evaluation mechanism produces
quick, neat solutions to even your most complex problems.

ProIcon is an enchanced version of the Icon programming
language that was developed at the University of Arizona.
ProIcon’s added features were designed and implemented by
Mark Emmer and Ralph Griswold.

Before You Do Anything Else . . .

First make backup copies of your original ProIcon disks.

Then install ProIcon on your Macintosh. You’ll find
complete installation instructions starting on page 1-
2.

After that, read A Guide to the Manual starting on
page 1-3.

Knowing Your Macintosh
You should know generally how to operate your Apple®

Macintosh® computer, how to use the mouse and the menus,
and how to open documents, copy files, and install applica-
tions on your hard disk. If you need help, consult the
manuals that came with your Macintosh.

Backing Up
Your ProIcon

1-2 Getting Started

Installing ProIcon
ProIcon requires System Version 6.0.1 or higher and at

least 400 KB of free memory; we recommend 1MB RAM.
The memory-monitoring application, MemMon, requires an
8-bit color or gray-scale monitor. MemMon is not needed to
write or run ProIcon programs.

Installing ProIcon is easy. First decide where you want it
to reside. We suggest that you create a folder named ProIcon
just for that purpose. When you’ve done that, copy the
contents of the two ProIcon 2.0 disks to this folder. The
disks look like this:

Configuration
Requirements

ProIcon Disks

Getting Started 1-3

If you’re short of space, you may not want to include
everything. All that’s absolutely necessary is the ProIcon
application itself. However, if you don’t include ProIcon
Help (which must be in the same folder as the ProIcon
application or in your System folder), you won’t be able to
use online help. If you don’t include ProIcon Runtime 2.0,
you won’t be able to run previously compiled Icon programs
directly but instead will have to run them from the ProIcon
2.0 application.

README is a text file that contains last-minute notes
about things that didn’t get into this manual. You can open
README with any text editor or ProIcon. Be sure to read
this file; it may contain important information. You may wish
to print a copy to keep with your ProIcon documentation.
There also may be important README files in folders.

The Samples folder on the first disk contains sample Icon
programs and some interesting data. The External Fucntions
folder on that disk contains HyperCard XCMD and XFCN
material as well as samples for ProIcon 2.0’s external func-
tion interface (see Appendix D).

The MemMon 2.0 folder on the second disk contains a
separate application for viewing memory management in
ProIcon (see Appendix E). There also are sample files.

A Guide to the Manual
This manual is divided into four parts:

• The introduction that you’re reading.

• A User’s Manual that describes the ProIcon applica-
tion for the Macintosh.

• Supplementary material on Icon, which goes beyond
the basic reference: The Icon Programming Lan-
guage.

• Appendices and an index.

The remainder of this part tells you more about ProIcon in
a general way, including its relationship to the Icon program-
ming language and a special introduction to Icon for readers
familiar with the SNOBOL4 programming language.

1-4 Getting Started

The User’s Manual begins with a quick tour of ProIcon,
then introduces you to compiling and running programs, the
online help facility, entering and editing text, and menu
reference.

Part three contains a guide to the most current version of
the Icon programming language and special features of
ProIcon, as well as a mini reference manual.

The appendices cover character codes, international string
comparison, Icon language checklists, external functions,
memory monitoring, and references.

2
More About ProIcon

More About ProIcon 2-1

More About ProIcon

If You’re New to Icon ...
Icon is an exciting, high-level, general-purpose program-

ming language that has unusual features like high-level
operations on strings and structures, pattern matching, goal-
directed evaluation, dynamic typing, and run-time creation
of data structures. Icon’s rich set of operations and control
structures and its powerful expression-evaluation mechanism
give you the ability to write concise solutions to complex
problems easily and quickly.

You can use Icon for rapid prototyping of large systems or
for quick reformatting of data, for problems in artificial
intelligence, for text analysis, or for quickly changing com-
plex files.

Icon was developed at The University of Arizona. It’s the
most recent language resulting from a long line of research
that produced languages like SNOBOL4. On the surface,
Icon looks a lot like many other modern programming
languages. It has a syntax similar to that of C and Pascal, and
it has many of the traditional control structures you’ve come
to expect, but Icon is much more powerful. It has genera-
tors, expressions that may produce more than one result, and
it has goal-directed evaluation, which allows many complex
computations to be expressed in concise and natural ways —
searching for solutions is done automatically.

Icon is a rich language. It has an extensive repertoire of
operations on strings of characters and supports a variety of
sophisticated data structures. The way Icon evaluates expres-
sions allows many programming tasks to be expressed more

2-2 More About ProIcon

naturally and concisely than they can be in most other
programming languages.

This richness makes it easy to write programs that perform
complicated tasks. Consequently, there’s a lot you need to
know in order to learn to use Icon effectively. Fortunately,
you can get started with just a small part of the entire
language. Then, to use Icon’s capabilities to their fullest,
you’ll want to learn more. Learning Icon can be fun, too.
Icon has lots of new ideas and is full of exciting features.
You’ll not be bored.

A few words about strings and structures: As everyone
knows, the first computers were designed to solve numerical
problems — the computation of trajectories, orbits, and so
forth. It wasn’t long before the potential of computers to
manipulate symbolic data like equations and natural language
was recognized. Arranging data in more complex ways like
trees and lists followed — and a whole new world of compu-
tation was opened.

While Icon has the usual capabilities for numerical compu-
tation, its real strengths lie in the manipulation of symbolic
data and structures. In Icon, symbolic data is represented by
strings (sequences) of characters. Virtually every kind of data
can be represented by strings — everything from the text of a
manual like this to mathematical formulas. Text files on
computers are just strings. Icon’s repertoire for string
processing provides many ways to analyze and synthesize
strings. Analysis operations make it easy to find patterns in
text, things like words and parenthesized expressions.
Synthesis operations make it easy to build up complex strings
out of simpler ones and to format them in any desired way.

The key to managing complex data is organization.
Structures provide this facility. Different situations and
different kinds of data need different kinds of organizations.
Icon offers several kinds of structures for diverse needs. Lists
allow values of any kind (not just characters) to be arranged
in sequence and accessed by position. Lists also can be
accessed like stacks and queues for programs that need to
handle data in these ways. Icon also provides sets, which are
unordered collections of values. Operations on sets like
union and intersection provide easy ways to handle problems
that deal with common attributes and properties. Icon has

More About ProIcon 2-3

more, including tables that provide associative lookup using
keys of any type. Icon also lets you build up complicated
structures of your own. There is no end to the possibilities.

Many real-world problems have more than one solution.
Sometimes it’s necessary to select among those solutions to
satisfy a constraint or to get a solution to a larger problem.
Icon provides a very powerful method for doing this.
Expressions, called generators, can produce sequences of
values. Goal-directed evaluation causes generators to pro-
duce results to reach combinations that satisfy larger require-
ments.

In short, Icon is a powerful, high-level programming
language. The things it allows you to do quickly and easily
make programming more fun and less of a chore. And being
able to do complex things so easily may encourage you to try
tasks you’ve always wanted to do but couldn’t face in other
programming languages. Icon may well expand your pro-
gramming horizons.

2-4 More About ProIcon

Icon for SNOBOL4 Programmers
If you’re a SNOBOL4 programmer, you’ll find that Icon

has many of the familiar features of SNOBOL4. Some of
these features are cast in somewhat different ways in Icon.
Since Icon evolved from SNOBOL4, it has a lot of features
that SNOBOL4 doesn’t. It also lacks some of the more
esoteric features of SNOBOL4. The main differences
between the two languages are described in the following
sections.

Syntax

As you probably know, SNOBOL4 has a syntax all its own.
It has several different statement types that focus on a subject
on which operations are performed, such as assignment and
pattern matching. SNOBOL4 has no control structures for
expressing looping or selection; it relies on conditional
operations and gotos to control the sequence of execution.
Although this mechanism is very general, the need to
fabricate loops, for example, makes programming tedious.
It’s also difficult to write SNOBOL4 programs that are ‘well
structured’ — programs that are easy to understand and
modify and that are free from sneaky bugs in control flow.
SNOBOL4 programs also are monolithic. Despite the facility
to define functions, all the statements are really part of the
whole program.

An Icon program, by contrast, consists of a set of modules
— procedures that are logically and physically distinct from
each other. Thus, a program to be divided into its logical
components and even be kept in a number of different files.

An Icon procedure consists of expressions. Expressions,
unlike statements, are made up of other expressions; there
are no sharp demarcations as there are with statements. Icon
has several control structures that allow common forms of
expression evaluation to be cast in standard, understandable,
and well-structured ways. Icon doesn’t have labels and gotos.
It doesn’t need them.

If you are familiar with a language like Pascal or C, you’ll
probably not have much trouble phrasing your programs in

More About ProIcon 2-5

terms of Icon’s syntax. Otherwise, you’ll need to spend some
time learning how to write programs using control structures
without labels and gotos. Copying a file provides a compari-
son. In SNOBOL4 it is

	 read	 OUTPUT = INPUT	 :S(read)

while in Icon, it is

 while write(read())

Both are short and the logic is the same; they just look
different.

Success and Failure

As the preceding example suggests, Icon uses the SNOBOL4
concepts of success and failure to control program flow. In
this, you have an advantage over a person who knows only
programming languages like BASIC and Pascal, and for
whom the idea of failure may be completely new. In Icon, as
in SNOBOL4, the failure of an operation prevents evaluation
of other surrounding operations. While failure is used to
select conditional gotos in SNOBOL4, failure is used to
drive control structures in Icon. For example, a conditional
assignment in SNOBOL4 might look like this:

	 	 i = LT(i,j) j	 	 :S(next)
	 	 i = 0
	 next

In Icon, it looks like this

if i < j then i := j else i := 0

Once you get used to it, you’ll see how similar the use of
success and failure is in SNOBOL4 and Icon. In fact, as the
example above illustrates, the control structures of Icon just
use implicit gotos and labels — you don’t have to write them
yourself as you do in SNOBOL4.

Pattern Matching

One of the most distinctive features of SNOBOL4 is
pattern matching and its repertoire of built-in patterns from
which you can build more complex ones of your own.

2-6 More About ProIcon

 Patterns provide a high-level of abstraction that describes
the structure of strings without, for the most part, the need
to specify how matching is actually done. In the strengths of
patterns lie their weaknesses. It’s difficult to specify the
matching process if you need to, and most of the rest of the
facilities of SNOBOL4 are not available in pattern matching
except by using awkward and contrived constructions.

Icon approaches the problem of pattern matching in a
somewhat different way. Instead of having patterns, Icon has
matching functions. Icon focuses more on the ability to
express how the matching is done than it does on the de-
scription of what is matched. This allows all the features of
Icon to be used in pattern matching, but at the expense the
high-level of abstraction that SNOBOL4 patterns allow.

For example, writing out the comma-terminated substrings
of a string in SNOBOL4 might be done this way:

	 	 P = BREAK(",") . OUTPUT LEN(1)
next	 S ? P = 	 :S(next)

In Icon, it might look like this:

 s ? while write(tab(upto(',')))
 do move(1)

The point is that in SNOBOL4 you think of a pattern that
matches the desired string, while in Icon you specify how to
match the desired string. Granted, the two methods look
similar; it’s the viewpoint that’s different. It’s worth noting
that Icon allows any operation in the matching process, while
SNOBOL4 doesn’t. In SNOBOL4, for example, you can’t
just make an assignment to OUTPUT; you have to use a
different operation that associates the name OUTPUT with a
pattern.

Actually it’s possible to capture SNOBOL4’s concept of
patterns in terms of Icon procedures, although the method
for doing so requires discipline and adds overhead in execu-
tion time. For example, you could write an Icon procedure
that does the matching shown above:

procedure p()
 while write(tab(upto(','))) do
 move(1)
end

More About ProIcon 2-7

and use it as if it were a pattern:

 s ? p()

A word of advice here: Trying to write pattern matching in
Icon the way you would in SNOBOL4 often leads to
frustration and awkward programs. It’s much better to spend
the time getting used to the way Icon does pattern matching
and to use Icon for its strengths rather than to try to force it
to do things the way SNOBOL4 does.

Scope

Scope is a technical term that refers to the portion of a
program in which an identifier is known and in which its
value is accessible. At first glance, you may not see the
differences in scoping of identifiers in SNOBOL4 and Icon.
There are significant differences, however.

In SNOBOL4, every identifier is known throughout the
entire program. There is no distinction between global and
local identifiers. If an identifier is an argument or is “local”
to a defined function, its value is saved when the function is
called, a new value is assigned, and the old value is restored
when the function returns. The current value of the identi-
fier, however, is available to the entire program. This is a
form of “dynamic scoping”.

Icon, on the other hand, has two kinds of identifiers:
global and local. Global identifiers are available to all the
procedures in the program. Local identifiers, however, come
into existence when a procedure is called, are accessible only
within that call of the procedure, and are destroyed when the
procedure returns. This kind of scoping is called “static”.

There are advantages and disadvantages to both kinds of
scoping. Dynamic scoping makes it trivially easy to associate
identifiers with patterns, as in

	 BREAK(",") . OUTPUT

and allows such patterns to be used throughout the program.
You can’t do this in Icon, since local identifiers come and go
and there may be several with the same name. However,
there’s no way for a defined function in SNOBOL4 to have
an identifier all its own that no other function can change.
Icon’s scoping is more conventional than SNOBOL4’s.
More than likely, you’ll not notice the difference, although

2-8 More About ProIcon

with Icon’s scoping you’re less likely to have obscure bugs
that result from two procedures accidentally sharing the same
identifier.

Data Structures

Some of Icon’s data structures are very similar to those of
SNOBOL4. For example, Icon has tables that are nearly
identical to those of SNOBOL4; you should have no trouble
using Icon’s tables if you are familiar with those of SNO-
BOL4. Icon’s lists are similar to SNOBOL4’s arrays, al-
though Icon’s lists have only one dimension. Icon’s lists,
however, can grow and shrink and be used as stacks and
queues. Icon also has sets, which are just collections of values
— very handy for cases where you want to keep a collection
of things together. For example, to write out all the different
words in a file using Icon, the following will do:

words := set()
every insert(words,nextword(f))
every write(!sort(words))

Here nextword(f) is a procedure that generates the words
from the file f. The last line of this program segment may
look mysterious. It hints at the power of Icon.

What’s New with Icon

In addition to the features mentioned above, Icon has
many features SNOBOL4 doesn’t have. Perhaps the most
exciting and useful feature is the ability of an Icon expression
to generate a sequence of values. While a SNOBOL4
expression can only fail or succeed, an Icon expression may
fail, produce a single result (succeed), or generate many
results. Generation is particularly useful for operations that
naturally have several results, such as the position at which
one string occurs as a substring of another. (You may sense
the germ of this idea in the few SNOBOL4 patterns that can
match in more than one way.)

Generators lead to all kinds of interesting possibilities and
give Icon’s expression evaluation a two-dimensional charac-
ter, as opposed to programming languages in which every
expression produces exactly one result. It’s here that you’ll
find the most interesting aspects of Icon and discover how
they can be used to cast complex operations in natural and

More About ProIcon 2-9

concise ways. Here’s just a hint. The following example
writes all the common positions where s1 is a substring in s2
and s3:

every write(find(s1,s2) = find(s1,s3))

What’s Missing in Icon

Icon lacks some of SNOBOL4’s most powerful features —
the ability to modify a program during execution, the ability
to compile and execute strings on the fly, and the ability to
redefine functions and operators dynamically. These features
of SNOBOL4, while very powerful in terms of what you can
do during program execution, are also expensive in terms of
the implementation and the kind of program structure
needed to make them feasible.

If you’re used to these esoteric features of SNOBOL4, you
may be disappointed initially when programming in Icon. In
most cases, the same results can be achieved in Icon by using
different techniques. For those things that can’t be recast in
Icon, you may want to continue using SNOBOL4. How-
ever, there also are things you can do easily in Icon that have
no natural counterpart in SNOBOL4. Most programmers
who know both SNOBOL4 and Icon do most of their pro-
gramming in Icon.

2-10 More About ProIcon

About the Name “Icon”
As a Macintosh user, you may think that using the name

“Icon” for a programming language is misleading or possibly
a subtle pun. Actually the choice of “Icon” as the name for
the programming language you are about to use has nothing
to do with the Macintosh. The name was chosen in 1976,
before the word came into use to describe the pictograms
that identify files and functions on the screen of the Macin-
tosh and other computers.

Naming a programming language is more difficult than
you might think. Should the name be an acronym derived
from a descriptive phrase (like FORTRAN)? Should it try to
connote some salient property of the language (like EASy)?
Should it honor some important person (like Ada)? Should it
be clever and catchy (like Spitbol)? Or what? There are other
considerations. Is the name easy to remember? What kind of
images does it evoke? Is it easy to spell? Easy to pronounce?
Distinctive? Pleasant?

 The name “Icon” for this programming language is not
an acronym (you might be able to dream up a suitable
phrase, though), and it has no special meaning (but you
might well conjure one up). It was chosen to be short, crisp,
and uncomplicated. And because the designers had run out
of other ideas. Had they foreseen the use of the word “icon“
for those little pictograms, they certainly would have picked
another name.

Granted, the name for the language may evoke the wrong
image and be taken for something it isn’t. Unfortunately, a
name once chosen, published, and put into use is not easily
changed. In the end, such names really mean nothing in
themselves and you’ll quickly forget the confusion. However,
you may find yourself having to explain the problem to your
fellow Macintosh users more than once.

3
A Quick Tour

A Quick Tour 3-1

A Quick Tour
In this chapter you’ll see how ProIcon works and how to

create, run, and correct Icon programs. This is just a start –
there’s more information in the chapters that follow.

Start ProIcon by double-clicking on its icon. You’ll see the
ProIcon menu bar and an open window waiting for a new
program:

The name Untitled-1.icn identifies a window that hasn’t yet
been given a name and saved in a file. Before you go any
further, it’s a good idea to name the window and connect it
to a file that will be saved. Pull down the File menu and
select Save as ... :

3-2 A Quick Tour

You’ll get a file dialog box that lets you navigate to the
folder in which you want to save your program and specify
its name:

The file name for an Icon program must end in .icn. Suppose
you want to name your program hello.icn. Enter hello.icn in
the box and select Save.

A Quick Tour 3-3

The title of your program window changes accordingly:

Now you’re ready to enter a program. Keep it simple to start
with, such as:

3-4 A Quick Tour

When you enter this program, you’re using the ProIcon
editor. It’s a program editor, so you type return at the end of
every line of the program. ProIcon’s editor follows the Apple
Human Interface guidelines. If you’re familiar with other
Macintosh editors, ProIcon’s editor should seem very natural
to you. Chapter 6 contains detailed information about the
ProIcon editor. For now, just do what comes naturally.

Now you’re ready to run your first ProIcon program. Pull
down the Run menu and select Compile Window:

The cursor changes to a “spinning beachball” while ProIcon
compiles and links your program. Your program then
executes and the output pops up in a window named Inter-
active:

A Quick Tour 3-5

Now you can change your program. Suppose you want to
know what version of ProIcon you’re running. Add two lines
so that you have

The error and location also are noted in the Interactive
window following the previous output:

The compiler finds the error in line 4 when it’s looking for a
parenthesis to complete line 3 and does not find it. Close the
window named Compilation Error to get rid of it. Notice

To run this program, use the .-K shortcut that you saw in
the Run menu. Oops – there was a mistake in the program:

3-6 A Quick Tour

that the cursor is positioned at the line of your program
window where the compiler found the error. Generally
speaking, the line where an error is detected is not exactly
where you made the mistake; the compiler can’t find an error
until something actually syntactically incorrect occurs (you
could have had the missing parenthesis at the beginning of
line 4, for example).

Correct your program and run it again to be sure it’s right.
When you’re finished, save your program, if you want, by
selecting Save from the File menu. If you close the program
window without saving changes, you’ll be asked if you want
to save your modified program.

When you’re finished with a ProIcon session, leave the
application by selecting Quit from the File menu (or use the
.-Q keyboard shortcut).

That’s the basic idea. Enter a program (or bring in an
existing one using Open... from the File menu), run it, make
corrections and re-run it as necessary, and save your program
when you’re finished.

Of course, there’s a lot more to ProIcon. The next chapter
describes more features of ProIcon.

Read on!

3
A Quick Tour

A Quick Tour 3-1

A Quick Tour
In this chapter you’ll see how ProIcon works and how to

create, run, and correct Icon programs. This is just a start –
there’s more information in the chapters that follow.

Start ProIcon by double-clicking on its icon. You’ll see the
ProIcon menu bar and an open window waiting for a new
program:

The name Untitled-1.icn identifies a window that hasn’t yet
been given a name and saved in a file. Before you go any
further, it’s a good idea to name the window and connect it
to a file that will be saved. Pull down the File menu and
select Save as ... :

3-2 A Quick Tour

You’ll get a file dialog box that lets you navigate to the
folder in which you want to save your program and specify
its name:

The file name for an Icon program must end in .icn. Suppose
you want to name your program hello.icn. Enter hello.icn in
the box and select Save.

A Quick Tour 3-3

The title of your program window changes accordingly:

Now you’re ready to enter a program. Keep it simple to start
with, such as:

3-4 A Quick Tour

When you enter this program, you’re using the ProIcon
editor. It’s a program editor, so you type return at the end of
every line of the program. ProIcon’s editor follows the Apple
Human Interface guidelines. If you’re familiar with other
Macintosh editors, ProIcon’s editor should seem very natural
to you. Chapter 6 contains detailed information about the
ProIcon editor. For now, just do what comes naturally.

Now you’re ready to run your first ProIcon program. Pull
down the Run menu and select Compile Window:

The cursor changes to a “spinning beachball” while ProIcon
compiles and links your program. Your program then
executes and the output pops up in a window named Inter-
active:

A Quick Tour 3-5

Now you can change your program. Suppose you want to
know what version of ProIcon you’re running. Add two lines
so that you have

The error and location also are noted in the Interactive
window following the previous output:

The compiler finds the error in line 4 when it’s looking for a
parenthesis to complete line 3 and does not find it. Close the
window named Compilation Error to get rid of it. Notice

To run this program, use the .-K shortcut that you saw in
the Run menu. Oops – there was a mistake in the program:

3-6 A Quick Tour

that the cursor is positioned at the line of your program
window where the compiler found the error. Generally
speaking, the line where an error is detected is not exactly
where you made the mistake; the compiler can’t find an error
until something actually syntactically incorrect occurs (you
could have had the missing parenthesis at the beginning of
line 4, for example).

Correct your program and run it again to be sure it’s right.
When you’re finished, save your program, if you want, by
selecting Save from the File menu. If you close the program
window without saving changes, you’ll be asked if you want
to save your modified program.

When you’re finished with a ProIcon session, leave the
application by selecting Quit from the File menu (or use the
.-Q keyboard shortcut).

That’s the basic idea. Enter a program (or bring in an
existing one using Open... from the File menu), run it, make
corrections and re-run it as necessary, and save your program
when you’re finished.

Of course, there’s a lot more to ProIcon. The next chapter
describes more features of ProIcon.

Read on!

Compiling and Running Programs 4-1

Compiling and
Running Programs

In the last chapter you saw the basic ideas for compiling,
running, and modifying ProIcon programs. ProIcon is a
powerful tool that provides many facilities to help you
build applications written in ProIcon. You’ll want to use
some of these facilities as a regular part of your work with
ProIcon. You may need other facilities only in special
situations. This chapter starts with a description of facili-
ties that you will probably use a lot. Facilities for special
situations are near the end of this chapter.

Compilation and Linking
When you compile a ProIcon program (using, for

example .-K), three processes normally take place: first
compilation proper, then linking, and finally execution.
The compilation phase converts your program into an
intermediate form. Linking converts the intermediate files
to an executable file. The executable file is then run.

You’ll notice the Run menu has two options that are
checked by default: Link after Compile and Run after Link.
As long as these options are checked, all three processes
take place, one after another. You can, however, stop after
any process. For example, if you uncheck Link after
Compile (by clicking on it in the Run menu), ProIcon stops
after compiling your program and you get two intermedi-
ate files as a result (they are deleted if you link after
compiling). These intermediate files have the suffixes .u1
and .u2 in place of the suffix .icn in the name of your

4-2 Compiling and Running Programs

program.

Libraries
You might ask: “What good are intermediate files?” The

answer to this question is suggested by the linking process
mentioned above. The ProIcon linker can combine inter-
mediate files from several programs to produce a single
executable file. This is useful for making libraries of
procedures that can be included in many programs.

 If you want to include intermediate files from a library
program, you must have a link declaration that names the
library in your program. For example, suppose you have a
collection of procedures for doing rational arithmetic and
you place them in a file rational.icn. Compile this file but
don’t link it (as described above). Now suppose you want
to include this library in a program in approx.icn. This file
should start as follows:

link rational

procedure main()
 . . .

When you compile and link approx.icn, the intermediate
files from rational.icn are included by the linker, so you
can use any procedure contained in rational.icn within
approx.icn. You’ll notice that just the name rational is used
in the link declaration (no suffix). And, of course,
rational.icn must not contain a main procedure, since only
one main procedure is allowed in a program and a pro-
gram that includes library procedures normally provides
it. You can link several libraries, either with separate link
declarations or by using a comma-separated list, as in

link rational, input, output

If the name of a library does not satisfy the syntactic
requirements for an Icon identifier, it must be enclosed in
quotation marks, as in

link "long-arith"

You can also place intermediate files for library proce-
dures in different folders and arrange for ProIcon to find

Compiling and Running Programs 4-3

them automatically without having to specify the paths.
The way to do this is discussed later in this chapter.

Icon Applications
Executable files produced by the linker have names

corresponding to the Icon program files from which they
are produced, but without the .icn suffix. For example, the
executable file that results from compiling and linking
hello.icn is named hello. You can run an executable file
without having to recompile the program. Select Run File
... from the Run menu. You get a file dialog showing the
available executable files. When you select one and
complete the dialog, it runs.

So far, you’ve been working inside the ProIcon applica-
tion. You don’t have to be in the ProIcon application to run
an executable file. Just launch it from the desktop. This lets
you build applications in ProIcon and run them as you
wish. You can also give such applications to others. It is
necessary to include the file ProIcon Runtime because it’s
needed to support executable files. It’s another file to
remember, but there’s a good side to it — all executable
files use the same ProIcon Runtime and hence executable
files are small.

4-4 Compiling and Running Programs

Program Options
Selecting Program Options ... from the Options menu lets

you turn some program options on and off:

Icon does not require you to declare local identifiers. If
an undeclared identifier appears in a procedure and there
is no global declaration for it anywhere in your program,
the identifier is taken to be local. This saves having to
write a lot of declarations. It can be dangerous, however.
You may intend an identifier to be local, but there may be
a global declaration for it that you don’t notice. If you
check Undeclared Identifier Warning, ProIcon’s linker
issues a warning message if it finds an undeclared identi-
fier. Such messages are just warnings; they don’t prevent
your program from linking or running.

Normally, when ProIcon compiles and links a program,
it deletes the intermediate files produced by the compiler
(the .u1 and .u2 files). If you want to keep these files (to
use in a library as described earlier in this chapter, for
example) check Preserve Intermediate Files.

ProIcon offers two kinds of tracing: procedure tracing
and function tracing. Check the corresponding boxes if
you want tracing to be done automatically. A word of
caution: tracing produces a lot of output and it may be

Undeclared
Identifiers

Intermediate
Files

Tracing

Compiling and Running Programs 4-5

hard to find what you want. Function tracing produces
much more output than procedure tracing in most pro-
grams. While checking these options gives you tracing
without having to modify your program, you may find it
more useful to add code to your program to turn tracing
on and off selectively by setting the values of &trace and
&ftrace.

If you check Dump, you’ll get a listing of variables and
their values when your program terminates. Again, this
also can be done by setting &dump in your program.

If International Comparison is checked, ProIcon com-
pares strings using the Macintosh international compari-
son system. See Appendix B for details.

Memory Monitoring causes information about storage
allocation and garbage collection to be recorded. Checking
this box brings up an Open dialog when you run the
program for a file to hold the information. Appendix E
describes how to use the results.

Object File Launches Runtime determines what happens
when you launch an executable file from the desktop. If
this box is not checked, launching an executable file starts
the ProIcon application. If the box is checked, only the
ProIcon run-time system is activated. You probably want
the ProIcon application to be launched for your own
programs, but you’ll need to have the run-time system
launched for programs you give to others, since they may
not have the ProIcon application.

As indicated by the radio button in the Program Options
box, the options you specify normally just apply to the
current program. If you want them to apply to all pro-
grams, click on the Compiler Defaults radio button. You
also can copy from one to the other by clicking on the
Copy button.

String
Comparison

Termination
Dumps

Memory
Monitoring

Launching
Runtime

Compiler
Defaults

4-6 Compiling and Running Programs

Parameter Strings
Parameters can be communicated to a ProIcon program

by means of a blank-separated string that provides a list as
the argument to the main procedure. This string is entered

using the Parameter String ... entry from the Options
menu:

For example, if you enter the string

cyan yellow magenta black

giving

then in

procedure main(args)
 every write(!args)
end

the values written are

cyan
yellow
magenta

Compiling and Running Programs 4-7

black

You can include blanks in an argument by enclosing the
argument in quotation marks, as in

for which the values written are

cyan
yellow magenta
black

Path Names
For simple file names in link declarations, ProIcon

searches the folder where your program resides. If you
want to look in other folders, you may specify files by full
or partial path names.

A full path contains several elements, each separated by a
colon. A full path name begins with a disk name, then zero
or more folder names, and ends with the file name. Two
examples are:

link "hd:ProIcon:Library:rational"
link "Floppy Backup:ProIcon:test

A partial path is relative to the current working folder,
and begins with a colon, as in:

link ":Library:rational"
link ":ProIcon:test"

In both full and partial path names, two adjacent colons
mean “go up one folder” in your disk’s folder hierarchy.

Library Folders
If you use libraries of intermediate files, you’ll probably

find it convenient to keep them in one or more folders,
separate from the rest of your ProIcon work. While you
can specify the paths to such folders in link declarations,
you’ll probably find it more convenient to use ProIcon’s
library search facility.

Full Path
Names

Partial
Path Names

4-8 Compiling and Running Programs

When ProIcon’s linker encounters a link declaration for
an intermediate file without a full path name, it searches

for the file first in the folder that contains your main
program. If the linker doesn’t find the file there, it uses
paths specified in the Library Folders ... selection in the
Options menu. The specification of paths in the previous
section goes to the file level. Here it goes to the folder
level. To set up library search paths for folders, select
Library Folders ... :

As indicated, you can specify one or more path names,
separated by .-returns. For example:

Once these paths are entered, they are used when
linking all your ProIcon programs, even if you quit the
application and then launch it again. You can, of course,
change the paths any time you wish.

Rather than specifying individual folders, your search
paths may include classes of names. This is done by using
“wildcard” characters.

The ? wildcard character matches any single character in
a name. Thus, A?C matches all three-character names
whose first letter is A and whose last letter is C, such as

Wildcards

Compiling and Running Programs 4-9

AKC or a9c.

The ∗ wildcard character matches zero or more charac-
ters in a name. For example, A∗M matches AM or Alarm.

If ∗, ? or \ appear literally in a name, precede each with a
backslash, as in \∗, \?, or \\.

Here are some folder names as they might appear in the
search path dialog:

Library∗
R??d:Library

If you use complicated search paths, or change them
from time to time, you can record them in text files. Open
a new window in ProIcon, and type in the paths, one per
line. Save the file with a name that ends in .paths, such as
search.paths.

The Library Folders ... dialog includes a Use File button.
When you press this button, you can specify the name of
the file containing your pre-specified search paths. ProIcon
reads in the paths and uses them as if you’d typed them in
directly. The .paths suffix is mandatory.

Input and Output
 You can open any file you want from inside a running

ProIcon program. Three files that you don’t have to open
are provided for your convenience: standard input,
standard output, and error output.

Standard input is where input comes from if you don’t
specify a file when reading. Standard output is where
output goes if you don’t specify a file when writing. For
example,

while write(read())

Path Files

4-10 Compiling and Running Programs

copies standard input to standard output. Error output is

Compiling and Running Programs 4-11

used for error messages. These three files can be specified
explicitly in a program as &input, &output, and &errout.

Unless you specify otherwise, standard input is taken
from the keyboard, while standard output and error
output go to the Interactive window. You can change input
or output to the currently active window or to a file. If you
select a file that is also opened as a window, your output
goes to the window.

If you want to change program input or output, select
Program Input ..., Program Output ..., or Error Output ...
from the Options menu. Suppose you want standard
output to go to poems. Select Program Output ... :

Click on Write to File... . You get a file dialog:

 Now enter poems:

Now click OK. If you already had a file named poems,
you’d get an alert box that asks you if you want to over-
write it. Complete the dialog as usual and standard output
now goes to poems. You can change standard input or
error output in a similar fashion.

Keyboard
End-of-File

Compiler
Memory

4-12 Compiling and Running Programs

You can terminate keyboard input to a running ProIcon
program by selecting Terminate Input from the Edit menu

Compiling and Running Programs 4-13

(or by using the .–D keyboard shortcut).

Memory Management
The ProIcon compiler uses several tables for internal

computations. The default sizes for these tables are
adequate for most programs, but if you have a very large
program or one with unusual characteristics, the compiler
may run out of space in one of its tables. If this happens,
you get an error message such as

This message means that you have more global identifi-
ers than fit in the compiler’s global table. While you might
be able to reorganize your program to work around this
limit, you also can make the table larger. Select Compiler
Memory from the Options menu and pull down the
hierarchical menu it points to:

As you see, there are a lot of sizes you can change. Select
Global table as indicated by the error message:

The current size of the global table is highlighted. You
can edit this text to change the size. The size to use de-
pends on your program and the specific table involved.
You could count the number of global identifiers in your
program, but you might just as well double the current
value, which probably will be enough with some to spare.

As indicated by the radio button in this box, the size you

specify normally just applies to the current program. If
you want it to apply to all programs, click on the Compiler
Default radio button. You also can copy from one to the

Execution
Memory

4-14 Compiling and Running Programs

memory allocation setting by clicking on Prev or Next.
When you’re satisfied, click on OK to have the changes
take effect. You may also click on Cancel if you decide not
to make the changes.

other by clicking on the Copy button.

You can navigate to the previous or next compiler

Compiling and Running Programs 4-15

ProIcon manages execution memory automatically. It
keeps track of values your program no longer needs and
“collects” them when it needs space to create new values.
Consequently, you can process a large amount of data as
long as it doesn’t all have to be kept around at one time.
Some programs, however, need to keep a lot of strings and
structures, such as tables of words and their counts. Such
programs may need larger regions for storage than are
provided by default. If this happens, you get an error
message, such as

You can increase the size of the offending region to give
your program more room. Select Execution Memory from
the Options menu:

Proceed as described for compiler memory: in this case,
select String region from the hierarchical menu:

The current default size is shown. Deciding on a new
size may take some thought and possibly experimentation.
If you have a lot of RAM, you can set the value consider-
ably larger and not worry about it.

If you don’t have a lot of RAM, you may need to search
for a value that works, possibly reducing the sizes of other
regions. Windows also require memory. You may need to
close unnecessary windows if the total amount of RAM is
a problem. If you’re running under MultiFinder, you may
need to adjust ProIcon’s partition size; see the section on
MultiFinder later in this chapter. In any event, it’s neces-
sary to know something about how ProIcon uses memory.

The block and string regions are where the values your
program produces are kept. The other sizes refer to other
aspects of program execution.

The evaluation stack is used to hold temporary values
during generation and recursive procedure calls. Overflow
of the evaluation stack usually indicates runaway recur-
sion. You should look for a problem in your program if
this happens. If the stack really needs to be larger, you can
increase its size as for other regions. If the problem is
runaway recursion, however, increasing the stack size
only increases the time until overflow occurs.

Every co-expression contains its own evaluation stack.
Co-expression stacks normally are smaller than the main

Blocks and
Strings

Evaluation
Stack

Co-Expressions

Qualifiers

4-16 Compiling and Running Programs

evaluation stack. If overflow occurs in a co-expression, it
may be necessary to increase the size of co-expression
blocks. (Most of the size of a co-expression block is de-
voted to its stack.) Since stack overflow in a co-expression
may not be detected, it can cause other program malfunc-
tions. If you’re using co-expressions that perform recursive
procedure calls or deeply nested generation and your
program has problems, suspect such overflow.

The qualifier pointer region is used only during garbage
collection to keep track of strings in your program that
need to be saved. If you get an error message that indicates
that this region is not large enough, increase the size. You
should check your program to see if it really needs to have
a lot of different strings at the same time.

There is another side to all this: If you have only a small
amount of RAM, the default region sizes may be too large
to even get started and you may have to reduce the default
sizes to be able to run ProIcon programs at all. If this is the

case, start with a small program and reduce the string and
block region sizes to smaller values until your program
runs. You also can decrease the size of the evaluation stack
and qualifier pointer regions if necessary. Reducing the
size of co-expression blocks only has an effect if you use
co-expressions. You can reduce all sizes substantially and
still be able to run small programs that don’t need lots of
memory. However, the kinds of applications for which
ProIcon is best do require lots of memory. It’s impractical
to try such applications without enough memory, and,
while ProIcon can work over a wide range of memory, if
there really is not enough memory, it will work poorly or

Compiling and Running Programs 4-17

not at all.

Output Limiter
Because window data is held in memory, writing a large

amount of data to a window may exhaust memory.
ProIcon provides a way of limiting the number of text
lines that are retained in a window.

The limit can be controlled from your program by
selecting Window Options … from the Options menu,
which gives you this dialog box:

You can turn output limiting on or off as indicated and
also specify the number of lines retained when it is on.

For example, suppose you set the limit to 350 lines, and
your program begins writing output to the window
Untitled-3.icn. As new lines appear at the bottom of that
window, the window contents scroll up and are available
for review by moving the thumb in the vertical scroll bar.
When the 350th line is output, ProIcon silently discards the
top one-eighth of the lines in the memory file. The file now
contains 306 lines of data, and the process is repeated each
time the 350-line limit is reached.

Persistent Settings
Most options you set apply only during a session in the

ProIcon application. Once you quit ProIcon, they are
discarded. When you launch ProIcon again, they’re set
back to the default values.

 Program options and memory settings are persistent.
The paths you specify for library searches are also persis-
tent. Persistent settings are saved in the ProIcon Profile in
your system folder. You can delete this file if you want to
get back to ProIcon’s initial settings.

Launching Executable Files
If you hold down the option key when click-launching

an executable ProIcon file, you get a dialog that allows you
to set the parameter string, specify input and output files,
and adjust execution memory regions.

4-18 Compiling and Running Programs

Stopping ProIcon
You can terminate program compilation, linking, or

execution by selecting Stop from the Run menu. Caution:
ProIcon cannot stop all forms of program activity immedi-
ately.

If you want to suspend compilation, linking, or execu-
tion, select Pause from the Run menu. You then can
resume by selecting Continue.

MultiFinder
ProIcon is MultiFinder friendly. It will run in the back-

ground if you let it. When it needs input, a small icon
alternates with the ð symbol on the menu bar.

When running under MultiFinder, you can adjust
ProIcon’s memory partition by highlighting the applica-
tion on the desktop and using Finder’s Get Info command.
The number at the bottom of the screen is the partition
size.

You can launch another application from ProIcon using
launch() as described in Chapter 10. If MultiFinder is
active, your ProIcon program continues to run.

5
Online Help

Online Help 5-1

Online Help
ProIcon provides an online help facility that allows you to

get information about functions, operations, and other
aspects of ProIcon without leaving the ProIcon application.
Online help is not a substitute for this manual or the Icon
book, but it can give you quick answers to many questions
that come up while writing and debugging programs.

There are several ways that you can get online help. One is
to select Online Help from the top of the ð menu. This gives
you a two-level heirarchical menu:

Help Menu

5-2 Online Help

The first level, shown on the previous page, lists the cate-
gories for which help is available. The next level lists specific
items. Suppose, for example, that you select String Scan-
ning:

Selecting a
Category

Online Help 5-3

Selecting an
Item

Now you can select a specific item, such as &subject:

5-4 Online Help

A window with information about &subject pops up:

Another way to get help is to select text in the currently
active window, such as the name of a function in a program
on which you’re working. Suppose, for example, you’re
working on the program shown below and you want to
know more about the function put. Select put by dragging
over it or double clicking on it:

Help Windows

Help Lookup

Online Help 5-5

A help window for put pops up:

Now select Help Lookup from the Search menu:

5-6 Online Help

You can get online help in this way by selecting text from
any window, including a help window. This is useful, for
example, for following cross references such as the one for
put in the window on the previous page.

As indicated in the Search menu, .-H is a keyboard
shortcut for getting help. The help key on the extended
keyboard does the same thing.

To get help for an Icon operator, select the symbol or
symbols for the operator. Since some prefix and infix opera-
tors use the same symbols, the selection may be ambiguous.
If it is, you get a help window for the infix operator. For
example, if you select the operator ∗, as in

 You get the following help window:

Keyboard
Shortcuts

Help for
Operators

Online Help 5-7

This isn’t what you wanted, but it has a cross reference to
the prefix operator, so you can get help for the prefix
operator from there. In this case, select the operator and its
operand as well; this is how the online help system distin-
guishes between the two cases.

The help window for this selection is what you wanted
originally:

As you see, help windows for prefix operators also contain
cross references to infix operators, so you can navigate as you
wish.

You may have noticed that the last item on the first level of
the help menus is Index. If you select it, you get a window
that lists all the help entries:

Help Index

5-8 Online Help

This window is a handy way to find something if you’re
not quite sure what it is or if you don’t know its category.
You can, of course, select any help entry from the index.

6
Entering and
 Editing Text

Entering and Editing Programs 6-1

 Entering and Editing Text
This chapter explains text editing and window manage-

ment. You’ll read about:

• Editing text in windows.

• Additional editing shortcuts available when your
program is reading input from the keyboard.

• Managing windows on the desktop.

ProIcon follows the Apple human interface guidelines,
with a few extensions. If you’re familiar with other text
editors on the Macintosh, you’ll feel right at home with
the ProIcon editor.

The Editor
The ProIcon editor can be used to create or edit any

kind of text file on a Macintosh, not just program files.
There is only one restriction: The file must fit entirely
in RAM.

Creating New Files

To get to the editor, launch ProIcon. A window appears
with the name Untitled-1.icn as shown in Chapter 3.

If the default settings have been changed so that an
untitled window does not appear, then you can select New
from the File menu, or click on the New button if you
were presented with a file dialog. Either gives you an
untitled window. -N is a shortcut to open a new, untitled
window.

Untitled
Windows

6-2 Entering and Editing Programs

ProIcon can handle up to 12 windows at once. Window
0 is always assigned to the terminal. Untitled windows
start at 1, and can go up to 11.

As soon as an untitled window is open, it’s ready for you
to start typing into it.

 Opening Existing Files

To open an existing file, select Open... from the File
menu. A list of files appears, and you can select one to
open through a standard file dialog. -O is the shortcut
here.

Normally the dialog is filtered to show only files with
a TEXT signature. Holding down the option key displays
all files in a given folder.

Below the scrolling window with the list of files, you
have a choice of All text files and .icn files only. The latter
choice filters file names so that only those whose names
end with the letters .icn are displayed.

If you can’t find a file, you may have to click on All text
files. The listed files are those in the currently selected
folder, and they’re in alphabetical order.

To open an existing file, double-click on its name or
press the Open button when the file name is highlighted.
If the file is already open in ProIcon, double-clicking on
its name brings its window to the front.

Scrolling through a long list of files can be tedious,
but there’s a shortcut: If you type the first letter of a
file’s name, it brings you to that alphabetic section of
the file list.

Typing Text

The cursor or insertion point is indicated by a blinking
vertical line. There is also the mouse pointer, a flared
vertical line (known as an I-beam) when it’s in the text
and an arrow when it’s outside the text window.

Typed text is inserted at the current position of the
cursor. If more than one character of text is selected, the
typed text replaces the current selection.

The delete key deletes one character to the left of the

File
Signatures

Entering and Editing Programs 6-3

insertion point (it backspaces). If you have an extended
keyboard, there is a forward delete key (del marked with
an X inside an outlined right arrow). It deletes characters
to the right of the insertion point. Holding either key
down until it auto-repeats removes multiple characters
to the left or right.

This is a programmer’s editor, not a word-processing
editor, so there is no word-wrap. If you type past the
right edge of the window, the window scrolls to the right.
To go back and forth, use the scroll bar at the bottom.

Selecting Text

Text may be selected by placing the mouse at one end
of the desired selection, and holding the mouse button
down while dragging in either direction. The selection
“sticks” when the mouse button is released. Selected text
is displayed by a reverse highlight — white letters on a
black background. If the mouse button is pressed and
released without dragging, a cursor appears between
characters of text.

There are other methods of selecting text. Positioning
the mouse pointer over a word and double-clicking
selects the entire word; triple clicking selects the entire
line.

Finally, typing -A, or choosing Select All from the
Edit menu selects all text in a window.

An existing selection can be extended or shortened by
holding down the shift key prior to pressing the mouse
button.

Clipboard

ProIcon supports the Macintosh clipboard as a place
to temporarily store text. The clipboard can hold up to
32,767 characters of text. The clipboard may be used to
move text between windows, applications, desk accesso-
ries, or dialogs that accept text input.

You can delete and place selected text on the system
clipboard by typing -X or by choosing Cut from the Edit
menu.

Selected text can be deleted without altering the

Cut, Clear,
Copy, and
Paste

6-4 Entering and Editing Programs

clipboard by pressing the delete key or by choosing Clear
from the Edit menu. ProIcon also responds to the clear
key on the extended keyboard.

Selected text can be copied to the clipboard without
removing it from its window by using -C, or choosing
Copy from the Edit menu.

Typing -V or choosing Paste from the Edit menu
inserts the contents of the clipboard at the current
position of the cursor. If there is highlighted text, rather
than a simple cursor, the paste operation replaces the
selected text with the contents of the clipboard.

 Undoing Changes

If you make a change that you regret, -Z undoes the
change. You can also select Undo in the Edit menu. Keep
in mind that Undo has a short memory; it only remembers
the last thing you did.

You can also use Undo to redo what you just undid. In
the Edit menu, this is reflected in the wording. For
instance, if you just cut a group of several lines, the menu
choice is Undo Cut. If you perform the Undo, the previ-
ously cut lines are restored, as well as the old contents of
the clipboard. The Edit menu choice changes to Redo Cut,
and choosing that re-performs the original cut.

If you’ve got more to undo than Undo can handle — a
really botched file where you want to begin again from
where you started this time — use the Revert command in
the File menu. Selecting Revert in the dialog that appears
takes you back to the last version you saved.

On the extended keyboard, function keys F1 - F4
perform undo, cut, copy, and paste, respectively.

 Closing and Saving

It’s prudent to save your work every 15 minutes or so,
since power failures and system crashes usually occur at
the worst possible times.

To save a file without closing it, use -S or select
Save from the File menu. If you haven’t named your file

Entering and Editing Programs 6-5

yet, you get a standard file dialog to prompt you for a
name.

To save a file and close its window, you can click the
close box at the left edge of the window’s title bar. If the
file has been altered since it was last saved, a dialog asks
if you want the new version saved. Again, if it’s untitled,
go through the standard file dialog to name it.

Another way to close a file is to use -W or the Close
command in the Edit menu. Both are equivalent to click-
ing the Close box on the window.

Saving a file does not alter its file type or creator
signatures. ProIcon records information in the file’s
resource fork to remember font, font size, tab, and
compiler options. Other resources in the file remain
unchanged.

You can also save a file under a different name by
selecting Save as... in the File menu. This launches the
standard file dialog for the new name. The original file
remains unchanged. The new file has a TEXT file type and
ProIcon’s creator signature.

Here is a good technique when you’re modifying a
program, and you want to keep the original around: Open
Original.icn, and immediately save it as Mycopy.icn. That
becomes the currently open window, and you can work
there, secure in the knowledge that Original.icn is still
present in unmodified form.

To save all open windows, use the Save All command in
the Windows menu. This works the same way as using the
Save command on each window. The Close All command
closes all open windows. If any window has been modified,
you are asked about saving its changes.

Moving Around

The insertion point shows where anything you type is
entered. You can view other parts of your file without
changing the insertion point by using the mouse on the
window’s scroll bars.

Drag the scroll bar “thumb” to display the portion of
the file you want to view.

Click on the arrow box at the end of the scroll bar to

File
Signatures

6-6 Entering and Editing Programs

move the window display in the indicated direction one
line at a time (vertical scroll bar), or by 10 screen pixels
(horizontal scroll bar).

Click in the gray area adjacent to the thumb to move
the file up or down one screen at a time (vertical scroll
bar), or left and right one-half screen at a time (horizon-
tal scroll bar).

Hold the mouse down in the either area to produce
continuous scrolling after a slight delay.

If you have an extended keyboard, the home and end
keys move the display to the beginning or end of the file.
The page up and page down keys scroll the file by the
height of the window. None of these actions alters the
insertion point.

To quickly reposition the file at the insertion point
after scrolling and examining another part of the file,
press the enter key (not the return key).

The arrow keys on the Macintosh Plus, Macintosh SE,
and Macintosh II keyboards move the insertion point, one
character or one line at a time. Holding down the key
with the up, down, left, or right arrow key moves the
insertion point to the beginning of the file, end of the
file, start of a line, or end of a line respectively.

The Search menu has several options for moving
through a window:

Jump to Top

Jump to Bottom

Jump to Line #...

These have shortcuts:

-’ goes to the top of the window, like
 -↑

-; goes to the bottom of the window, like
-↓

-J asks for a line number and when you
supply it, moves the insertion point and
the display to that line

Arrow
Keys

Jumps

Entering and Editing Programs 6-7

Fonts and Tabs

You can select a font using the Options menu. The font
selected applies to the currently open window.

The font size is also selected under Options. Those that
are outlined are displayed in better quality than those
that aren’t. The default is 9-point Monaco.

Under Options, Tabs ... you can select the number of
spaces per tab stop. The default is 4.

Only one font, font size, and tab setting can be used in
a window, although different windows can have different
settings. The settings are remembered when the window is
saved in a file.

Indenting

When checked, the Auto Indent option indents each new
line typed as much as the preceding line. To prevent an
auto-indent on the next line, hold down the option key
when you press return. You can disable Auto Indent by
unchecking it in the Options menu.

To change the indentation for a range of lines, select
them, then use Shift Left or Shift Right from the Edit menu.
The keyboard shortcuts are -[and -]. The selected text
is moved one tab stop left or right. If you hold down the
shift key while using this command, text is moved in one-
space increments instead.

Balancing

The Balance command in the Edit menu (-B) extends
the current selection in both directions until it encloses
the smallest span of text that is balanced by parentheses (
), brackets [], or braces { }.

Repeat this command to select larger portions of text.
If the text is out of balance, the system beeps.

Keep in mind that the Balance command just looks for
matching characters. It won’t know if what it finds is
relevant program code or material inside a string literal
or comment.

6-8 Entering and Editing Programs

Printing

The ProIcon editor uses the standard Macintosh print
routines, and thus works with an ImageWriter or a Laser-
Writer.

Print ... (shortcut -P) and Page Setup ... are in the File
menu.

Searching and Replacing

If you have intricate searching and replacing to do,
write a ProIcon program. ProIcon is far more versatile
and powerful than any text editor. For garden-variety
searches and replacements, though, the ProIcon editor
offers a host of convenient features.

Search-and-replace operations are found under the
Search menu.

The shortcut for finding text is -F. You are asked what
to look for. Type that in, and click the Find button or
press return. The search proceeds forward from the
current insertion point. The next instance of what you’re
looking for is highlighted. If it can’t be found, the system
beeps.

You have several options that can be checked:

 Match Words Only entire words match your
search text. If Match Words is off,
then searching for the also matches

there and bother. If on, only
the matches.

Wrap Around Searches normally go from the
current insertion point to the end

of the file and stop. If Wrap
Around is on, the search goes back to the

beginning after it reaches the end,
until it gets to where you started.

Ignore Case Means that, for example, the and
tHe both match. If Ignore case is
off, they don’t.

To repeat a search, use -G or Find Again in the Search
menu.

Finding

Entering and Editing Programs 6-9

If you want to replace some, but not all, occurrences of
the search string, enter a replacement string in the
Replace with: part of the Find dialog box.

When the editor finds the search string, you can skip it
and go to the next one with -G. If you want to replace,

-R does the job. -Y performs Replace and Find Again,
which can speed your work.

There is also Replace All ... in the Search menu, which
does exactly that. If the Replace with: field is empty, you
delete every occurrence of what’s in the Find: field.

Warning : Although you can undo a single search-and-
replace, you can’t undo a Replace All.

As a shortcut, you can enter text that is selected in a
window into the Find dialog by selecting Enter Selection
in the Search menu (keyboard equivalent -E). With this
method, you can initiate a search without ever bringing up
the Find dialog. Just select the text you want to search
for, enter -E, and enter -G to find it.

The Search dialog lets you proceed (the Find button)
and pretend you never started (Cancel). The other button
is Don’t Find. It keeps the current settings, but does not
initiate a search.

A good time to use this is when you realize that the
insertion point isn’t where you want it, but you’ve already
entered the search and replace information. Just Don’t
Find, move the insertion point, then Find Again.

Since ProIcon uses printable ASCII characters for its
source files, you won’t need nonprinting characters often.
If you do, you can enter the Tab and Return characters by
holding down the key as you type them into the Find: and
Replace with: fields.

Other nonprinting characters can be entered. Consult
the Keyboard Chart in Appendix A. Any character code
from 0 through 255 can be entered in this manner.

Multiple Files

The Multi-File Search option lets you search for (and
optionally replace) text in more than one file. Search
paths let you specify the names of the files to be
searched.

Nonprinting
Characters

Don’t Find

Replacing

6-10 Entering and Editing Programs

To do this, enter your search text (and any replacement
text) in the Find dialog, just as you would for a normal
search of text in a window. Then check the Multi-File Search

box. Suppose you want to search for the word confidential in
several files. Enter the search text:

Check the Multi-File Search box. When you do, another
dialog appears. Now, supply the names of the files to be
examined. Suppose you want to search the files MyData and
Chapter21 Text for confidential. Enter both file names,
using -return between them. File names are insensitive to
upper- and lowercase spellings. After entering the file names,
select OK, like this:

Return to the original search dialog. When you select the
Find button, the ProIcon editor searches each of the files for
the desired text. If a file containing the text is found, the file
is displayed and the matching text highlighted.

After a successful search, the normal search continuation
choices are available: Find Again, Replace, Replace and
Find Again, and Replace All All of these are restricted to
the file just displayed.

You can continue the search into other files on your list by
entering -T or by choosing Find in Next File in the Search
menu.

Find in
Next File

Entering and Editing Programs 6-11

exceed that limit. If twelve windows are open when a multi-
file search is initiated or continued, ProIcon asks you to close
at least one window before proceeding with the search.

Rather than specifying individual files, your multi-file list
may include classes of file names. To do this, use wildcard
characters in the names as described in Chapter 4.

If you want avoid retyping the search paths every time you
start up ProIcon, you can record them in a text file and load
the search dialog with Use File as described in Chapter 4.

The Interactive Window
The Interactive window is used when your program

requires interactive input from the keyboard. As characters
are entered, they are echoed to this window.

All of the normal Macintosh window editing operations
such as text selection, cut, copy, and paste are available to
you when input is requested. You can highlight and copy
text in one window, and then paste it into the input line at
the end of the Interactive window.

As a convenience, ProIcon offers some additional editing
capabilities during (and only during) program input:

1. If the insertion point is anywhere on the last line,
pressing return causes ProIcon to accept that line of input
rather than insert a return character. The same action applies
when there is a highlighted selection. Thus, after pasting in
text, you can immediately press return without first having to
position the insertion point at the end of line. Use -return
to enter a literal return character in the input line.

2. If the insertion point lies in any of the text preceding
the input line being composed, pressing return or enter
moves the insertion point to the end of the input line and
repositions the window accordingly.

3. If text is highlighted in any window, pressing return
appends that text to the end of the input line being com-
posed. It’s as if you had selected Copy, then positioned the
insertion point at the end of the input line and done a Paste.

 Pressing enter instead of return also copies the text, but in
addition it accepts the line for input, as if a second return had
been entered after the text was copied.

Wildcards

Terminal
Input
Shortcuts

Path Files

6-12 Entering and Editing Programs

Window Management
ProIcon supports all of the window regions of the standard

Macintosh interface.

The box in the left corner of the title bar closes the
window. If the text contained in the terminal window has
been modified since it was last saved, ProIcon prompts you
to save or discard the new contents or to cancel the Close
operation. Holding down the option key while clicking in the
Close box closes all windows.

Closing the Interactive window does not discard it, but
merely hides it. You can make it visible again from the Win-
dow menu (described below).

The box in the right corner of the title bar is the zoom
box. Clicking in this box enlarges the window to full screen
size or returns it to its former size.

The scroll bars and window-resizing region in the lower
right corner are entirely conventional. They let you position
the file within the window and change the size of window.

If the file name ends with the suffix .icn, the window is
considered runnable and contains a small status display in the
lower left corner. It informs you that your program is
available for editing, is being compiled, is running, has
paused, or is awaiting input from the keyboard.

Clicking anywhere in a window or its title bar places the
window in front of all other windows on the desktop.

Clicking and dragging in the title bar allows you to
position the window on the desktop. Holding down the
key when clicking in the title bar allows you to move the
window without bringing it to the front.

When several windows are simultaneously open, windows
may become hidden behind other windows. The Window
menu displays a list of names of all windows, and associates a
numbered key with the first 10. Selecting the window’s
name from the Window menu, or pressing the associated
key brings that window to the front. The Interactive window
is permanently assigned to -0.

Window
Regions

Window
Selection

Window
Arrangement

Entering and Editing Programs 6-13

Selecting Stack Windows from the Window menu quickly
arranges all open windows in an orderly cascade on the
screen.

Tile Windows reduces the size of all windows so that they
all fit on the screen, without overlap.

Holding down the option key when clicking in a window’s
title bar places it behind all other windows.

The Full Titles menu item attempts to display the full path
name in each window’s title bar and in the Windows menu.
Long path names are truncated on the right.

The Zoom menu item duplicates the function of the zoom
box in the title bar. It is available with a keyboard shortcut as

-= .

The size, position, and current text selection are remem-
bered with each window. This is automatic for the Interac-
tive window but only occurs with other windows when they
are saved.

Startup Options
The Startup ... option in the Windows menu allows you to

determine ProIcon’s launch behavior. It can start up by
presenting you with a file dialog, which allows you to select
the file to load; it can open a new, untitled window; or it can
remain neutral, doing neither.

7
Menu Reference

Menu Reference 7-1

The File menu is similar to the file menus of most
Macintosh applications.

Select New to open a new window for entering a program
or other text.

Select Open ... to get a dialog box that allows you to
open an existing text file.

Close closes the currently active window. If it has not
been saved or if it has been changed since it was last
saved, you’ll be asked if you want to save it.

Save saves the currently active window under its current
name, while Save as ... lets you save it under a different
name.

Menu Reference
This chapter summarizes ProIcon’s menus. The com-

mand shortcuts shown on the menus can save you a lot of
time if you use ProIcon frequently. They are summarized
at the end of this chapter.

The top of the menu has two selections for
ProIcon.

Select About ProIcon ... if you want to know more
about the application.

Online Help opens the door to information about
ProIcon that you may need when you’re using ProIcon.
Online help is discussed in Chapter 5.

7-2 Menu Reference

Revert goes back to the last saved version of a file and
updates the currently active window accordingly.

Page Setup ... displays a dialog box that lets you determine
how the contents of windows are printed.

Print ... displays a dialog box that allows you to print the
contents of the currently active window.

Transfer ... allows you to transfer to another application
directly from ProIcon. It displays a dialog box that lets you
select the application you want.

Finally, Quit terminates the ProIcon application. If you have
any windows that have been modified but not saved, you are
prompted to save or discard the contents.

The Edit menu lets you do the usual Macintosh operations
with the clipboard and also provides some extra facili-
ties for use with the ProIcon editor. See Chapter 6 for
detailed information.

The Undo selection lets you undo the last cut/paste or
editing operation you did. What appears in that selection
depends on what you did last. In the selection shown here,
the last operation was the typing of text.

Cut copies the current selection to the clipboard and
deletes it.

Copy does the same, but it does not delete the selection
from the currently active window.

Paste copies the contents of the clipboard into the
currently active window at its selection point.

Clear deletes the current selection but does not change
the contents of the clipboard.

Select All selects the entire contents of the currently
active window.

Shift Left and Shift Right move the selected text left or
right one tab stop. If you hold down the shift key when
selecting one of these, the shift is one space instead of

Menu Reference 7-3

Terminate Input terminates keyboard input to a
running program. It causes read() or reads() to
fail.

The Search menu lets you locate and change
window text.

Find ... displays a dialog box that allows you to
specify the text you want to find. See Chapter 6
for details.

Enter Selection places the selected text in the
currently active window as the text to be found.

Find Again searches for the next occurrence of
the text specified for Find.

Replace allows you to replace text that is
found and Replace and Find Again follows the

replacement with another search.

Replace All ... replaces all occurrences of text that is
found. Warning: you cannot undo this.

Find in Next File goes to the next file in a multi-file
search. See Chapter 6 for more information.

Jump to Top and Jump to Bottom set the insertion point
and window display to the top and bottom of the currently
active window, respectively.

Jump to Line # ... prompts you for a line number and then

one tab stop.

Balance extends the current selection in both directions
until it is balanced with respect to parentheses, brackets,
or braces.

7-4 Menu Reference

moves the insertion point and window display to that
line.

Help Lookup produces a help window for the cur-
rently selected text.

The Options menu lets you change aspects of the
currently active window and also lets you specify
options for compiling, linking, and running Icon
programs.

Select Font or Font Size to get a hierarchical menu
from which you can specify the font or font size for
the currently active window.

Select Tabs ... to specify the number of spaces per
tab stop.

If Auto Indent is checked, each new line typed is
indented as much as the preceding line.

Parameter String ... lets you specify arguments for
the main procedure of your Icon program. See Chapter
5 for details.

Library Folders ... allows you to specify which folders the
linker searches for intermediate files that are specified
in link declarations. See Chapter 5 for details.

If you want to specify where your Icon program gets
standard input, select Program Input You get a dialog
box that allows you to chose between the keyboard, the
currently active window, or a file, in which case you get a
file dialog box that allows you to chose a file.

Program Output ... is similar to Program Input ..., except
it lets you chose where program output goes: to the
Interactive window, to the currently active window, or to a
file you chose.

Error Output ... lets you chose where error messages go.

Program Options ... brings up a dialog box that lets you
chose several options related to running Icon programs.
See Chapter 5 for details.

Window Options ... lets you limit output to the currently
active window and specify how windows are opened from

Menu Reference 7-5

Run after Link goes one step further and runs your pro-
gram after it has been compiled and linked.

The last three items on the Run menu allow you to
compile, link, and run existing files. If you select one of
these items, you get an open dialog box from which you
can chose a file.

the desktop.

Compiler Memory gives you a hierarchical menu from

The Windows menu lets you control several aspects of
window handling.

If you check Full Titles, the full path name (or as much
as fits) for a window connected to a file is displayed in
the window’s title bar.

Zoom duplicates the function of the zoom box in the
title bar of a window.

Close All closes all windows.

Save All saves the contents of all windows that are
connected to files.

Startup ... lets you determine ProIcon’s launch behavior.

The Run menu allows you to compile and run ProIcon
programs.

Compile Window compiles the program in the currently
active window.

Stop terminates the currently executing program, while
Pause causes it to suspend execution temporarily. You
can continue the execution of a suspended program by
selecting Continue.

If Link after Compile is checked, ProIcon goes on to
link your program after compiling it. Uncheck this
item if you want to stop after compilation.

7-6 Menu Reference

Stack Windows arranges all open windows in a cascade on
the screen.

Tile WIndows reduces the sizes of all windows so that they
do not overlap on the screen.

The bottom part of the Windows menu shows all the open
windows. Select a window to bring it to the front on the
screen. Windows whose contents have changed since they
were saved are marked at the left with a lozenge.

Keyboard Shortcuts
Many menu items have command-key shortcuts, as shown

on the menus. Here’s a summary of these and other short-
cuts for quick reference:

-A Select all text in window

-B Balance parentheses, brackets, or braces

-C Copy selection to clipboard

-D Terminate input (keyboard end-of-file)

-E Enter selection as search text in Find dialog

-F Find text

-G Find again

-H Help lookup

-J Jump to line

-K Compile program in window

-N Open new, untitled window

-O Open file into window

-Q Quit ProIcon

-R Replace selection

-S Save window in file

-T Find in next file

-V Paste from clipboard

Command-Key
Shortcuts

Menu Reference 7-7

-W Close window

-X Cut selection to clipboard

-Y Replace selection and find again

-Z Undo last editing operation

-` Transfer to another application

-[Shift selected lines left one tab stop

-] Shift selected lines right one tab stop

-{ Shift selected lines lift one space

-} Shift selected lines right one space

-' Jump to first line in window

-; Jump to last line in window

-= Zoom window in or out

-. Stop program execution

-/ Suspend program execution

- – Continue program execution

-0 Select window 0

-9 Select window 9

-return enter literal return in dialog

-tab enter literal tab in dialog

In addition, on the extended keyboard, function keys F1 -
F4 perform undo, cut, copy, and paste, respectively. On all
keyboards that have it, the escape key behaves like -. .

Function Keys

7-8 Menu Reference

Holding down the option key while performing certain
actions produces alternatives that may be useful for one-time
operations:

Press option when choosing Open in the File menu to
suppress TEXT file filtering. All files types are displayed.

Press option-return when entering text in a window with
auto indentation enabled to suppress auto indentation on the
next line.

Press option when you start to compile or run a program
to produce a pop-up dialog that allows you to make last-
minute changes to the parameter string, memory allocation,
and input/output specifications.

Press option when launching ProIcon from the desktop to
reverse the normal startup action. If you normally get a new,
untitled window, you get a file dialog instead. Conversely, if
you normally get a file dialog, you get a new window.

Window Shortcuts
Press option while clicking in the active window’s go-away

box to close all windows.

Press option while clicking in its title bar to place a window
behind all other windows.

Press while clicking in the window’s title bar to drag a
window without bringing it to the front.

Option Key

Manipulating
Windows

8
Icon Language

Overview

Icon Language Overview 8-1

ICON LANGUAGE OVERVIEW
The overview of the Icon language that follows is adapted from a techni-

cal report published by the Icon Project at The University of Arizona. If
you’re new to Icon, this overview will get you started. If you’ve used Icon
before, you can also use this overview to help you brush up.

Introduction
Icon is a high-level programming language with extensive facilities for

processing strings and lists. Icon has several novel features, including
expressions that may produce sequences of results, goal-directed evaluation
that automatically searches for a successful result, and string scanning that
allows operations on strings to be formulated at a high conceptual level.

Icon emphasizes high-level string processing and a design philosophy that
allows ease of programming and short, concise programs. Storage allocation
and garbage collection are automatic, and there are few restrictions on the
sizes of objects. Strings, lists, and other structures are created during
program execution and their sizes do not need to be known when a pro-
gram is written. Values are converted to expected types automatically; for
example, numeral strings read in as input can be used in numerical compu-
tations without explicit conversion.

Examples of the kinds of problems for which Icon is well suited are:

• text analysis, editing, and formatting

• document preparation

• symbolic mathematics

• text generation

• parsing and translation

8-2 Icon Language Overview

• data laundry

• graph manipulation

• rapid prototyping

A brief description of some of the representative features of Icon is given
in the following sections. This description is not rigorous and does not
include many features of Icon. See the Icon book for a complete description
and Chapters 9-11 of this manual for recent changes and additions to the
language.

Strings
Strings of characters may be arbitrarily long, limited only by the architec-

ture of the computer on which Icon is implemented. A string may be
specified literally by enclosing it in double quotation marks, as in

greeting := "Hello world"

which assigns an 11-character string to greeting, and

address := ""

which assigns the zero-length empty string to address. The number of
characters in a string s, its size, is given by ∗s. For example, ∗greeting is 11
and ∗address is 0.

Icon uses all 256 characters of the extended ASCII character set. There
are escape conventions, similar to those of C, for representing characters
that cannot be keyboarded.

Strings also can be read in and written out, as in

line := read()

and

write(line)

Strings can be constructed by concatenation, as in

element := "(" || read() || ")"

If the concatenation of a number of strings is to be written out, the write
function can be used with several arguments to avoid actual concatenation:

write("(",read(),")")

Substrings can be formed by subscripting strings with range specifications
that indicate, by position, the desired range of characters. For example,

Icon Language Overview 8-3

middle := line[10:20]

assigns to middle the string of characters of line between positions 10 and
20. Similarly,

write(line[2])

writes the second character of line. The value 0 refers to the position after
the last character of a string. Thus,

write(line[2:0])

writes the substring of line from the second character to the end, thus
omitting the first character.

An assignment can be made to the substring of string-valued variable to
change its value. For example,

line[2] := "..."

replaces the second character of line by three dots. Note that the size of line
changes automatically.

There are many functions for analyzing strings. An example is

find(s1,s2)

which produces the position in s2 at which s1 occurs as a substring. For
example, if the value of greeting is as given earlier,

find("or",greeting)

produces the value 8.

Character Sets
While strings are sequences of characters, csets are sets of characters in

which membership rather than order is significant. Csets are represented
literally using single enclosing quotation marks, as in

vowels := 'aeiouAEIOU'

Two useful built-in csets are &lcase and &ucase, which consist of the
lowercase and uppercase letters, respectively. Set operations are provided for
csets. For example,

letters := &lcase ++ &ucase

forms the cset union of the lowercase and uppercase letters and assigns the
resulting cset to letters, while

consonants := letters – – 'aeiouAEIOU'

8-4 Icon Language Overview

forms the cset difference of the letters and the vowels and assigns the
resulting cset to consonants.

Csets are useful in situations in which any one of a number of characters
is significant. An example is the string-analysis function

upto(c,s)

which produces the position in s at which any character in c occurs. For
example,

upto(vowels,greeting)

produces 2. Another string-analysis function that uses csets is

many(c,s)

which produces the position in s after an initial substring consisting only of
characters that occur in s. An example of the use of many is in locating
words. Suppose, for example, that a word is defined to consist of a string of
letters. The expression

write(line[1:many(letters,line)])

writes a word at the beginning of line. Note the use of the position re-
turned by a string-analysis function to specify the end of a substring.

Expression Evaluation

Conditional Expressions

In Icon there are conditional expressions that may succeed and produce a
result, or may fail and not produce any result. An example is the compari-
son operation

i > j

which succeeds (and produces the value of j) provided that the value of i is
greater than the value of j, but fails otherwise. Similarly,

i > j > k

succeeds if j is between i and k.

The success or failure of conditional operations is used instead of Boolean
values to drive control structures in Icon. An example is

if i > j then k := i else k := j

which assigns the value of i to k if the value of i is greater than the value of j,
but assigns the value of j to k otherwise.

Icon Language Overview 8-5

The usefulness of the concepts of success and failure is illustrated by
find(s1,s2), which fails if s1 does not occur as a substring of s2. Thus

if i := find("or",line) then write(i)

writes the position at which or occurs in line, if it occurs, but does not write
anything if it does not occur.

Many expressions in Icon are conditional. An example is read(), which
produces the next line from the input file, but fails when the end of the file
is reached. The following expression is typical of programming in Icon and
illustrates the integration of conditional expressions and conventional
control structures:

while line := read() do
 write(line)

This expression copies the input file to the output file.

If an argument of a function fails, the function is not called, and the
function call fails as well. This “inheritance” of failure allows the concise
formulation of many programming tasks. Omitting the optional do clause
in while-do, the previous expression can be rewritten as

while write(read())

Generators

In some situations, an expression may be capable of producing more than
one result. Consider

sentence := "Store it in the neighboring harbor"
find("or",sentence)

Here "or" occurs in sentence at positions 3, 23, and 33. Most program-
ming languages treat this situation by selecting one of the positions, such as
the first, as the result of the expression. In Icon, such an expression is a
generator and is capable of producing all three positions.

The results that a generator produces depend on context. In a situation
where only one result is needed, the first is produced, as in

i := find("or",sentence)

which assigns the value 3 to i.

If the result produced by a generator does not lead to the success of an
enclosing expression, however, the generator is resumed to produce another
value. An example is

if (i := find("or",sentence)) > 5 then write(i)

8-6 Icon Language Overview

 The first result produced by the generator, 3, is assigned to i, but this value
is not greater than 5 and the comparison operation fails. At this point, the
generator is resumed and produces the second position, 23, which is greater
than 5. The comparison operation then succeeds and the value 23 is
written. Because of the inheritance of failure and the fact that comparison
operations return the value of their right argument, this expression can be
written in the following more compact form:

write(5 < find("or",sentence))

Goal-directed evaluation is inherent in the expression-evaluation mecha-
nism of Icon and can be used in arbitrarily complicated situations. For
example,

find("or",sentence1) = find("and",sentence2)

succeeds if or occurs in sentence1 at the same position as and occurs in
sentence2.

A generator can be resumed repeatedly to produce all its results by using
the every-do control structure. An example is

every i := find("or",sentence)
 do write(i)

which writes all the positions at which or occurs in sentence. For the
example above, these are 3, 23, and 33.

Generation is inherited like failure, and this expression can be written
more concisely by omitting the optional do clause:

every write(find("or",sentence))

There are several built-in generators in Icon. One of the most frequently
used of these is

i to j

which generates the integers from i to j. This generator can be combined
with every-do to formulate the traditional for-style control structure:

every k := i to j do
 square(k)

This expression can be written more compactly as

every square(i to j)

There are several other control structures related to generation. One is
alternation,

Icon Language Overview 8-7

expr1 | expr2

which generates the results of expr1 followed by the results of expr2. Thus,

every write(find("or",sentence1) | find("or",sentence2))

writes the positions of "or" in sentence1 followed by the positions of "or" in
sentence2. Again, this sentence can be written more compactly by using
alternation in the second argument of find:

every write(find("or",sentence1 | sentence2))

Another use of alternation is illustrated by

(i | j | k) = (0 | 1)

which succeeds if any of i, j, or k has the value 0 or 1.

String Scanning
The string analysis and synthesis operations described earlier work best for

relatively simple operations on strings. For complicated operations, the
bookkeeping involved in keeping track of positions in strings becomes
burdensome and error prone. In such cases, Icon has a string scanning
facility that is analogous in many respects to pattern matching in SNO-
BOL4. In string scanning, positions are managed automatically and atten-
tion is focused on a current position in a string as it is examined by a
sequence of operations.

The string scanning operation has the form

s ? expr

where s is the subject string to be examined and expr is an expression that
performs the examination. A position in the subject, which starts at 1, is the
focus of examination.

Matching functions change this position. The matching function move(i)
moves the position by i and produces the substring of the subject between
the previous and new positions. If the position cannot be moved by the
specified amount (because the subject is not long enough), move(i) fails. A
simple example is

line ? while write(move(2))

which writes successive two-character substrings of line, stopping when
there are no more characters.

Another matching function is tab(i), which sets the position in the subject

8-8 Icon Language Overview

to i and also returns the substring of the subject between the previous and
new positions. For example,

line ? if tab(10) then write(tab(0))

first sets the position in the subject to 10 and then to the end of the subject,
writing line[10:0]. Note that no value is written if the subject is not long
enough.

String analysis functions such as find can be used in string scanning. In
this context, the string that they operate on is not specified and is taken to
be the subject. For example,

line ? while write(tab(find("or")))
 do move(2)

writes all the substrings of line prior to occurrences of "or ". Note that find
produces a position, which is then used by tab to change the position and
produce the desired substring. The move(2) skips the "or " that is found.

Another example of the use of string analysis functions in scanning is

line ? while tab(upto(letters)) do
 write(tab(many(letters)))

which writes all the words in line.

As illustrated in the examples above, any expression may occur in the
scanning expression. Unlike SNOBOL4, in which the operations that are
allowed in pattern matching are limited and idiosyncratic, string scanning is
completely integrated with the rest of the operation repertoire of Icon.

Structures
Icon supports several kinds of structures that consist of aggregates of

values with different organizations and access methods. Lists are linear
structures that can be accessed both by position and by stack and queue
functions. Sets are collections of arbitrary values with no implied ordering.
Tables provide an associative-lookup mechanism.

Lists

Lists in Icon are sequences of values of arbitrary types. Lists are created by
enclosing the lists of values in brackets. An example is

car1 := ["buick","skylark",1978,2450]

in which the list car1 has four values, two of which are strings and two of
which are integers. Note that the values in a list need not all be of the same
type. In fact, any kind of value can occur in a list — even another list, as in

Icon Language Overview 8-9

inventory := [car1,car2,car3,car4]

Lists also can be created by list(i,x), which creates a list of i values, each of
which has the value x.

The values in a list can be referenced by position much like the characters
in a string. Thus

car1[4] := 2400

changes the last value in car1 to 2400. A reference that is out of the range
of the list fails. For example,

write(car1[5])

fails.

The values in a list L are generated by !L. Thus

every write(!L)

writes all the values in L.

Lists can be manipulated like stacks and queues. The function push(L,x)
adds the value of x to the left end of the list L, automatically increasing the
size of L by one. Similarly, pop(L) removes the leftmost value from L,
automatically decreasing the size of L by one, and produces the removed
value.

A list value in Icon is a pointer (reference) to a structure. Assignment of a
structure in Icon does not copy the structure itself but only the pointer to
it. Thus,

demo := car1

causes demo and car1 to reference the same list. Graphs with loops can be
constructed in this way. For example,

node1 := ["a"]
node2 := [node1,"b"]
push(node1,node2)

constructs a structure that can be pictured as follows:

e2

8-10 Icon Language Overview

Sets

Sets are collections of values. A set is obtained from a list by set(L), where
L is a list that contains the members of the set. For example,

S := set([1,"abc",[]])

assigns to S a set that contains the integer 1, the string "abc", and an empty
list. An empty set is created by set().

The operations of union, intersection, and difference can be performed
on sets. The function member(S,x) succeeds if x is a member of the set S
but fails otherwise. The function insert(S,x) adds x to the set S, while
delete(S,x) removes x from S. A value only can occur once in a set, so
insert(S,x) has no effect if x is already in S. The operator !S generates the
members of S.

A simple example of the use of sets is given by the following segment of
code, which lists all the different words that appear in the input file:

words := set()
while line := read() do
 line ? while tab(upto(letters)) do
 insert(words,tab(many(letters)))
every write(!words)

Tables

Tables are sets of pairs of values, a key and a corresponding value. The
keys and values may be of any type. The value for any key is looked up
automatically. Thus, tables provide associative access in contrast with the
positional access to values in lists.

A table is created by an expression such as

symbols := table(x)

which assigns to symbols a table that has the default value x. The default
value is used for new keys. Subsequently, symbols can be referenced by any
key, such as

symbols["there"] := 1

which associates the value 1 with the key "there" in symbols.

Tables grow automatically as new keys are added. For example, the
following program segment produces a table containing a count of the
words that appear in the input file:

words := table(0)

Icon Language Overview 8-11

while line := read() do
 line ? while tab(upto(letters)) do
 words[tab(many(letters))] +:= 1

Here the default value for each word is 0 and +:= is an augmented
assignment operation that increments the values by one.

A list can be obtained from a table by the function sort(t,i). The form of
the list depends on the value of i. For example, if i is 3, the list contains
alternate keys and values of t. An example of sorting is:

wordlist := sort(words,3)
while write(pop(wordlist)," : ",pop(wordlist))

which writes the words and their counts from words.

Procedures
An Icon program consists of a sequence of procedures. An example of a

procedure is

procedure max(i,j)
 if i > j then return i else return j
end

where the name of the procedure is max and its formal parameters are i and
j. The return expressions return the value of i or j, whichever is larger.

Procedures are called like functions. Thus,

k := max(∗s1,∗s2)

assigns to k the size of the longer of the strings s1 and s2.

A procedure also may generate a sequence of values by suspending instead
of returning. In this case, a result is produced as in the case of a return, but
the procedure can be resumed to produce other results. An example is the
following procedure that generates the words in the input file.

procedure genword()
 letters := &lcase ++ &ucase
 while line := read() do
 line ? while tab(upto(letters)) do {
 word := tab(many(letters))
 suspend word
 }
end

8-12 Icon Language Overview

The braces enclose a compound expression.

Such a generator can be used in the same way that a built-in generator is
used. For example

every word := genword() do
 if find("or",word) then write(word)

writes only those words that contain the substring "or".

An Example
The following program, which produces a concordance of the words from

an input file, illustrates typical Icon programming techniques. Although not
all of the features in this program are described in previous sections, the
general idea should be clear.

procedure main()

 letters := &lcase ++ &ucase
 words := table()
 maxword := lineno := 0

 while line := read() do {
 lineno +:= 1
 write(right(lineno,6)," ",line)
 line := map(line) # fold to lowercase
 line ? while tab(upto(letters)) do {
 word := tab(many(letters))
 if ∗word < 3 then next # skip short words
 maxword <:= ∗word # keep track of longest word
 /words[word] := set() # if it’s a new word, start set
 insert(words[word],lineno) # add the line number
 }
 }
 write()
 wordlist := sort(words,3) # sort by words
 while word := get(wordlist) do {
 lines := "" # build up line numbers
 numbers := sort(get(wordlist))
 while lines ||:= get(numbers) || ", "
 write(left(word,maxword + 2),": ",lines[1:–2])
 }
end

Icon Language Overview 8-13

The program reads a line, writes it out with an identifying line number,
and then processes every word in the line. Words less than three characters
long are considered to be “noise” and are discarded. The table words
contains sets of line numbers for each word. The first time a word is
encountered, there is no set for it (tested by /words[word]). In this case, a
new set is created. The current line number is appended to the set for the
word in any event.

After the input file has been read, the table of words is sorted (the
corresponding values are sets of line numbers). For each word, its set is
sorted and the word and line numbers where it occurs are written out. For
example, if the input file is

 On the Future!–how it tells
 Of the rapture that impells
 To the swinging and the ringing
 Of the bells, bells, bells–
 Of the bells, bells, bells, bells,
 Bells, bells, bells–
 To the rhyming and the chiming of the bells!

the output is

 1 On the Future!-how it tells
 2 Of the rapture that impells
 3 To the swinging and the ringing
 4 Of the bells, bells, bells-
 5 Of the bells, bells, bells, bells,
 6 Bells, bells, bells-
 7 To the rhyming and the chiming of the bells!

and : 3, 7
bells : 4, 5, 6, 7
chiming : 7
future : 1
how : 1
impells : 2
rapture : 2
rhyming : 7
ringing : 3
swinging : 3
tells : 1
that : 2
the : 1, 2, 3, 4, 5, 7

8-14 Icon Language Overview

It is easy to make this program more sophisticated. For example, a
dictionary of words to be ignored could be added as a set. With a little
more work, the output format could be made more attractive, and so on.

9
Version 8 of Icon

Version 8 of Icon 9-1

Version 8 of Icon
 A complete description of Icon is contained in The Icon Programming

Language (Prentice-Hall), by Ralph E. Griswold and Madge T. Griswold.
The first edition of this book (1983) describes Version 5 of Icon, while the
second edition (1990) describes Version 8. Version 2.0 of ProIcon corre-
sponds to Version 8 of Icon. This chapter describes briefly the changes in
Icon between Versions 5 and 8 and is provided for persons who have the
first edition of the book but not the second. If you have the second
edition of the book, you can skip this chapter, although you may wish to
check the list of known bugs and limitations in Version 8 of Icon that are
listed at the end of this chapter.

The descriptions that follow are keyed to the first edition — its chapter
and page numbers.

Chapter 3 — Numbers

Page 22, Large-Integer Arithmetic: There is no limit on the magnitude of
integers produced by integer arithmetic.

Page 23, Bit Operations and Mathematical Functions: There are five
functions that operate on integers at the bit level:

iand(i,j) Produces the bit-wise and of i and j.

ior(i,j) Produces the bit-wise inclusive or of i and j.

ixor(i,j) Produces the bit-wise exclusive or of i and j.

icom(i) Produces the bit-wise one’s complement of i.

ishift(i,j) Produces the result of shifting i by j posi-
tions. If j is positive, the shift is left, while if j is

9-2 Version 8 of Icon

negative, the shift is right. Vacated bit posi-
tions are filled with zeros.

Page 23, Mathematical Functions: The following functions perform
trigonometric computations:

sin(r) sine of r

cos(r) cosine of r

tan(r) tangent of r

asin(r) arc sine of r

acos(r) arc cosine of r

atan(r) arc tangent of r

atan(r1,r2) arc tangent of r1 / r2

In all cases, angles are given in radians. There are two forms of argu-
ments for atan, depending on whether or not the second argument is
supplied.

The following functions convert between radians and degrees:

dtor(r) the radian equivalent of r given in
 degrees

rtod(r) the degree equivalent of r given
 in radians

The following functions perform mathematical calculations:

sqrt(r) square root of r

exp(r) e raised to the power r

log(r1,r2) logarithm of r1 to the base r2
(default e)

Chapter 4 — Character Sets and Strings

Page 25, Csets: The keyword &letters consists of the 52 upper- and
lowercase letters. The keyword &digits consists of the ten digits. It is
provided as a convenience; '0123456789' works just as well.

Page 27, Strings: The function char(i) produces the one-character string
corresponding to i. The function ord(s) produces the integer correspond-

Version 8 of Icon 9-3

ing to the one-character string string(s).

Page 37, Tabular Material: Two functions deal with tabs in textual
material:

entab(s,i1,i2,...,in)
detab(s,i1,i2,...,in)

The function entab(s,i1,i2,...,in) produces a string obtained by replac-
ing runs of consecutive spaces (blanks) in s by tab characters. There is an
implicit tab stop at 1 to establish the interval between tab stops. The
remaining tab stops are at i1, i2, ..., in. Additional tab stops, if necessary,
are obtained by repeating the last interval. If you do not specify the tab
stops, the interval is 8 with the first tab stop at 9.

For the purposes of determining positions, printing characters have a
width of 1, "\b" has a width of −1, and "\r" and "\n" restart the counting of
positions. Nonprinting characters (decimal codes 0-31 and 127 for
ProIcon) have zero width.

A lone space is never replaced by a tab character, but a tab character
may replace a single space that is part of a longer run.

The function detab(s,i1,i2,...,in) produces a string obtained by replac-
ing each tab character in s by one or more spaces. Tab stops are specified
in the same way as for entab.

Chapter 5 — Structures

Page 48, Sets: A set is an unordered collection of values. Sets have many
of the properties normally associated with sets in the mathematical
sense.

 The function set(L) creates a set that contains the distinct elements of
the list L. For example, set(["abc",3]) creates a set with two members,
"abc" and 3. If the argument to set is omitted, an empty set is created.

Any specific value can occur only once in a set. For example,
set([1,2,3,3,1]) creates a set with the three members 1, 2, and 3.

There are several operations on sets. The function member(S,x)
succeeds and returns x if x is a member of the set S, but fails otherwise.
Therefore,

member(S1,member(S2,x))

succeeds if x is a member of both S1 and S2. The function insert(S,x)
inserts x into the set S and returns S. The function delete(S,x) deletes

9-4 Version 8 of Icon

the member x from the set S and returns S. The functions insert(S,x) and
delete(S,x) always succeed, whether or not x is in S. This allows their use
in loops in which failure may occur for other reasons. For example,

S := set()
while insert(S,read())

builds a set that consists of the (distinct) lines from the standard input
file.

The operations

S1 ++ S2
S1 ∗∗ S2
S1 – – S2

create the union, intersection, and difference of S1 and S2, respectively.
In each case, the result is a new set.

 These operations apply both to sets and csets. There is no automatic
type conversion between csets and sets; the result of the operation
depends on the types of the arguments. For example,

'aeiou' ++ 'abcde'

produces the cset 'abcdeiou', while

set([1,2,3]) ++ set([2,3,4])

produces a set that contains 1, 2, 3, and 4.

The size of a set (the number of members in it), is given by ∗S. ?S
produces a randomly selected member of S and !S generates the mem-
bers of S. The function sort(S) produces a list containing the members of
S in sorted order.

Pages 56-58, Operations on Tables: The word “key” is used in this
manual for the value used to subscript a table. The first edition of The
Icon Programming Language uses the words “entry value”. The two are
synonymous.

The function key(T) generates the keys in table T. (Without this func-
tion, the only way to find the keys in a table is to sort the table and pick
the keys out of the resulting list.) For example,

every write(key(T))

writes all the keys in T.

 Given the keys, it is possible to get the corresponding values, as in

every x := key(T) do

Version 8 of Icon 9-5

 write(image(x)," : ",image(T[x]))

which writes the keys in T and their corresponding values.

The functions member, insert, and delete apply to tables as well as sets.
The function member(T,x) succeeds if x is a key for an element in the
table T, but fails otherwise. The function insert(T,x,y) inserts into table T
an element with key x and value y. If there already was a key x in T, its
corresponding value is changed. Note that insert has three arguments
when used with tables, as compared to two when used with sets. An
omitted third argument defaults to the null value.

The function delete(T,x) removes the element with key value x from T.
If x is not a key in T, no operation is performed; delete succeeds in either
case.

There are several options for sort(T,i). The form of the result produced
and the sorting order depends on the value of i:

If i is 1 or 2, the size of the sorted list is the same as the size of the table.
Each value in the list is itself a list of two values: a key and the corre-
sponding value. If i is 1, these lists are in the sorted order of the keys. If i
is 2, the lists are in the sorted order of the corresponding values. If i is
omitted, 1 is assumed.

If i is 3 or 4, the size of the sorted list is twice the size of the table and
the values in the list are successive keys and corresponding values for
the elements in the table. If i is 3, the values are in the sorted order of the
keys. If i is 4, the values are in the sorted order of the corresponding
values. For example, the following program prints a count of word
occurrences in the input file, using a procedure tabwords that produces a
table of words and their counts:

procedure main()
 wlist := sort(tabwords(),3) # get sorted list
 while write(get(wlist)," : ",get(wlist))
end

 In this example, get obtains the key first and then its corresponding
value. The list is consumed in the process, but it is not needed for
anything else.

Chapter 6 — Data Types

Page 62, Type Codes: The initial letter of a type name is used to indicate
its type in this manual. In cases where two types begin with the same
letter, uppercase letters are used to avoid ambiguity. Uppercase letters
are also used for structure types.

9-6 Version 8 of Icon

co-expression C
cset c
file f
integer i
list L
null n
procedure p
real r
set S
string s
table T
numeric N
record R
any structure X
any type x

Page 67, Sorting: Sets sort after lists but before tables. Csets, like strings,
sort in nondecreasing lexical order. Within one structure type, values are
sorted in order of the time of their creation, with the oldest last.

Chapter 7 — Procedures

Page 69, Scope Declarations: The reserved word dynamic, which was
synonymous with local, is no longer available.

Page 73, Procedures with a Variable Number of Arguments: A proce-
dure can be made to accept a variable number of arguments by append-
ing [] to the last (or only) parameter in the parameter list. An example
is:

procedure sum(a,b,c[])
 total := a + b
 i := 0
 while total +:= c[i +:= 1]
 return total
end

If called as sum(1,2,3,4,5), the parameters have the following values:

a 1
b 2
c [3,4,5]

The last parameter always contains a list. This list consists of the
arguments not used by the previous parameters. If the previous param-
eters use up all the arguments, the list is empty. If there are not enough

Version 8 of Icon 9-7

arguments to satisfy the previous parameters, the null value is used for
the remaining ones, but the last parameter still contains the empty list.

Page 74, Invocation with a List of Values: The operation p!L invokes p
with the arguments in the list L. The example p![1, 2, 3] is equivalent to
p(1, 2, 3). The operation p!L has high precedence and associates to the
left.

Chapter 9 — Input and Output

Page 93, Values Returned by Output Functions: The last argument
written is returned by write and writes, but it is not converted to a string.

Page 93, Random-Access Input and Output: There are two functions
related to random-access input and output, in which data does not have
to be read or written in sequential order.

The function seek(f,i) seeks to position i in file f. As with other posi-
tions in Icon, a nonpositive value of i can be used to reference a position
relative to the end of f. The second argument defaults to 1.

Note: The Icon form of position identification is used; the position of the
first character of a file is 1, not 0 as it is in some other random-access
facilities.

The function where(f) returns the current byte position in the file f.

Page 93, Keyboard Functions: There are three functions for reading
input from the keyboard:

getch() gets one character from the
keyboard

getche() gets one character and echoes it
to the screen

 kbhit() succeeds if there is a keyboard
character to read, but fails
otherwise

Page 93, File Manipulation: Files can be removed or renamed during
program execution. The function remove(s) removes the file named s.
Subsequent attempts to open the file fail, unless it is created anew. If the
file is open, s is not removed. remove(s) fails if it is unsuccessful.

The function rename(s1,s2) causes the file named s1 to be henceforth
known by the name s2. The file named s1 is effectively removed. If a file
named s2 exists prior to the renaming, the renaming is not performed.
rename(s1,s2) fails if unsuccessful, in which case if the file existed
previously it is still known by its original name.

9-8 Version 8 of Icon

Chapter 10 — Miscellaneous Operations

Page 97, String Invocation: A string-valued expression that corresponds
to the name of a procedure, function, or operation can be used in place of
the procedure, function, or operation in an invocation expression. For
example, "numeric"(x) produces the same call as numeric(x) and "–"(i,j) is
equivalent to i – j.

In the case of operator symbols with unary and binary forms, the number
of arguments determines the operation. Thus, "–"(i) is equivalent to –i.
Although to-by is represented with reserved words, it is an operation. It can
be invoked by the string name "..." . Thus, "..."(1,10,2) is equivalent to 1 to
10 by 2. Similarly, range specifications are represented by ":", so that
":"(s,i,j) is equivalent to s[i:j] The subscripting operation is available with the
string name "[]". Thus, "[]"(&lcase,3) produces "c".

Defaults are not provided for omitted or null-valued arguments in string
invocation. Consequently, "..."(1,10) results in a run-time error.

Arguments to operators invoked by string names are dereferenced. As a
result, string invocation for assignment operations is ineffective and results
in error termination.

String names are not available for control structures such as alternation.
Field references, of the form

expr . fieldname

also are not operations in the ordinary sense and are not available via string
invocation. In addition, conjunction is not available via string invocation,
since no operation is actually performed.

String names for procedures are available through global identifiers. The
names of functions, such as numeric, are global identifiers. Similarly, any
procedure-valued global identifier may be used as the string name of a
procedure. Thus, in

global q

procedure main()
 q := p
 "q"("hi")
end
procedure p(s)
 write(s)
end

the procedure p is invoked via the global identifier q.

The function proc(x,i) converts x to a procedure, function, or operation if
possible. If x is procedure-valued, its value is returned unchanged. If the

Version 8 of Icon 9-9

The function args(p) produces the number of arguments expected by p.
The value is –1 for a function that accepts a variable number of arguments.
For a procedure declared with a variable number of arguments, the value is
the negative of that number.

Page 99, String Images of Co-Expressions: The image of a co-expression
includes, in parentheses, an identifying number and the number of times it
has been activated. Identifying numbers start with 1 for &main and increase
as new co-expressions are created. For example,

image(&main)

produces

co–expression_1(1)

assuming &main has not been activated since its initial activation to start
program execution.

Page 99, Images of Structures: Structures have serial numbers that appear
in their string images following the type name and an underscore. For
example, image([1, 4, 9, 16]) produces a result such as "list_10(4)".

Page 100, Co-Expression Tracing: Tracing shows co-expression activa-
tion and return as well as procedure activity. display(i,f) shows an image of
the current co-expression in addition to the values of variables.

Page 102, Variables and Names: The function name(v) returns the string
name of the variable v. The string name of a variable or keyword is as it
appears in the program. The string name of a subscripted string-valued
variable consists of the name of the variable and the subscript, as in
"line[2 +:3]". The string name of a list or table consists of the data type and
the subscripting expression, as in "list[3]". The string name of a record field
reference consists of the record type and field names, separated by a period,
as in "complex.r".

The function variable(s) produces the variable for the identifier or
keyword whose name is s.

Chapter 11 — Generators

Page 110, Integer Sequences: The function seq(i,j) generates an infinite
sequence of integers starting at i with increments of j; i and j default to 1.
For example, seq() generates 1, 2, 3,

Page 116, suspend-do: A do clause is allowed with suspend:

suspend expr1 do expr2

9-10 Version 8 of Icon

If the do clause is present, expr2 is evaluated if the suspending procedure is
resumed. Next, expr1 is resumed. If it produces another result, the proce-
dure suspends again. In this sense, suspend is very similar to every, the
difference being that suspend causes the procedure in which it occurs to
return a value.

Chapter 12 — String Scanning

Page 130, String Scanning: The values of &subject and &pos are re-
stored when a scanning operation is exited by a break, next, return, fail, or
suspend expression. If a scanning expression that is exited by suspend is
resumed, the values of &subject and &pos are restored to the values they
had before the suspension.

Chapter 13 — Co-Expressions

Page 138, Programmer-Defined Control Structures: To make program-
mer-defined control operations easier to use, there is an alternative syntax
for procedure invocation in which the arguments are passed in a list of co-
expressions. This syntax uses braces in place of parentheses:

p{expr1, expr2, ..., exprn}

is equivalent to

p([create expr1, create expr2, ..., create exprn])

Using this facility, a procedure to generate the interleaved results of
several generators can be written as follows:

procedure Inter(L)
 suspend |@!L
end

For example,

Inter{1 to 3,6 to 10}

generates 1, 6, 2, 7, 3, 8, 9, and 10.

In this form, Inter can be called with an arbitrary number of arguments.

Page 138, Current Co-Expression: The value of ¤t is the currently
executing co-expression.

Appendix A — Syntax

Reserved Words: The reserved words dynamic and external are no longer
available.

Version 8 of Icon 9-11

The character pairs $(, $), $<, and $> are equivalent to {, }, [, and],
respectively, in program text. These character pairs are useful when writing
programs that are to be run on IBM 370 systems, whose input and output
devices may not support braces and brackets.

Program Location Information: A comment that begins at the beginning
of a line and has the form

#line n "f "

changes the current source-program line number and file name recorded by
the Icon translator to n and f, respectively. This information is used, for
example, in error messages.

Appendix B — Machine Dependencies and Limits

There is no longer a distinction between short and long integers.

There is no limit on the length of a string that can be read.

Appendix C — Running an Icon Program

Linking: The inclusion of intermediate files during linking can be specified
in a source file by using a link declaration, which has the form

link intermediate file names

For example, if rsg.icn contains the declaration

link lib

then lib.u1 and lib.u2 are included when the executable file for rsg is
produced. Note that the suffixes are not used in link declarations.

 Several files can be specified in a comma-separated list, as in

link lib, listpak, timer

which specifies the linking of lib.u1, listpak.u1, timer.u1, and the corre-
sponding .u2 files. File names that do not satisfy the syntax of Icon identifi-
ers must be enclosed in quotation marks. An example is

link "set-up"

Storage Management: Storage is allocated automatically during the
execution of an Icon program, and garbage collection is performed auto-
matically to reclaim storage for subsequent reallocation. An Icon program-
mer normally need not worry about storage management. However, in
applications that require a large amount of storage or that must operate in a
limited amount of memory, some knowledge of the storage management
process may be useful.

9-12 Version 8 of Icon

 Icon has three storage regions: static, string, and block. (Some imple-
mentations, including ProIcon, do not have a static region.) The keyword
&collections generates four values associated with garbage collection: the
total number since program initiation, the number triggered by static
allocation, the number triggered by string allocation, and the number
triggered by block allocation. The keyword ®ions generates the current
sizes of the static, string, and block regions. The keyword &storage gener-
ates the current amount of space used in the static, string, and block
regions. The value given for the static region presently is not meaningful.

Run-Time Errors: When a run-time error occurs, a diagnostic message is
produced indicating the nature of the error, where in the program the error
occurred, and, when possible, the offending value. Next, a trace back of
procedure calls is given, followed by the offending expression.

For example, suppose the following program is contained in the file
max.icn:

procedure main()
 i := max("a",1)
end

procedure max(i,j)
 if i > j then i else j
end

The execution of this program produces the following output:

Run-time error 102
File max.icn; Line 6
numeric expected
offending value: "a"
Trace back:
 main()
 max("a",1) from line 2 in max.icn
 {"a" > 1} from line 6 in max.icn

A complete list of run-time error messages is contained in Appendix C.

Error Conversion: Most run-time errors can be converted to expression
failure, rather than causing termination of program execution.

If the value of &error is zero (its initial value), errors cause program
termination as shown above. If the value of &error is nonzero, errors are
treated as failure of expression evaluation and &error is decremented. For
example, if the value of &error had been nonzero when the expression i > j
was executed in the example above, the expression simply would have failed.

Version 8 of Icon 9-13

There are a few errors that cannot be converted to failure: floating-point
overflow and underflow, stack overflow, and errors during program initiali-
zation.

When an error is converted to failure, the value of &error is decremented
and the values of three other keywords are set:

• &errornumber is the number of the error (for example, 101).

• &errortext is the error message (for example, integer expected).

• &errorvalue is the offending value. Reference to &errorvalue fails if
there is no specific offending value.

A reference to any of these keywords fails if there has not been an error.

The function errorclear() removes the indication of the last error. Subse-
quent references to the keywords above fail until another error occurs.

The keywords &file and &line contain, respectively, the name of the file
and line number in that file for the currently executing expression.

Error conversion is illustrated by the following procedure, which could be
used to process potential run-time errors:

procedure ErrorCheck()
 write("\rRun-time error ",&errornumber)
 write("File ",&file,"; Line ",&line)
 write(&errortext)
 write("offending value: ",image(&errorvalue))
 writes("\rDo you want to continue? (n)")
 if map(read()) == ("y" | "yes") then return
 else exit()
end

For example,

 &error := –1
 ...
 write(s) | ErrorCheck()

could be used to check for an error during writing, while

 (L := sort(T,3)) | ErrorCheck()

could be used to detect failure to sort a table into a list (for lack of adequate
storage).

A run-time error can be forced by the function runerr(i,x), which causes
program execution to terminate with error number i as if a corresponding
run-time error had occurred. If i is the number of a standard run-time error,

9-14 Version 8 of Icon

the corresponding error text is printed; otherwise no error text is printed.
The value of x is given as the offending value. If x is omitted, no offending
value is printed.

This function makes it possible for library procedures to terminate in the
same fashion as built-in operations. It is advisable to use error numbers for
programmer-defined errors that are well outside the range of numbers used
by Icon itself. Error number 500 has the predefined text program malfunc-
tion for use with runerr. This number is not used by Icon itself.

A call of runerr is subject to conversion to failure like any other run-time
error.

Implementation Features: Different implementations of Icon support
different features. The keyword &features provides information showing
the features that are supported. It generates the name of the computer
system, followed by the features of the implementation on which the
current program is running. For example, for ProIcon

every write(&features)

produces

Macintosh
ASCII
co–expressions
error trace back
external functions
fixed regions
large integers
math functions
memory monitoring
string invocation
ProIcon extensions

Ordinarily, implementation features are of interest only for writing
programs that are to be run on different computer systems. For example, a
program that uses co-expressions can check for their presence as follows:

if not(&features == "co–expressions") then
 stop("co–expressions not available")

Memory Monitoring: Storage allocation and garbage collection are
instrumented, and detailed information about these processes can be
written to an allocation history file. See Program Options in Chapter 4.
Appendix E describes how an allocation history file can be viewed interac-
tively.

Version 8 of Icon 9-15

The function mmpause(s) causes a pause in the interactive display, giving
s as the reason for the pause. The default for s is "programmed pause".

The function mmshow(x,s) redraws the display for object x as specified
by s. See Appendix E for more information.

The function mmout(s) writes s as a separate line in the allocation history
file.

Bugs and Limitations in Version 8

• Line numbers sometimes are wrong in diagnostic messages related to
lines with continued quoted literals.

• Large-integer arithmetic is not supported in i to j and seq(). Large
integers cannot be assigned to keywords.

• Large-integer literals are constructed at run-time. Consequently, they
should not be used in loops where they would be constructed repeatedly.

• Conversion of a large integer to a string is quadratic in the length of
the integer. Conversion of a very large integer to a string may take a very
long time and give the appearance of an endless loop.

• Integer overflow on exponentiation may not be detected during
execution. Such overflow may occur during type conversion.

• In some cases, trace messages may show the return of subscripted
values, such as &null[2], that would be erroneous if they were dereferenced.

• Stack overflow is checked using a heuristic that may not always be
effective.

• If an expression such as

 x := create expr

is used in a loop, and x is not a global variable, unreferenceable co-expres-
sions are generated by each successive create operation. These co-expres-
sions are not garbage collected. This problem can be circumvented by
making x a global variable or by assigning a value to x before the create
operation, as in

 x := &null
 x := create expr

• Stack overflow in a co-expression may not be detected and may cause
mysterious program malfunction.

10
ProIcon Extensions

ProIcon Extensions 10-1

ProIcon Extensions
If you’ve used another implementation of Icon, you

should have no difficulty using ProIcon. Programs from
other Icon implementations probably will run under ProIcon
with little or no change. For the most part, all recent imple-
mentations of Icon have the same language facilities. Differ-
ences between implementations generally are in user inter-
faces and specific features of differing operating systems.

 Most implementations of Icon use a command-line
interface, where commands are typed in to invoke Icon,
specify the program name, and so forth. ProIcon has a
standard Macintosh interface. You’ll do most things by
selecting items from menus with a mouse. Finally, there are
features that are specific to ProIcon. These include additional
functions and keywords.

The following sections describe ProIcon extensions,
features that are not available in the standard version of Icon.
See the Mini Reference Manual (Chapter 11) for detailed
information about defaults, error conditions, and so forth.

String Comparison
The value of the keyword &compare determines the

method of string comparison. If &compare is 0, comparison
is on a character-by-character basis. If the value of &compare
is nonzero, the Macintosh international comparison method
is used. See Appendix B for more information.

Function Tracing
ProIcon provides tracing for (built-in) functions as well as

for (programmer-defined) procedures. Function tracing is

10-2 ProIcon Extensions

controlled by &ftrace. The initial value of &ftrace is 0. If the
value of &ftrace is nonzero when a function is called, &ftrace
is decremented and a trace message is produced in the same
style as that used for procedure tracing. Function return,
failure, suspension, and resumption also are traced in the
style of procedures.

Suppose, for example, that hello.icn contains

procedure main(args)
 &ftrace := –1
 every upto(&lcase,"Hello world!")
end

The output is:

hello.icn: 3 | upto(&lcase,"Hello world!",&null,&null)
hello.icn: 3 | upto suspended 2
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 3
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 4
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 5
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 7
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 8
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 9
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 10
hello.icn: 3 | upto resumed
hello.icn: 3 | upto suspended 11
hello.icn: 3 | upto resumed
hello.icn: 3 | upto failed

Termination Dump
 If the value of &dump is nonzero when an Icon program

terminates, the values of all current variables are printed. The
form of the dump is the same as for display(). A dump is
produced regardless of whether the program terminates
normally or because of an error. The initial value of &dump
is 0, so no dump is produced on termination unless the value
of &dump is changed.

ProIcon Extensions 10-3

System-Dependent Features
Some implementations of Icon have features that depend

on the operating system on which Icon runs. Examples are
environment variables, execution of system commands, and
pipes between processes. Since the Macintosh does not have
these features, they are not available in ProIcon.

ProIcon, on the other hand, has several features specifically
related to the Macintosh. These are described in the follow-
ing sections.

Window Functions
ProIcon provides a package of functions for manipulating

windows. Windows are identified by numbers. The Interac-
tive window is numbered 0. Window numbers increase as
new windows are opened.

Newly-created windows are not displayed on the screen.
You can operate on hidden windows as well as on visible
ones. For example, you can write to a hidden window and
then make it visible.

You can do many things with windows using the window
functions. You also can connect windows to files and use
ProIcon’s input and output functions on them. For example,
if you have a window named index data, you can open it as
a file:

input := open("index data")

Then you can read it, as in:

while line := read(input) do
 process(line)

The ProIcon functions for manipulating windows are
described below. All window line, column, and character
positions are one-based, starting at the beginning of the
window.

The function wopen(name,options) opens a window with
the title name according to the specified options. It returns
an integer that identifies the window. If there already is a
window with the title name, its window number is returned
and no new window is created.

Opening
Windows

10-4 ProIcon Extensions

The characters in the string option determine how a new
window is opened. If options contains "f", an attempt is
made to read the file name into the new window. If there is
no such file and "n" is contained in options, an empty
window is opened. Otherwise, wopen fails.

The function wclose(window,option) closes the specified
window. If the window has been written to, the options
determine how it is closed. If options is the empty string or
null, the window contents are saved to disk in a file corre-
sponding to the window name. If options contains an "n",
the contents of the window are not saved. If options contains
"a", a dialog box is presented to allow you to decide what to
do. If you select Cancel in this case, the window is not
closed and the function fails.

The function wget(window,type) returns information
about the specified window. The type of information desired
is specified by the value of type:

0 left position of window in global coordinates
1 top position of window in global coordinates
2 width of window in pixels
3 height of window in pixels
4 position of start of selection
5 position of end of selection
6 length of text in window
7 line number of start of selection
8 character number of start of selection
9 contents of clipboard

10 selected text from window
11 horizontal coordinate of mouse in window
12 vertical coordinate of mouse in window
13 mouse button state; "" if down, fail if up
14 window number of the frontmost window
15 height of text line in pixels

Line and character positions in selections are one-based.
wget fails for type = 11, 12, and 13 if the mouse is outside
the specified window’s text display region, which excludes
the scroll and title bars.

The function wset(window,type,text) sets an aspect of the
specified window. The aspect is specified by the value of
type:

Closing
Windows

Getting
window

Setting
Window

ProIcon Extensions 10-5

0 hide window
1 show window (with no change in front-to-back

ordering)
2 show window and bring to front
3 zoom in

 4 zoom out
5 discard window contents
6 move cursor left one character
7 move cursor right one character
8 move cursor to beginning of line
9 move cursor to end of line

10 move cursor up one line
11 more cursor down one line
12 move cursor and window to beginning of text

(home)
13 move cursor and window to end of text
14 scroll up one page (selection not changed)
15 scroll down one page (selection not changed)
16 undo last cut/paste/clear
17 cut selection to clipboard
18 copy selection to clipboard
19 paste clipboard to selection
20 clear selection
21 copy text to clipboard
22 insert text in front of selection
23 replace selection by text

The function wsize(window,width,height) changes the size
of the specified window to the given width and height, in
pixels. The size of a window cannot be made smaller than
what is needed for scroll bars.

The function wmove(window,left,top) moves the specified
window so that its upper left corner is at the specified left
and top coordinates. The corner of a window refers to its
content region, which begins just below its title bar. A
window may be moved off screen.

The function warrange(method) arranges the windows on
the screen according to the value of method.

0 stacked
1 tiled
2 closed

Sizing and
Moving
a Window

Arranging
the Screen

10-6 ProIcon Extensions

Windows in use by the input/output system and the source
program window are not closed in the last case.

The value of the keyword &screen is a list containing eight
values. The first four values give the x,y coordinates, in
pixels, of the upper-left and lower-right corners of the main
screen. The remaining four values give the coordinates of
the “gray region” enclosing all screens (in the case of
multiple monitors). The gray region begins below the menu
bar, which is 20 pixels high.

The function wlimit(window,lines) limits the number of
lines that are retained in the specified window. If the limit is
exceeded, lines are discarded from the top of the window.

The function wgoto(window,line,character) moves the
cursor in the specified window to the given line and charac-
ter. If the specified line is greater than the number of lines in
the window, the cursor is moved to the last line. If the
specified character is greater than the number of characters
on the line, the cursor is moved to the end of the line.

The function wfont(window,fontname) sets the font in the
specified window. If the font does not exist, the window’s
font is unchanged and the function fails.

The function wfontsize(window,points) sets the font size
in the specified window to the given number of points.

The function wtextwidth(window,string) returns the width
of the specified string in pixels for the font and font size of
the specified window.

The function wselect(window,begin,end) selects text in
the specified window with the given begin and end character
positions. The selected text is highlighted. Positions are one-
based and start at the beginning of the window. If begin and
end are the same, a vertical cursor is placed before the
beginning character.

The function wprint(window,setup,job) prints the contents
of the specified window. If setup is nonzero, a Page Setup
dialog is displayed. If job is nonzero, a Print Job dialog is
displayed. If Cancel is selected from the Print Job dialog, the
contents of the window are not printed and the function
fails.

Screen

Limiting

Positioning

Printing a
Window

ProIcon Extensions 10-7

Other Functions
The function delay(i) delays program execution for i

milliseconds. Clock resolution is 1/60th of a second.

The function gettext(name,okay,cancel,text) presents a
dialog box with the message name. The OK button in this
box has the name okay and cancel is the title for its Cancel
button. The string text is presented and can be edited by the
user. The value returned by the function is the edited text.
The function fails if the user selects Cancel.

The function message(name,okay,cancel) is similar to
gettext, except that there is no editable text.

The function currentf() returns the name of the current
working folder as a full path name (with a suffix ":").

The function changef(name) changes the current working
folder to name. It fails if name is not the name of a folder.

The function file(name) generates the names of the files
and subfolders in folder name. It fails if name is not the
name of a folder. The file names are given as partial paths
(with prefix ":").

The function ftype(name) returns an 8-character string
that consists of the type and creator signatures for the file
name. If name is a folder, it returns the empty string. The
function fails if name is neither a file nor a folder.

The function fset(name,type,creator) sets the type and
creator signatures for name to the specified strings. If type or
creator is the empty string, the corresponding signature is
not changed. The function fails if name is not the name of a
file.

The function getfile(text,signature,name) performs a Get
File Dialog for the folder name with text displayed. The
string signature is used to filter file types. It may be 0, 4, 8,
12, or 16 characters long. Only files with matching signa-
tures are displayed. The function returns the full path name
of the file selected by the user. If the signature is the one-
character string "f", only folders are displayed. The function
returns the path name of the folder selected. This function
fails if the user selects Cancel. The selected file is not
opened; only its path name is returned.

Pausing

Dialog Boxes

Current
Working
Folder

File Names

File
Signatures

File Dialogs

10-8 ProIcon Extensions

Launching an
Application

The function putfile(text,prompt,name) performs a Put
File Dialog in folder name with text displayed and prompt as
the suggested file name. The function returns the full path
name of the file selected by the user. It fails if the user selects
Cancel. The selected file is not created or opened; only its
path name is returned.

The function launch(application,file,type) launches the
named application with the specified file as its argument. If
type is 0, the file is opened (as if the file were click-launched
from the desktop). If type is 1, the file is printed (as if Print
were selected from Finder’s File menu). If MultiFinder is
active, the application is sub-launched and program execu-
tion continues. The function fails if the launch fails.

External Functions
ProIcon allows programs to load and execute external

functions written in other programming languages. These
functions can provide services that are inefficient or impos-
sible to perform in the Icon language. For example, special-
ized system calls for communications or screen graphics are
accessible to external functions written in C, Pascal, or
assembly language.

External functions are separately compiled code resources
that are loaded dynamically as your program is executed.
There are two types of external functions:

• Functions conforming to HyperCard’s XCMD/XFCN
interface specification (Version 1). Arguments to such
functions are converted to strings, and the functions return
strings. Writing such a function is relatively straightforward
and requires no knowledge of Icon’s internal structure.

• “Stand-alone” functions that receive data in ProIcon’s
internal descriptor format and return a descriptor result.
Writing this type of function requires considerable knowl-
edge of ProIcon’s internal structure.

Loading and executing either form of external function is
accomplished through the Icon function callout(), which
specifies the type and name of the function to be loaded and
the arguments supplied. The function is loaded into memory
from disk if necessary and invoked with the user’s arguments.

Information about writing and using external functions is
contained in Appendix D.

11
Mini Reference

Manual

 Mini Reference Manual 11-1

Mini Reference Manual
This mini reference manual summarizes the built-in operations of Pro-

Icon. The descriptions are brief; they’re intended for quick reference only.
See The Icon Programming Language and Chapters 9 and 10 of this manual
for complete descriptions.

The operations fall into four main categories: functions, operations,
keywords, and control structures. Functions, operations, and keywords
perform computations, while control structures determine the order of
computation. Function names provide a vocabulary used with a common
syntax in which computations are performed on argument lists. Different
operators, on the other hand, have different syntactic forms. They are
divided into prefix operators, infix operators, and operators with different
syntax. Keywords, like functions, all have common syntax, but they have no
argument lists.

The descriptions in the mini reference manual are stylized. Once you
become accustomed to this format, you’ll be able to find things quickly.

Data types are important in Icon; you’ll often need to know what types of
data a function or operation expects and what type it returns. Types are
indicated by letters as follows:

c cset C co-expression
f file L list
i integer N numeric (i or r)
n null R record (any record type)
p procedure S set
r real T table
s string X any structure type (L, R, S, or T)
x any type

Numeric suffixes are used to distinguish different arguments of the same
type. For example,

11-2 Mini Reference Manual

center(s1,i,s2)

indicates that center has three arguments. The first and third are strings;
the second is an integer.

The type of result produced by a function follows the function, with a
separating colon. For example,

center(s1,i,s2) : s3

indicates that center produces a string. The format of entries for operators
and keywords is similar.

The results for generators are indicated by a sequence, as in

!s : s1, s2, ..., sn

Some operations, such as s[i], produce variables to which values can be
assigned.

Icon attempts type conversion automatically when an argument does not
have the expected type, so the types of arguments may be different from the
expected type and still be acceptable. For example, center(s1,10,s2) and
center(s1,"10",s2) produce the same result, since the string "10" is con-
verted to the integer 10.

Default values are provided automatically in some cases when an argu-
ment is omitted (or has the null value). For example, the second argument
of center defaults to 1, while the third argument defaults to a single blank.
Thus, center(s1) is equivalent to center(s1,1," "). Refer to the entry for
center to see how this information is shown.

Errors may occur for a variety of reasons. The possible errors and their
causes are listed for each function and operation. Again, see the entry for
center for examples. In particular, note that a phrase such as “ s not string”
means s is neither a string nor a type that can be converted to a string.

In addition to the errors listed in the entries that follow, an error also can
occur if there is not enough space to convert an argument to the expected
type. For example, converting a very long string to a number for use in a
numerical computation conceiveably could run out of memory space. Such
errors are unlikely.

Cross references among entries have two forms. Most cross references
refer to functions and operations that perform related computations, such as
center(), left(), and right(). There also are cross references among operators
and control strcutures with similar syntax, such as ∗x and N1 ∗ N2, even
though the computations performs are not related.

Mini Reference Manual 11-3

Functions
The arguments of functions are evaluated from left to right. If the

evaluation of an argument fails, the function is not called.

Some functions may generate a sequence of results for a given set
of arguments. If an argument generates more than one value, the
function may be called repeatedly with different sets of values.

11-4 Mini Reference Manual

abs(N) : N compute absolute value

abs(N) produces the absolute value of N.

Error: 102 N not numeric

Mini Reference Manual 11-5

acos(r1) : r2 compute arc cosine

acos(r1) produces the arc cosine of r1 in the range of 0 to π.

Errors: 102 r1 not real
205 r1 greater than 1

See also: cos()

11-6 Mini Reference Manual

any(c,s,i1,i2) : i3 locate initial character

any(c,s,i1,i2) succeeds and produces i1 + 1, provided s[i1] is in c and i2 is
greater than i1. It fails otherwise.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c not cset

See also: many() and match()

args(p) : i get number of procedure arguments

args(p) produces the number of arguments for procedure p. For built-in
procedures with a variable number of arguments, the value produced is –1.
For declared procedures with a variable number of arguments, the value
returned is the negative of the number of formal parameters.

Error: 106 p not procedure

See also: proc()

Mini Reference Manual 11-7

asin(r1) : r2 compute arc sine

asin(r1) produces the arc sine of r1 in the range of −π/2 to π/2.

Errors: 102 r1 not real
205 |r1| greater than 1

See also: sin()

11-8 Mini Reference Manual

atan(r1,r2) : r3 compute arc tangent

atan(r1,r2) produces the arc tangent of r1 / r2 in the range of −π/2 to π/2
with the sign of r1.

Default: r2 1.0

Error: 102 r1 or r2 not real

See also: tan()

Mini Reference Manual 11-8a

Mini Reference Manual 11-9

bal(c1,c2,c3,s,i1,i2) : i3, i4, ..., in locate balanced characters

bal(c1,c2,c3,s,i1,i2) generates the sequence of integer positions in s
preceding a character of c1 in s[i1:i2] that is balanced with respect to
characters in c2 and c3, but fails if there is no such position.

Defaults: c1 &cset
c2 '('
c3 ')'
s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c1, c2, or c3 not cset

See also: find() and upto()

callout(s1, s2, x1, x2, …, xn) : xm call external function

callout(s1, s2, x1, x2, …, xn) calls the external function of type s1 and
name s2 with the arguments x1, x2, …, xn. The supported values of s1 are:

"XCMD" HyperCard XCMD
"XFCN" HyperCard XFCN
"CODE" Stand-alone function

The maximum number of arguments for XCMDs and XFCNs is 16.

Errors: 216 external function not found
352 inadequate space for XCMD interface
353 could not load XCMD/XFCN

11-10 Mini Reference Manual

11-10 Mini Reference Manual

center(s1,i,s2) : s3 center string

center(s1,i,s2) produces a string of size i in which s1 is centered, with s2
used for padding at left and right as necessary.

Defaults: i 1
s2 " "

Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0
306 inadequate space in string region

See also: left() and right()

Mini Reference Manual 11-9

bal(c1,c2,c3,s,i1,i2) : i3, i4, ..., in locate balanced characters

bal(c1,c2,c3,s,i1,i2) generates the sequence of integer positions in s
preceding a character of c1 in s[i1:i2] that is balanced with respect to
characters in c2 and c3, but fails if there is no such position.

Defaults: c1 &cset
c2 '('
c3 ')'
s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c1, c2, or c3 not cset

See also: find() and upto()

11-10a Mini Reference Manual

center(s1,i,s2) : s3 center string

center(s1,i,s2) produces a string of size i in which s1 is centered, with s2
used for padding at left and right as necessary.

Defaults: i 1
s2 " "

Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0
306 inadequate space in string region

See also: left() and right()

Mini Reference Manual 11-11

changef(s) : s change current working folder

changef(s) changes the current working folder to s. It fails if s is not the
name of a folder.

Error: 306 inadequate space in string region

11-12 Mini Reference Manual

char(i) : s produce character

char(i) produces a one-character string whose internal representation is i.

Errors: 101 i not integer
205 i not between 0 and 255, inclusive
306 inadequate space in string region

See also: ord()

Mini Reference Manual 11-13

close(f) : f close file

close(f) closes f.

Error: 105 f not file

See also: open()

11-14 Mini Reference Manual

collect(i1,i2) : n perform garbage collection

collect(i1,i2) causes a garbage collection in region i1, assuring at least i2
bytes of storage are available in that region, but fails if the requested space is
not available. The regions are identified as follows:

i1 region

1 static
2 string
3 block

If i1 is 0, a collection is done, but no region is identified and i2 has no
effect.

Defaults: i1 0
i2 0

Errors: 101 i1 or i2 not integer
205 i1 not between 0 and 3 inclusive or i2 < 0.

Mini Reference Manual 11-15

copy(x1) : x2 copy value

copy(x1) produces a copy of x1 if x1 is a structure; otherwise it produces
x1.

Error: 307 inadequate space in block region

11-16 Mini Reference Manual

cos(r1) : r2 compute cosine

cos(r1) produces the cosine of r1 in radians.

Error: 102 r1 not real

See also: cos()

Mini Reference Manual 11-17

cset(x) : c convert to cset

cset(x) produces a cset resulting from converting x, but fails if the conver-
sion is not possible.

Error: 307 inadequate space in block region

11-18 Mini Reference Manual

currentf() : s get current working folder

currentf() returns the name of the current working folder as a full path
name (with suffix ":").

Error: 214 input/output error

Mini Reference Manual 11-19

delay(i) : i delay

delay(i) delays program execution for i milliseconds. Clock resolution is
1/60th of a second.

Default: i 0

Error: 101 i not integer

11-20 Mini Reference Manual

delete(X,x) : X delete element

If X is a set, delete(X,x) deletes x from X. If X is a table, delete(X,x) deletes
the element for key x from X. delete(X,x) produces X.

Error: 122 X not set or table.

See also: insert() and member()

Mini Reference Manual 11-21

detab(s1,i1,i2, ..., in) : s2 remove tabs

detab(s1,i1,i2, ..., in) produces a string based on s1 in which each tab
character is replaced by one or more blanks. Tab stops are at i1, i2, ..., in
with additional stops obtained by repeating the last interval.

Default: i1 9

Errors: 101 i1, i2, ..., in not integer
103 s1 not string
210 i1, i2, ..., in not positive or in increasing sequence
306 inadequate space in string region

See also: entab()

11-22 Mini Reference Manual

display(i,f) : n display variables

display(i,f) writes the image of the current co-expression and the values of
the local variables in the current procedure call. If i is greater than 0, the
local variables in the i preceding procedure calls are displayed as well. After
all local variables are displayed, the values of global variables are displayed.
Output is written to f.

Defaults: i &level
f &errout

Errors: 101 i not integer
105 f not file
205 i < 0
213 f not open for writing

Mini Reference Manual 11-23

dtor(r1) : r2 convert degrees to radians

dtor(r1) produces the radian equivalent of r1 given in degrees.

Error: 102 r1 not real

See also: rtod()

11-24 Mini Reference Manual

entab(s1,i1,i2, ..., in) : s2 insert tabs

entab(s1,i1,i2, ..., in) produces a string based on s1 in which runs of blanks
are replaced by tabs. Tab stops are at i1, i2, ..., in with additional stops
obtained by repeating the last interval.

Default: i1 9

Errors: 101 i1, i2, ..., in not integer
103 s1 not string
210 i1, i2, ..., in not positive or in increasing sequence
306 inadequate space in string region

See also: detab()

Mini Reference Manual 11-25

errorclear() : n clear error indication

errorclear() clears the indications of the last error.

See also: &error

11-26 Mini Reference Manual

exit(i) exit program

exit(i) terminates program execution with exit status i. If the program was
run from the desktop and i is not 0, the user is left in ProIcon rather than
returning to the desktop.

Default: i 0 (normal exit status)

Error: 101 i not integer

See also: stop()

Mini Reference Manual 11-27

exp(r1) : r2 compute exponential

exp(r1) produces e raised to the power r1.

Errors: 102 r1 not real
204 overflow

See also: log() and N1 ^ N2

11-28 Mini Reference Manual

file(s1) : s2, s3, ..., sn generate file names

file(s1) generates the names of the files and subfolders in the folder s1. It
fails if s1 is not the name of a folder. File names are given as partial path
names with a prefix ":".

Default: s1 current working folder

Errors: 103 s1 not string
306 inadequate space in string region

Mini Reference Manual 11-29

find(s1,s2,i1,i2) : i3,i4, ..., in find string

find(s1,s2,i1,i2) generates the sequence of integer positions in s2 at which
s1 occurs as a substring in s2[i1:i2], but fails if there is no such position.

Defaults: s2 &subject
i1 &pos if s2 is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s1 or s2 not string

See also: bal(), match(), and upto()

11-30 Mini Reference Manual

fset(s1,s2,s3) : s1 set file signatures

fset(s1,s2,s3) sets the type and creator signatures of s1 to s2 and s3
respectively. If s2 or s3 is the empty string, the corresponding signature is
not changed. fset(s1,s2,s3) fails if s1 is not the name of a file.

Defaults: s2 ""
s3 ""

Error: 306 inadequate space in string region

Mini Reference Manual 11-31

ftype(s1) : s2 get file type

If s1 is a file, ftype(s1) returns an 8-character string consisting of the type
and creator signatures for s1. If s1 is a folder, ftype(s1) returns the empty
string. It fails if s1 is neither.

Error: 103 s1 not string
306 inadequate space in string region

11-32 Mini Reference Manual

get(L) : x get value from list

get(L) produces the leftmost element of L and removes it from L, but fails if
L is empty. get is a synonym for pop.

Error: 108 L not list

See also: pop(), pull(), push(), and put()

Mini Reference Manual 11-33

getch() : s get character

getch() waits until a character has been entered from the keyboard and then
produces the corresponding one-character string. The character is not
displayed in the Interactive window. It fails on an end-of-file.

See also: getche() and kbhit()

11-34 Mini Reference Manual

getche() : s get and echo character

getche() waits until a character has been entered from the keyboard and
then produces the corresponding one-character string. The character is
displayed in the Interactive window. It fails on an end-of-file.

See also: getch() and kbhit()

Mini Reference Manual 11-35

getfile(s1,s2,s3) : s4 get file name

getfile(s1,s2,s3) performs a Get File Dialog for the folder s3 with s1
displayed as a user prompt. s2 is a 0-, 4-, 8-, 12-, or 16-character string that
is used to filter the files displayed in the dialog. Only files with matching
type signatures are displayed. getfile(s1,s2,s3) returns the the full path
name of the file selected by the user. If the signature is the one-character
string "f", only folders are displayed. The function returns the path name of
the folder selected. The function fails if the user selects Cancel. The
selected file is not opened; only its path name is returned.

Defaults: s2 no file filtering
s3 current working folder

Error: 103 s1, s2, or s3 not string
306 inadequate space in string region

See also: putfile()

11-36 Mini Reference Manual

gettext(s1,s2,s3,s4) : s5 get text

gettext(s1,s2,s3,s4) presents a dialog box with message s1 and editable
text s4. s2 is text for the OK button and s3 is the title for the Cancel
button. The function returns the editable text, which may have been
modified. The function fails if the user selects the Cancel button.

Defaults: s1 ""
s2 "" (OK displayed)
s3 "" (no Cancel button)
s4 ""

Error: 103 s1, s2, s3, or s4 not string

See also: message()

Mini Reference Manual 11-37

iand(i1,i2) : i3 compute bit-wise and

iand(i1,i2) produces an integer consisting of the bit-wise and of i1 and i2.

Error: 101 i1 or i2 not integer

See also: icom(), ior(), ishift(), and ixor()

11-38 Mini Reference Manual

icom(i1) : i2 compute bit-wise complement

icom(i1) produces the bit-wise complement of i1.

Error: 101 i1 not integer

See also: iand(), ior(), ishift(), and ixor()

Mini Reference Manual 11-39

image(x) : s produce string image

image(x) produces a string image of x.

Error: 306 inadequate space in string region

11-40 Mini Reference Manual

insert(X,x1,x2) : X insert element

If X is a table, insert(X,x1,x2) inserts key x1 with value x2 into X. If X is a
set, insert(X,x1) inserts x1 into X. insert(X,x1,x2) produces X.

Default: x2 &null

Errors: 122 X not set or table
307 inadequate space in block region

See also: delete() and member()

Mini Reference Manual 11-41

integer(x) : i convert to integer

integer(x) produces the integer resulting from converting x, but fails if the
conversion is not possible.

See also: numeric() and real()

11-42 Mini Reference Manual

ior(i1,i2) : i3 compute bit-wise inclusive or

ior(i1,i2) produces the bit-wise inclusive or of i1 and i2.

Error: 101 i1 or i2 not integer

See also: iand(), icom(), ishift(), and ixor()

Mini Reference Manual 11-43

ishift(i1,i2) : i3 shift bits

ishift(i1,i2) produces the result of shifting the bits in i1 by i2 positions.
Positive shift is to the left, negative to the right. Vacated bit positions are
zero-filled.

Error: 101 i1 or i2 not integer

See also: iand(), icom(), ior(), and ixor()

11-44 Mini Reference Manual

ixor(i1,i2) : i3 compute bit-wise exclusive or

ixor(i1,i2) produces the bit-wise exclusive or of i1 and i2.

Error: 101 i1 or i2 not integer

See also: iand(), icom(), ior(), and ishift()

Mini Reference Manual 11-45

kbhit() : n check for keyboard character

kbhit() succeeds if a character is available for getch or getche but fails
otherwise.

See also: getch() and getche()

11-46 Mini Reference Manual

key(T) : x1, x2, ..., xn generate keys from table

key(T) generates the keys in table T.

Error: 120 T not table

Mini Reference Manual 11-47

launch(s1,s2,i) : s1 launch application

launch(s1,s2,i) launches the application named s1 with argument s2. If i is
0, s2 is opened (as if s2 were click-launched from the desktop). If s2 is 1,
s2 is printed (as if Print has been selected from Finder’s File menu). If
MultiFinder is active, s1 is sub-launched and program execution continues;
otherwise, program execution terminates. launch(s1,s2,i) fails if the launch
fails.

Default: i 0

Errors: 205 i not 0 or 1
306 inadequate space in string region

11-48 Mini Reference Manual

left(s1,i,s2) : s3 position string at left

left(s1,i,s2) produces a string of size i in which s1 is positioned at the left,
with s2 used for padding at the right as necessary.

Defaults: i 1
s2 " "

Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0
307 inadequate space in block region

See also: center() and right()

Mini Reference Manual 11-49

list(i,x) : L create list

list(i,x) produces a list of size i in which each value is x.

Defaults: i 0
x &null

Errors: 101 i not integer
205 i < 0
307 inadequate space in block region

11-50 Mini Reference Manual

log(r1,r2) : r3 compute logarithm

log(r1,r2) produces the logarithm of r1 to the base r2.

Default: r2 e
x
Errors: 102 r1 or r2 not real

205 r1 <= 0 or r2 <= 1

See also: exp()

Mini Reference Manual 11-51

many(c,s,i1,i2) : i3 locate many characters

many(c,s,i1,i2) succeeds and produces the position in s after the longest
initial sequence of characters in c starting at s[i1]. It fails if s[i1] is not in c.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c not cset

See also: any()

11-52 Mini Reference Manual

map(s1,s2,s3) : s4 map characters

map(s1,s2,s3) produces a string of size ∗s1 obtained by mapping charac-
ters of s1 that occur in s2 into corresponding characters in s3.

Defaults: s2 string(&ucase)
s3 string(&lcase)

Errors: 103 s1, s2, or s3 not string
208 ∗s2 ~= ∗s3
306 inadequate space in string region

Mini Reference Manual 11-53

match(s1,s2,i1,i2) : i3 match initial string

match(s1,s2,i1,i2) produces i1 + ∗s1 if s1 == s2[i1+:∗s1], but fails other-
wise.

Defaults: s2 &subject
i1 &pos if s2 is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s1 or s2 not string

See also: =s

11-54 Mini Reference Manual

member(X,x) : x test for membership

If X is a set, member(X,x) produces x if x is a member of X but fails other-
wise. If X is a table, member(X,x) produces x if x is a key of an element in X
but fails otherwise.

Error: 122 X not set or table

See also: delete() and insert()

Mini Reference Manual 11-55

message(s1,s2,s3) : s1 present message

message(s1,s2,s3) presents a dialog box with message s1. s2 is text for
the OK button and s3 is the title for the Cancel button.

Defaults: s1 ""
s2 "" (OK displayed)
s3 "" (no Cancel button)

Error: 103 s1, s2, or s3 not string

See also: gettext()

mmout(s) : n write text to allocation history

mmout(s) writes s to the allocation history file. s is given no interpretation.
Expert knowledge of allocation history files is needed to use this function.

Error: 103 s not string

See also: mmpause() and mmshow()

11-55a Mini Reference Manual

Mini Reference Manual 11-55b

mmpause(s) : n write pause to allocation history

mmpause(s) writes s to the allocation history file as a pause point with
identification s.

Default: s "programmed pause"

Error: 103 s not string

See also: mmout() and mmshow()

mmshow(x, s) : n redraw in allocation history

mmshow(x, s) specifies redrawing of x in the allocation history file. The
color is defined by s as follows:

"b" black
"g" gray
"w" white
"h" highlight (also white)
"r" normal color

If x is not in an allocated data region, mmshow() has no effect.

See also: mmout() and mmpause()

11-55c Mini Reference Manual

move(i) : s move in &subect

move(i) produces &subject[&pos:&pos + i] and assigns i + &pos to &pos,
but fails if i is out of range. It reverses the assignment to &pos if it is
resumed.

Error: 101 i not integer

See also: tab()

Mini Reference Manual 11-55d

name(x) : s produce name

name(x) produces the name of the variable x. If x is an identifier or a
keyword that is a variable, the name of the identifier or keyword is pro-
duced. If x is a record field reference, the record type and field name are
produced with a separating period. If x is a string, the name of the string
and the subscript range are shown. If x is a subscripted list or table, the type
name followed by the subscripting expression is produced.

Error: 111 x not a variable

See also: variable()

11-56 Mini Reference Manual

Mini Reference Manual 11-57

numeric(x) : N convert to numeric

numeric(x) produces an integer or real number resulting from converting x,
but fails if the conversion is not possible.

See also: integer() and real()

11-58 Mini Reference Manual

open(s1,s2) : f open file

open(s1,s2) produces a file resulting from opening s1 according to options
given in s2, but fails if the file cannot be opened. The options are:

character effect

r open for reading
w open for writing
a open for writing in append mode
b open for reading and writing
c create
t translate returns to linefeeds
u do not translate returns to linefeeds

The default mode is to translate returns to linefeeds on input and to
translate linefeeds to returns on output. The untranslated mode should be
used when reading and writing binary files.

Default: s2 "r"

Errors: 103 s1 or s2 not string
209 invalid option

See also: close()

Mini Reference Manual 11-59

ord(s) : i produce ordinal

ord(s) produces an integer (ordinal) between 0 and 255 that is the internal
representation of the one-character string s.

Errors: 103 s not string
205 ∗s not 1

See also: char()

11-60 Mini Reference Manual

pop(L) : x pop from list

pop(L) produces the leftmost element of L and removes it from L, but fails
if L is empty. pop is a synonym for get.

Error: 108 L not list

See also: get(), pull(), push(), and put()

Mini Reference Manual 11-61

pos(i1) : i2 test scanning position

pos(i1) produces &pos if &pos = i1, but fails otherwise.

Error: 101 i1 not integer

See also: &pos and &subject

11-62 Mini Reference Manual

proc(x,i) : p convert to procedure

proc(x,i) produces a procedure corresponding to the value of x, but fails if x
does not correspond to a procedure. If x is the string name of an operator, i
is used to distinguish between prefix and infix operators with the same
symbols: i = 1 designates unary (prefix) operators, i = 2 designates binary
(infix) operators, and i = 3 designates ternary (distributed) operators.

Default: i 1

Errors: 101 i not integer
205 i not 1, 2, or 3

See also: args()

Mini Reference Manual 11-63

pull(L) : x pull from list

pull(L) produces the rightmost element of L and removes it from L, but fails
if L is empty.

Error: 108 L not list

See also: get(), pop(), push(), and put()

11-64 Mini Reference Manual

push(L,x) : L push onto list

push(L,x) adds x to the left end of L and produces L.

Errors: 108 L not list
307 inadequate space in block region

See also: get(), pop(), pull(), and put()

Mini Reference Manual 11-65

put(L,x) : L put onto list

put(L,x) produces L and adds x to the right end of L and produces L.

Errors: 108 L not list
307 inadequate space in block region

See also: get(), pop(), pull(), and push()

11-66 Mini Reference Manual

putfile(s1,s2,s3) : s4 get file name

putfile(s1,s2,s3) performs a Put File Dialog for folder s3 with s1 displayed.
s2 is displayed as a user prompt in the file name box as the suggested file
name. putfile(s1,s2,s3) returns the the full path name of the file specified
by the user. It fails if the user selects Cancel. The selected file is not created
or opened; only its path name is returned.

Default: s3 current working folder

Errors: 103 s1, s2, or s3 not string
306 inadequate space in string region

See also: getfile()

Mini Reference Manual 11-67

read(f) : s read line

read(f) produces the next line from f, but fails on end of file.

Default: f &input

Errors: 105 f not file
212 f not open for reading
306 inadequate space in string region

See also: reads()

11-68 Mini Reference Manual

reads(f,i) : s read string

reads(f,i) produces a string consisting of the next i characters from f, or the
remaining characters of f if fewer remain on f, but fails on end of file. In
reads(), unlike read(), returns have no special significance. reads() should
be used for reading binary data.

Defaults: f &input
i 1

Errors: 101 i not integer
105 f not file
205 i <= 0
212 f not open for reading
306 inadequate space in string region

See also: read()

Mini Reference Manual 11-69

real(x) : r convert to real

real(x) produces a real number resulting from converting x, but fails if the
conversion is not possible.

Error: 307 inadequate space in block region

See also: integer() and numeric()

11-70 Mini Reference Manual

remove(s) : n remove file

remove(s) removes (deletes) the file named s, but fails if s cannot be re-
moved.

Error: 103 s not string

See also: rename()

Mini Reference Manual 11-71

rename(s1,s2) : n rename file

rename(s1,s2) renames the file named s1 to be s2, but fails if the renaming
cannot be done.

Error: 103 s1 or s2 not string

See also: remove()

11-72 Mini Reference Manual

repl(s1,i) : s2 replicate string

repl(s1,i) produces a string consisting of i concatenations of s1.

Errors: 101 i not integer
103 s1 not string
205 i < 0
306 inadequate space in string region

Mini Reference Manual 11-73

reverse(s1) : s2 reverse string

reverse(s1) produces a string consisting of the reversal of s1.

Errors: 103 s1 not string
306 inadequate space in string region

11-74 Mini Reference Manual

right(s1,i,s2) : s3 position string at right

right(s1,i,s2) produces a string of size i in which s1 is positioned at the
right, with s2 used for padding at the left as necessary.

Defaults: i 1
s2 " "

Errors: 101 i not integer
103 s1 or s2 not string
205 i < 0
306 inadequate space in string region

See also: center() and left()

Mini Reference Manual 11-75

rtod(r1) : r2 convert radians to degrees

rtod(r1) produces the degree equivalent of r1 given in radians.

Error: 102 r1 not real

See also: dtor()

11-76 Mini Reference Manual

runerr(i,x) terminate with run-time error

runerr(i,x) terminates program execution with error i and offending value x.

Default: x no offending value

Mini Reference Manual 11-77

seek(f,i) : f seek to position in file

seek(f,i) seeks to position i in f but fails if the seek cannot be performed.
Positions are one-based. seek(f,0) seeks to the end of the file f.

Errors: 101 i not integer
105 f not file

See also: where()

11-78 Mini Reference Manual

seq(i1,i2) : i3, i4, ... generate sequence of integers

seq(i1,i2) generates an endless sequence of integers starting at i1 with
increments of i2.

Defaults: i1 1
i2 1

Errors: 101 i1 or i2 not integer
211 i2 is 0

See also: i1 to i2 by i3

Mini Reference Manual 11-79

set(L) : S create set

set(L) produces a set whose members are the distinct values in the list L.

Default: L []

Errors: 108 L not list
307 inadequate space in block region

11-80 Mini Reference Manual

sin(r1) : r2 compute sine

sin(r1) produces the sine of r1 in radians.

Error: 102 r1 not real

See also: asin()

Mini Reference Manual 11-81

sort(X,i) : L sort list or table

sort(x,i) produces a list containing values from x. If X is a list or set, sort(x,i)
produces the values of X in sorted order. If X is a table, sort(X,i) produces a
list obtained by sorting the elements of X, depending on the value of i. For i
= 1 or 2, the list elements are two-element lists of key/value pairs. For i = 3
or 4, the list elements are alternative keys and values. Sorting is by keys for i
odd, by values for i even.

Default: i 1

Errors: 101 i not integer
115 X not list, set, or table
205 i not 1, 2, 3, or 4
307 inadequate space in block region

See also: &compare

11-82 Mini Reference Manual

sqrt(r1) : r2 compute square root

sqrt(r1) produces the square root of r1.

Errors: 102 r1 not real
205 r1 negative

See also: N1 ^ N2

Mini Reference Manual 11-83

stop(x1,x2, ..., xn) stop execution

stop(x1,x2, ..., xn) terminates program execution with an error exit status
after writing x1, x2, ..., xn to the Interactive window. If the program was
launched directly from the desktop, ProIcon remains active and the Interac-
tive window remains visible.

Default: xi ""

Errors: 109 xi not string or file
213 xi file not open for writing

See also: exit()

11-84 Mini Reference Manual

string(x) : s convert to string

string(x) produces a string resulting from converting x, but fails if the
conversion is not possible.

Error: 306 inadequate space in string region

Mini Reference Manual 11-85

tab(i) : s tab in &subject

tab(i) produces &subject[&pos:i] and assigns i to &pos, but fails if i is out of
range. It reverses the assignment to &pos if it is resumed.

Error: 101 i not integer

See also: move()

11-86 Mini Reference Manual

table(x) : T create table

table(x) produces a table with a default value x.

Default: x &null

Error: 307 inadequate space in block region

Mini Reference Manual 11-87

tan(r1) : r2 compute tangent

tan(r1) produces the tangent of r1 in radians.

Errors: 102 r1 not real
204 r1 a singular point of tangent

See also: atan()

11-88 Mini Reference Manual

trim(s1,c) : s2 trim string

trim(s1,c) produces a string consisting of the characters of s1 up to the
trailing characters contained in c.

Default: c ' ' (blank)

Errors: 103 s1 not string
104 c not cset
306 inadequate space in string region

Mini Reference Manual 11-89

type(x) : s produce type

type(x) produces a string corresponding to the type of x.

11-90 Mini Reference Manual

upto(c,s,i1,i2) : i3, i4, ... in locate up to characters

upto(c,s,i1,i2) generates the sequence of integer positions in s preceding a
character of c in s[i1:i2]. It fails if there is no such position.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

Errors: 101 i1 or i2 not integer
103 s not string
104 c not cset

See also: bal() and find()

variable(s) : x produce variable

Produces the variable for the identifier or keyword named s, but fails if
there is no such variable. Local identifiers override global identifiers.

Error: 103 s not string

See also: name()

Mini Reference Manual 11-90a

Mini Reference Manual 11-91

warrange(i) : i arrange windows

warrange(i) arranges the windows on the screen according to the value of i:

i arrangement

0 stacked
1 tiled
2 closed

Windows in use by the input/output system and the source program
window are not closed in the last case.

Errors: 101 i not integer
205 i not 0, 1, or 2

See also: wopen()

11-92 Mini Reference Manual

wclose(i,s) : i close window

wclose(i,s) closes window i. If the window has been written to, it is closed
according to the options given by s:

s action

"" window contents saved to disk
"n" window contents not saved
"a" user is queried via a dialog box

If Cancel is selected in the last case, the window is not closed and the
function fails.

Default: s ""

Errors: 101 i not integer
103 s not string
209 invalid option
252 i not window identifier

See also: wopen()

Mini Reference Manual 11-93

wfont(i,s) : i set window font

wfont(i,s) sets the font for window i to the font named s. If font s does not
exist, the font is not changed and the function fails.

Errors: 101 i not integer
103 s not string
252 i not window identifier
306 inadequate space in string region

See also: wopen()

11-94 Mini Reference Manual

wfontsize(i1,i2) : i1 set font size in wnindow

wfontsize(i1,i2) sets the size of the font for window i1 to i2 in points.

Errors: 101 i1 or i2 not integer
205 i2 < 1 or > 127
252 i1 not window identifier

See also: wopen()

Mini Reference Manual 11-95

wget(i1,i2) : x get window information

wget(i1,i2) returns information about window i1 according to the value of
i2:

i2 information

0 left position of window in global coordinates
1 top position of window in global coordinates
2 width of window in pixels
3 height of window in pixels
4 position of start of selection
5 position of end of selection
6 length of text in window
7 line number of start of selection
8 character number of start of selection
9 contents of clipboard

10 selected text from window
11 horizontal coordinate of mouse in window
12 vertical coordinate of mouse in window
13 mouse button state; "" if down, fail if up
14 window number of the frontmost window
15 height of text line in pixels

Line and character positions in selections are one-based. wget fails for i1 =
11, 12, and 13 if the mouse is outside the specified window’s text display
region, which excludes the scroll and title bars.

Errors: 101 i1 or i2 not integer
252 i1 not window identifier

See also: wopen()

11-96 Mini Reference Manual

wgoto(i1,i2,i3) : i4 go to position in window

wgoto(i1,i2,i3) positions the cursor at line i2 and character i3 in window i1.
The positions are one-based. If i2 is greater than the number of lines in the
window, the cursor is set to the last line. If i3 is greater than the number of
characters on the line, the cursor is set to the end of the line. The function
returns the resulting character position of the cursor.

Errors: 101 i1, i2, or i3 not integer
252 i1 not window identifier

See also: wopen()

Mini Reference Manual 11-97

where(f) : i produce position in file

where(f) produces the current byte position in f. Positions are one-based.

Error: 105 f not file

See also: seek()

11-98 Mini Reference Manual

wlimit(i1,i2) : i1 set window output limit

wlimit(i1,i2) sets the limit for the number of lines retained in window i1 to
i2. If the limit is exceeded, lines are discarded from the top of the window.
If i2 is 0 or negative, there is no limit. This is relevant only if i1 is attached
for output and written to in that manner.

Errors: 101 i1 or i2 not integer
252 i1 not window identifier

See also: wopen()

Mini Reference Manual 11-99

wmove(i1,i2,i3) : i1 move window

wmove(i1,i2,i3) moves window i1 so that its upper-left corner is at left
position i1 and top position i2 in global coordinates. Note that the corner
of a window refers to its content region, which begins just below its title
bar. The window may be moved off-screen.

Errors: 101 i1, i2, or i3 not integer
252 i1 not window identifier

See also: wopen()

11-100 Mini Reference Manual

wopen(s1,s2) : i open window

wopen(s1,s2) opens a window with title s1 and returns an integer that
identifies the window. If there is an open window on the screen with title
s1, its identification is returned. Otherwise a window is opened according
to the options given in s2. If s2 contains “f”, an attempt is made to read file
s1 into a new window. If this fails and s2 contains “n”, a new window with
title s1 is opened. Otherwise the function fails. The Interactive window is
identified by 0 and need not be opened explicitly.

Errors: 103 s1 or s2 not string
209 invalid option
306 inadequate space in string region

Mini Reference Manual 11-101

 wprint(i1,i2,i3) : i1 print window

wprint(i1,i2,i3) prints the contents of window i1. If i2 is nonzero, a Page
Setup dialog is displayed. If i3 is nonzero, a Print Job dialog is displayed.
The function fails if Cancel is selected in the Print Job dialog.

Errors: 101 i1, i2, or i3 not integer
252 i1 not window identifier

See also: wopen()

11-102 Mini Reference Manual

write(x1,x2, ..., xn) : xn write line

write(x1,x2,..., xn) writes x1, x2, ..., xn with a return added at the end.

Default: xi ""

Errors: 109 xi not string or file
213 xi file not open for writing

See also: writes()

Mini Reference Manual 11-103

writes(x1,x2, ..., xn) : x write string

writes(x1,x2, ..., xn) writes x1, x2, ..., xn without a return added at the end.

Default: xi ""

Errors: 109 xi not string or file
213 xi file not open for writing

See also: write()

11-104 Mini Reference Manual

wselect(i1,i2,i3) : i1 select text in window

wselect(i1,i2,i3) selects text in window i1 starting at character i2 and ending
at character i3. Character positions are one-based, starting at the beginning
of the window. The selected text is highlighted. If i2 = i3, a vertical cursor is
placed before character i2.

Errors: 101 i1, i2, or i3 not integer
252 i1 not window identifier

See also: wopen()

Mini Reference Manual 11-105

wset(i1,i2,s) : i1 set window aspect

wset(i1,i2,s) sets an aspect of window i1 according to the value of i2:

i2 aspect

 0 hide window
 1 show window (with no change in front-to-back ordering)
 2 show window and bring to front
 3 zoom in
 4 zoom out
 5 discard window contents
 6 move cursor left one character
 7 move cursor right one character
 8 move cursor to beginning of line
 9 move cursor to end of line
10 move cursor up one line
11 more cursor down one line
12 move cursor and window to beginning of text (home)
13 move cursor and window to end of text
14 scroll up one page (selection not changed)
15 scroll down one page (selection not changed)
16 undo last cut/paste/clear
17 cut selection to scrap
18 copy selection to scrap
19 paste scrap to selection
20 clear selection
21 copy s to clipboard
22 insert s in front of selection
23 replace selection by s

Errors: 101 i1 or i2 not integer
252 i1 not window identifier

See also: wopen()

11-106 Mini Reference Manual

wsize(i1,i2,i3) : i1 resize window

wsize(i1,i2,i3) changes the size of window i1 to width i2 and height i3, in
pixels. A minimum size is enforced to allow room for scroll bars.

Errors: 101 i1, i2, or i3 not integer
252 i1 not window identifier

See also: wopen()

Mini Reference Manual 11-107

wtextwidth(i1,s) : i2 compute width of text

wtextwidth(i1,s) returns the width in pixels of s using the font and fontsize
for window i1. s is limited (and truncated, if necessary) to 32K characters
and the width is limited to 32K pixels.

Errors: 101 i1 not integer
103 s not string
306 inadequate space in string region

See also: wopen()

11-108 Mini Reference Manual

Prefix Operations
In a prefix operation, an operator symbol appears before the

operand on which it operates. If evaluation of the operand fails, the
operation is not performed. If the operand generates a sequence of
results, the operation may be performed several times.

There are comparatively few prefix operations. They are listed in
the order of the types of operands: numeric, cset, string, co-expres-
sion, and then those that apply to operands of several different types.

Mini Reference Manual 11-109

+N : N compute positive

+N produces the numeric value of N.

Errors: 102 N not integer or real
203 integer overflow

See also: N1 + N2

11-110 Mini Reference Manual

−N : N compute negative

−N produces the negative of N.

Errors: 102 N not integer or real
203 integer overflow

See also: N1 − N2

Mini Reference Manual 11-111

~c1 : c2 compute cset complement

~c1 produces the cset complement of c1 with respect to &cset.

Errors: 104 c1 not cset
307 inadequate space in block region

11-112 Mini Reference Manual

=s1 : s2 match string in scanning

=s1 is equivalent to tab(match(s1)).

Error: 103 s1 not string

See also: match(), tab(), and N1 = N2

Mini Reference Manual 11-113

@C : x activate co-expression

@C produces the outcome of activating C.

Error: 118 C not co-expression

See also: x @ C

11-114 Mini Reference Manual

^C1 : C2 create refreshed co-expression

^C1 produces a refreshed copy of C1.

Errors: 118 C1 not co-expression
305 inadequate space in static region

See also: N1 ^ N2

Mini Reference Manual 11-115

∗x : i compute size

∗x produces the size of x.

Error: 112 x not cset, string, co-expression, or a structure

See also: N1 ∗ N2

11-116 Mini Reference Manual

?x1 : x2 generate random value

If x1 is an integer, ?x1 produces a number from a pseudo-random se-
quence. If x1 > 0, it produces an integer in range 1 to x1, inclusive. If x1 =
0, it produces a real number in range 0.0 to 1.0.

If x1 is a string, ?x1 produces a randomly selected one-character substring
of x1 that is a variable if x1 is a variable.

If x1 is a list, table, or record, ?x1 produces a randomly selected element,
which is a variable, from x1.

If x1 is a set, ?x1 produces a randomly selected member of x1.

Errors: 113 x1 not integer, string, or structure.
205 x1 < 0
306 inadequate space in string region if x1 string

See also: s ? expr

Mini Reference Manual 11-117

!x1 : x2, x3, ..., xn generate values

If x1 is a file, !x1 generates the remaining lines of x1.

If x1 is a string, !x1 generates the one-character substrings of x1, and
produces variables if x1 is a variable.

If x1 is a list, table, or record, !x1 generates the elements, which are vari-
ables, of x1. For lists and records, the order of generation is from the
beginning to the end, but for tables it is unpredictable.

If x1 is a set, !x1 generates the members of x1 in no predictable order.

Errors: 103 x1 originally string, but type changed between resump-
tions

116 x1 not string, file, or structure.
212 x1 is file but not open for reading
306 inadequate space in string region if x1 string or file

11-118 Mini Reference Manual

/x : x check null value

/x produces x if the value of x is the null value, but fails otherwise. It
produces a variable if x is a variable.

See also: N1 / N2

Mini Reference Manual 11-119

\x : x check for non-null value

\x produces x if the value of x is not the null value, but fails otherwise. It
produces a variable if x is a variable.

See also: expr \ i

11-120 Mini Reference Manual

.x : x dereference variable

.x produces the value of x.

See also: R.f

Mini Reference Manual 11-121

Infix Operations
In an infix operation, an operator symbol stands between the two

operands on which it operates. If evaluation of an operand fails, the
operation is not performed. If an operand generates a sequence of
results, the operation may be performed several times.

There are many infix operations, and finding the one you’re
looking for may pose a problem. They are listed first by those that
perform computations (such as N1 + N2) and then by those that
perform comparisons (such as N1 < N2). Assignment operations are
listed last. If you can’t find the operations you’re looking for, try the
index.

11-122 Mini Reference Manual

N1 + N2 : N3 compute sum

N1 + N2 produces the sum of N1 and N2.

Errors: 102 N1 or N2 not integer or real
203 integer overflow
204 real overflow or underflow

See also: +N

Mini Reference Manual 11-123

N1 − N2 : N3 compute difference

N1 − N2 produces the difference of N1 and N2.

Errors: 102 N1 or N2 not integer or real
203 integer overflow
204 real overflow or underflow

See also: −N

11-124 Mini Reference Manual

N1 ∗ N2 : N3 compute product

N1 ∗ N2 produces the product of N1 and N2.

Errors: 102 N1 or N2 not integer or real
203 integer overflow
204 real overflow or underflow

See also: ∗x

Mini Reference Manual 11-125

N1 / N2 : N3 compute quotient

N1 / N2 produces the quotient of N1 and N2.

Errors: 102 N1 or N2 not integer or real
201 N2 = 0
204 real overflow or underflow

See also: /x

11-126 Mini Reference Manual

N1 % N2 : N3 compute remainder

N1 % N2 produces the remainder of N1 divided by N2. The sign of the
result is the sign of N1.

Errors: 102 N1 or N2 not integer or real
202 N2 = 0
204 real overflow or underflow

Mini Reference Manual 11-127

N1 ^ N2 : N3 compute exponential

N1 ^ N2 produces N1 raised to the power N2.

Errors: 102 N1 or N2 not integer or real
204 real overflow, underflow, or N1 = 0 and N2 <= 0
206 N1 < 0 and N2 real

See also: ^C, exp(), and sqrt()

11-128 Mini Reference Manual

x1 ++ x2 : x3 compute cset or set union

x1 ++ x2 produces the cset or set union of x1 and x2.

Errors: 120 x1 or x2 not both cset or both set
307 inadequate space in block region

Mini Reference Manual 11-129

x1 − − x2 : x3 compute cset or set difference

x1 − − x2 produces the cset or set difference of x1 and x2.

Errors: 120 x1 or x2 not both cset or both set
307 inadequate space in block region

11-130 Mini Reference Manual

x1 ∗∗ x2 : x3 cset or set intersection

x1 ∗∗ x2 produces the cset or set intersection of x1 and x2.

Errors: 120 x1 or x2 not both cset or both set
307 inadequate space in block region

Mini Reference Manual 11-131

s1 || s2 : s3 concatenate strings

s1 || s2 produces a string consisting of s1 followed by s2.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: L1 ||| L2

11-132 Mini Reference Manual

L1 ||| L2 : L3 concatenate lists

L1 ||| L2 produces a list containing the values in L1 followed by the values
in L2.

Errors: 108 L1 or L2 not list
307 inadequate space in block region

See also: s1 || s2

Mini Reference Manual 11-133

R.f : x get field of record

R.f produces a variable for the f field of record R.

Errors: 107 R not a record type
207 R does not have field f

See also: .x

11-134 Mini Reference Manual

x1 @ C : x2 transmit value to co-expression

x1 @ C activates C, transmitting the value of x1 to it. It produces the
outcome of activating C.

Error: 118 C not co-expression

See also: @C

Mini Reference Manual 11-135

x1 & x2 : x2 evaluate in conjunction

x1 & x2 produces x2. It produces a variable if x2 is a variable.

11-136 Mini Reference Manual

N1 > N2 : N2 compare numerically

N1 > N2 produces N2 if N1 is numerically greater than N2, but fails
otherwise.

Error: 102 N1 or N2 not integer or real

See also: N1 >= N2, N1 = N2, N1 <= N2, N1 < N2, and N1 ~= N2

Mini Reference Manual 11-137

N1 >= N2 : N2 compare numerically

N1 >= N2 produces N2 if N1 is numerically greater than or equal to N2,
but fails otherwise.

Error: 102 N1 or N2 not integer or real

See also: N1 > N2, N1 = N2, N1 <= N2, N1 < N2, and N1 ~= N2

11-138 Mini Reference Manual

N1 = N2 : N2 compare numerically

N1 = N2 produces N2 if N1 is numerically equal to N2, but fails otherwise.

Error: 102 N1 or N2 not integer or real

See also: N1 > N2, N1 >= N2, N1 <= N2, N1 < N2, N1 ~= N2, and =s

Mini Reference Manual 11-139

N1 < N2 : N2 compare numerically

N1 < N2 produces N2 if N1 is numerically less than N2, but fails otherwise.

Error: 102 N1 or N2 not integer or real

See also: N1 > N2, N1 >= N2, N1 = N2, N1 <= N2, and N1 ~= N2

11-140 Mini Reference Manual

N1 <= N2 : N2 compare numerically

N1 <= N2 produces N2 if N1 is numerically less than or equal to N2, but
fails otherwise.

Error: 102 N1 or N2 not integer or real

See also: N1 > N2, N1 >= N2, N1 = N2, N1 < N2, and N1 ~= N2

Mini Reference Manual 11-141

N1 ~= N2 : N2 compare numerically

N1 ~= N2 produces N2 if N1 is not numerically equal to N2, but fails
otherwise.

Error: 102 N1 or N2 not integer or real

See also: N1 > N2, N1 >= N2, N1 = N2, N1 <= N2, and N1 < N2

11-142 Mini Reference Manual

s1 >> s2 : s2 compare lexically

s1 >> s2 produces s2 if s1 is lexically greater than s2, but fails otherwise.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: s1 >>= s2, s1 == s2, s1 <<= s2, s1 << s2, s1 ~== s2, and
&compare

Mini Reference Manual 11-143

s1 >>= s2 : s2 compare lexically

s1 >>= s2 produces s2 if s1 is lexically greater than or equal to s2, but
fails otherwise.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: s1 >> s2, s1 == s2, s1 <<= s2, s1 << s2, s1 ~== s2, and
&compare

11-144 Mini Reference Manual

s1 == s2 : s2 compare lexically

s1 == s2 produces s2 if s1 is lexically equal to s2, but fails otherwise.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: s1 >> s2, s1 >>= s2, s1 <<= s2, s1 << s2, and s1 ~== s2

Mini Reference Manual 11-145

s1 << s2 : s2 compare lexically

s1 << s2 produces s2 if s1 is lexically less than s2, but fails otherwise.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: s1 >> s2, s1 >>= s2, s1 == s2, s1 <<= s2, s1 ~== s2, and
&compare

11-146 Mini Reference Manual

s1 <<= s2 : s2 compare lexically

s1 <<= s2 produces s2 if s1 is lexically less than or equal to s2, but fails
otherwise.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: s1 >> s2, s1 >>= s2, s1 == s2, s1 << s2, s1 ~== s2, and
&compare

Mini Reference Manual 11-147

s1 ~== s2 : s2 compare lexically

s1 ~== s2 produces s2 if s1 is not lexically equal to s2, but fails otherwise.

Errors: 103 s1 or s2 not string
306 inadequate space in string region

See also: s1 >> s2, s1 >>= s2, s1 == s2, s1 <<= s2, and s1 << s2

11-148 Mini Reference Manual

x1 === x2 : x2 compare values

x1 === x2 produces the value of x2 if x1 and x2 have the same value, but
fails otherwise.

See also: x1 ~=== x2

Mini Reference Manual 11-149

x1 ~=== x2 : x2 compare values

x1 ~=== x2 produces the value of x2 if x1 and x2 do not have the same
value, but fails otherwise.

See also: x1 === x2

11-150 Mini Reference Manual

x1 := x2 : x1 assign value

x1 := x2 assigns the value of x2 to x1 and produces the variable x1.

Errors: 101 x1 requires integer, but x2 not integer
103 x1 requires string, but x2 not string
111 x1 not a variable

See also: x1 op:= x2

Mini Reference Manual 11-151

x1 op:= x2 : x1 augmented assignment

x1 op:= x2 performs the operation x1 op x2 and assigns the result to x1; it
returns x1 as a variable. For example, i1 +:= i2 produces the same result as
i1 := i1 + i2. There are augmented assignment operators for all infix opera-
tions except assignment operations. The error conditions for augmented
assignment operations are the same as for the basic operations.

Error: 111 x1 not variable

See also: x1 := x2

11-152 Mini Reference Manual

x1 :=: x2 : x1 swap values

x1 :=: x2 exchanges the values of x1 and x2 and produces the variable x1.

Errors: 101 x1 or x2 requires integer, but other argument not integer
103 x1 or x2 requires string, but other argument not string
111 x1 or x2 not a variable

See also: x1 := x2 and x1 <–> x2

Mini Reference Manual 11-153

x1 <− x2 : x1 assign value reversibly

x1 <– x2 assigns the value of x2 to x1 and produces the variable x1. It
reverses the assignment if it is resumed.

Errors: 101 x1 or x2 requires integer, but other argument not integer
103 x1 or x2 requires string, but other argument not string
111 x1 not a variable

See also: x1 := x2 and x1 <–> x2

11-154 Mini Reference Manual

x1 <–> x2 : x1 swap values reversibly

x1 <–> x2 exchanges the values of x1 and x2 and produces the variable x1.
It reverses the exchange if it is resumed.

Errors: 101 x1 or x2 is a keyword that requires an integer value, but
the other argument is not an integer.

103 x1 or x2 is subscripted string or &subject, but other
argument not string

111 x1 or x2 not a variable

See also: x1 <− x2 and x1 :=: x2

Mini Reference Manual 11-155

Other Operations
The operations on the following pages have varying types of

syntax. Some have more than two operands. If evaluation of an
operand fails, the operation is not performed. If an operand gener-
ates a sequence of results, the operation may be performed several
times.

11-156 Mini Reference Manual

i1 to i2 by i3 : i1, ..., in generate integers in sequence

i1 to i2 by i3 generates the sequence of integers from i1 to i2 in increments
of i3.

Default: i3 1 if by clause is omitted

Errors: 101 i1, i2, or i3 not integer
211 i3 = 0

See also: seq()

Mini Reference Manual 11-157

[x1,x2, ..., xn] : L create list

[x1,x2, ..., xn] produces a list containing the values x1, x2, ..., xn. []
produces an empty list.

Error: 307 inadequate space in block region

See also: list()

.Sa

11-158 Mini Reference Manual

x1[x2] : x3 subscript

If x1 is a string, x1[x2] produces a one-character string consisting of
character x2 of x1. x1[x2] fails if x2 is out of range. x1[x2] produces a
variable if x1 is a variable.

If x1 is a list or record, x1[x2] produces element x2 of x1. x1[x2] fails if x2 is
out of range.

If x1 is a table, x1[x2] produces the element corresponding to key x2 of x1.

In all cases, x2 may be nonpositive.

Errors: 101 x1 is string, list, or a record, but x2 not integer
114 x1 not string, list, table, or record.

See also: x[i1:i2], x[i1 +: i2], and x[i1 −: i2]

Mini Reference Manual 11-159

x1[i1:i2] : x2 produce substring or list section

If x1 is a string, x1[i1:i2] produces the substring of x1 between i1 and i2. i1
and i2 may be nonpositive. x1[i1:i2] produces a variable if x1 is a variable.

If x1 is a list, x1[i1:i2] produces a list consisting of the values of x1 in the
given range. In either case, it fails if out of range.

Errors: 101 i1 or i2 not integer
114 x1 not string or list
307 inadequate space in block region if x1 list

See also: x1[x2], x[i1 +: i2], and x[i1 −: i2]

.Sa

11-160 Mini Reference Manual

x1[i1+:i2] : x2 produce substring or list section

If x1 is a string, x1[i1+:i2] produces the substring of x1 between i1 and i1 +
i2. i1 and i2 may be nonpositive. x1[i1+:i2] produces a variable if x1 is a
variable.

If x1 is a list, x1[i1+:i2] produces a list consisting of the values of x1 in the
given range. In either case, it fails if out of range.

Errors: 101 i1 or i2 not integer
114 x1 not string or list
307 inadequate space in block region if x1 list

See also: x1[x2], x[i1:i2], and x[i1 −: i2]

Mini Reference Manual 11-161

x1[i1−:i2] : x2 produce substring or list section

If x1 is a string, x1[i1−:i2] produces the substring of x1 between i1 and i1 −
i2. i1 and i2 may be nonpositive. x1[i1−:i2] produces a variable if x1 is a
variable.

If x1 is a list, x1[i1−:i2] produces a list consisting of the values of x1 in the
given range. In either case, it fails if out of range.

Errors: 101 i1 or i2 not integer
114 x1 not string or list
307 inadequate space in block region if x1 list

See also: x1[x2], x[i1:i2], and x[i1 +: i2]

.Sa

11-162 Mini Reference Manual

x0(x1,x2, ..., xn) : xm process argument list

If x0 is a function or procedure, x0(x1,x2, ..., xn) produces the outcome of
calling x0 with arguments x1, x2, ..., xn.

If x0 is an integer, produces the outcome of xi, but fails if i is out of the
range 1, ..., n. In this case, it produces a variable if xi is a variable; i may be
nonpositive.

Errors: 106 x0 not procedure or integer
117 x0 is main, but there is no main procedure (start up)

See also: x{...}

Mini Reference Manual 11-163

x0{x1,x2, ..., xn} : xm process argument list as co-expressions

x0{x1,x2, ..., xn} is equivalent to x0([create x1, create x2, ..., create xn]).

Error: 106 x0 not procedure or integer

See also: x(...)

x!L process argument list

If x is a function or procedure, x!L produces the outcome of calling x with
the arguments in the list L. If X is an integer, X!L produces L[x] but fails if x
is out of range of L.

Errors: 106 x not procedure or integer
108 L not list

See also: x(…)

Mini Reference Manual 11-163a

11-164 Mini Reference Manual

Keywords
Keywords are listed in alphabetical order.

Some keywords are variables; values may be assigned to these.
However, the allowable type depends on the keyword. See the

Mini Reference Manual 11-165

&ascii : c ASCII characters

The value of &ascii is a cset consisting of the 128 ASCII characters.

&clock : s time of day

The value of &clock is a string consisting of the current time of day, as in
"16:30:00".

&collections : i1, i2, i3, i4 garbage collections

&collections generates the total number of garbage collections followed by
the number caused by allocation in the static, string, and block regions,
respectively.

&compare : i string comparison

If the value of &compare is nonzero, string comparison is done using the
Macintosh international comparison routines. If the value of &compare is
zero, comparison is done by ASCII collating value. &compare is zero
initially. &compare is a variable.

11-166 Mini Reference Manual

&cset : c all characters

The value of &cset is a cset consisting of all 256 characters.

¤t : C current co-expression

The value of ¤t is the currently active co-expression.

&date : s date

The value of &date is the current date, as in "1989/12/31".

&dateline : s date and time of day

The value of &dateline is the current date and time of day as in "December
31, 1989 6:53 am".

Mini Reference Manual 11-167

&digits : c digits

The value of &digits is a cset containing the ten digits.

&dump : i termination dump

If the value of &dump is nonzero when an Icon program terminates, a
listing of all variables and their values is produced. &dump is zero initially.
&dump is a variable.

&error : i errors to convert to failure

If the value of &error is nonzero, a runtime error is converted to expression
failure and &error is decremented. &error is zero initially. &error is a
variable.

&errornumber : i number of last error

The value of &errornumber is the number of the last error converted to
failure. &errornumber fails if no error has occurred.

11-168 Mini Reference Manual

&errortext : s description of last error

The value of errortext is the error message corresponding to the last error
converted to failure. &errortext fails if no error has occurred.

&errorvalue : x value causing last error

The value of &errorvalue is the value that caused the last error converted to
failure. &errorvalue fails if no error has occurred or no specific value caused
the error.

&errout : f standard error output

The value of &errout is standard error output. Standard error output
defaults to the Intertactive window, but it may be redirected elsewhere
using the Error Output ... dialog.

&fail failure

&fail simply fails.

Mini Reference Manual 11-169

&features : s1, s2, ..., sn implementation features

The value of &features generates strings identifying the features of the
executing version of Icon.

&file : s source file

The value of &file is the name of the file from which the current program
line was compiled.

&ftrace : i function tracing

If the value of &ftrace is nonzero, a trace message is produced when a
function is called, returns, suspends, is resumed, or fails. &ftrace is decre-
mented for each message produced. &ftrace is zero initially. &ftrace is a
variable.

11-170 Mini Reference Manual

&host : s host system

The value of &host is a string that identifies the host system on which Icon
is running. For ProIcon, this is "ProIcon for the Macintosh".

&input : f standard input

The value of &input is standard input. Standard input defaults to the
keyboard, but it may be redirected elsewhere using the Program Input ...
dialog.

&letters : c letters

The value of &letters is a cset containing the 52 upper- and lowercase
letters.

&lcase : c lowercase letters

The value of &lcase is a cset containing the 26 lowercase letters.

&level : i procedure level

The value of &level is the integer level of the current procedure call.

Mini Reference Manual 11-171

&line : i source line number

The value of &line is the number of the source-program line in which it
appears.

&main : C main co-expression

The value of &main is the co-expression for the main program.

&null : n null value

The value of &null is the null value.

&output : f standard output

The value of &output is standard output. Standard output defaults to the
Interactive window, but it may be redirected elsewhere using the Program
Output ... dialog.

11-172 Mini Reference Manual

&pos : i scanning position

The value of &pos is the position of scanning in &subject. The scanning
position may be changed by assignment to &pos. Such an assignment fails if
it would be out of range of &subject. &pos is a variable.

&random : i random seed

The value of &random is the seed for the pseudo-random sequence. The
seed may be changed by assignment to &random. &random is zero initially.
&random is a variable.

®ions : i1, i2, i3 storage region

®ion generates the current sizes of the static, string, and block regions,
respectively. The size of the static region is always given as zero.

Mini Reference Manual 11-173

&screen : L screen dimensions

The value of &screen is list of eight values that give the boundaries of the
main screen and the “gray region” enclosing all screens. The first four
values are the x,y coordinates of the upper-left and lower-right corners of
the main screen, in pixels. The last four are the corresponding values for the
gray region. The gray region excludes the menu bar, which is 20 pixels
high.

&source : C source co-expression

The value of &source is the co-expression for the activator of the current
co-expression.

&storage : i1, i2, i3 storage utilization

&storage generates the current amount of space used in the static, string,
and block regions, respectively. The space used in the static region is always
given as zero.

11-174 Mini Reference Manual

&subject : s subject scanning

The value of &subject is the string being scanned. The subject of scanning
may be changed by assignment to &subject. &subject is variable.

&time : i elapsed time

The value of &time is the integer number of milliseconds since the begin-
ning of program execution.

&trace : i procedure tracing

If the value of &trace is nonzero, a trace message is produced when a
procedure is called, returns, suspends, is resumed, or fails. &trace is decre-
mented for each message produced. &trace is zero initially. &trace is a
variable.

&ucase : c uppercase letters

The value of &ucase is a cset containing the 26 uppercase letters.

Mini Reference Manual 11-175

&version : s Icon version

The value of &version is a string identifying the version of Icon. For the
current release of ProIcon, this is "ProIcon Version 2.0".

11-176 Mini Reference Manual

Control Structures
The way that operands of a control structure are evaluated depends

on the control structure; in fact, that’s what distinguishes a control
structure from a function or operation.

Most control structures are identified by reserved words. They are
arranged alphabetically on the following pages, with the few control
structures that use operator symbols appearing at the end.

Mini Reference Manual 11-177

break expr : x break out of loop

break expr exits from the enclosing loop and produces the outcome of expr.

Default: expr &null

See also: next

11-178 Mini Reference Manual

case expr of { ... } : x select according to value

case expr of { ... } produces the outcome of the case clause that is selected
by the value of expr; expr is limited to at most one result.

Mini Reference Manual 11-179

create expr : C create co-expression

create expr produces a co-expression for expr.

Error: 305 inadequate space in static region

See also: ^C

11-180 Mini Reference Manual

every expr1 do expr2 generate every result

every expr1 do expr2 evaluates expr2 for each result produced by resuming
expr1; it fails when the resumption of expr1 does not produce a result. The
do clause is optional.

Mini Reference Manual 11-181

fail fail from procedure

fail returns from the current procedure, causing the call to fail.

See also: return and suspend

11-182 Mini Reference Manual

if expr1 then expr2 else expr3 : x select according to outcome

if expr1 then expr2 else expr3 produces the outcome of expr2 if expr1
succeeds, otherwise the outcome of expr3; expr1 is limited to at most one
result. The else clause is optional.

Mini Reference Manual 11-183

next go to beginning of loop

next transfers control to the beginning of the enclosing loop.

See also: break

11-184 Mini Reference Manual

not expr : n invert failure

not expr produces the null value if expr fails, but fails if expr succeeds.

Mini Reference Manual 11-185

repeat expr repeat evaluation

repeat expr evaluates expr repeatedly.

11-186 Mini Reference Manual

return expr return from procedure

return expr returns from the current procedure, producing the outcome of
expr.

Default: expr &null

See also: fail and suspend

Mini Reference Manual 11-187

suspend expr1 do expr2 suspend from procedure

suspend expr1 do expr2 suspends from the current procedure, producing
each result produced by resuming expr1. If resumed, expr2 is evaluated
before resuming expr1. The do clause is optional.

Default: expr1 &null (only if do clause is omitted)

See also: fail and return

11-188 Mini Reference Manual

until expr1 do expr2 loop until result

until expr1 do expr2 evaluates expr2 each time expr1 fails; it fails when expr1
succeeds. The do clause is optional.

See also: while expr1 do expr2

Mini Reference Manual 11-189

while expr1 do expr2 loop while result

while expr1 do expr2 evaluates expr2 each time expr1 succeeds; it fails when
expr1 fails. The do clause is optional.

See also: until expr1 do expr2

11-190 Mini Reference Manual

expr1 | expr2 : x1, x2, ... evaluate alternatives

expr1 | expr2 generates the results for expr1, followed by the results for
expr2.

See also: |expr

Mini Reference Manual 11-191

|expr : x1, x2, ... evaluate repeatedly

|expr generates the results for expr repeatedly, terminating if expr fails.

See also: expr1 | expr2

11-192 Mini Reference Manual

expr \ i : x1, x2, ..., xi limit generator

expr \ i generates at most i results from the outcome for expr.

Errors: 101 i not integer
205 i < 0

See also: \x

Mini Reference Manual 11-193

s ? expr : x scan string

s ? expr sets &subject to s, &pos to 1, and then evaluates expr. The out-
come is the outcome of expr.

Error: 103 s not string

See also: ?x

A
Character Codes

Character Codes A-3

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

 0 000 00 -shift-option-2
 1 001 01 -shift-option-A; home
 2 002 02 -shift-option-B
 3 003 03 -shift-option-C; enter
 4 004 04 -shift-option-D; end
 5 005 05 -shift-option-E
 6 006 06 -shift-option-F
 7 007 07 -shift-option-G
 8 010 08 -shift-option-H; delete
 9 011 09 -shift-option-I; tab
 10 012 0a -shift-option-J
 11 013 0b -shift-option-K; page up
 12 014 0c -shift-option-L; page down
 13 015 0d -shift-option-M; return
 14 016 0e -shift-option-N
 15 017 0f -shift-option-O
 16 020 10 -shift-option-P
 17 021 11 -shift-option-Q
 18 022 12 -shift-option-R
 19 023 13 -shift-option-S
 20 024 14 -shift-option-T
 21 025 15 -shift-option-U
 22 026 16 -shift-option-V
 23 027 17 -shift-option-W
 24 030 18 -shift-option-X
 25 031 19 -shift-option-Y
 26 032 1a -shift-option-Z
 27 033 1b -shift-option-[
 28 034 1c -shift-option-\; ←
 29 035 1d -shift-option-]; →
 30 036 1e -shift-option-6; ↑
 31 037 1f -shift-option--; ↓

Keyboard Chart

A-4 Character Codes

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

 32 040 20 space
 33 041 21 ! ! ✁ shift-1
 34 042 22 " ∀ ✂ shift-'
 35 043 23 # # ✃ shift-3
 36 044 24 $ ∃ ✄ shift-4
 37 045 25 % % ☎ shift-5
 38 046 26 & & ✆ shift-7
 39 047 27 ' ∋ ✇ '
 40 050 28 ((✈ shift-9
 41 051 29)) ✉ shift-0
 42 052 2a * ∗ ☛ shift-8
 43 053 2b + + ☞ shift-=
 44 054 2c , , ✌ ,
 45 055 2d - − ✍ -
 46 056 2e . . ✎ .
 47 057 2f / / ✏ /
 48 060 30 0 0 ✐ 0
 49 061 31 1 1 ✑ 1
 50 062 32 2 2 ✒ 2
 51 063 33 3 3 ✓ 3
 52 064 34 4 4 ✔ 4
 53 065 35 5 5 ✕ 5
 54 066 36 6 6 ✖ 6
 55 067 37 7 7 ✗ 7
 56 070 38 8 8 ✘ 8
 57 071 39 9 9 ✙ 9
 58 072 3a : : ✚ shift-;
 59 073 3b ; ; ✛ ;
 60 074 3c < < ✜ shift-,
 61 075 3d = = ✝ =
 62 076 3e > > ✞ shift-.
 63 077 3f ? ? ✟ shift-/
 64 100 40 @ ≅ ✠ shift-2
 65 101 41 A ✡ shift-A
 66 102 42 B Β ✢ shift-B
 67 103 43 C Χ ✣ shift-C
 68 104 44 D ∆ ✤ shift-D
 69 105 45 E Ε ✥ shift-E
 70 106 46 F Φ ✦ shift-F
 71 107 47 G Γ ✧ shift-G
 72 110 48 H Η ★ shift-H

Character Codes A-5

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

 73 111 49 I Ι ✩ shift-I
 74 112 4a J ϑ ✪ shift-J
 75 113 4b K Κ ✫ shift-K
 76 114 4c L Λ ✬ shift-L
 77 115 4d M Μ ✭ shift-M
 78 116 4e N Ν ✮ shift-N
 79 117 4f O Ο ✯ shift-O
 80 120 50 P Π ✰ shift-P
 81 121 51 Q Θ ✱ shift-Q
 82 122 52 R Ρ ✲ shift-R
 83 123 53 S Σ ✳ shift-S
 84 124 54 T Τ ✴ shift-T
 85 125 55 U Υ ✵ shift-U
 86 126 56 V ς ✶ shift-V
 87 127 57 W Ω ✷ shift-W
 88 130 58 X Ξ ✸ shift-X
 89 131 59 Y Ψ ✹ shift-Y
 90 132 5a Z Ζ ✺ shift-Z
 91 133 5b [[✻ [
 92 134 5c \ ∴ ✼ \
 93 135 5d]] ✽]
 94 136 5e ^ ⊥ ✾ shift-6
 95 137 5f _ _ ✿ shift--
 96 140 60 ` ❀ `
 97 141 61 a ❁ A
 98 142 62 b β ❂ B
 99 143 63 c χ ❃ C
100 144 64 d δ ❄ D
101 145 65 e ε ❅ E
102 146 66 f φ ❆ F
103 147 67 g γ ❇ G
104 150 68 h η ❈ H
105 151 69 i ι ❉ I
106 152 6a j ϕ ❊ J
107 153 6b k κ ❋ K
108 154 6c l λ ● L
109 155 6d m µ ❍ M
110 156 6e n ν ■ N
111 157 6f o ο ❏ O
112 160 70 p π ❐ P
113 161 71 q θ ❑ Q

A-6 Character Codes

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

114 162 72 r ρ ❒ R
115 163 73 s σ ▲ S
116 164 74 t τ ▼ T
117 165 75 u υ ◆ U
118 166 76 v ϖ ❖ V
119 167 77 w ω ◗ W
120 170 78 x ξ ❘ X
121 171 79 y ψ ❙ Y
122 172 7a z ζ ❚ Z
123 173 7b { { ❛ shift-[
124 174 7c | | ❜ shift-\
125 175 7d } } ❝ shift-]
126 176 7e ~ ∼ ❞ shift-`
127 177 7f � � � -shift-option-/; del
128 200 80 Ä � ❨ option-U, shift-A
129 201 81 Å � ❩ shift-option-A
130 202 82 Ç � ❪ shift-option-C
131 203 83 É � ❫ option-E, shift-E
132 204 84 Ñ � ❬ option-N, shift-N
133 205 85 Ö � ❭ option-U, shift-O
134 206 86 Ü � ❮ option-U, shift-U
135 207 87 á � ❯ option-E, A
136 210 88 à � ❰ option-`, A
137 211 89 â � ❱ option-I, A
138 212 8a ä � ❲ option-U, A
139 213 8b ã � ❳ option-N, A
140 214 8c å � ❴ option-A
141 215 8d ç � ❵ option-C
142 216 8e é � � option-E, E
143 217 8f è � � option-`, E
144 220 90 ê � � option-I, E
145 221 91 ë � � option-U, E
146 222 92 í � � option-E, I
147 223 93 ì � � option-`, I
148 224 94 î � � option-I, I
149 225 95 ï � � option-U, I
150 226 96 ñ � � option-N, N
151 227 97 ó � � option-E, O
152 230 98 ò � � option-`, O
153 231 99 ô � � option-I, O
154 232 9a ö � � option-U, O

Character Codes A-7

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

155 233 9b õ � � option-N, O
156 234 9c ú � � option-E, U
157 235 9d ù � � option-`, U
158 236 9e û � � option-I, U
159 237 9f ü � � option-U, U
160 240 a0 † € option-T
161 241 a1 ° ϒ ❡ shift-option-8
162 242 a2 ¢ ′ ❢ option-4
163 243 a3 £ ≤ ❣ option-3
164 244 a4 § ⁄ ❤ option-6
165 245 a5 • ∞ ❥ option-8
166 246 a6 ¶ ƒ ❦ option-7
167 247 a7 ß ♣ ❧ option-S
168 250 a8 ® ♦ ♣ option-R
169 251 a9 © ♥ ♦ option-G
170 252 aa ™ ♠ ♥ option-2
171 253 ab ´ ↔ ♠ option-E, option-E
172 254 ac ¨ ← ① option-U, option-U
173 255 ad ≠ ↑ ② option-=
174 256 ae Æ → ③ shift-option-'
175 257 af Ø ↓ ④ shift-option-O
176 260 b0 ∞ ° ⑤ option-5
177 261 b1 ± ± ⑥ shift-option-=
178 262 b2 ≤ ″ ⑦ option-,
179 263 b3 ≥ ≥ ⑧ option-.
180 264 b4 ¥ × ⑨ option-Y
181 265 b5 µ ∝ ⑩ option-M
182 266 b6 ∂ ∂ ❶ option-D
183 267 b7 ∑ • ❷ option-W
184 270 b8 ∏ ÷ ❸ shift-option-P
185 271 b9 π ≠ ❹ option-P
186 272 ba ∫ ≡ ❺ option-B
187 273 bb ª ≈ ❻ option-9
188 274 bc º … ❼ option-0
189 275 bd Ω ❽ option-Z
190 276 be æ ❾ option-'
191 277 bf ø ↵ ❿ option-O
192 300 c0 ¿ ℵ ➀ shift-option-/
193 301 c1 ¡ ℑ ➁ option-1
194 302 c2 ¬ ℜ ➂ option-L
195 303 c3 √ ℘ ➃ option-V

A-8 Character Codes

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

196 304 c4 ƒ ⊗ ➄ option-F
197 305 c5 ≈ ⊕ ➅ option-X
198 306 c6 ∆ ∅ ➆ option-J
199 307 c7 « ∩ ➇ option-\
200 310 c8 » ∪ ➈ shift-option-\
201 311 c9 … ⊃ ➉ option-;
202 312 ca option-space
203 313 cb À ⊄ ➋ option-`, shift-A
204 314 cc Ã ⊂ ➌ option-N, shift-A
205 315 cd Õ ⊆ ➍ option-N, shift-O
206 316 ce Œ ∈ ➎ shift-option-Q
207 317 cf œ ∉ ➏ option-Q
208 320 d0 – ∠ ➐ option--
209 321 d1 — ∇ ➑ shift-option--
210 322 d2 “ ➒ option-[
211 323 d3 ” ➓ shift-option-[
212 324 d4 ‘ ➔ option-]
213 325 d5 ’ ∏ → shift-option-]
214 326 d6 ÷ √ ↔ option-/
215 327 d7 ◊ ⋅ ↕ shift-option-V
216 330 d8 ÿ ¬ ➘ option-U, Y
217 331 d9 Ÿ ∧ ➙ shift-option-`
218 332 da ⁄ ∨ ➚ shift-option-1
219 333 db ¤ ⇔ ➛ shift-option-2
220 334 dc ‹ ⇐ ➜ shift-option-3
221 335 dd › ⇑ ➝ shift-option-4
222 336 de fi ⇒ ➞ shift-option-5
223 337 df fl ⇓ ➟ shift-option-6
224 340 e0 ‡ ◊ ➠ shift-option-7
225 341 e1 · 〈 ➡ shift-option-9
226 342 e2 ‚ ➢ shift-option-0
227 343 e3 „ ➣ shift-option-W
228 344 e4 ‰ ➤ shift-option-E
229 345 e5 Â ∑ ➥ shift-option-R
230 346 e6 Ê ➦ shift-option-T
231 347 e7 Á ➧ shift-option-Y
232 350 e8 Ë ➨ shift-option-U
233 351 e9 È ➩ shift-option-I
234 352 ea Í ➪ shift-option-S
235 353 eb Î ➫ shift-option-D
236 354 ec Ï ➬ shift-option-F

Character Codes A-9

dec. oct. hex. Times Symbol Zapf dingbats keyboard sequence

237 355 ed Ì ➭ shift-option-G
238 356 ee Ó ➮ shift-option-H
239 357 ef Ô ➯ shift-option-J
240 360 f0 ð shift-option-K
241 361 f1 Ò 〉 ➱ shift-option-L
242 362 f2 Ú ∫ ➲ shift-option-;
243 363 f3 Û ⌠ ➳ shift-option-Z
244 364 f4 Ù ➴ shift-option-X
245 365 f5 ı ⌡ ➵ shift-option-B
246 366 f6 ˆ ➶ shift-option-N
247 367 f7 ˜ ➷ shift-option-M
248 370 f8 ¯ ➸ shift-option-,
249 371 f9 ˘ ➹ shift-option-.
250 372 fa ˙ ➺ option-H
251 373 fb ˚ ➻ option-K
252 374 fc ¸ ➼ -shift-option-,
253 375 fd ˝ ➽ -shift-option-'
254 376 fe ˛ ➾ -shift-option-.
255 377 ff ˇ ÿ ÿ -shift-option-;

String Comparison B-1

String Comparison

String (lexical) comparison is performed by the operations:

s1 >> s2 s1 greater than s2
s1 >>= s2 s1 greater than or equal to s2
s1 == s2 s1 equal to s2
s1 <<= s2 s1 less than or equal to s2
s1 << s2 s1 less than s2
s1 ~== s2 s1 not equal to s2

In each case, the operation succeeds if the specified relation
holds but fails otherwise. String comparison also occurs
implicitly during sorting using the function sort.

 This appendix describes the string comparison, using
either ProIcon’s default comparison or the Macintosh
international string comparison system. The selection of
these two systems is controlled by &compare or by checking
International Comparison in the Program Options ... dialog.

Default Comparison
ProIcon’s default method of string comparison is quite

fast. It is selected by setting keyword &compare to zero (the
default).

Strings are compared left to right on a character-by-
character basis. If the two strings are different at some
position, the internal ASCII character codes of the differing
characters determines the ordering of the strings. Appendix
A lists all characters and their internal codes. Thus, the

B-2 String Comparison

string "Ac" is less than "ab" because the code for A (65) is
less than the code for a (97).

If the strings are of different lengths, and all characters in
the shorter string match corresponding characters in the
longer string, then the shorter string is less than the longer
one. Thus, "ABC" is less than "ABCD". Strings are equal
only if they have the same length and all characters are the
same.

While this comparison system works for most applications,
the ordering implicit in the ASCII character set may be
inappropriate at times. For example, under the default
system, the uppercase letters collate ahead of all lowercase
letters. Characters with diacritical marks, like ä, and ligatures,
such as æ, are placed after all “normal” letters in the collat-
ing sequence.

This is not correct when working with languages other
than English, or when attempting to produce a dictionary
ordering that ignores capitalization. In these cases, the
Macintosh international comparison system is useful.

International Comparison
The Macintosh provides support for different writing

systems, or scripts, such as Roman, Arabic, Greek, Hebrew,
and Kanji. ProIcon only supports the left-to-right Roman-
based writing system.

Within the Roman-script system, Apple offers system files
localized for the following languages: British, Canadian
French, Danish, Dutch, Finnish, French, German, Icelandic,
International English, Italian, Norwegian, Portuguese,
Spanish, Swedish, Swiss French, Swiss German, Turkish, and
U.S. English. These systems differ slightly in character
orderings.

It is possible to create a mixed-language system. For
example, a scholar might want ProIcon to use a Norwegian
collating sequence on a machine with a French system file. It
is also possible to create custom collating sequences. Addi-
tional information is provided at the end of this appendix.

System

String Comparison B-3

Caveats

 Prior to system version 6.0.4, the Macintosh defined its
formal character set as being in the range 0 to 216 decimal,
and the international comparison routines only performed
special actions on those characters. Beginning with system
6.0.4, the Macintosh recognises the de facto standard that
has emerged for character codes 217 to 255.

Many fonts have graphics in the range 217 to 255 (see
Appendix A). Be aware that the 16 uppercase letters with
diacritical marks between 217 and 244 (Ÿ, Â, Ê, Á, Ë, È, Í, Î,
Ï, Ì, Ó, Ô, Ò, Ú, Û, and Ù), as well as the ligatures fi, fl, and
ß participate in the international collation only if you are
running system 6.0.4 or later. The remainder of this appen-
dix is written assuming this system. If you are using system
6.0.3 or earlier, these characters do not sort where expected,
and instead collate after all other letters strictly according to
their character code values.

 Setting keyword &compare to 1 or choosing International
Comparison from the Program Options ... dialog tells
ProIcon to invoke the Macintosh international string
comparison system when making string comparisons. These
comparisons are markedly slower than the default system
(typically four times slower). You may wish to change the
type of comparison selectively by changing the value of
&compare as needed.

When international comparison is in effect, strings are
compared using a system of primary and secondary order-
ings. Characters are assigned to classes. In each class there is
a primary character used for comparisons. For example, the
characters

 A Á À Â Ä Ã Å a á à â ä ã å

are all assigned to one class, of which A is the primary
character for comparisons. Within each class, there is a
secondary, left-to-right ordering of characters.

The essence of the comparison algorithm is that strings are
compared using the primary character of each class. As long
as the primary characters match, the comparison proceeds. If
the primary characters do not match, their relationship
determines the ordering of the strings. Thus, â is less than b

Going
International

B-4 String Comparison

because that is the ordering of their respective primary
characters, A and B.

If two strings match completely in their primary ordering,
the comparison routine considers secondary ordering. It
remembers the first pair of characters that were different
(although they yielded the same primary character), and
considers their positions in their class.

For example, consider two equal-length strings that begin
with Ä and À. Both produce A as their primary character.
Consequently, they compare equally on the first pass, which
merely considers primary characters. If all primary characters
compare equally, then the comparison routine examines the
secondary ordering of Ä and À. Here À appears first, and so
the string containing it is less than the other.

As another example, the following tests all succeed:

"A" << "a"
"Ab" << "ab"
"ab" << "Ac"

The third case fails under the default comparison system,
because the character code for a (97) is greater than the code
for A (65), and the comparison never looks beyond the first
character. Under the international comparison system,
however, a and A are equal using their primary character, so
the match proceeds, comparing b and c.

If two strings are of different lengths, the extra characters
in the longer string are all considered to be greater in terms
of the primary comparison. The following both succeed:

"a" << "Ab"
"A" << "a"

Ligatures provide an additional complication. These are
two-letter sequences like Æ that are represented by one
character in memory (code 174 in this case). For comparison
purposes, the international comparison system does the
following:

Primary comparison: The ligature is expanded to the
two component characters.

Secondary comparison: The ligature is greater than
the two-character sequence.

•

•

String Comparison B-5

Under this system,

"Æd" << "AEg"

succeeds because Æ matches AE under their primary order-
ing, and the comparison is based upon d and g.

Beginning with system 6.0.4, ligatures fi, fl, and ß sort
immediately after their expanded counterparts: fi, fl, and ss.

The following table shows the primary and secondary
orderings under the U.S. English Roman-writing system.
Each row represents a primary class, with those toward the
top of the table collating before later entries. Within a class,
the secondary ordering appears from left to right. The first
character in each class is its primary character. Its decimal
code is also provided.

0 nul
 … …

31
32 space non-breaking space (202)
33 !
34 " « » “ ”
35 #
36 $
37 %
38 &
39 ' ‘ ’
40 (

 … …
64 @
65 A Á À Â Ä Ã Å a á à

 â ä å
66 B b
67 C Ç c ç
69 E É È Ê Ë e é è ê ë
73 I Í Ì Î Ï i ı í ì î ï
78 N Ñ n ñ
79 O Ó Ò Ô Ö Õ Ø o ó

 ò ô ö õ ø
85 U Ú Ù Û Ü u ú ù û ü
89 Y Ÿ y ÿ
91 [
92 \
93]

Character
Ordering

letter pairs
not
displayed
are like
B b

B-6 String Comparison

94 ^
95 _
96 ‘

123 {
124 |
125 }
126 ~
127 del
160 †

 … …
173 ≠
174 Æ æ Œ œ (see the text for

 fi fl ß additional information
 about ligatures)

176 ∞
 … …

189 Ω
192 ¿

 … …
198 ∆
201 …
208 –
209 —
214 ÷
215 ◊
218 ⁄

 … …
221 ›
224 ‡

 … …
228 ‰
240
246 ˆ

 … …
251 ˚
253 ˝

String Comparison B-7

Corresponding tables for other languages differ in small
ways. Here are examples of some of the differences. The list
is not exhaustive, but instead gives an overview of the
orderings possible with the international string comparison
system.

British

The pound currency symbol (£) appears between the
quotation mark class and the sharp symbol:

34 " « » “ ”
165 £
35 #

German

Characters with umlauts are expanded to the appropriate
two letters, so that Ä is expanded to AE. It appears in the
secondary ordering between the expanded, two-letter
sequence and any equivalent ligature.

Thus the orderings are:

AE Ä Æ ae ä æ
OE Ö Œ oe ö œ
UE Ü ue ü

Customizing

The assembly-language programs that control the interna-
tional comparison process are provided by Apple and reside
within your system file. The built-in core of the comparison
system is never altered. Instead, functions in the itl2 resource
accommodate differences from the default actions.

The simplest method of collating under a different lan-
guage is to purchase the Macintosh system software localized
for that language and use it to boot your system. Done this
way, the language applies system-wide.

Alternately, you can use Apple’s ResEdit program to install
an itl2 resource into the ProIcon application file. It should be
given the same resource ID number as the existing itl2
resource in the system file. When ProIcon runs, the local

Other
Languages

B-8 String Comparison

version of itl2 takes precedence and is used instead of the
normal system itl2 resource. In this manner, ProIcon can be
configured for one language, while the base operating system
is configured for another.

itl2 resources can be obtained from other system files, or
created from scratch. Creating them yourself is not a trivial
task and requires considerable knowledge of Macintosh
assembly-language programming. Users who wish to attempt
this should obtain a copy of Macintosh Technical Note
#178. It is available, free, from many public sources or from
Catspaw, Inc.

C
Icon Language

Checklists

Icon Language Checklists C-1

Icon Language Checklists
This appendix contains several lists you may find useful

when writing Icon programs.

Operator Precedence
Icon has many operators. Precedence determines how

different operators, in combination, group with their oper-
ands. Associativity determines whether operations group to
the left or to the right.

 The list that follows gives operators by precedence from
highest to lowest. Operators with the same precedence are
grouped together; dotted lines separate groups. Most infix
operators are left-associative. Those that associate to the
right are marked as such.

It’s difficult to remember all the precedences and associa-
tivities; if in doubt, use parentheses to insure that your
expressions group as you expect.

(expr)
{expr1; expr2; ... }
[expr1, expr2, ...]
expr.f
expr1 [expr2]
expr1 [expr2 : expr3]
expr1 [expr2 +: expr3]
expr1 [expr2 –: expr3]
expr1 (expr1, expr2, ...)
expr0 { expr1, expr2, ... }
………………

C-2 Icon Language Checklists

not expr
| expr
! expr
∗ expr
+ expr
– expr
. expr
/ expr
\ expr
= expr
? expr
~ expr
@ expr
^ expr
………………
expr1 \ expr2
expr1 @ expr2
………………
expr1 ^ expr2 (right associative)
………………
expr1 ∗ expr2
expr1 / expr2
expr1 % expr2
expr1 ∗∗ expr2
………………
expr1 + expr2
expr1 – expr2
expr1 ++ expr2
expr1 – – expr2
………………
expr1 || expr2
expr1 ||| expr2
………………
expr1 < expr2
expr1 <= expr2
expr1 = expr2
expr1 >= expr2
expr1 > expr2
expr1 ~= expr2
expr1 << expr2
expr1 <<= expr2
expr1 == expr2
expr1 >>= expr2
expr1 >> expr2
expr1 ~== expr2

Icon Language Checklists C-3

Reserved Words
 The following words are reserved for use in declarations

and control structures. They may not be used as identifiers.

expr1 === expr2
expr1 ~=== expr2
………………
expr1 | expr2
………………
expr1 to expr2 by expr3
………………
expr1 := expr2 (all right associative)
expr1 <– expr2
expr1 :=: expr2
expr1 <–> expr2
expr1 op:= expr2 (all augmented assignments)
………………
expr1 ? expr2
………………
expr1 & expr2
………………
break expr
case expr0 of { expr1 : expr2; expr3 : expr4; ... }
create expr
every expr1 do expr2
fail
if expr1 then expr2 else expr3
next
repeat expr
return expr
suspend expr1 do expr2
until expr1 do expr2
while expr1 do expr2

break
by
case
create
default
do
dynamic
else
end
every

C-4 Icon Language Checklists

fail
global
if
initial
link
local
next
not
of
procedure
record
repeat
return
static
suspend
then
to
until
while

Generators
A few operations, called generators, may produce more

than one result if the context in which they are evaluated
requires it. These operations are:

bal(c1,c2,c3,s,i1,i2)
file(s)
find(s1,s2,i1,i2)
key(T)
i to j by k
seq(i1,i2)
upto(c,s,i1,i2)
!x
&collections
&features
®ions
&storage
|expr
expr1 | expr2

Icon Language Checklists C-5

Run-Time Error Messages
Run-time error messages are divided into categories as

indicated in the following list:

101 integer expected
102 numeric expected
103 string expected
104 cset expected
105 file expected
106 procedure or integer expected
107 record expected
108 list expected
109 string or file expected
110 string or list expected
111 variable expected
112 invalid type to size operation
113 invalid type to random operation
114 invalid type to subscript operation
115 list, set, or table expected
116 invalid type to element generator
117 missing main procedure
118 co-expression expected
119 set expected
120 cset or set expected
121 function not supported
122 set or table expected
123 invalid type
124 table expected

201 division by zero
202 remaindering by zero
203 integer overflow
204 real overflow, underflow, or division by zero
205 value out of range
206 negative first operand to real exponentiation
207 invalid field name
208 second and third arguments to map of

 unequal length
209 invalid second argument to open
210 non-ascending arguments to detab/entab
211 by value equal to zero
212 attempt to read file not open for reading
213 attempt to write file not open for writing
214 input/output error

C-6 Icon Language Checklists

215 attempt to refresh &main
216 external function not found

251 string too long for comparison
252 window identifier expected

301 evaluation stack overflow
302 system stack overflow
303 inadequate space for evaluation stack
304 inadequate space in qualifier list
305 inadequate space for static allocation
306 inadequate space in string region
307 inadequate space in block region

352 inadequate space for XCMD interface
353 could not load XCMD/XFCN

500 program malfunction

D
External Functions

External Functions D-1

External Functions
As mentioned in Chapter 10, ProIcon programs can load and execute

functions written in other programming languages. These “external”
functions include HyperCard XCMDs and XFCNs as well as stand-alone
functions that work directly with ProIcon’s internal data.

Locating External Functions
External functions exist as independent code resources residing in the

resource fork of a file. Resources are identified by a four-character type
string and a resource name. Some examples are:

 type resource name

"XCMD" "Eject Disk"
"XFCN" "Play Sound"
"CODE" "My External Function"

When your program calls an external function, it must specify the re-
source type and the resource name. ProIcon then searches the resource
forks of all open files for the appropriate resource. The search begins with
the resource fork of your executable Icon file. If it is not found there, the
resource fork of the ProIcon application is examined. If it still is not found,
your System file is searched.

Your program can open additional files for resources prior to invoking an
external function. Such files move to the head of the list of open files, and
are searched before all others. Two external functions that open and close
files for resources are present in ProIcon, making them always accessible. To
open a file for resources, use:

resFile := callout("CODE", "OpenResFile", name)

D-2 External Functions

where name is the string name of the file.

This call fails if the file cannot be opened. The file is closed with:

callout("CODE", "CloseResFile", resFile)

Managing Resources
Code and other resources can be copied from file to file using Apple’s

ResEdit program. Alternately, development tools such as LightspeedC have
the ability to build code resources and merge them into the resource fork of
an existing file.

When copying code resources, particularly XCMDs and XFCNs, also be
sure to copy any other resources present and required by the code resource
(such as dialogs, dialog items, and strings).

Compiling and running Icon programs is a two-stage process. Icon
source files are compiled to produce intermediate files. One or more
intermediate files are then linked to produce an executable file. In parallel
with this process, ProIcon copies and merges resources found in the
resource forks of the source and intermediate files.

Under this system, you can install your external function and any associ-
ated resources in the resource fork of your Icon source file. When ProIcon
compiles the program, these resources are copied to the intermediate file,
which has the suffix .u1. During the linking phase, resources from all linked
files are merged into the executable file. Duplicated resources produce this
fatal error message:

Resource duplicates a previously copied resource:
Type n, ID m, name s

The executable file’s resource fork is automatically opened during execu-
tion, making these resources available to your program.

If you develop an extensive collection of external functions, this system
encourages you to group them into small intermediate files that are linked
by your main source file. These files can contain small Icon procedures that
serve as Icon-language “wrappers” for the external functions. Alternatively,
source files can be empty, or just contain comment lines, but have resources
in their resource forks. To create such an intermediate file, simply uncheck
the Link Files menu item in the Run menu and compile the source file.

Global and Static Data
Macintosh applications reference their global and static data using

machine register A5. External functions are stand-alone code resources, and

External Functions D-3

have no direct access to the host application’s global variables. However, an
external function can maintain its own private global and static variables to
communicate among the various functions and routines that comprise the
external function. If you are using assembly language or a Symantec com-
piler, this is a simple operation. If you are using MPW tools, creating a
private global and static environment is more involved.

Using Symantec Compilers

When constructing code resources, private global and static data are
appended to the end of the code resource. Stand-alone code resources are
compiled to access this data as offsets from register A4, which points to the
start of the code resource.

ProIcon sets up register A4 properly prior to calling your external func-
tion, so no special action is required. However, if you are writing an XCMD
or XFCN that will be used with other systems, you should set up and
restore register A4 when entering and leaving your function. For example,
using LightspeedC, upon function entry execute:

RememberA0(); /∗ save code resource address found in A0 ∗/
SetUpA4(); /∗ save entry A4, load with saved A0 value ∗/

Just prior to returning from the function, execute:

RestoreA4();

Remember, if you are creating external functions other than XCMDs and
XFCNs, there is no need to use this code, because ProIcon takes care of
things for you.

Global and static data placed within the code resource are not guaranteed
to persist between function calls because the external function could be
purged from memory and then reloaded. If persistence is required, mark the
code resource non-purgeable. You can do this when you create it ("set
project type...", "attrs" in LightspeedC), or afterwards by using ResEdit.

Code resources are always purged from memory when the program
terminates because ProIcon closes all open resource files other than itself.
To maintain persistence across runs, install the resource in the ProIcon
application proper.

Using Assembly Language

If you are writing in assembly language, use the method described above
for Symantec compilers. That is, place your global and static data at the end
of your code resource, and reference it as a relative offset from the start of
the code resource. Upon function entry, registers A0 and A4 point to the

D-4 External Functions

start of the code resource, and they can be used as base pointers for address-
ing.

Using MPW Compilers

Code resources constructed using MPW tools expect register A5 to point
to the global and static variables. But register A5 points to ProIcon’s global
variables, and these cannot be used by the stand-alone code resource. To
use global variables and static data, these steps must be taken:

1. Save ProIcon’s register A5.

2. Allocate memory for the global and static data (the “A5 world”).

3. Initialize the memory (C allows globals and static variables to have
initial values).

4. Deallocate the memory and restore register A5 prior to returning.

The methods for doing these things are non-trivial and beyond the scope
of this document. Consult the August, 1990 revision of Macintosh Techni-
cal Note 256, “Stand-Alone Code” for more information.

Accessing QuickDraw
An external function often needs to access the QuickDraw globals of the

ProIcon application for which it is performing a service. QuickDraw’s
drawing operations assume a properly-initialized QuickDraw world, which
is provided by ProIcon. Most QuickDraw calls are supported and no special
effort is required. One limitation, however, is that explicit references to
QuickDraw globals like thePort and screenBits are not allowed. A linker
cannot resolve the offsets to these variables because it does not process a
stand-alone module along with ProIcon.

Since the structure of the QuickDraw global data is known, and there is a
pointer to it in the A5 world, stand-alone code can reference any desired
QuickDraw global indirectly. The following QuickDraw variables are
affected: thePort, white, black, gray, ltGray, dkGray, arrow, screenBits,
and randSeed.

The following C code shows how stand-alone code can obtain a pointer
to the QuickDraw globals. Using this pointer, the globals can be referenced
via a structure reference.

struct QDVarRec {
 long randSeed;
 BitMap screenBits;
 Cursor arrow;
 Pattern dkGray;

External Functions D-5

 Pattern ltGray;
 Pattern gray;
 Pattern black;
 Pattern white;
 GrafPtr thePort;
 } ∗pQDGlobals; /∗ Pointer to QuickDraw Globals ∗/

/∗
∗ Develop pointer to Quick Draw Globals
∗/
 pQDGlobals = (struct QDVarRec ∗)(∗(long ∗)CurrentA5 –

(sizeof(struct QDVarRec) – sizeof(thePort)));

Given this pointer in pQDGlobals, reference the needed variables as
follows: pQDGlobals–>thePort, pQDGlobals–>screenBits, etc.

For additional information, see Macintosh Technical Note 256, “Stand-
Alone Code”.

Interfacing XCMDs and XFCNs
HyperCard scripts can invoke external commands (XCMDs) and external

functions (XFCNs). Although HyperCard uses different syntaxes to invoke
the two, ProIcon makes no such distinction. Both accept string arguments
(or arguments that can be converted to strings), and return a string result.

ProIcon loads and calls XCMDs and XFCNs via Icon’s function callout(),
which takes the form:

callout(type, resource_name, arg1, arg2, …, arg16)

where:

type is the 4-character string "XCMD" or "XFCN"

resource_name is a string used to specify the function’s resource
by name

arg1 … arg16 are optional arguments to be converted to strings
and passed to the function. The HyperCard
interface imposes a limit of 16 arguments.

callout() succeeds and returns a string result (which may be the empty
string). There is no way for an XCMD or XFCN to signal failure or to
suspend. ProIcon produces an error message if the external function cannot

D-6 External Functions

be found, if insufficient memory is available to convert arguments or return
the result string, or if the XCMD or XFCN sets the passFlag true in the
XCmdBlock record structure (described below).

After loading the external function, callout() performs a Pascal-style
subroutine call to the first memory location of the external function. A
single parameter is on the stack: a pointer to an XCmdBlock record struc-
ture. This structure contains a count of the number of arguments, an array
of handles pointing to null-terminated strings for the input arguments, and
a place to return a handle to a null-terminated result string. The C-language
form of the XCmdBlock structure is contained in file IconXCmd.h on the
distribution disk in folder External Functions:XCMDs/XFCNs:C Sources.

The XCmdBlock structure also defines a “callback” mechanism by which
external functions can obtain access to 29 different services provided by
HyperCard. Because HyperCard is not present, ProIcon emulates these
callbacks. For 20 of these callbacks, the emulation exactly mirrors
HyperCard’s behavior. The remaining nine callbacks are HyperCard-
specific, and fail gracefully by returning an xresFail result code.

The 20 callbacks that are fully implemented are:

BoolToStr Boolean to true/false string conversion
ExtToStr extended (80-bit) real-to-string conversion
GetGlobal get global value
LongToStr unsigned long-to-string conversion
NumToHex long-to-hexadecimal conversion
NumToStr signed-long-to-string conversion
PasToZero Pascal-string-to-C string with handle
ReturnToPas copy up to return character or end of C string
ScanToReturn scan to return character or end of C string
ScanToZero scan to end of C string
SetGlobal set global value
StringEqual case-insensitive string-equal compare
StringLength C string length
StringMatch case-insensitive string search
StrToBool true/false string to Boolean conversion
StrToExt string-to-extended real (80-bit) conversion
StrToLong string-to-unsigned-long conversion
StrToNum string-to-signed-long conversion
ZeroBytes zero bytes in memory
ZeroToPas C-string-to-Pascal-string

The following nine callbacks are HyperCard specific, and are not emu-
lated. All return xresFail (integer 1) as a result code. In addition, the

External Functions D-7

GetFieldBy… callbacks return a handle to an empty string, mimicking
HyperCard’s behavior when presented with an unrecognized field name.

EvalExpr evaluate HyperTalk expression
GetFieldByName get contents of card field by name
GetFieldByNum get contents of card field by number
GetFieldByID get contents of card field by ID
SendCardMessage send message to card
SendHCMessage send message directly to HyperCard
SetFieldByName set card field contents by name
SetFieldByNum set card field contents by number
SetFieldByID set card field contents by ID

XCMDs and XFCNs return a result string by placing a handle to a null-
terminated string in the returnValue field of the XCmdBlock. ProIcon
disposes of the handle after copying the result string. The string is returned
as the value of the callout function.

A complete description of XCMD and XFCN programming is beyond the
scope of this manual. The interested reader should consult books specifically
written on the topic. See the references in Appendix F.

Note that XCMDs and XFCNs pass data as handles to strings. These
strings must be converted from ProIcon’s internal format to null-termi-
nated strings in the application heap, making the interface somewhat
inefficient. However, the interface does provide access to a wide range of
public-domain and commercial XCMDs and XFCNs.

XCMDs and XFCNs that rely upon the nine HyperCard-specific callbacks
should not be used with ProIcon. Doing so can lead to unpredictable
results, and may lock up your computer if the function does not examine
the callback result code for errors. Fortunately, there is an ever-growing
number of XCMDs and XFCNs that anticipate that they may not be called
from HyperCard.

XCMD and XFCN Globals

Note that the callbacks that get and set global values refer to globals
maintained by ProIcon’s XCMD/XFCN interface. They do not refer to
global variables in your Icon program. They provide a method by which
XCMDs and XFCNs can save persistent data between function calls. New
globals are created with the SetGlobal callback. A GetGlobal reference to
an undefined global returns a handle to an empty string. All globals are
deleted when an Icon program terminates — there is no persistence be-
tween program runs. Global names are not case sensitive.

D-8 External Functions

Some XCMDs and XFCNs may require the user to set up certain global
values prior to calling the external function. This can be done from your
Icon program using the GetGlobal and SetGlobal procedures provided in
Globals.icn, located in folder External Functions:XCMDs/XFCNs.

link Globals
 …

 SetGlobal(s1, s2)

where s1 is a string containing the global name, and s2 is a string contain-
ing the global value. Each string must be less than 256 characters in length.

XCMD/XFCN globals can be copied into an Icon program with:

gvalue := GetGlobal(s)

where s is the global name.

Interfacing Other Code Resources
Code resources other than XCMDs and XFCNs can be used as external

functions. Access is through the callout() function, but the string conver-
sion of arguments required by the XCMD/XFCN interface is not done.
Arguments are delivered in Icon’s internal formats, and the function result
is constructed in Icon’s string or block region.

ProIcon recognizes this style of function call when the resource type
string is not "XCMD" or "XFCN". The resource is identified with a resource
name string. The methods of locating and managing resources described
earlier in this appendix remain the same.

Because there is no data conversion, this form of external function is
more efficient than the XCMD and XFCN forms. The drawback is that you
must have some knowledge of ProIcon’s internal organization to write
functions that behave properly.

ProIcon’s internal structures mirror the structures described in The
Implementation of the Icon Programming Language (see Appendix F). A full
discussion of these structures is beyond the scope of this manual. However,
some basic concepts and simple data types such as strings, integers, and real
numbers are described here. Together with the sample programs provided
in the folder External Functions:Samples, you should be able to construct
useful functions.

Implementation Fundamentals

Arguments are passed to a function as an array of descriptors in memory.
Each descriptor consists of two long (4-byte) words: a type word and a

External Functions D-9

value word. The type word identifies the type of data represented and the
value word contains either a pointer to the data, or the data itself. Flag bits
in the type word provide additional information.

In the following discussion, you may wish to have a copy of the file
ProIcon.h available for reference (found in the ExternalFunctions:Samples
folder).

Argument descriptors are in one of four forms, depending upon the data
represented:

The null value: The type word contains the T_Null type code, and the
F_Nqual flag bit. The value word is zero.

Strings: String descriptors are called qualifiers. The type word contains
the length of the string. The value word points to the first character of the
string. There are no flag bits set in the type word, and the string is not null
terminated. The absence of the F-Nqual flag bit distinguishes this qualifier
from all other descriptors and indicates that the type field contains a length,
not a type code.

Integers: The type word contains the value D_Integer, which is a combi-
nation of the T_Integer type code and the F_Nqual flag bit. The value
word contains the integer.

Reals and all other data types: The type word contains the type code, and
the F_Ptr and F_Nqual flag bits. Other flag bits may be present as well. The
value word points to a block of memory that contains the actual data. The
size and layout of this block depends on the data type, although all blocks
begin with a title word containing the type code.

The file ProIcon.h contains structure declarations for each block type. For
example, the b_real structure shows that a real value is stored in a block
consisting of the title word followed by the real number.

Function results are returned by creating a descriptor for the result value.
For results other than integers and the null value, the descriptor’s value
word contains a pointer to a string or data block. The string or data block
must be allocated in ProIcon’s string or block region respectively. A
callback mechanism is provided to accomplish this.

Function Skeleton

External functions are called with a Pascal-style subroutine jump to the
first location of the external function. “Pascal-style” means that arguments
are pushed left-to-right and the external function removes its calling
arguments from the stack. Begin your external function with this sequence
(shown here in LightspeedC):

D-10 External Functions

#include "ProIcon.h"

pascal dptr main(dargv, argc, ip, callback)
struct descrip dargv[];
short int argc;
short int ∗ip;
pointer (∗callback)();
{

This skeleton specifies that main() is a Pascal-style function returning a
pointer to a descriptor (dptr). It takes four arguments:

dargv is a pointer to an array of descriptors containing the Icon argu-
ments to the callout function. Consider this call:

callout("CODE", "myResourceName”, 123, "test string", 54.9)

The descriptors in the dargv array contain the following:

dargv[0] descriptor used to return result
dargv[1] the integer 123
dargv[2] the string "test string"
dargv[3] the real number 54.9.

Notice that the first “true” user argument always is dargv[1].

argc is a count of the number of user arguments in the dargv array. In
this example, its value is 3.

Arg0, Arg1, …, Arg6 are definitions in ProIcon.h for dargv[0], dargv[1],
…, dargv[6], respectively.

ip is a pointer to a short integer that is used to signal error conditions. Its
usage is described later in this appendix.

Finally, callback is the entry point of a C function within ProIcon that
can be called to provide utility functions. These callback routines are readily
accessed through the definitions provided in ProIcon.h.

Allocating Memory

Returning a result other than an integer or null value requires the alloca-
tion of memory. This is a two-step process:

1. A request for memory is made specifying the number of bytes
needed. No memory is allocated at this time, but a garbage col-
lection may occur to assure that the requested amount of space is
available when it is needed. All references to Icon data must be in
argument descriptors at this time. Specifically, pointers to Icon
string or block data may not be in C variables, since the data may

External Functions D-11

move but C variables are not changed. If a garbage collection occurs,
pointers in the input argument list are adjusted accordingly.

2. When storage is actually needed, an allocation request is made to
actually allocate memory in the string or block region.

If an external function performs several allocations to build a composite
result (such as a list), it must perform a request for all memory needed prior
to doing any of the actual allocations.

For examples of functions allocating memory for specific data types (csets,
external blocks, large integers, reals, and strings), examine the programs in
the folder External Functions:Samples. Note that in the case of real values,
the memory request and allocation steps have been combined within one
function, makereal().

External Data Blocks

An external function may allocate external data blocks. These are
memory blocks of arbitrary size whose contents are entirely up to the
external function. ProIcon never looks at the contents of the external block.
You should not store a relocatable pointer (a pointer to a block or string
within ProIcon’s block or string region) within an external block, because it
will not be adjusted by ProIcon during a garbage collection.

External blocks can be assigned to an Icon variable or stored in an
element of an Icon structure. They may be duplicated with the Icon copy()
function. Since external blocks reside in the block region, they may be
moved as the result of a garbage collection. Like other Icon objects, their
space is released when it is no longer referenced.

Returning Results

The external function returns a pointer to a descriptor containing the
result value. The descriptor present at Arg0 (dargv[0]) should be used for
this purpose. After building a result descriptor in Arg0, the function should
return by executing

return &Arg0;

The Return macro provided in ProIcon.h performs this return.

Signaling Errors

External functions are provided with a pointer to a short integer (argu-
ment ip) that can be used to signal an error condition. The integer is
initialized to –1 prior to each call, signaling “no error”. Setting it to a
positive value triggers ProIcon’s runtime error mechanism. A list of sup-
ported error numbers is contained in the ProIcon.h file.

D-12 External Functions

In addition to setting an error number, the function still has the option of
returning either a pointer to a descriptor or a null pointer. If a descriptor is
returned, the value it contains is displayed after the error message. This is
most useful for providing diagnostics about improper input arguments.

ProIcon.h contains a macro named RunErr() that encapsulates the
process. For example,

RunErr(Err101, &Arg1);

displays error number 101 (“integer expected”) and displays the first true
argument to the function.

Definitions, Macros, and Typedefs

Numerous definitions, macros, and typedefs are provided in ProIcon.h to
allow you to write functions more conveniently. A list of the more impor-
tant ones is provided here; consult the ProIcon.h file for a complete list and
further information:

Typedefs

word the basic ProIcon memory unit; a 32-bit integer
uword unsigned word
dptr pointer to a descriptor
pointer generic pointer

Definitions

Arg0 descriptor for result of function
Arg1 descriptor of first argument (dargv[1])
… …
Arg6 descriptor of sixth argument (dargv[6])
F_Ptr flag bit in descriptor type word if the value word is

a pointer
MaxCvtLen maximum string length in conversions
T_n type code for data type n
D_n type code plus flag bits for data type n
Errnnn definition for error number nnn
CvtFail attempted conversion failed
Cvt attempted conversion succeeded
NoCvt attempted conversion wasn’t necessary (already in

correct form)
Emptydp pointer to descriptor for the empty string
Nulldp pointer to descriptor for the null value
Onedp pointer to descriptor containing integer one

External Functions D-13

Zerodp pointer to descriptor containing integer zero
Error error signal
Failure failure signal
Return return from function with value in Arg0
Success success signal

Macros

BlkLoc(d) block pointer in descriptor d
BlkType(x) type of block pointed at by x
ChkNull(d) test for null-valued descriptor
EqlDesc(d1,d2) test for two descriptors being equivalent
Fail return from function signaling failure
IntVal(d) integer in the value field of a descriptor
MakeInt(i,dp) build an integer in descriptor pointed to by dp
Pointer(d) test if descriptor d contains a pointer
RealVal(d) real number in block specified by descriptor d
RunErr(n,dp) return error number n with value in descriptor

pointed to by dp
Qual(d) test if descriptor d is a qualifier (refers to a string)
StrLen(q) length of string specified by qualifier q
StrLoc(q) location of first character of string
Type(d) type code of descriptor

Callback Functions and Values

The callback argument provided to your function offers a way to obtain
values and services from ProIcon. A complete list of values and services
provided is found in ProIcon.h.

The vcallback function provides the version number of the callback
interface, which currently is 1. This number is incremented in each ProIcon
release that adds new callbacks. Before using these new callbacks, an
external function should test that it is executing with a version of ProIcon
that provides these new functions.

The following list shows the more common callbacks:

vcallback return a word value providing the version number
of the interface

alccset() allocate a cset block
alcextrnl(n) allocate an external data block of n words
alcreal(val) allocate real block and store val in it
alcstr(s,slen) allocate string space of size slen characters, and

store string s in it

D-14 External Functions

blkreq(n) request n bytes will be needed in the block
region. Returns Success or Error.

cvint(dp) convert descriptor pointed to by dp to an integer.
Returns T_Integer or CvtFail.

cvreal(dp) convert descriptor pointed to by dp to a real
number. Returns T_Real or CvtFail.

cvstr(dp, sbuf) convert data in descriptor pointed to by dp into a
string, using sbuf (of size MaxCvtLen) as a
buffer if necessary. Returns CvtFail if the
conversion fails, Cvt if dp was not a string but
was converted to one and the result is in sbuf
(in which case it is null-terminated), and NoCvt
if dp was a string.

makereal(r, dp) allocate real block to hold real value r. Descriptor
at dp will point to block.

qtos(dp, sbuf) convert a string pointed to by dp to a C-style
string. Put the C-style string in sbuf if it will fit,
otherwise put it in the string region. sbuf must
be MaxCvtLen bytes long. Returns Success or
Error if inadequate memory is available.

strreq(n) request n bytes are needed in the
string region. Returns Success or Error.

Conclusion
External functions provide a mechanism to execute programs written in

other programming languages. Most users should consider the XCMD and
XFCN form of external functions because it does not require knowledge of
ProIcon’s internal organization.

For persons with more demanding requirements, the raw descriptor
interface offered provides more power at the cost of greater complexity.
Incorrectly formed data structures are likely to result in system crashes at
times far removed from the original function call. A useful debugging
technique in this regard is to place collect(0,0) function calls on either side
of your external function. The garbage collection may discover problems
caused by your function before they are allowed to propagate further
through the system.

The external function interface is an evolving one. Look for a README
file in the External Functions folder for new features and information that
became available after this manual was published.

E
Memory Monitoring

Memory Monitoring E-1

Memory Monitoring
Icon has a large repertoire of data types, including

strings, csets, lists, sets, tables, and records. These data
types and operations on them provide much of the
richness of the language and make it possible to repre-
sent and process complex data with relative ease.

Storage Management
Behind the scenes, as your program runs, Icon manages

data, allocating space as it is needed, and collecting
unused data that is no longer in use (garbage) when space
runs out.

Such complex storage management operations are, of
course, far removed from the simple computational
operations of a programming language like Fortran, in
which most operations closely mimic the instructions of
the computer on which it runs. In fact, the vast difference
between the language operations of Icon and the machine
instructions that ultimately carry them out is what makes
Icon so useful for complicated problems.

Although you generally aren’t aware of storage manage-
ment when you write or run an Icon program, storage
management often is important, since memory is a scarce
commodity and storage management can account for a
significant amount of the time spent executing some
programs. And what goes on behind the scenes is interest-
ing, even fascinating.

Icon allocates space for objects that are created during
program execution in two regions: a string region and a

E-2 Memory Monitoring

block region. The string region consists of characters,
while the block region contains structures and related
objects. Allocation in the string region is in terms of
bytes, while allocation in the block region is in terms of
4-byte “words”.

Allocation proceeds in the same manner in both main
regions. The regions initially are empty and bounded by
pointers. As space is needed, it is provided starting at the

beginning of the region. A “free” pointer is incremented
to mark the boundary between allocated space and free space:

If there is not enough available free space to satisfy an
allocation request, a garbage collection is performed to
reclaim space occupied by objects that are no longer
needed.

The garbage collection process is fairly complicated,
since it is necessary to locate all objects that may be

Memory Monitoring E-3

needed for subsequent program execution. Objects that
need to be saved typically are scattered throughout the
string and block regions:

Once the objects to be saved are identified (“marked”),
they are relocated toward the beginning of their region,
compressing the allocated space and making more free
space available so that allocation can proceed:

E-4 Memory Monitoring

Allocation History Files
The implementation of ProIcon is instrumented so that

the details of storage management can be recorded. When
this instrumentation is enabled, it writes an allocation
history file that contains a record of every data object that
is allocated during program execution, as well as the
details of garbage collection.

Although an allocation history file contains all the
details of storage management during the execution of a
program, it is virtually incomprehensible — simply
because it is so detailed.

ProIcon provides a tool, called MemMon, that ana-
lyzes allocation history files and presents Icon’s allo-
cated data regions in color (or in black-and white on a
gray-scale monitor). A monitor with at least a four-bit
color or gray-scale video card is required, and an eight-
bit card is preferred. MemMon will not run on a one-bit
black and white system.

Each different type of data is shown in a different
color for easy recognition. MemMon animates the
allocation process, showing each object as it is allo-
cated, how much space it occupies, and where it is in
memory. When a garbage collection occurs, the process
is shown in detail, with the objects that are collected and
those that are saved clearly identified. The display can be
stopped at any time and PICT snapshots can be saved for
future use.

Such displays can show the relative cost of using
various types of data, help locate unnecessary storage
allocation, and in general give you a “feeling” for what
your program is doing.

In order to use MemMon to display the details of
storage management, you first need to create an alloca-
tion history file. To do this, select Program Options …
from the Options menu before running your program. In
the resulting menu, check Memory Monitoring as described
in Chapter 4. When you run your program, an Open
dialog will appear to let you specify the name of a file
to receive the allocation history information. Once
you’ve done that, your program executes as it normally
would and the allocation history file is written.

Memory Monitoring E-5

Enabling memory monitoring does not affect the
computations performed by your program, but it does
slow it down somewhat and allocation history files can be
quite large for programs that allocate a lot of data and
that garbage collect frequently. Consequently, memory
monitoring should only be enabled when you want an
allocation history file.

MemMon is separate from ProIcon; you must leave the
ProIcon application to view an allocation history file.

Memory Displays
Before explaining how to run MemMon, it will be

helpful to know what the displays it produces look like
and what they mean. Basically, they are refined versions of
the schematic representations of memory shown on the
preceding pages. Here’s an example:

At the top of the display is a two-line legend. The first
line shows the program state at the left, the name of the
allocation history file in the center, and storage infor-
mation at the right. The storage information gives the

E-6 Memory Monitoring

region sizes first with separating plus signs. The four
values in parentheses are the number of garbage collec-
tions triggered by allocation in each of these regions,
followed by the number of garbage collections caused by
explicit calls of the function collect().

The second line of the legend lists the names of all the
allocated types. Some are abbreviated because of the
limited space available. The words on the display’s
second legend line have the following meanings:

free unused memory
coexpr co-expression block
ext external block
string string
subs substring trapped variable
file file block
refresh co-expression refresh block
int large integer
real real number
record record
set set header
selem set element
list list header
lelem list element
table table header
telem table element
tvtbl table element trapped variable
hash hash header block
cset cset

In color displays, each type has a different color. Here
there are just different shades of gray and patterns.
Although the types can hardly be distinguished in black-
and-white prints, they are easily identified in color
displays. You’ll have to use your imagination in the
description and displays that follow.

Icon’s allocated storage regions follow the legend. The
static region, which usually isn’t very interesting, is not
shown. The string region is followed by the block region.
These regions are shown as being contiguous. They are
contiguous in some implementations but not in others.
Consequently, you shouldn’t interpret the contiguity of
these two regions as being significant.

Memory Monitoring E-7

The strings and blocks that need to be saved are shown
in black. Notice that most of the strings that need to be
saved are at the beginning of the string region. The
unmarked strings represent transient allocation and
storage throughput in the string region. Similarly, most
of the blocks in the block region are near the beginning
(the program that produced this allocation history file
maintains a large table). The rest of the blocks, except
for a couple near the end that were recently allocated and

The allocated part of the string region shows strings in
white with gray bars marking their ends. The unallocated
portion of the string region is darker gray.

The block region in the display above is fully allocated
and a garbage collection is about to take place. This is
one of the significant times in storage management at
which snapshots are taken. As described previously, the
first phase of garbage collection “marks” all space that
needs to be saved. The completion of marking is another
significant point in storage management and is shown
below:

E-8 Memory Monitoring

Finally, the display below shows memory after the saved
space has been compacted to the beginnings of the
regions. The space in the string region is shown as a
single string. Since overlapping substrings may be created
after strings are allocated, the identification of the ends
of strings after garbage collection is somewhat problem-
atical and is not shown.

Notice that in the legend, a garbage collection is now
attributed to the need for space in the block region. The
string region was collected too, but not “charged” for it.
Observe that garbage collection has freed a considerable
amount of space for subsequent allocation.

still in use, represent storage throughput in the block
region.

The display below shows the same storage configuration
with the coloring reversed — the space to be collected is
now shown in black. (Notice the optical illusion that
makes some blocks appear to be crooked.)

Memory Monitoring E-9

Running MemMon
By now, you should be ready to run MemMon so that you

can see displays like these in real life. These displays
will be much more interesting than the pictures here,
especially if you have a color monitor.

There are two ways to start MemMon — opening it as
an application or opening an allocation history file,
which launches MemMon automatically. Start by opening
the concord.mem file in the MemMon Samples folder
from the ProIcon distribution disk.

You’ll see a display that is similar to the ones given
here, but instead of just a snapshot, you’ll see each object
as it is allocated. The display pauses when a garbage
collection is needed. This gives you a chance to look at
the whole display in detail.

E-10 Memory Monitoring

Look at the individual objects that have been allocated
and see if you can identify their types from the legend.
Click on an object and the corresponding legend box
blinks twice. This feature is especially useful if you are
using a black-and-white monitor.

When you’re ready to watch the garbage collection,
press the space bar. The block region is marked first,
followed by the string region. You’ll see each object turn
black as it’s marked — indicating that it is to be saved.
The display pauses again after all the objects to be saved
have been marked. The unmarked objects are “garbage”
and they will be collected. When you press the space bar
again, you’ll see the same display, but with marked
objects in their original colors and the unmarked objects
in black. Press the space bar once again and you’ll see the
results of compacting the saved objects toward the
beginning of the storage regions. Press the space bar one
more time and you’ll see allocation begin again as the
program continues after the garbage collection.

That’s the basic idea in running MemMon. But there are
several more things you can do.

Snapshots

Anytime there is a MemMon display on the screen, even
when the display is running, you can take a snapshot of the
display. The result is a color PICT file that you can view
separately, import into a document, and so forth.

The keyboard sequence -T takes a snapshot. When you
take the first snapshot, a dialog box is presented to
allow you to specify the location and name of the file to
hold the snapshot. The normal file-name suffix is .001
for the first snapshot. You are not prompted for names of
subsequent snapshots; the suffix on your original choice
is incremented automatically to produce .002, .003, and
so forth.

You can also arrange to have snapshots taken automati-
cally at specified points in a display. See the Options
specifications in the description of the Display menu
that follows.

Menus

Memory Monitoring E-11

The File menu lets you close the current allocation
history file, open another one, and quit. Some of the
options in this menu are grayed out and unavailable. For
example, you can’t print from MemMon. There also are
options related to palettes that are reserved for future
use:

All the items in the Edit menu are grayed out; you can’t
do things like cutting and pasting in MemMon.

The Display menu lets you control the display and set
options:

E-12 Memory Monitoring

The top five menu items refer to running the display. If
you launch MemMon by opening an allocation history
file, the display starts running automatically. If you
launch the MemMon application directly and then open
an allocation history file, you’ll need to select Run (or
use the keyboard shortcut -R) to start the display. You
also can use Run to start the display over after it’s
finished.

You can stop the display at any time by selecting Stop
from the Display menu. It’s faster and usually more
convenient to use the keyboard shortcut -. .

If you want to stop the display temporarily, select
Pause or use -/ . To go on, select Continue or use -– .

If you want to see each step in the allocation or
marking process, select Step or use - (the key in
combination with the space bar).

The Options menu lets you control the display and
snapshots. Important note: options must be specified
before a display starts to run; changing them in mid-

Memory Monitoring E-13

stream has no effect on the current display.

 The default values are as shown above. You can change
any of them. The Regions box specifies which allocated
data regions are displayed. Normally both the string and
block regions are displayed, but you can chose to have
only one displayed by unchecking the box for the other. If
only one region is selected, the height of the display
lines is scaled up to fit the window.

The Pause/Snap box controls when the display pauses
and when automatic screen snapshots are taken. The first
four selections refer to the states of garbage collection.
The fifth selection refers to the Icon function
mmpause(), which can be used to cause the display to
pause at times other than the normal ones. Click on
Never to disable all pauses and snapshots.

The Granularity box controls the resolution of the
display with respect to memory space. Normally four

E-14 Memory Monitoring

bytes of memory are shown as one pixel horizontally on
the display. You can change this value to get a higher or
lower resolution. The height of the display lines is scaled
to fit the display window.

The Garbage Collect box lets you specify when the
display begins with respect to the number of garbage
collections. The default is 0, so the display normally
starts at the beginning of program execution. If you
specify a larger number, the display does not start until
after that many garbage collections. If Always Show is
checked, the marking phase of garbage collection is
always displayed. If this box is not checked, the marking
phase is bypassed if none of the Pause/Snap boxes
related to marking is checked.

The Status and Title box determines whether or not the
two legend lines are shown. They can be omitted from
displays by unchecking that box. The title, which appears
in the middle of the first legend line, normally is the
name of the allocation history file to be displayed. The
title can be changed by editing the text box.

Selecting Take Snapshot is equivalent to -T and
produces a PICT snapshot of the current display.

Checking Annotate Snaps causes a text box to be

displayed before each snapshot is taken, allowing you to
provide about 100 characters of identifying information:

After you have entered the annotation, click Annotate and
the annotated snapshot will be taken.

If you want to annotate some pictures in a run but not
others, don’t change the status of Annotate Snaps from
picture to picture. Instead, leave it checked and click on
Skip Annotation when the annotation box is presented for
a picture you do not wish to annotate.

Memory Monitoring E-15

Play Continuously causes the display to start over after
the end of the allocation history file is reached.

Pose changes the screen background to black so that the
display can be seen without the usual underlying desktop
in the background.

Emphasize Strings changes the method by which strings
in the allocated string region are displayed to make them
more obvious.

F
Further Reading

Further Reading F-1

Further Reading

Bond, Gary. XCMD’s for HyperCard. Portland, Oregon:
MIS: Press, 1988. ISBN 0-943518-85-7.

Corré, Alan D. Icon Programming for Humanists. Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1990. ISBN
0-13-450180-2.

Griswold, Madge T. and Griswold, Ralph E., eds. The Icon
Analyst. Icon Project, Department of Computer
Science, Gould-Simpson Building, The University of
Arizona, Tucson, Arizona 85721.

Griswold, Madge T. and Griswold, Ralph E., eds. The Icon
Newsletter. Icon Project, Department of Computer
Science, Gould-Simpson Building, The University of
Arizona, Tucson, Arizona 85721.

Griswold, Ralph E. and Griswold, Madge T. The Icon
Programming Language. Second edition. Englewood
Cliffs, New Jersey: Prentice-Hall, 1990. ISBN 0-13-
447889-4.

Griswold, Ralph E. and Griswold, Madge T. The Implemen-
tation of the Icon Programming Language. Princeton,
New Jersey: Princeton University Press, 1986. ISBN
0-691-08431-9.

Griswold, R. E.; Poage, J. F.; and Polonsky, I. P. The
SNOBOL4 Programming Language, second edition.
Englewood Cliffs, New Jersey: Prentice-Hall 1971.
ISBN 13-815373-6.

F-2 Further Reading

Hockey, Susan. Snobol Programming for the Humanities.
Oxford, England: Clarendon Press. 1985. ISBN 0-19-
824675-7.

Macintosh. HyperCard Script Language Guide; The
HyperTalk language. Reading, Massachusetts:
Addison-Wesley Publishing Company, Inc. 1988.
ISBN-0-201-17632-7.

Index

Index I-1

&storage, 9-12, 11-173
&subject, 9-10, 11-174
&time, 11-174
&trace, 4-5, 11-174
&ucase, 8-3, 11-174
&version, 11-175
! (element generation), 9-4, 11-117
! (list invocation) , 9-6, 11-163a
% (remainder), 11-126
%:= (augmented %), 11-151
& (conjunction), 11-135
&:= (augmented &), 11-151
∗ (size), 9-4, 11-115
∗ (product), 11-124
∗:= (augmented ∗), 11-151
∗∗ (intersection), 9-4, 11-130
∗∗:= (augmented ∗∗), 11-151
+ (positive), 11-109
+ (sum), 11-122
++ (union), 8-3, 9-4, 11-128
++:= (augmented ++), 11-151
+:= (augmented +), 11-151
– (negative), 11-110
– (numeric difference), 11-123
–:= (augmented –), 11-151
– – (cset or set difference), 8-3, 9-4,

11-129
– –:= (augmented – –), 11-151
. (dereferencing), 11-120
. (field reference), 11-133
/ (null test), 11-118
/ (quotient), 11-125
/:= (augmented /), 11-151
:= (assignment), 11-150
:=: (exchange), 11-152
< (numeric less than), 11-139
<– (reversible assignment), 11-153
<–> (reversible exchange), 11-154
<:= (augmented <), 11-151
<< (string less than), 11-145
<<:= (augmented <<), 11-151
<<= (string less than or equal), 11-146
<<=:= (augmented <<=), 11-151
<= (numeric less than or equal), 11-140
<=:= (augmented <=), 11-151

Index
 menu, 5-1 - 5-8, 7-1

&ascii, 11-165
&clock, 11-165
&collections, 9-12, 11-165
&compare, 10-1, 11-165, B-1, B-3
&cset, 11-166
¤t, 9-10, 11-166
&date, 11-166
&dateline, 11-166
&digits, 9-2, 11-167
&dump, 4-5, 10-4, 11-167
&error, 9-12 - 9-13, 11-167
&errornumber, 9-13, 11-167
&errortext, 9-13, 11-168
&errorvalue, 9-13, 11-168
&errout, 4-9, 11-168
&fail, 11-168
&features, 9-14, 11-169
&file, 9-13, 11-169
&ftrace, 4-5, 10-2, 11-169
&host, 11-170
&input, 4-9, 11-170
&lcase, 8-3, 11-170
&letters, 9-2, 11-170
&level, 11-170
&line, 9-13, 11-171
&null, 11-171
&main, 9-9, 11-171
&output, 4-9, 11-171
&pos, 9-10, 11-172
&random, 11-172
®ions, 9-12, 11-172
&screen, 10-6, 11-173
&source, 11-173

I-2 Index

(, , ...) (argument list), 11-162
{ , , ... } (argument list), 11-163

A
About ProIcon ... , 7-1
abs(N), 11-4
acos(r), 9-2, 11-5
Allocation history files, E3 - E4
any(c,s,i1,i2), 11-6
args(p), 9-9, 11-7
Argument evaluation, 11-3
Arrow keys, 6-6
ASCII character set, 8-2, B-1, B-2
asin(r), 9-2, 11-8
Assignment, 8-3
Associative lookup, 8-10
Associativity, C -1 - C-3
atan(r1,r2), 9-2, 11-8a
Auto Indent, 6-7, 7-4
Auto indentation, 6-7, 7-4, 7-8

B
bal(c1,c2,c3,s,i1,i2), 11-9
Balance, 6-7, 7-3
Balancing text, 6-7, 7-3
Binary operations, See Operations, infix
Bit operations, 9-1 - 9-2
Block region, 4-15, 9-9 - 9-10
break, 9-10, 11-177
Bugs, 9-15

C
callout(s1,s2,x1,x2, …, xn), 10-8,

11-10
case-of, 11-178
case control expressions, 11-178
center(s1,i,s2), 11-10a
changef(s), 10-7, 11-11
char(i), 9-2, 11-12
Character codes, A -1 - A-9
Character sets, 8-3 - 8-4, 9-2
Clear, 6-3 - 6-4, 7-2
Clipboard, 6-3 - 6-4, 10-4 - 10-5

= (match and tab), 11-112
= (numeric equal), 11-138
=:= (augmented =), 11-151
== (string equal), 11-144
==:= (augmented ==), 11-151
=== (object equal), 11-148
===:= (augmented ===), 11-151
> (numeric greater than), 11-136
>:= (augmented >), 11-151
>= (numeric greater than or equal),

11-137
>=:= (augmented >=), 11-151
>> (string greater than), 11-142
>>:= (augmented >>), 11-151
>>= (string greater than or equal), 11-143
>>=:= (augmented >>=), 11-151
? (random value), 9-4, 11-116
? (scanning), 9-10, 11-193
?:= (augmented ?), 11-151
@ (activation), 11-113
@ (transmission), 11-134
@:= (augmented @), 11-151
\ (limitation), 11-192
\ (non-null test), 11-119
^ (exponentiation), 11-127
^ (refreshing), 11-114
^:= (augmented ^), 11-151
| (alternation), 11-190
| (repeated alternation), 11-191
|| (string concatenation), 8-2, 11-131
||:= (augmented ||), 11-151
||| (list concatenation), 11-132
|||:= (augmented |||), 11-151
~ (complement), 11-111
~= (numeric not equal), 11-141
~=:= (augmented ~=), 11-151
~== (string not equal), 11-147
~==:= (augmented ~==), 11-151
~=== (object not equal), 11-149
~===:= (augmented ~===), 11-151
[] (subscripting), 11-158
[:] (subscripting or sectioning), 11-159
[+:] (subscripting or sectioning), 11-160
[–:] (subscripting or sectioning), 11-161
[, , ...] (list creation), 11-157

Index I-3

Csets, 8-3 - 8-4, 9-2
currentf(), 10-7, 11-18
Cursor, 3-4, 6-2
Cut, 6-3, 7-2

D
Data structures, 2-8
Data types, 9-5 - 9-6, 11-1 - 11-2
Data types, conversion of, 11-2
Data types, notation, 9-5 - 9-6, 11-1
Default values, 11-2
delay(i), 10-7, 11-19
delete(X,x), 8-10, 9-3, 9-4 - 9-5, 11-20
detab(s1,i1,i2,…,in), 9-3, 11-21
Dialog boxes, 10-8
display(i,f), 9-9, 11-22
dtor(r), 9-2, 11-23
Dump, 4-5, 10-2

E
Edit menu, 6-3 - 6-6, 7-2 - 7-3
Editing, 6-2 - 6-4, 7-2 - 7-3
Editor, 6-1 - 6-11
Empty sets, 8-10
End-of-file, 4-11, 7-3
entab(s,i1,i2,…,in), 9-3, 11-24
Enter Selection, 6-9, 7-3
Entering text, 6-2 - 6-3
Entering text selection, 6-9, 7-3
Error conversion, 9-12 - 9-14
Error messages, 9-12, 9-14, C-5 - C-6
Error Output ... , 4-9, 7-4
Error termination, 9-12 - 9-14
errorclear(), 9-13, 11-25
Errors, 4-13, 9-12 - 9-14, 11-2

compilation, 3-5
Evaluation of arguments, 11-3
Evaluation stack, 4-15
every-do, 9-10, 11-180
Executable files, 4-1, 4-3, 4-16
Execution Memory, 4-13 - 4-16, 7-4 - 7-5
exit(i), 11-26
exp(r), 9-2, 11-27

Close, 6-5, 6-12, 7-1
Close All, 6-5, 7-5
close(f), 11-13
Closing files, 6-4, 6-5, 7-1
Closing windows, 6-5, 6-12, 7-5
Co-expressions, 4-15 - 4-16, 9-9, 9-10, 9-15
collect(i1,i2), 11-14
Compilation, 4-1, 4-2, 7-5
Compilation errors, 3-5 - 3-6
Compile File ... , 7-5
Compile Window, 3-4, 7-5
Compiler defaults, 4-5
Compiler Memory, 4-11 - 4-13, 7-4
Concatenation, 8-2
Conditional expressions, 8-4 - 8-5
Configuration requirements, 1-2
Continue, 4-16, 7-5
Continuing program execution, 7-5
Control structures, 11-176

? (scanning), 9-10, 11-193
?:= (augmented ?), 11-151
\ (limitation), 11-192
| (alternation), 11-190
| (repeated alternation), 11-191
break, 9-10, 11-177
case-of, 11-178
create, 9-15, 11-179
every-do, 9-10, 11-180
fail, 9-10, 11-181
if-then-else, 11-182
next, 9-10, 11-183
not, 11-184
repeat, 11-185
return, 8-11, 9-10, 11-186
suspend-do, 8-11, 9-10, 11-187
until-do, 11-188
while-do, 11-189

Conversion, data type
automatic, 11-2

Copy, 6-4, 7-2
copy(x), 11-15
cos(r), 9-2, 11-16
create, 9-15, 11-179
Creating files, 6-1
cset(x), 11-17

I-4 Index

External functions , 1-3, 10-8, D-1 - D-14
stand-alone , 10-8, D-1, D-8 - D-14
XCMDs , 1-3, 1-8, D-1, D-5 - D-8,

D-14
XFCNs , 1-3, 1-8, D-1, D-5 - D-8,

D-14

F
fail, 9-10, 11-181
Failure, 2-5, 8-4, 9-12
File menu, 3-2 - 3-3, 3-6, 6-1 - 6-2, 6-4,

6-7 - 6-8, 7-1 - 7-2, 7-8
File signatures, 6-2, 6-5, 7-8, 10-9
file(s), 10-7, 11-28
Find ... , 6-8 - 6-9, 7-3
Find Again, 6-10, 7-3
Find in Next File, 6-10, 7-3
Finder, 4-17
Finding text, 6-8 - 6-9, 7-3
find(s1,s2,i1,i2), 8-5, 8-8, 11-29
Folders, 4-2, 4-7 - 4-9, 10-9
Font, 6-7, 7-4
Font Size, 6-7, 7-4
Fonts, 6-6 - 6-7, 7-4, 10-8
Font size, 6-7, 7-4, 10-8
fset(s1,s2,s3), 10-7, 11-30
ftype(s), 10-7, 11-31
Full path names, 4-7
Full Titles, 6-13, 7-5
Function keys, 6-4
Function tracing, 4-4 - 4-5, 10-1 - 10-2
Functions, 11-3

abs(N), 11-4
acos(r), 9-2, 11-5
any(c,s,i1,i2), 11-6
args(p), 9-9, 11-7
asin(r), 9-2, 11-8
atan(r1,r2), 9-2, 11-8a
bal(c1,c2,c3,s,i1,i2), 11-9
callout(s1,s2,x1, x2, …, xn), 10-8,

11-10
center(s1,i,s2), 11-10a
changef(s), 10-7, 11-11
char(i), 9-2, 11-12
close(f), 11-13

collect(i1,i2), 11-14
copy(x), 11-15
cos(r), 9-2, 11-16
cset(x), 11-17
currentf(), 10-7, 11-18
delay(i), 10-7, 11-19
delete(X,x), 8-10, 9-3, 9-4 - 9-5, 11-20
detab(s1,i1,i2,…,in), 9-3, 11-21
display(i,f), 9-9, 11-22
dtor(r), 9-2, 11-23
entab(s1,i1,i2,…,in), 9-3, 11-24
errorclear(i), 9-13, 11-25
exit(i), 11-26
exp(r), 9-2, 11-27
file(s), 10-7, 11-28
find(s1,s2,i1,i2), 8-5, 8-8, 11-29
fset(s1,s2,s3), 10-7, 11-30
ftype(s), 10-7, 11-31
get(L), 11-32
getch(), 9-7, 11-33
getche(), 9-7, 11-34
getfile(s1,s2,s3), 10-7, 11-35
gettext(s1,s2,s3,s4), 10-7, 11-36
iand(i1,i2), 9-1, 11-37
icom(i), 9-1, 11-38
image(x), 9-9, 11-39
insert(X,x1,x2), 8-10, 9-3 - 9-5, 11-40
integer(x), 11-41
ior(i1,i2), 9-1, 11-42
ishift(i1,i2), 9-1 - 9-2, 11-43
ixor(i1,i2), 9-1, 11-44
kbhit(), 9-7, 11-45
key(T), 9-4, 11-46
launch(s1,i,s2,i), 4-17, 10-8, 11-47
left(s1,i,s2), 11-48
list(i,x), 11-49
log(r1,r2), 9-2, 11-50
many(c,s,i1,i2), 8-4, 11-51
map(s1,s2,s3), 11-52
match(s1,s2,i1,i2), 11-53
member(X,x), 8-10, 9-3, 9-4, 11-54
message(s1,s2,s3), 10-7, 11-55
mmout(s), 9-15, 11-55a
mmpause(s), 9-15, 11-55b
mmshow(x,s), 9-15, 11-55c

Index I-5

Functions (cont.):
move(i), 8-7 - 8-8, 11-55d
name(x), 9-9, 11-56
numeric(x), 11-57
open(s1,s2), 11-58
ord(s), 9-2, 11-59
pop(L), 8-9, 11-60
pos(i), 11-61
proc(x,i), 9-8, 11-62
pull(L), 11-63
push(L,x), 8-9, 11-64
put(L,x), 11-65
putfile(s1,s2,s3), 10-8, 11-66
read(f), 8-2, 11-67
reads(f,i), 11-68
real(x), 11-69
remove(s), 9-7, 11-70
rename(s1,s2), 9-7, 11-71
repl(s,i), 11-72
reverse(s), 11-73
right(s1,i,s2), 11-74
rtod(r), 9-2, 11-75
runerr(i,x), 9-13 - 9-14, 11-76
seek(f,i), 9-7, 11-77
seq(i1,i2), 9-9, 11-78
set(L), 8-10, 9-2, 11-79
sin(r), 9-2, 11-80
sort(X,i), 8-11, 9-4, 9-5, 11-81
sqrt(r), 9-2, 11-82
stop(x1,x2,…,xn), 11-83
string(x), 11-84
tab(i), 8-7 - 8-8, 11-85
table(x), 8-10, 11-86
tan(r), 9-2, 11-87
trim(s1,c), 11-88
type(x), 11-89
upto(c,s,i1,i2), 8-4, 11-90
variable(s), 11-90a
warrange(i), 10-5 - 10-6, 11-91
wclose(i,s), 10-4, 11-92
wfont(i,s), 10-6, 11-93
wfontsize(i1,i2), 10-6, 11-94
wget(i1,i2), 10-4, 11-95
wgoto(i1,i2,i3), 10-6, 11-96
where(f), 9-7, 11-97

wlimit(i1,i2), 10-6, 11-98
wmove(i1,i2,i3), 10-5, 11-99
wopen(s1,s2), 10-3 - 10-4, 11-100
wprint(i1,i2,i3), 10-6, 11-101
write(x1,x2,…,xn), 8-2, 9-7, 11-102
writes(x1,x2,…,xn), 9-7, 11-103
wselect(i1,i2,i3), 10-6, 11-104
wset(i1,i2), 10-4 - 10-5, 11-105
wsize(i1,i2,i3), 10-5, 11-106
wtextwidth(i1,s), 10-6, 11-107

G
Garbage collection, 4-13, 8-1, 9-11 - 9-12,

E-2 - E-3, E-7 - E-8, E-14
Generators, 2-1, 2-3, 2-8, 8-1, 8-5 - 8-7,

8-11, 9-9 - 9-10, 11-2, C-4
get(L), 11-32
getch(), 9-7, 11-33
getche(), 9-7, 11-34
getfile(s1,s2,s3), 10-7, 11-35
gettext(s1,s2,s3,s4), 10-7, 11-36
Goal-directed evaluation, 2-1, 2-3, 8-1,

 8-5 - 8-6

H
Help, online, 5-1 - 5-8, 7-1, 7-3
Help index, 5-7 - 5-8
Help Lookup, 5-4 - 5-7, 7-3
Help menu, 5-1 - 5-3
Help windows, 5-4
HyperCard , 1-3

XCMDs , 1-3, 1-8, D-1, D-5 - D-8,
D-14

XFCNs , 1-3, 1-8, D-1, D-5 - D-8,
D-14

I
i to j, 8-6, 11-156
iand(i1,i2), 9-1, 11-37
icom(i), 9-1, 11-38
Icon applications, 4-3
Identifiers, C -3

undeclared, 4-4

I-6 Index

&collections, 9-12, 11-165
&compare, 10-1, 11-165, B-1, B-3
&cset, 11-166
¤t, 9-10, 11-166
&date, 11-166
&dateline, 11-166
&digits, 9-2, 11-167
&dump, 4-5, 10-4, 11-167
&error, 9-12 - 9-13, 11-167
&errornumber, 9-13, 11-167
&errortext, 9-13, 11-168
&errorvalue, 9-13, 11-168
&errout, 4-9, 11-168
&fail, 11-168
&features, 9-12, 11-169
&file, 9-13, 11-169
&ftrace, 4-5, 10-2, 11-169
&host, 11-170
&input, 4-9, 11-170
&lcase, 8-3, 11-170
&letters, 9-2, 11-170
&level, 11-170
&line, 9-13, 11-171
&main, 9-9, 11-171
&null, 11-171
&output, 4-9, 11-171
&pos, 9-10, 11-172
&random, 11-172
®ions, 9-12, 11-172
&screen, 10-6, 11-173
&source, 11-173
&storage, 9-12, 11-173
&subject, 9-10, 11-174
&time, 11-174
&trace, 4-5, 11-174
&ucase, 8-3, 11-174
&version, 11-175

L
launch(s1,s2,i), 4-17, 10-8, 11-47
Launching executable files, 4-5, 4-17
Launching ProIcon, 6-13
left(s1,i,s2), 11-48
Libraries, 4-2, 4-7 - 4-9

If-then-else, 11-182
image(x), 9-9, 11-39
Implementation features, 9-12
Indenting text, 6-7
Infix operations, See Operations, infix.
Input, 4-9 - 4-11, 9-5 - 9-6, 9-9
Input and output, 4-9 - 4-11, 9-5 - 9-6
Input files, 4-9
Input, standard, 4-9
insert(X,x1,x2), 8-10, 9-3 - 9-5, 11-40
Insertion point, in text, 6-2, 6-6, 7-3
Installation, 1-2 - 1-3
integer(x), 11-41
Integers, 9-1, 9-9, 10-1
Interactive window, 3-4, 3-5, 6-11,

6-12, 10-5
Intermediate files, 4-1, 4-4
International comparison, 4-5, B-2 - B-7
ior(i1,i2), 9-1, 11-42
ishift(i1,i2), 9-1 - 9-2, 11-43
ixor(i1,i2), 9-1, 11-44

J

Jump to Bottom, 6-6, 7-3
Jump to Line # ... , 6-6, 7-3
Jump to Top, 6-6, 7-3
Jumps in text, 6-6, 7-3

K
kbhit(), 9-7, 11-45
key(T), 9-4, 11-46
Key sequences, A -1 - A-2
Keyboard end-of-file, 4-11, 7-3
Keyboard input, 4-11, 7-3, 10-3,

 A-1 - A-2
Keyboard shortcuts, 3-5, 3-6, 4-1, 4-11,

 5-6, 6-1 - 6-13, 7-6 - 7-8
Keyboards, 6-2 - 6-3, A-1
Keyboards, extended, 6-3, 6-6, A-2
Keys, table, 8-10, 9-4 - 9-5
Keywords, 11-164

&ascii, 11-165
&clock, 11-165

Index I-7

Library Folders ... , 4-7 - 4-9, 7-4
Ligatures, B -4 - B-7
Link after Compile, 4-1, 7-5
Link File ... , 7-5
Link declarations, 4-2, 4-7, 9-11
Linking, 4-1, 4-2, 7-5, 9-11
list(i,x), 11-49
Lists, 8-8 - 8-9, 8-11, 9-9
Literals, 8-2, 8-3
log(r1,r2), 9-2, 11-50
Loops, 8-5

M
main procedure, 4-2
many(c,s,i1,i2), 8-4, 11-51
map(s1,s2,s3), 11-52
match(s1,s2,i1,i2), 11-53
Matching functions, 2-6, 8-7 - 8-8
member(X,x), 8-10, 9-3 - 9-4, 11-54
MemMon, 1-2, 1-3, 4-4, 4-5, E-4 - E-15
Memory management, 4-11 - 4-16
Memory monitoring, 1-2, 1-3, 4-4, 4-5,

9-14 - 9-15, E-1 - E-15
Memory settings, 4-11 - 4-16, 7-8
Menus

, 5-1 - 5-8, 7-1
Edit, 6-3 - 6-6, 7-2 - 7-3
File, 3-2 - 3-3, 3-6, 6-1 - 6-2, 6-4,

6-7 - 6-8, 7-1 - 7-2, 7-8
Options, 4-3 - 4-16, 6-6 - 6-7, 7-4 - 7-5
Run, 3-4 - 3-6, 4-1, 4-3, 4-16, 7-5
Search, 5-5 - 5-6, 6-6, 6-8 - 6-11, 7-3
Windows, 6-5, 6-12 - 6-13, 7-5 - 7-6

message(s1,s2,s3), 10-7, 11-55
mmout(s), 11-55a
mmpause(s), 11-55b
mmshow(x,s),11-55c
Monitors, 1-2
Mouse, 6-2, 10-6
move(i), 8-7 - 8-8, 11-55d
Moving in windows, 6-5 - 6-6, 10-4 - 10-6
Multi-file search, 6-9 - 6-11, 7-3
MultiFinder, 4-15, 4-17, 10-8

N

name(x), 11-56
New, 6-1, 7-1
next, 9-10, 11-183
Nonprinting characters, 6-9, 9-3
not, 11-184
Null-valued arguments, 11-2
numeric(x), 11-57
Numerical computation, 9-1 - 9-2

O
Omitted arguments, 11-2
Online Help, 5-1 - 5-8, 7-1
Open ... , 6-2, 7-1
open(s1,s2), 11-58
Opening files, 6-2, 7-1
Operations, infix, 11-121

! (list invocation), 9-6, 11-163a
% (remainder), 11-126
%:= (augmented %), 11-151
& (conjunction), 11-135
&:= (augmented &), 11-151
∗ (product), 9-3, 11-124
∗:= (augmented ∗), 11-151
∗∗ (intersection), 9-4, 11-130
∗∗:= (augmented ∗∗), 11-151
+ (sum), 11-122
+:= (augmented +), 11-151
++ (union), 8-3, 9-4, 11-128
++:= (augmented ++), 11-151
– (numeric difference), 11-123
–:= (augmented –), 11-151
– – (cset or set difference), 8-3, 9-4,

 11-129
– –:= (augmented – –), 11-151
/ (quotient), 11-125
. (field reference), 11-133
/:= (augmented /), 11-151
:= (assignment), 11-150
:=: (exchange), 11-152
<– (reversible assignment), 11-153
<–> (reversible exchange), 11-154

I-8 Index

Operations, infix (cont.):
< (numeric less than), 11-139
<:= (augmented <), 11-151
<< (string less than), 11-145
<<:= (augmented <<), 11-151
<<= (string less than or equal), 11-146
<<=:= (augmented <<=), 11-151
<= (numeric less than or equal), 11-140
<=:= (augmented <=), 11-151
= (numeric equal), 11-138
=:= (augmented =), 11-151
== (string equal), 11-144
==:= (augmented ==), 11-151
=== (object equal), 11-148
===:= (augmented ===), 11-151
> (numeric greater than), 11-136
>:= (augmented >), 11-151
>= (numeric greater than or equal),

11-137
>=:= (augmented >=), 11-151
>> (string greater than), 11-142
>>:= (augmented >>), 11-151
>>= (string greater than or equal),

11-143
>>=:= (augmented >>=), 11-151
@ (transmission), 11-134
@:= (augmented @), 11-151
^ (exponentiation), 11-127
^:= (augmented ^), 11-151
|| (string concatenation), 8-2, 11-131
||:= (augmented ||), 11-151
||| (list concatenation), 11-132
|||:= (augmented |||), 11-151
~= (numeric not equal), 11-141
~=:= (augmented ~=), 11-151
~== (string not equal), 11-147
~==:= (augmented ~==), 11-151
~=== (object not equal), 11-149
~===:= (augmented ~===), 11-151

Operations, prefix, 11-108
! (element generation), 9-4, 11-117
! (list invocation), 9-6, 11-163a
∗ (size), 9-4, 11-115
+ (positive), 11-109
– (negative), 11-110

. (dereference), 11-120
/ (null test), 11-118
= (match and tab), 11-112
? (random value), 9-4, 11-116
@ (activation), 11-113
\ (non-null test), 11-119
^ (refresh), 11-114
~ (complement), 11-111

Options menu, 4-3 - 4-16, 6-6 - 6-7,
7-4 - 7-5

ord(s), 9-2, 11-59
Output, 4-9 - 4-11, 9-5 - 9-6
Output files, 4-9 - 4-11
Output limiter, 4-16
Output, standard, 4-9
Output, standard error, 4-9

P
Page Setup ... , 6-8, 7-1 - 7-2
Parameter String ... , 4-5 - 4-6, 7-4, 7-8
Parentheses, C -1
Partial path names, 4-7
Partition size, 4-17
Paste, 6-3 - 6-4, 7-2
Path files, 4-9, 6-11
Path names, 4-7
Pattern matching, 2-5 - 2-7
Pause, 4-16, 7-5
Persistent settings, 4-16
Pointers, 8-9
pop(L), 8-9, 11-60
pos(i), 11-61
Precedence, of operators, C -1 - C-3
Prefix operations, See Operations, prefix
Print ... , 6-8, 7-1 - 7-2
Printing, 6-7 - 6-8, 7-2

wprint(), 10-6, 11-101
Printing characters, 9-3
proc(x,i), 9-8, 11-62
Procedure tracing, 4-4 - 4-5
Procedures, 8-11 - 8-12, 9-6

main, 4-2
variable number of arguments, 9-6

Program character set, 6-9

Index I-9

Program files, 3-2, 6-2
Program Input ... , 4-9, 4-11, 7-4
Program options, 4-16
Program Options ... , 4-3 - 4-5, 4-16,

7-4, B-1, B-3
Program output, 4-9 - 4-11, 7-4
Program termination, 4-5, 10-4
Programmer-defined control structures,

9-10
ProIcon Help, 1-3
ProIcon Profile, 4-16
ProIcon Runtime, 1-3, 4-3
pull(L), 11-63
push(L,x), 8-9, 11-64
put(L,x), 11-65
putfile(s1,s2,s3), 10-8, 11-66

Q
Qualifier pointer region, 4-15
Queues, 8-9
QuickDraw, D-4 - D-5
Quit, 3-6, 7-1 - 7-2
Quitting ProIcon, 3-6, 7-1 - 7-2

R
RAM, 1-2, 4-14 - 4-15, 6-1
Random-access input and output , 9-7
Range specifications, 8-2 - 8-3
read(f), 8-2, 11-67
reads(f,i), 11-68
Real numbers, range of, 10-1
real(x), 11-69
remove(s), 9-7, 11-70
rename(s1,s2), 9-7, 11-71
repeat, 11-185
repl(s1,i), 11-72
Replace, 6-8 - 6-9, 7-3
Replace All ... , 6-9, 7-3
Replace and Find Again, 6-10, 7-3
Replacing text, 6-8 - 6-10, 7-3
Reserved words, C -3 - C-4
return, 8-11, 9-10, 11-186
reverse(s), 11-73
Revert, 6-4, 7-1 - 7-2

right(s1,i,s2), 11-74
rtod(r), 9-2, 11-75
Run after Link, 4-1, 7-5
Run menu, 3-4 - 3-6, 4-1, 4-3, 4-16, 7-5
Run File ... , 4-3, 7-5
runerr(i,x), 9-13 - 9-14, 11-76
Running a program, 4-1 - 4-3, 7-5,

9-11 - 9-14
Run-time errors, 9-12 - 9-14, 11-2,

C-5 - C-6

S
Save, 3-6, 6-4, 7-1
Save All, 6-5, 7-5
Save As ... , 3-1, 6-5, 7-1
Saving files, 3-1 - 3-3, 6-4 - 6-5, 7-1
Saving windows, 6-5, 7-5
Scanning, string, 2-6 - 2-7, 8-1, 8-7 - 8-8,

9-8
Scope, 2-7 - 2-8
Screen, 10-6
Scrolling, 6-5
Search menu, 5-5 - 5-6, 6-6, 6-8 - 6-11,

7-3
Search paths, 6-9 - 6-11
Searching and replacing, 6-8 - 6-11
Searching text, 7-3
Select All, 6-3, 7-2
Selecting text, 6-3, 7-2
seek(f,i), 9-7, 11-77
seq(i1,i2), 9-9, 11-78
set(L), 8-10, 9-2, 11-79
Sets, 8-10, 9-3 - 9-4
Shift Left, 6-7, 7-2
Shift Right, 6-7, 7-2
Shifting text, 6-7, 7-2
sin(r), 9-2, 11-80
SNOBOL4, 2-1, 2-4 - 2-9, 8-8
sort(X,i), 8-11, 9-4, 9-5, 11-81
Sorting, 8-11, 9-4, 9-5, 9-6
sqrt(r), 9-2, 11-82
Stack Windows, 6-13, 7-5 - 7-6
Stacks, 8-9
Standard error output, 4-9

I-10 Index

Standard input, 4-9
Standard output, 4-9
Startup ... , 6-13, 7-5
Startup, 6-13, 7-8
Stop, 4-16, 7-5
stop(x1,x2,…,xn), 11-83
Stopping program execution, 4-17, 7-5
Storage allocation, 4-13 - 4-16, 8-1
Storage management, 4-13, 4-16, 8-1,

9-11 - 9-12
String comparison, 4-5, 10-1, B -1 - B-8
String invocation, 9-7 - 9-9
String region, 4-14, 4-15, 9-11 - 9-12
String scanning, 8-1, 8-7 - 8-8, 9-10
string(x), 11-84
Strings, 2-2, 8-2 - 8-3, 9-2
Structures, 2-2, 8-8 - 8-11, 9-2 - 9-4
Substrings, 8-2
Success, 2-5
Success and Failure, 2-5, 8-4 - 8-5
suspend-do, 8-11, 9-9 - 9-10, 11-187
Suspending program execution, 4-16,

7-5
Syntactic errors, 3-5 - 3-6
Syntax, 2-4 - 2-5, 9-10 - 9-11, C -1 - C-4
System-dependent features, 9-14, 10-4

T
tab(i), 8-7 - 8-8, 11-85
table(x), 8-10, 11-86
Tables, 8-10 - 8-11, 9-4 - 9-5, 10-2 - 10-3
Tabs ... , 6-6 - 6-7, 7-4
Tabular material, 9-2
tan(r), 9-2, 11-87
Terminal input shortcuts, 6-11
Terminate Input, 4-11, 7-2 - 7-3
Termination dumps, 4-5, 10-2
Text files, 6-2, 7-8
Tile Windows, 6-13, 7-5 - 7-6
to-by, 11-156
Tracing, 4-4 - 4-5, 10-3 - 10-4
Transfer ... , 7-1 - 7-2
Trigonometric functions, 9-2
trim(s1,c), 11-88

Type checking, 8-1, 11-2
Type codes, 9-5 - 9-6, 11-1
Type conversion, 8-1, 11-2
type(x), 11-89

U
Unary operators, See Operators, prefix
Undeclared identifiers, 4-4
Undo, 6-4, 6-9, 7-2
until-do, 11-188
Untitled windows, 3-1, 6-1
upto(c,s,i1,i2), 8-4, 11-90

V

variable (s), 9-9, 11-90a
Variable number of arguments, 9-6
Variables, 11-2

W
warrange(i), 10-5 - 10-6, 11-91
wclose(i,s), 10-4, 11-92
wfont(i,s), 10-6, 11-93
wfontsize(i1,i2), 10-6, 11-94
wget(i1,i2), 10-4, 11-95
wgoto(i1,i2,i3), 10-6, 11-96
where(f), 9-7, 11-97
while-do, 11-189
Wildcards, 4-8, 6-11
Window arrangement, 6-12, 7-6, 10-7
Window functions, 10-3 - 10-6
Window management, 6-12 - 6-13
Window Options ... , 7-4
Window regions, 6-12
Window selection, 6-12
Windows, 4-15, 6-11 - 6-13, 10-3 - 10-6
Windows, closing, 6-5, 6-12, 10-5
Windows menu, 6-5, 6-12 - 6-13,

7-5 - 7-6
Windows, opening, 10-5
Windows, output limit, 7-4, 10-7
Windows, untitled, 3-1, 6-1
wlimit(i1,i2), 10-6, 11-98

Index I-11

wmove(i1,i2,i3), 10-5, 11-99
wopen(s1,s2), 10-3 - 10-4, 11-100
wprint(i1,i2,i3), 10-6, 11-101
write(x1,x2,…,xn), 8-2, 9-7, 11-102
writes(x1,x2,…,xn), 9-7, 11-103
wselect(i1,i2,i3), 10-6, 11-104
wset(i1,i2), 10-4 - 10-5, 11-105
wsize(i1,i2,i3), 10-5, 11-106
wtextwidth(i1,s), 10-6, 11-107

X
XCMDs , 1-3, 1-8, D-1, D-5 - D-8,

D-14
XFCNs , 1-3, 1-8, D-1, D-5 - D-8,

D-14

Z
Zoom, 6-13, 7-5

