
A List Scanning Facility
for Icon

Rodney A. Norden

TR 78-8

Department of Computer Science

The University of Arizona

May 16, 1978

•This work was supported in part by the National Science
Foundation under Grant MCS75-01307.

1. Introduction

This paper describes an experimental list scanning extension
to the Icon programming language. The facility is modeled after
the novel string scanning features provided by Icon. The reader
should be familiar with Icon [1], and a working knowledge of SNO-
B0L4 [2] and SL5 [3] also will be helpful, since Icon shares a
philosophical base with these languages.

One of the most important aspects of Icon is its use of gener-
ators and goal-directed evaluation to replace the concept of
string pattern matching, which is central to SNOBOL4. These new
features provide the advantages of string pattern matching with-
out the numerous disadvantages associated with patterns [4].

Facilities for list structure scanning described here are also
based on generators and goal-directed evaluation. A deliberate
attempt was made to develop facilities analogous to those used
for strings rather than modeling a system after existing list
processing systems such as LISP.

The new list scanning system has several features which have
no counterpart in string processing. This is a consequence of
the complexity of list structures, contrasted with the simple
linearity and homogeneity of strings.

2. List Processing Facilities

2.1 Definition of Lists

The term list as used here refers to heterogeneous linear
arrays with an origin of 1. A list of n elements is created by
array n. A list of n specific elements can be specified explic-
itly

I X^ , . . . rx
n]

The sections that follow describe various other ways of construc-
ting lists.

One use of lists is to represent general directed graphs. In
this case, each list is capable of representing a node containing
an arbitrary number of value fields and an arbitrary number of
pointer fields to other nodes of the graph. Consider, for
example,

The following program segment constructs a list representation of
this graph in which the value of each node is the first element
of the corresponding list.

11
12
13
11[2]
H[3]
13[3]
graph

["A",,]
[WBM]
rCM,12,]
:= 12
:= 13
:= 13
:= 11

Because of the complexity of relationships that may occur
among lists such as those that represent graph structures, it is
convenient to have a diagnostic facility for printing lists. The
function ldump(l) is provided for this purpose. A call to ldump
with the graph above as an argument, i.e. ldump(graph), produces

listl —> ["A",list2,list3]

list2 —> ["B"]

list3 —> [wCn,list2,list3]

The ldump function assigns the names listl, list2, and so on to
lists in the order in which they are encountered in the dumping
process. Note how cycles and pointers (references to lists) are
represented by ldump.

Indexing into lists is defined in a manner analogous to that
for strings. A position in a list is assumed to refer to a point
in front of the corresponding element. Position 1 is in front of
the first element from the left; position 2 is between elements 1
and 2 (i.e. in front of element 2), and so on. Negative indexes
refer to positions in front of the n-th element from the right
end of the list. An example follows.

[MA","B",MCM,["D","E"]]
I I I I I
1 2 3 4 5
•4 -3 -2 -1 0

2.2 Basic List Operations

The three fundamental operations on lists are list concatena-
tion, sublist generation, and list comparison.

Concatenation of lists is a natural generalization of concate-
nation of strings. The operation 11 Ml 12 performs the concate-
nation, producing a new list with the elements of 11 followed by
those of 12. For example, given two lists a and b

a := ["A","BM]

b := [nCH,"Dn]

the expression a | I I b produces

["A",nBM,MC","D"1

The null list, i.e. the list consisting of zero elements, is the
identity with respect to list concatenation. It is analogous to
the null string and, in fact, the null string may be used inter-
changeably with the null list in list concatenation.

The function lsection(1 ,i,j) returns a sublist composed of the
elements of 1 between positions i and j, inclusive. The values
of i and j may be negative in accordance with the list indexing
conventions given earlier. For example, if

c := [nAM /^•VC" ,WD","E"]

then either lsection(c,2,5) or lsection(c,2,-1) returns the sub-
list

["B",nC","Dn]

Note that this function is analogous to section(s,i,j) for
strings.

List comparison is performed by the operation 11 === 12 as
follows: if 11 and 12 are lists of the form

11 := [x l f x 2 , . • • r X n]

1 2 : = [Y l » y 2 f - r Y m]

then 11 === 12 succeeds if and only if

(a) n = m

(b) for 1 <= i <= n

(1) type(Xi) == type(yi) and

(2) compare(x^^yi) succeeds, or

(3) typefx^ == "list" and X£ === y i succeeds

2.3 List Scanning

List scanning is Analogous to string scanning and provides its
advantages: an implicit subject to which operations apply and
implicit cursor movement. List scanning thus provides automatic
bookkeeping and a concise notation for list processing.

In list scanning, the value of the keyword slsubject is the
implicit subject of scanning. The value is established by an
assignment of the form

Slsubject := ["An,"B",nC",["D"]]

This expression sets the subject to the given list and also auto-
matically sets the keyword slcursor to 1, positioning it at the
beginning of the list. All subsequent list scanning operations
refer implicitly to these two global keywords until they are
reset.

The operation 1 ?? e operates in the manner of s ? e for
string scanning. This operation sets the value of Slsubject to 1
(automatically setting slcursor to 1) and then evaluates e. The
previous values of slsubject and Slcursor are saved before the
evaluation of e and restored afterwards. This feature allows
recursive and nested list scanning. Examples of its use are
given later.

2.4 List Sequencing

Sequencing through a list structure is an important operation.
There are two keywords that are generators operating implicitly
on slsubject which return successive elements starting at the
current value of slcursor and continuing to the right end of
Slsubject:

(1) selement, which generates successive elements of a
Slsubject.

(2) Slist, which generates successive elements of slsubject
that are lists.

These generators are most commonly used with the every con-
struct, which provides a means for operating on each element of a
list or on each list contained in ("pointed to" from) a list.
For example

Slsubject := ["A","B",nC","D",nEM]
every x := selement do write(x)

generates

A
B
C
D
E

In another example,

Slsubject := ["A",MB","C",[nDn],[ME",nF"]]
every x := Slist do write(slcursor)

generates the following

4
5

2.5 List Scanning Functions

The list scanning functions are similar to the string scanning
functions. The differences are a consequence of the special fea-
tures of lists. The list scanning functions apply exclusively to
the value of slsubject.

A typical list scanning function is lmove(n), which adds n to
the value of slcursor and returns as value the sublist of
Slsubject between the old and new values of Slcursor. If the
value of Slcursor would be out of the range of Slsubject, the
operation fails and slcursor is not changed. Assuming the value
of slsubject to be the list

[3, "A" ,"Bn, ["D'VE"]]

then the expression

ldump(lmove(selement))

prints the following list

listl —> [3,"A","BM]

Another scanning function is ltab(n), which sets slcursor
directly to n and returns as value the sublist between the old
and new values of Stlcursor. If the value of Slcursor would be

out of the range of slsubject, the operation fails and slcursor
is not changed. This function is similar to Isection(1,i,j), but
Isection requires starting and ending positions to be explicitly
specified and ltab assumes the current value of slcursor as a
starting position. As an example, consider

Slsubject := [3,"A","B",["D","E"]]
lmove(&element)
rest := ltab(O)

The value of rest after execution of this code is the list

[["DVE")]

The scanning function lupto(x) is a generator. The value re-
turned by lupto(x) is the position of the first occurrence of x
as an element in slsubject, starting at the current value of
Slcursor. Unlike the corresponding string scanning function,
upto(c), lupto(x) does not specify a set of objects, but only a
single value as a distinct element of slsubject. Since there may
be more than one occurrence of x in slsubject, there is more than
one possible value of the expression lupto(x). These values are
generated (in increasing sequence) as needed. For example,

Slsubject := ["A","B",nB",["D","EM]]
every write(lupto("B"))

prints

the positions of each "B" in slsubject.

The prefix operation !1 allows the user to specify a sublist
for scanning purposes. A comparison is made for the sublist
starting at the current value of slcursor. If the comparison is
succcessful, slcursor is advanced through the sublist and the
scanning operation succeeds; otherwise, it fails. Consider the
following code segment

1 := ["A",[HBM],"C","D",[nEn]]
1 ?? {

lmove(2)
if !["Cn,"D"] then ldump(Selement)
}~~

The scanning operation succeeds and prints

listl — > [["E"]]

2.6 The Marking Facility

Since list structures such as directed graphs are usually non-
linear and contain cycles, it is frequently necessary to have a
means of detecting which nodes have been processed or which parts
of the structure have been traversed. For this purpose, a list
marking facility is provided. Its features include two keywords,
smark and sunmark, which are used for marking a list and removing
a mark from a list, respectively. An auxiliary table provides
storage for pointers to marked lists and the values with which
the lists are marked. Since the marking facility maintains a
separate table of marked nodes, there is no physical alteration
of the structure being marked.

The auxiliary marking table is created by an assignment to
smarktable of the form

Smarktable := table

Smarktable is independent of slsubject and it survives any scan-
ning operation. A new table may be created at any time by anoth-
er assignment to smarktable. Once created, any valid operation
on tables may be applied to smarktable, such as conversion to an
array for sequential processing.

The keywords &mark and sunmark automatically reference the
current value of Selement. If selement is not a list, both smark
and sunmark references fail. selement can be marked with an ar-
bitrary value by assignment to smark. For example

d ?? {&list; Smark := 1}

marks the first list element in d with a value of 1. The value
assigned in marking can be changed by another assignment to smark
whenever the list is the value of selement. The keyword sunmark
removes a marked list and its associated value from smarktable,
but no assignment need be made. The sunmark expression fails if
selement is not marked. For example

every &list do
&unmarTT"fails ft
then write("unmarked node encountered")
else ldump(Selement)

This expression prints a diagnostic message if selement is not
marked. If selement is marked, it is unmarked and printed.

While smark and sunmark operate on tables, they provide an
accessing method not available with the direct use of tables.
Assignment of a value to &mark adds selement and the value to the
table, but referencing smark and sunmark both fail when selement
is not present and no table insertion is made.

3. Examples

This section contains a number of examples of the list scan-
ning facilities and typical programming techniques illustrating
its use.

3.1 Graph Construction and Representation

There are many ways of representing directed graphs for com-
puter processing. In one method of representation each node is
represented as a string of the form

label:value:nodel,node2,...,nodeN

where the label field contains a label for the node, the value
field contains the node's value, and the "node" field contains
zero or more references (arcs) to neighbors of the node [5] .
This concise notation is easy to process with Icon's string pro-
cessing capabilities.

The string representation of the graph given in Section 2.1
provides an example:

11:MA":12,13
12:"B":
13:"C":12,13

The labels 11, 12, and 13 are auxiliary to the graph itself and
simply provide names for the nodes.

One possible list representation for directed graphs consists
of a list for each node and two other lists: one for the node
labels and one for references to the nodes (arcs). Each node's
list contains the value as its first element and references to
neighbors in the remaining elements. The general form of the
list representation follows:

^labels [,,,,]

As an example of this representation, the following output re-
sults from ldump applied to this list representation of the graph
of Section 2.1:

listl —> [Iist2,list3]

Iist2 — > ["11","12","13"]

list3 —> [Iist4,list5,list6]

list4 --> ["A",list5,list6]

list5 — > ["B"]

list6 — > ["C",lists,list6]

Here list2 is the list of labels and list3 is the list of nodes.
The nodes themselves are list4, lists, and list6. The entire
graph is represented by listl, which points to the label list and
the node list. This representation of graphs will be assumed
throughout the remaining examples in Section 3.

The following procedure converts the the string representation
of a graph contained on a file to the list representation. The
procedure graph(f) uses two passes for the conversion. The pro-
cedure passl(f) reads the string data for each node and inserts
the various fields into their proper positions in the lists. The
procedure pass2(g) uses the list processing facility to convert
labels of a node's neighbors into actual references ("pointers")
to the nodes themselves.

The procedure graph(f) constructs a graph representation using lists
It reads data from file f of the form

label:value:nodel,node2,...,nodeN

procedure graph(f) local graph

if graph := passl(f) fails then fail # error in data
graph := pass2(graph)
return graph

end

procedure passl(f) local labels, lists, temp

while &subject := read(f) do {
isolate label field
if labels := labels III [tab(upto(":"))] then move(l)

else fail

isolate value field
if temp := [tab(upto(M:"))] then move(l) else fail

add all node fields
while temp := temp III [tab(upto(","))] do move(1)

handle last node reference
temp := temp Ml [tab(O)]
lists := lists ||| [temp]
}

return [labels,lists]
end

Note the use of list concatenation to construct a list an element
at a time.

The procedure pass2(g) uses list scanning to automatically
set Slsubject to the list of nodes, g[2], and to process
every arc of each node. Note that any slsubject in effect
outside the procedure is automatically saved at entrance.
Note also the use of lupto(label) to get the position
of the current value of label in the label list.

procedure pass2(g) local label

g[2] ?? { #isolate list of nodes
every selement ?? { # process every node

Ttab(2) # skip value of node

process every arc of each node, and replace label
by corresponding node

every label := fcelement do
Selement := g[2][g[l] ?? lupto(label)]

}
}

return
end

Note lupto(label) searches the list of labels, g[l], and returns
the index of the corresponding node in the list of nodes, g[2].

A useful property of a graph is the number of nodes and edges
it contains. The number of nodes in a graph g is simply
length(g[1]). Computing the number of edges is slightly more

10

complex. A count is made of all pointers to lists. These repre-
sent directed edges in the graph representation.

procedure edges(graph) local edges

edges := 0
graph[2] ?? {

count arcs for all nodes in graph

every fcelement ?? {
every &list do edges+

}

return edges
end

3.2 Access Path Determination

Determination of access paths is a common problem in manage-
ment of heap storage where variable-sized blocks are allocated.

In this example, the marking facility is used to mark all
nodes accessible from a given list. The algorithm is similar to
the one used by SN0B0L4 [61. The argument to procedure mark is
the list of pointers to nodes, referred to here as the basic
block. The procedure mark(block) recursively marks all lists in
the structure, starting rrov the basic block. It assumes there
is no pointer to the basic block so that it does not need to be
marked.

The procedure mark(block) uses the procedure mark2(block) to
mark all lists accessible from its argument, the basic block.
The procedure mark(block) is needed to set up smarktable.

procedure mark(block)

Smarktable := table
block ?? {

every slist do { # process every list in block
&mark : = T~~ # mark it
mark2(selement) # follow pointers
}

}
return smarktable

end

11

procedure mark2(block)
block ?? {

every slist do # process all lists
T? &mark Tails then { # if not marked

&mark := 1 # mark it
mark2(&element) # follow pointer recursively

}
return

end

}

3.3 Topological Sort of a Directed Graph

Following Knuth [7], a partial ordering of the elements of a
set G is a relation between the elements of G satisfying three
properties for arbitrary and not necessarily distinct elements x,
y, and z in the set. The symbol <= means "precedes or equals".

Property 1: if x <= y and y <= z, then x <= z.

Property 2: if x <= y and y <= x, then x = y.

Property 3: x <= x.

Topological sorting can be viewed as the process of finding a
linear ordering of objects in which a given partial order can be
embedded. Topological sorting is useful in the analysis of ac-
tivity networks where a large, complex project is represented as
a directed graph in which the nodes correspond to the goals in
the project and the edges correspond to activities. Some goals
must be completed before others are begun. The topological sort
gives an order in which these goals can be achieved.

In the following examples, a depth-first search is used to
topologically sort the nodes of a graph. The process involves
isolating nodes with no outgoing arcs to unprocessed nodes.

To contrast conventional list processing with the facilities
described here, two solutions follow. The first solution uses
arrays and tables with standard processing techniques. The sec-
ond solution uses list scanning.

12

Solution 1 - Topological Sort without List Scanning

global topsort, position, labeled

The procedure topsort handles the referencing environment for the
recursive procedure tsort
*
procedure topsort(graph) local nodes, index, x

nodes := length(graph[1])
labeled := table nodes # for labeled ancestors
topsort := array nodes # for sorted nodes
position := nodes + 1
x := graph[2] # retrieve pointer fields of all nodes

step through all nodes looking for nodes with no labeled ancestor

every index := 1 to nodes do
if labeled [xTTndex]] == ,,n then tsort (x [index])

return topsort
end

The procedure tsort uses a depth first recursive search to find a
node with no outgoing edges to unprocessed nodes

procedure tsort(v) local w, index

labeled[v] := 1 # mark current node
every index := 1 to length(v) do {

w := v[indexT~
if labeled [w] == ,,w then tsort (w) r —

insert v into topsort at a position before any descendant

topsort[position-1 }:= v

return
end

13

Solution 2 - Topological Sort with List Scanning

The procedure topsort handles the referencing environment for the
recursive procedure tsort

procedure topsort(graph)

graph[2] ?? { # set fclsubject to list of nodes

process all nodes in graph

every &list do
IT &mark Tails then { # any marked ancestor?

&mark ;="~T
&element ?? {topsort := tsort(topsort)}
}

}
return topsort

end

The procedure tsort uses a depth first recursive search to find a
node with no outgoing edges to unprocessed nodes.
Note that topsort is null at the first call? list concatenation
extends it automatically.

procedure tsort(1)

process all unmarked descendants of current slsubject

every &list do
ry siist ao
Tf &mark Tails then { &mark := 1

&element ?? {1 := tsort(l)}
}

insert Slsubject in place before any descendant

1 := [slsubject] | I I 1

return 1
end"

The topological sort with list scanning has the following ad-
vantages. The bookkeeping needed in Solution 1 is not present;
it is handled automatically by the system. Solution 2 is also
more readable and concise. The list processing system allows a
level of abstraction that is not present in Solution 1. The user
may think directly in terms of processing every list for some
property, and very nearly code that idea directly.

14

4. Conclusions

4.1 Current Status

A working version of the list scanning facility has been im-
plemented in a prototype of Icon based on SL5 [3]. As imple-
mented, there are only minor syntax differences from the full
Icon version presented in this paper. All the facilities are
consistent with the design of Icon, so there are no technical
problems in implementing them in the production version of Icon.

4.2 Evaluation

The list scanning facility provides a natural linguistic mech-
anism that stresses the essential details of a list manipulation
problem while suppressing most of the unnecessary details. It
allows the user to think and program directly in such terms as:
for every list perform an operation, process the current element,
and so on. It provides a readable and concise notation for prob-
lems involving list manipulation.

There are several problems with the list scanning facility in
its present form. Many of these problems are shared with Icon's
string scanning facility [4]. Typical of this class of problems
are the scope of &lsubject, the hazards of global variables for
communication, and the choice of a complete yet small set of
primitives. A better choice of primitives should result as expe-
rience is gained with list scanning.

The list scanning facility is potentially inefficient, since
all operations that return lists must allocate space. The seman-
tics of the operations require copying of the lists to avoid
erroneous side effects.

4.2 Suggested Extensions to the Facility

One natural direction for future development is a unified
scanning facility that is polymorphous, allowing strings and
lists in all operations. For example, xl |I x2 could represent
both list and string concatenation. Similarly, ^subject could be
either a string or a list and tab(n) could move the cursor posi-
tion regardless of the type of ssubject.

There are both advantages and disadvantages involved in this
approach. An advantage is the smaller vocabulary that would re-
sult from combination of list and string scanning facilities.
Only the generator &list and the keywords &mark, &unmark, and
smarktable associated with the marking facility are exclusively
list oriented, fcelement, applied to strings, could reference the
current character in &subject. All other list operations can be
unified with their string counterparts.

15

A unified vocabulary would provide many useful analogies that
would make the facility easier to learn and to use. The same
conceptual operation would be represented by the same operator,
regardless of the types of its operands, with the type-specific
operation selected internally.

Unification of string and list scanning also has some disad-
vantages. There would be a greater possibility for error, since
the exact nature of the generic operations would not be obvious
from context, although type declarations would alleviate this
problem to some extent. Similarly, in the absence of type decla-
rations, necessary run-time type checking would also introduce
overhead in the implementation of the generic operations.

A further problem is that there are operations that do not
have natural meanings for both types. For example, while tab(n)
for strings is an important operation, the equivalent operation
on lists, although included in the present list scanning facili-
ty, seems unnatural in many applications. Similarly, some string
scanning operations, such as upto(c), do not have complete gener-
alizations for lists (see Section 2.5).

There are many other possibilities for extending the facility.
For example, it would be convenient in some cases to have multi-
ple subjects. These could be used in simultaneous scanning of
two or more list structures. A serious disadvantage exists with
the use of multiple subjects, however, since any such facility
would reintroduce the complexity which the scanning facility is
designed to suppress.

Other facilities are needed to support more general list scan-
ning. For example, if &marktable is converted to an array, the
current list scanning facility cannot operate directly on it,
since the resulting array has two dimensions and is not a list as
defined in Section 2.1. An array sectioning operator to convert
a two-dimensional array to a set of linear arrays or lists would
be useful.

Another possible extension is the generalization of list scan-
ning to arrays of arbitrary dimensionality. This poses a diffi-
cult problem. Much of the advantage of list scanning is derived
from the simplicity inherent in implicit cursor movement. In a
linear array, that is, a list, the cursor is simply an integer
and cursor movement is effected by incrementing and decrementing
its value. In an array of n dimensions, a position is uniquely
specified by n coordinates (xl,x2,...,xn). The list scanning
functions can be generalized accordingly (for example,
tab(al,...,an)), but the result is complex and defeats the inher-
ent advantages of scanning: conciseness and simplicity.

An alternative approach is to use list scanning within arrays
of arbitrary dimensionality. A linear array may be specified in
an n-dimensional array by the intersection of n - 1 hyperplanes
orthogonal to the axes. For example, in the three-dimensional
array shown below, the two planes intersect to select a row that
is a linear array.

16

/
/

/

/

< /

— • •;
/

1
J ••-

/

—

/

Similarly, the comb
ifies a list that can
List scanning can then
gard for the other coo
and fixed. The specif
to &lsubject produces
the orthogonal directi
a keyword, such as &di
direction, selecting a
one.

ination of a position and di
be translated into slsubject
be carried on along this li
rdinates which may be consid
ication of a change in direc
new values of slsubject and
on. Assignment of selected
rection, could accomplish th
list that is orthogonal to

rection spec-
and &lcursor.
st without re-
ered implicit
tion orthogonal
fclcursor along
coordinates to
is change of
the current

This facility is not difficult to implement, but its utility
remains to be proved. For example, are there kinds of data that
can be organized as n-dimensional arrays which can be usefully
processed by this type of list scanning with its necessarily
"tunnel-vision" characteristics?

is any problem with the directions of future work, it
selection from a number of interesting, but basically

If there
lies in the s<
incompatible alternative extensions to the list scanning facili-
ty.

5. Acknowledgements

I am indebted to Ralph E. Griswold for many of the ideas that
appear in this report and for his constant encouragement. His
many critical readings of drafts of this paper and his helpful
comments are also appreciated.

17

References

1. Griswold, Ralph E., David R. Hanson, and John T. Korb. The
Icon Programming Language; a Preliminary Report. Technical
Report TR 78-3, Department of computer Science, The University of
Arizona, Tucson, Arizona. April 10, 1978.

2. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky.
The SNOBOL4 Programming Language, 2nd ed. Prentice-Hall, Engle-
wood Cliffs, New Jersey. 1971.

3. Griswold, Ralph E. and David R. Hanson. "An Overview of
SL5", SIGPLAN Notices, Vol. 12, No. 4 (April 1977), 40-50.

4. Griswold, Ralph E. An Alternative to the Concept of
"Pattern" in String Processing. Technical Report TR 78-4,
Department of Computer Science, The University of Arizona, Tuc-
son, Arizona. April 10, 1978.

5. Reingold, E. M., Nievergelt, J., and Deo, N. Combinatorial
Algorithms. Prentice-Hall, Englewood Cliffs, New Jersey. 1977.

6. Griswold, Ralph E. The Macro Implementation of SNOBOL4, A
Case Study in Machine-Independent Software Development. W. H.
Freeman, San Francisco. 197TI

7. Knuth, Donald E. The Art of Computer Programming, Vol. 1,
Fundamental Algorithms. Addison-Wesley, Reading, Mass. 1968.

18

