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1. Introduction 

This paper describes an experimental list scanning extension 
to the Icon programming language. The facility is modeled after 
the novel string scanning features provided by Icon. The reader 
should be familiar with Icon [1], and a working knowledge of SNO-
B0L4 [2] and SL5 [3] also will be helpful, since Icon shares a 
philosophical base with these languages. 

One of the most important aspects of Icon is its use of gener-
ators and goal-directed evaluation to replace the concept of 
string pattern matching, which is central to SNOBOL4. These new 
features provide the advantages of string pattern matching with-
out the numerous disadvantages associated with patterns [4]. 

Facilities for list structure scanning described here are also 
based on generators and goal-directed evaluation. A deliberate 
attempt was made to develop facilities analogous to those used 
for strings rather than modeling a system after existing list 
processing systems such as LISP. 

The new list scanning system has several features which have 
no counterpart in string processing. This is a consequence of 
the complexity of list structures, contrasted with the simple 
linearity and homogeneity of strings. 

2. List Processing Facilities 

2.1 Definition of Lists 

The term list as used here refers to heterogeneous linear 
arrays with an origin of 1. A list of n elements is created by 
array n. A list of n specific elements can be specified explic-
itly 

I X^ , . . . rx
n] 

The sections that follow describe various other ways of construc-
ting lists. 

One use of lists is to represent general directed graphs. In 
this case, each list is capable of representing a node containing 
an arbitrary number of value fields and an arbitrary number of 
pointer fields to other nodes of the graph. Consider, for 
example, 



The following program segment constructs a list representation of 
this graph in which the value of each node is the first element 
of the corresponding list. 

11 
12 
13 
11[2] 
H[3] 
13[3] 
graph 

["A",,] 
[WBM] 
rCM,12,] 
:= 12 
:= 13 
:= 13 
:= 11 

Because of the complexity of relationships that may occur 
among lists such as those that represent graph structures, it is 
convenient to have a diagnostic facility for printing lists. The 
function ldump(l) is provided for this purpose. A call to ldump 
with the graph above as an argument, i.e. ldump(graph), produces 

listl —> ["A",list2,list3] 

list2 —> ["B"] 

list3 —> [wCn,list2,list3] 

The ldump function assigns the names listl, list2, and so on to 
lists in the order in which they are encountered in the dumping 
process. Note how cycles and pointers (references to lists) are 
represented by ldump. 

Indexing into lists is defined in a manner analogous to that 
for strings. A position in a list is assumed to refer to a point 
in front of the corresponding element. Position 1 is in front of 
the first element from the left; position 2 is between elements 1 
and 2 (i.e. in front of element 2), and so on. Negative indexes 
refer to positions in front of the n-th element from the right 
end of the list. An example follows. 



[MA","B",MCM,["D","E"]] 
I I I I I 
1 2 3 4 5 
•4 -3 -2 -1 0 

2.2 Basic List Operations 

The three fundamental operations on lists are list concatena-
tion, sublist generation, and list comparison. 

Concatenation of lists is a natural generalization of concate-
nation of strings. The operation 11 Ml 12 performs the concate-
nation, producing a new list with the elements of 11 followed by 
those of 12. For example, given two lists a and b 

a := ["A","BM] 

b := [nCH,"Dn] 

the expression a | I I b produces 

["A",nBM,MC","D"1 

The null list, i.e. the list consisting of zero elements, is the 
identity with respect to list concatenation. It is analogous to 
the null string and, in fact, the null string may be used inter-
changeably with the null list in list concatenation. 

The function lsection(1 ,i,j) returns a sublist composed of the 
elements of 1 between positions i and j, inclusive. The values 
of i and j may be negative in accordance with the list indexing 
conventions given earlier. For example, if 

c := [nAM /^•VC" ,WD","E"] 

then either lsection(c,2,5) or lsection(c,2,-1) returns the sub-
list 

["B",nC","Dn] 

Note that this function is analogous to section(s,i,j) for 
strings. 

List comparison is performed by the operation 11 === 12 as 
follows: if 11 and 12 are lists of the form 

11 := [ x l f x 2 , . • • r X n ] 

1 2 : = [ Y l » y 2 f - r Y m ] 



then 11 === 12 succeeds if and only if 

(a) n = m 

(b) for 1 <= i <= n 

(1) type(Xi) == type(yi) and 

(2) compare(x^^yi) succeeds, or 

(3) typefx^ == "list" and X£ === y i succeeds 

2.3 List Scanning 

List scanning is Analogous to string scanning and provides its 
advantages: an implicit subject to which operations apply and 
implicit cursor movement. List scanning thus provides automatic 
bookkeeping and a concise notation for list processing. 

In list scanning, the value of the keyword slsubject is the 
implicit subject of scanning. The value is established by an 
assignment of the form 

Slsubject := ["An,"B",nC",["D"]] 

This expression sets the subject to the given list and also auto-
matically sets the keyword slcursor to 1, positioning it at the 
beginning of the list. All subsequent list scanning operations 
refer implicitly to these two global keywords until they are 
reset. 

The operation 1 ?? e operates in the manner of s ? e for 
string scanning. This operation sets the value of Slsubject to 1 
(automatically setting slcursor to 1) and then evaluates e. The 
previous values of slsubject and Slcursor are saved before the 
evaluation of e and restored afterwards. This feature allows 
recursive and nested list scanning. Examples of its use are 
given later. 

2.4 List Sequencing 

Sequencing through a list structure is an important operation. 
There are two keywords that are generators operating implicitly 
on slsubject which return successive elements starting at the 
current value of slcursor and continuing to the right end of 
Slsubject: 

(1) selement, which generates successive elements of a 
Slsubject. 

(2) Slist, which generates successive elements of slsubject 
that are lists. 



These generators are most commonly used with the every con-
struct, which provides a means for operating on each element of a 
list or on each list contained in ("pointed to" from) a list. 
For example 

Slsubject := ["A","B",nC","D",nEM] 
every x := selement do write(x) 

generates 

A 
B 
C 
D 
E 

In another example, 

Slsubject := ["A",MB","C",[nDn],[ME",nF"] ] 
every x := Slist do write(slcursor) 

generates the following 

4 
5 

2.5 List Scanning Functions 

The list scanning functions are similar to the string scanning 
functions. The differences are a consequence of the special fea-
tures of lists. The list scanning functions apply exclusively to 
the value of slsubject. 

A typical list scanning function is lmove(n), which adds n to 
the value of slcursor and returns as value the sublist of 
Slsubject between the old and new values of Slcursor. If the 
value of Slcursor would be out of the range of Slsubject, the 
operation fails and slcursor is not changed. Assuming the value 
of slsubject to be the list 

[3, "A" ,"Bn, ["D'VE"]] 

then the expression 

ldump(lmove(selement)) 

prints the following list 

listl —> [3,"A","BM] 

Another scanning function is ltab(n), which sets slcursor 
directly to n and returns as value the sublist between the old 
and new values of Stlcursor. If the value of Slcursor would be 



out of the range of slsubject, the operation fails and slcursor 
is not changed. This function is similar to Isection(1,i,j), but 
Isection requires starting and ending positions to be explicitly 
specified and ltab assumes the current value of slcursor as a 
starting position. As an example, consider 

Slsubject := [3,"A","B",["D","E"]] 
lmove(&element) 
rest := ltab(O) 

The value of rest after execution of this code is the list 

[ ["DVE") ] 

The scanning function lupto(x) is a generator. The value re-
turned by lupto(x) is the position of the first occurrence of x 
as an element in slsubject, starting at the current value of 
Slcursor. Unlike the corresponding string scanning function, 
upto(c), lupto(x) does not specify a set of objects, but only a 
single value as a distinct element of slsubject. Since there may 
be more than one occurrence of x in slsubject, there is more than 
one possible value of the expression lupto(x). These values are 
generated (in increasing sequence) as needed. For example, 

Slsubject := ["A","B",nB",["D","EM]] 
every write(lupto("B")) 

prints 

the positions of each "B" in slsubject. 

The prefix operation !1 allows the user to specify a sublist 
for scanning purposes. A comparison is made for the sublist 
starting at the current value of slcursor. If the comparison is 
succcessful, slcursor is advanced through the sublist and the 
scanning operation succeeds; otherwise, it fails. Consider the 
following code segment 

1 := ["A",[HBM],"C","D",[nEn]] 
1 ?? { 

lmove(2) 
if !["Cn,"D"] then ldump(Selement) 
}~~ 

The scanning operation succeeds and prints 

listl — > [["E"]] 



2.6 The Marking Facility 

Since list structures such as directed graphs are usually non-
linear and contain cycles, it is frequently necessary to have a 
means of detecting which nodes have been processed or which parts 
of the structure have been traversed. For this purpose, a list 
marking facility is provided. Its features include two keywords, 
smark and sunmark, which are used for marking a list and removing 
a mark from a list, respectively. An auxiliary table provides 
storage for pointers to marked lists and the values with which 
the lists are marked. Since the marking facility maintains a 
separate table of marked nodes, there is no physical alteration 
of the structure being marked. 

The auxiliary marking table is created by an assignment to 
smarktable of the form 

Smarktable := table 

Smarktable is independent of slsubject and it survives any scan-
ning operation. A new table may be created at any time by anoth-
er assignment to smarktable. Once created, any valid operation 
on tables may be applied to smarktable, such as conversion to an 
array for sequential processing. 

The keywords &mark and sunmark automatically reference the 
current value of Selement. If selement is not a list, both smark 
and sunmark references fail. selement can be marked with an ar-
bitrary value by assignment to smark. For example 

d ?? {&list; Smark := 1} 

marks the first list element in d with a value of 1. The value 
assigned in marking can be changed by another assignment to smark 
whenever the list is the value of selement. The keyword sunmark 
removes a marked list and its associated value from smarktable, 
but no assignment need be made. The sunmark expression fails if 
selement is not marked. For example 

every &list do 
&unmarTT"fails ft 
then write("unmarked node encountered") 
else ldump(Selement) 

This expression prints a diagnostic message if selement is not 
marked. If selement is marked, it is unmarked and printed. 

While smark and sunmark operate on tables, they provide an 
accessing method not available with the direct use of tables. 
Assignment of a value to &mark adds selement and the value to the 
table, but referencing smark and sunmark both fail when selement 
is not present and no table insertion is made. 



3. Examples 

This section contains a number of examples of the list scan-
ning facilities and typical programming techniques illustrating 
its use. 

3.1 Graph Construction and Representation 

There are many ways of representing directed graphs for com-
puter processing. In one method of representation each node is 
represented as a string of the form 

label:value:nodel,node2,...,nodeN 

where the label field contains a label for the node, the value 
field contains the node's value, and the "node" field contains 
zero or more references (arcs) to neighbors of the node [5] . 
This concise notation is easy to process with Icon's string pro-
cessing capabilities. 

The string representation of the graph given in Section 2.1 
provides an example: 

11:MA":12,13 
12:"B": 
13:"C":12,13 

The labels 11, 12, and 13 are auxiliary to the graph itself and 
simply provide names for the nodes. 

One possible list representation for directed graphs consists 
of a list for each node and two other lists: one for the node 
labels and one for references to the nodes (arcs). Each node's 
list contains the value as its first element and references to 
neighbors in the remaining elements. The general form of the 
list representation follows: 

^labels [,,,,] 

As an example of this representation, the following output re-
sults from ldump applied to this list representation of the graph 
of Section 2.1: 

listl —> [Iist2,list3] 



Iist2 — > ["11","12","13"] 

list3 —> [Iist4,list5,list6] 

list4 --> ["A",list5,list6] 

list5 — > ["B"] 

list6 — > ["C",lists,list6] 

Here list2 is the list of labels and list3 is the list of nodes. 
The nodes themselves are list4, lists, and list6. The entire 
graph is represented by listl, which points to the label list and 
the node list. This representation of graphs will be assumed 
throughout the remaining examples in Section 3. 

The following procedure converts the the string representation 
of a graph contained on a file to the list representation. The 
procedure graph(f) uses two passes for the conversion. The pro-
cedure passl(f) reads the string data for each node and inserts 
the various fields into their proper positions in the lists. The 
procedure pass2(g) uses the list processing facility to convert 
labels of a node's neighbors into actual references ("pointers") 
to the nodes themselves. 

# The procedure graph(f) constructs a graph representation using lists 
# It reads data from file f of the form 
# 
# label:value:nodel,node2,...,nodeN 
# 
procedure graph(f) local graph 

if graph := passl(f) fails then fail # error in data 
graph := pass2(graph) 
return graph 

end 



procedure passl(f) local labels, lists, temp 

while &subject := read(f) do { 
# isolate label field 
if labels := labels III [tab(upto(":"))] then move(l) 

else fail 

# isolate value field 
if temp := [tab(upto(M:"))] then move(l) else fail 

# add all node fields 
while temp := temp III [tab(upto(","))] do move(1) 

# handle last node reference 
temp := temp Ml [tab(O)] 
lists := lists ||| [temp] 
} 

return [labels,lists] 
end 

Note the use of list concatenation to construct a list an element 
at a time. 

# The procedure pass2(g) uses list scanning to automatically 
# set Slsubject to the list of nodes, g[2], and to process 
# every arc of each node. Note that any slsubject in effect 
# outside the procedure is automatically saved at entrance. 
# Note also the use of lupto(label) to get the position 
# of the current value of label in the label list. 
# 
procedure pass2(g) local label 

g[2] ?? { #isolate list of nodes 
every selement ?? { # process every node 

Ttab(2) # skip value of node 

# process every arc of each node, and replace label 
# by corresponding node 

every label := fcelement do 
Selement := g[2][g[l] ?? lupto(label)] 

} 
} 

return 
end 

Note lupto(label) searches the list of labels, g[l], and returns 
the index of the corresponding node in the list of nodes, g[2]. 

A useful property of a graph is the number of nodes and edges 
it contains. The number of nodes in a graph g is simply 
length(g[1]). Computing the number of edges is slightly more 

10 



complex. A count is made of all pointers to lists. These repre-
sent directed edges in the graph representation. 

procedure edges(graph) local edges 

edges := 0 
graph[2] ?? { 

# count arcs for all nodes in graph 

every fcelement ?? { 
every &list do edges+ 

} 

return edges 
end 

3.2 Access Path Determination 

Determination of access paths is a common problem in manage-
ment of heap storage where variable-sized blocks are allocated. 

In this example, the marking facility is used to mark all 
nodes accessible from a given list. The algorithm is similar to 
the one used by SN0B0L4 [61. The argument to procedure mark is 
the list of pointers to nodes, referred to here as the basic 
block. The procedure mark(block) recursively marks all lists in 
the structure, starting rrov the basic block. It assumes there 
is no pointer to the basic block so that it does not need to be 
marked. 

# The procedure mark(block) uses the procedure mark2(block) to 
# mark all lists accessible from its argument, the basic block. 
# The procedure mark(block) is needed to set up smarktable. 
# 
procedure mark(block) 

Smarktable := table 
block ?? { 

every slist do { # process every list in block 
&mark : = T~~ # mark it 
mark2(selement) # follow pointers 
} 

} 
return smarktable 

end 

11 



procedure mark2(block) 
block ?? { 

every slist do # process all lists 
T? &mark Tails then { # if not marked 

&mark := 1 # mark it 
mark2(&element) # follow pointer recursively 

} 
return 

end 

} 

3.3 Topological Sort of a Directed Graph 

Following Knuth [7], a partial ordering of the elements of a 
set G is a relation between the elements of G satisfying three 
properties for arbitrary and not necessarily distinct elements x, 
y, and z in the set. The symbol <= means "precedes or equals". 

Property 1: if x <= y and y <= z, then x <= z. 

Property 2: if x <= y and y <= x, then x = y. 

Property 3: x <= x. 

Topological sorting can be viewed as the process of finding a 
linear ordering of objects in which a given partial order can be 
embedded. Topological sorting is useful in the analysis of ac-
tivity networks where a large, complex project is represented as 
a directed graph in which the nodes correspond to the goals in 
the project and the edges correspond to activities. Some goals 
must be completed before others are begun. The topological sort 
gives an order in which these goals can be achieved. 

In the following examples, a depth-first search is used to 
topologically sort the nodes of a graph. The process involves 
isolating nodes with no outgoing arcs to unprocessed nodes. 

To contrast conventional list processing with the facilities 
described here, two solutions follow. The first solution uses 
arrays and tables with standard processing techniques. The sec-
ond solution uses list scanning. 

12 



Solution 1 - Topological Sort without List Scanning 

global topsort, position, labeled 

# The procedure topsort handles the referencing environment for the 
# recursive procedure tsort 
* 
procedure topsort(graph) local nodes, index, x 

nodes := length(graph[1]) 
labeled := table nodes # for labeled ancestors 
topsort := array nodes # for sorted nodes 
position := nodes + 1 
x := graph[2] # retrieve pointer fields of all nodes 

# step through all nodes looking for nodes with no labeled ancestor 

every index := 1 to nodes do 
if labeled [xTTndex] ] == ,,n then tsort (x [index]) 

return topsort 
end 

# The procedure tsort uses a depth first recursive search to find a 
# node with no outgoing edges to unprocessed nodes 
# 
procedure tsort(v) local w, index 

labeled[v] := 1 # mark current node 
every index := 1 to length(v) do { 

w := v[indexT~ 
if labeled [w] == ,,w then tsort (w) r — 

# insert v into topsort at a position before any descendant 

topsort[position-1 }:= v 

return 
end 

13 



Solution 2 - Topological Sort with List Scanning 

# The procedure topsort handles the referencing environment for the 
# recursive procedure tsort 
# 

procedure topsort(graph) 

graph[2] ?? { # set fclsubject to list of nodes 

# process all nodes in graph 

every &list do 
IT &mark Tails then { # any marked ancestor? 

&mark ;="~T 
&element ?? {topsort := tsort(topsort)} 
} 

} 
return topsort 

end 

# The procedure tsort uses a depth first recursive search to find a 
# node with no outgoing edges to unprocessed nodes. 
# Note that topsort is null at the first call? list concatenation 
# extends it automatically. 
# 

procedure tsort(1) 

# process all unmarked descendants of current slsubject 

every &list do 
ry siist ao 
Tf &mark Tails then { &mark := 1 

&element ?? {1 := tsort(l)} 
} 

# insert Slsubject in place before any descendant 

1 := [slsubject] | I I 1 

return 1 
end" 

The topological sort with list scanning has the following ad-
vantages. The bookkeeping needed in Solution 1 is not present; 
it is handled automatically by the system. Solution 2 is also 
more readable and concise. The list processing system allows a 
level of abstraction that is not present in Solution 1. The user 
may think directly in terms of processing every list for some 
property, and very nearly code that idea directly. 

14 



4. Conclusions 

4.1 Current Status 

A working version of the list scanning facility has been im-
plemented in a prototype of Icon based on SL5 [3]. As imple-
mented, there are only minor syntax differences from the full 
Icon version presented in this paper. All the facilities are 
consistent with the design of Icon, so there are no technical 
problems in implementing them in the production version of Icon. 

4.2 Evaluation 

The list scanning facility provides a natural linguistic mech-
anism that stresses the essential details of a list manipulation 
problem while suppressing most of the unnecessary details. It 
allows the user to think and program directly in such terms as: 
for every list perform an operation, process the current element, 
and so on. It provides a readable and concise notation for prob-
lems involving list manipulation. 

There are several problems with the list scanning facility in 
its present form. Many of these problems are shared with Icon's 
string scanning facility [4]. Typical of this class of problems 
are the scope of &lsubject, the hazards of global variables for 
communication, and the choice of a complete yet small set of 
primitives. A better choice of primitives should result as expe-
rience is gained with list scanning. 

The list scanning facility is potentially inefficient, since 
all operations that return lists must allocate space. The seman-
tics of the operations require copying of the lists to avoid 
erroneous side effects. 

4.2 Suggested Extensions to the Facility 

One natural direction for future development is a unified 
scanning facility that is polymorphous, allowing strings and 
lists in all operations. For example, xl |I x2 could represent 
both list and string concatenation. Similarly, ^subject could be 
either a string or a list and tab(n) could move the cursor posi-
tion regardless of the type of ssubject. 

There are both advantages and disadvantages involved in this 
approach. An advantage is the smaller vocabulary that would re-
sult from combination of list and string scanning facilities. 
Only the generator &list and the keywords &mark, &unmark, and 
smarktable associated with the marking facility are exclusively 
list oriented, fcelement, applied to strings, could reference the 
current character in &subject. All other list operations can be 
unified with their string counterparts. 

15 



A unified vocabulary would provide many useful analogies that 
would make the facility easier to learn and to use. The same 
conceptual operation would be represented by the same operator, 
regardless of the types of its operands, with the type-specific 
operation selected internally. 

Unification of string and list scanning also has some disad-
vantages. There would be a greater possibility for error, since 
the exact nature of the generic operations would not be obvious 
from context, although type declarations would alleviate this 
problem to some extent. Similarly, in the absence of type decla-
rations, necessary run-time type checking would also introduce 
overhead in the implementation of the generic operations. 

A further problem is that there are operations that do not 
have natural meanings for both types. For example, while tab(n) 
for strings is an important operation, the equivalent operation 
on lists, although included in the present list scanning facili-
ty, seems unnatural in many applications. Similarly, some string 
scanning operations, such as upto(c), do not have complete gener-
alizations for lists (see Section 2.5). 

There are many other possibilities for extending the facility. 
For example, it would be convenient in some cases to have multi-
ple subjects. These could be used in simultaneous scanning of 
two or more list structures. A serious disadvantage exists with 
the use of multiple subjects, however, since any such facility 
would reintroduce the complexity which the scanning facility is 
designed to suppress. 

Other facilities are needed to support more general list scan-
ning. For example, if &marktable is converted to an array, the 
current list scanning facility cannot operate directly on it, 
since the resulting array has two dimensions and is not a list as 
defined in Section 2.1. An array sectioning operator to convert 
a two-dimensional array to a set of linear arrays or lists would 
be useful. 

Another possible extension is the generalization of list scan-
ning to arrays of arbitrary dimensionality. This poses a diffi-
cult problem. Much of the advantage of list scanning is derived 
from the simplicity inherent in implicit cursor movement. In a 
linear array, that is, a list, the cursor is simply an integer 
and cursor movement is effected by incrementing and decrementing 
its value. In an array of n dimensions, a position is uniquely 
specified by n coordinates (xl,x2,...,xn). The list scanning 
functions can be generalized accordingly (for example, 
tab(al,...,an)), but the result is complex and defeats the inher-
ent advantages of scanning: conciseness and simplicity. 

An alternative approach is to use list scanning within arrays 
of arbitrary dimensionality. A linear array may be specified in 
an n-dimensional array by the intersection of n - 1 hyperplanes 
orthogonal to the axes. For example, in the three-dimensional 
array shown below, the two planes intersect to select a row that 
is a linear array. 
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This facility is not difficult to implement, but its utility 
remains to be proved. For example, are there kinds of data that 
can be organized as n-dimensional arrays which can be usefully 
processed by this type of list scanning with its necessarily 
"tunnel-vision" characteristics? 
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