
Measuring the Performance and Behavior of the Icon
Programming Language*

Cary A. Coutant, Ralph E. Griswold,
and David R. Hanson

TR 80-20

ABSTRACT

The importance of the ability to measure the performance of programs written in high-
level languages is well known. Performance measurement enables users to locate and
correct program inefficiencies where automatic optimizations fail and provides a tool for
understanding program behavior. This paper describes performance measurement facilities
for the Icon programming language, and shows not only how these facilities provided
insight into program behavior, but also how they were used to improve the implementation.

August 1980

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grants MCS75-21757 and
MCS79-03890.

Measuring the Performance and Behavior of the Icon

Programming Language

1. Introduction

The importance of the ability to measure the performance of programs written in high-level languages is
well known [knu71]. The most obvious advantage of measurement facilities is the possibility of locating and
correcting inefficiencies. While compilers can perform many optimizations automatically, there are also many
situations in which user optimizations, based on measurement data, can improve program performance where
automatic techniques cannot [rip77]. Measurement also provides an experimental tool for analyzing and
understanding program behavior. In the case of complex algorithms whose performance is sensitive to data
load, analytic techniques may be impractical and measurement may be the only practical solution.

High-level languages, by their nature, present problems in understanding performance and behavior that
lower-level languages do not. A Fortran programmer, for example, can usually relate Fortran language con
structs to the machine code produced by the Fortran compiler and hence to the basic operations of the com
puter. Most conventional computers after all are "Fortran machines'". A SNOBOL4 or SETL programmer,
on the other hand, has no such ready mapping between the source language and the operations of the com
puter. This is, of course, the intent of such high-level languages: to provide language constructs suitable for
formulating solutions to complex problems that are unrelated to conventional computer architecture.

Despite the evident importance of being able to measure the performance of programs written in high-le\ el
languages, existing facilities typically are difficult to use and the results are frequently misleading. Major
shortcomings include inadequate or incomplete resolution, lack of appropriate charge-back information, and
excessive overhead.

Earlier work with the SNOBOL4 programming language [rip78] showed that measurement tools, as
expected, can aid the programmer of a high-level programming language in improving program performance.
They also can give insight into the behavior of complex language implementations, and. in fact, can lead to
improvements in implementations that cannot be achieved by other means.

The work with SNOBOL4, however, required adding instrumentation to a long finished implementation.
One of the conclusions of that work was that much better measurement tools would have been possible if their
design and implementation were done concomitant with the implementation of the language itself, as opposed
to being ad hoc appendages (as is typically the case).

This paper describes measurement tools developed for Icon, a recently developed high-level programming
language [gri79, gri80a]. Since the measurement tools in Icon were designed and implemented in conjunction
with the implementation of the language, they provided and opportunity to test the conclusions drawn from
the earlier work with SNOBOL4. In addition, Icon has a number of unusual features for which the measure
ment of program performance and behavior is, in itself, of interest.

Some of the instrumentation of Icon is of a conventional nature and is not described here. An example is
sampling with charge back to runtime routines. Such information is fairly easy to obtain and is typical of
measurements made by implementors at the stage where implementation improvements are being considered.
This paper, however, is concerned with less traditional approaches and techniques, particularly (I) measure
ment tools that give the user information on program behavior and performance directly related to the pro
gram text, and (2) instrumentation of the storage management system to aid in the development and improve
ment of its implementation.

The next section gives an overview of Icon and its implementation. Section 3 reviews the major issues in
the design and implementation of performance measurement tools for programming languages in general. In
Section 4. the instrumentation of Icon is described and examples of the more important measurement facilities
are given. Some typical experiences in the use of the measurement facilities are given in Section 5. Analysis of

the storage management system in Icon and its use to improve the implementation are the subjects of Section
6. In Section 7 results are summarized and conclusions drawn.

2. The Icon Programming Language and its Implementation

The characteristics of the programming language being measured strongly affect the nature of the measure
ment facilities. This is both inevitable and desirable—the user needs measurement results that are easily
related to the programming language being used.

The organization of the Icon system and the way that it is implemented affect program performance (but.
hopefully, not behavior). They also affect how instrumentation may be done and, to some extent, what is
measured. The aspects of the Icon language and its implementation that are relevant to these concerns are
described in the following sections.

2.1 Characteristics of the Icon Programming Language

Syntactically, Icon is an expression-based language in the style of Algol 68 and Bliss [wul71] and has most
of the traditional control structures. The syntax of a programming language has important effects, both in the
selection of data to be measured and in methods of presenting this data to the user. There is a substantial
difference in the approaches that can be taken between a language whose syntax is hierarchical, such as
SNOBOL4 [rip77b], and a language with a recursive syntax, such as Icon. This matter is discussed in more
detail in the next section.

The major semantic characteristics of Icon, as they affect program measurement, are:

(1) automatic, dynamic storage management;

(2) a variety of data types, including some unusual ones such as character sets and tables (in the style of
SNOBOL4);

(3) lack of type declarations, with automatic type checking and coercion in context; and

(4) goal-directed expression evaluation.

The first three characteristics of Icon are shared by other, longer established languages like SNOBOL4. Goal-
directed evaluation is more novel, especially since it is a general feature of Icon, instead of being limited to a
particular part of the language, as it is in SNOBOL4 pattern matching [gri80c].

Associated with goal-directed evaluation in Icon are conditional expressions that may succeed or fail (as in
SNOBOL4) and generators, which are expressions that may yield more than one value, if this is required to
achieve success (the "goal") in a larger, surrounding expression. Comparison operations are typical of condi
tional expressions. For example,

x > y

succeeds if x is greater than y and fails otherwise. In Icon, success and failure drive control structures, as in

if x > y then z := x else z := y

The concepts of success and failure, as opposed to Boolean values, are more general in that they are transmit
ted to enclosing expressions, so that any operation in Icon may fail (if, for example, one of its operands fails).

One of the most basic generators in Icon is alternation, which produces first one value and then another it
the first value does not lead to the success of the expression in which the alternation is contained. Alternation
is a binary operation, e1 | e2. An example of the use of alternation is

if (x | y) > u then z := x else x := u

which assigns the value of x to z if either x or y is greater than y; otherwise it assigns the value of u to x.

Another Icon generator is

i to j by k

which generates successive integer values from i to j , inclusive, using k as an increment. For example.

- 2

if x = (0 to 10 by 2) then z := 0

assigns zero to z if the value of x if an even number between zero and ten, inclusive.

There are many other generators in Icon, a number of which are associated with string processing. For
example

find(s1,s2)

returns the position in s2 at which s1 occurs as a substring of s2 (failing if there is no such position). Further
more, it generates additional positions, as needed, from left to right, in case s1 occurs as a substring of s2 in
more than one place. Thus

if find(s1,s2) > 10 then z := 10

assigns ten to z if si occurs as a substring of s2 at a position greater that ten.

One important control structure in Icon causes generators to produce all their values in sequence:

every e1 do e2

For each value produced by e1 , e2 is evaluated. For example

every i := find(s1 ,s2) do write(i)

prints all the'positions at which s1 occurs as a substring of s2.

A knowledge of all the features of Icon is not necessary to understand the examples given in this paper
most of the features used in the examples are obvious, at least in their general nature. For a more complete
description of Icon, see [gri79, gri80a, gri80c].

2.2 The Implementation of Icon

The Icon system is written in Ratfor [ker76, gri80b] and is designed to be portable. It has been imple
mented on a number of computers, including the DEC-IO, Cyber 175, IBM 370, and VAX-l I 780. Its instru
mentation, as part of the portable system is, itself, essentially portable. The results described in this paper were
obtained from the DEC-IO implementation.

The Icon system consists of two parts: a translator and a runtime system [han80a]. The translator converts
an Icon program into executable code. This translated program, in turn, consists primarily of calls to the run
time routines that carry out the language operations. Because of language features like runtime type checking
and coercion, very little actual computation is performed by the code produced by the translator. This imple
mentation strategy, which is used in a number of implementations of SNOBOL4 [dew77], is not actually inter
pretive, since the translated program is executable. However, the translated program is primarily a driver and
most program execution occurs in the runtime system. In fact, measurements of Icon programs indicate that
typically less than 5% of program execution time is spent in the translated program itself. (This figure.
obtained by traditional measurement methods, indicates that little improvement in program performance can
be expected from optimization of the translator output.)

A major component of the runtime system consists of storage management routines [han80b]. Because of
the importance of storage management in Icon and its affect on the overall performance of the language,
storage management is an important issue in itself. In fact. Icon programmers, like SNOBOL4 programmers,
are often forced to consider the utilization of storage, even though it is not part of the semantics of the
language, perse.

The Icon storage management system consists of allocation routines and regeneration (garbage collection)
routines. Allocation is a simple and fast process. Space is allocated contiguously within a region. A pointerto
the beginning of free space is incremented to provide the space specified in an allocation request. Storage
regeneration, which occurs when there is not enough space remaining to satisfy an allocation request, is a com
plicated and relatively slow process that involves distinguishing data that must be saved from data that may be
discarded, relocation of saved data, and so on.

There are four regions in which data is allocated, corresponding to the nature of the data: integer, string,
qualifier, and heap. Integers are allocated because the Fortran virtual machine model used by Icon does not
allow any spare bits to differentiate between words that contain integers and those that contain pointers and

-3

such. A level of indirectness is therefore needed to differentiate types. The string region contains character
data, while the qualifier region contains pointers into the string regions that identify specific strings. Miscel
laneous objects, such as lists, records, and character sets are allocated in the heap region.

Each region has its own allocation routine and regeneration routine. There are provisions for enlarging
regions and relocating adjacent regions if necessary.

3. Technical Problems in the Design of Measurement Facilities

In general, there are a number of problems related to the design and implementation of programming
language measurement facilities:

(1) methods of measurement,

(2) selection of activities to be measured,

(3) charge back of activity to program function,

(4) instrumentation,

(5) space and time artifact, and

(6) presentation of the results.

3.1 Measurement Methods

There are several methods of measurement that are commonly used. One is periodic sampling, in which
the measurement facilities are activated by external interrupts from a system clock. When an interrupt occurs,
measurement routines gain control and generate measurement data such as the location where the interrupt
occurred. If enough samples are taken, the measurement data resembles randomly selected data and. on the
average, gives an approximation to the actual behavior of the program. For example, average times for the
execution of an operation may be approximated from the percentage of samples in which that operation is
active. This technique is the standard way of generating program histograms and similar data [ing72. jas72].

There are several problems with periodic sampling. The clocks available to the user typically lack
resolution—a 60-Hz frequency is common. With such a low sampling rate, a program must run for a long
period of time in order to get enough samples to give a meaningful picture of program activity. Furthermore,
for fast CPUs such long periods of program execution may be inordinately expensive or may require artificial
techniques (such as multiple runs) to get enough samples to measure real programs.

In some cases, other uses of the clock may bias or invalidate the results of sampling. For example, if the
operating system and a measurement routine use the same clock, there may be effects that violate the underK -
ing assumptions on which the interpretation of measurement data are based. For example, on the DEC-IO
running under TOPS-10, the clock generally available for measurement is also used by the system for schedul
ing. Under heavy load conditions, the two uses tend to interfere, resulting in "drift". For example, a program
running under heavy load conditions may be timed as taking as much as 20% longer than when run under light
load conditions. Such problems not only reduce the accuracy of and confidence in sampling measurements,
but may make comparisons between runs virtually useless. This problem is strongly dependent on hardware
and operating system characteristics.

The other commonly used method of measurement is event monitoring. In this technique, selected pro
gram activities trigger measurement routines. For example, a garbage collection might cause a measurement
routine to be called. Thus data can be gathered on specific events or on classes of activities. This method is
strongly influenced by the properties of the language being measured and by the characteristics of its imple
mentation.

3.2 Selection of Activities for Measurement

The selection of activities to be measured and the actual data to be produced is an interesting and complex
problem. At one extreme, specific aspects of program activity can be selected for measurement. For example,
storage allocation might be measured as an item of particular interest. At the other extreme, a measurement
facility might attempt to provide data on all aspects of program behavior. While there are clearly limitations
to this approach, an approximation to it is appealing as a starting point, especially with the measurement of

high-level languages, since a priori assumptions about the most important aspects of program behavior are
suspect, given the present state of knowledge.

One of the first problems to resolve is the viewpoint from which measurements are to betaken. Measure
ment may be at the source-language level, in terms of the syntax and semantics of a program: elementary
operations, statements, blocks, procedures, and so forth. On the other hand, measurement may be in terms of
categories of program behavior, such as input/output, storage allocation, structure referencing, and so forth.
Progressing farther from the source language, measurement may be in terms of the specific implementation
characteristics, such as interpretive overhead and garbage collection for languages like LISP and SNOBOL4.
For the implementor, information on activity of the translated program or on utilization of runtime routines
may be of interest.

Determination must be made as to what data are to be produced when program activity is sampled or when
an event occurs. For the most complete measurement, a record of relevant data, perhaps including the time,
may be produced for each sample or event. For any significant amount of measurement, such records cannot
be kept in memory and must be written to external storage, typically a disk file. At the other extreme, there
are summaries, such as the total counts for particular activities. Such data usually can be kept in memory.

3.3 Charge Back

Charge back is concerned with the attribution of measurement data to components of a program. For
example, the fact that a particular routine is called frequently may not as interesting as are the program activi
ties that cause this routine to be called. As with the selection of activities to be measured, charge back may be
related to the hierarchical structure of the program itself, to categories of behavior, or to implementation
specifics.

3.4 Instrumentation

Instrumentation, the means by which measurement data is obtained, is an implementation matter and of
less direct interest here than problems related to the selection and interpretation of the data. Furthermore,
instrumentation varies widely with the details of the implementation being measured, as well as with hardware
and operating system architecture.

There are, however, two significantly different types of instrumentation: external and internal. External
instrumentation is that which does not require modification of the system being instrumented. As such, it is
usually the most tractable. External instrumentation, while generally easier to implement, often cannot pro
vide the desired data. Internal instrumentation, consisting of modifications to the implementation itself, usu
ally requires considerable knowledge of the system being instrumented. Internal instrumentation is. of course.
much easier to include as part of the original language implementation than after the implementation is com
plete. In fact, consideration of the desired characteristics of internal instrumentation may allow instrumenta
tion to be accommodated easily in the early stages of language implementation, while such instrumentation
may be impractical if provisions are not made for it in advance.

The type of instrumentation depends on the type of measurement. Periodic sampling can generally be
done primarily by external instrumentation, while event monitoring almost always requires internal instru
mentation. Most instrumentations have both internal and external components, although the former may be
minor. For example, periodic sampling may, in itself, only require an external interrupt routine. Interpreta
tion of the data, especially charge back, may require some internal modification. For example, relating the
value of the program counter to the appropriate program activity may require insertion of entry points not
present in the original implementation. Similarly, if measurement data is kept in memory rather than being
written to a file, some modifications to permit communication of locations may be desirable if not actually
essential.

3.5 Measurement Artifact

The artifact of measurement—additional computation time, memory space, and external storage required
by the measurement process—is an important matter. For performance measurement to be useful, its artifact
must be tolerable.

- 5 -

Computational artifact can generally be kept within acceptable ranges. Some forms of measurement can
be accomplished with less than a 10% increase in program running time, although 30% is more typical.

Memory space artifact similarly is usually in manageable ranges, unless the processor is already using most
of the memory available. Artifacts of 5% to 20% are typical, depending on the nature of the instrumentation.

External storage requirements often pose the most serious problem, especially when "historical" measure
ment data is needed. If the measurement facility tends toward the "complete", it may be necessary to write
dozens or even hundreds of words for each sample or event measured. Such measurement data can quickly get
out of hand.

Behavioral artifact also deserves consideration. In some systems, notably those with dynamic storage
management systems, performance may be sensitive to the environment. A measurement system may. unin
tentionally, affect the system it is measuring. For example, a measurement tool that uses significant amounts
of memory may produce very misleading results for implementations that use dynamic memory allocation
within a fixed region. This problem may be subtle and it usually requires analytical treatment and clear under
standing of the implementation and its sensitivity to, for example, the amount of memory available to it.

3.6 Presentation of Measurement Results

Perhaps the most challenging aspect of the design and implementation of performance measurement facili
ties is the presentation of the results in a manner that is meaningful and useful to the user. The commonest
measurement tools simply present a histogram of program location counters, displayed against a program load
map [knu7I]. While such displays may be of some use in lower-level languages, such as Fortran. the\ are
essentially useless in a higher-level language such as Icon.

One of the most basic difficulties in presentation is selection. Most measurement facilities have the capa
bility of generating enormous amounts of data. Systems that generate historical records are the most prone to
this problem. A programmer, however, needs to relate measurement data to the corresponding program in u
meaningful way. Moreover, in order to gain insight and isolate problem areas, the relevant aspects of the
measurement data must be sharply focused and properly related to the source program.

It is typical for the display of measurement data to be produced by post-processing programs. This pro
vides for flexibility—a particularly important commodity—that is not feasible to incorporate in the instru
mentation of a processor itself.

Post-processing artifact cannot be ignored. If the amount of measurement data is large and post process
ing is complex, the processing time easily may exceed the time required to obtain the data in the first place. It
is not only the cost of this processing that is important—the user of the program may be discouraged from
using a measurement tool that significantly adds to the program development effort.

4. The Instrumentation and Measurement of Icon

The novel aspects of Icon and lack of experience with some techniques used in its implementation
motivated extensive instrumentation to provide a variety of measurement tools.

4.1 Choice of Measurement Tools

One problem immediately encountered was relating measurement data to the syntax of Icon. In
SNOBOL4, statements provide clearly delimited syntactic units that are also a natural semantic units. In Icon,
expressions may be nested to arbitrary depths and, unlike SNOBOL4, there is no fixed hierarchy of program
structure except the procedure.

The decision was made, therefore, to associate measurement with elementary "tokens"—literals, identil-
iers. function calls, operators, structure references, and so on [cou79a, cou79b]. For example, the following
expressions consist of tokens beginning at the places marked by arrows:

- 6 -

sum := sum + 1
t t t t t
line := process(read(f))
t t t tt t
count [n] = 0
t ft t t

The call of a programmer-defined procedure, such as process(x), involves both runtime access of the pro
cedure name and its invocation. Hence there is a token both for the procedure name and for the left
parenthesis. For built-in functions, like read(f), there is only a single token.

In order to reduce the measurement artifact, most of measurement tools for Icon were designed around tal
lying rather than the production of historical records. Three kinds of data are obtained for the tokens in a pro
gram:

(1) Activity—counting each time a token is evaluated;

(2) Sampling—noting at periodic intervals which token is currently being evaluated; and

(3) Allocation—keeping track of the amount of storage allocated by each token (not all types of tokens
cause allocation).

The results of such measurements are simply totals: how many times each token is evaluated, how often
each token is sampled (hence an approximation to the time spent evaluating each token), or how many words
of storage are allocated by each token.

The major advantages of this scheme are that (1) measurement data can be kept in memory during execu
tion and written out at program termination, rather than continually writing during program execution, and
(2) the amount of data is small compared to that required for historical records. The artifact is thus reduced in
all ways: running time, disk storage, and post processing. The penalty, of course, is that less information is
obtained by counting than with historical records. The data is continually integrated, and the details of pro
gram behavior over the course of program execution are lost. The choice of counting constituted an experi
ment to determine if that technique would prove sufficiently useful in practice to compensate for the loss of
information. Conclusions concerning the usefulness of tallying are given in Section 7.

4.2 Instrumentation Techniques

To support the various kinds of counting, the Icon translator was modified to generate, conditionally,
extra code to post token numbers and save and restore them as necessary during operations that change pro
gram context [cou79a]. As a byproduct of translation, a file relating token numbers to their position in the
source program is produced. This file is used by post-processing programs that produce displays of measure
ment data. Counts are kept in internal arrays during execution—one each for token activity, token sampling,
and allocation. The sizes of these arrays are proportional to the number of tokens in the program. At the end
of program execution, these arrays are written to files that are used by post processing programs.

Storage management has a significant effect on sampling. M ost of the storage management time is usually
associated with reclamation (garbage collection), not allocation. On the other hand, reclamation may be
caused by any allocation request, regardless of the amount of storage required. This tends to distort time dis
tributions, since a token that triggers reclamation may be charged for the time needed to reclaim the space
allocated by many other tokens. To compensate for this effect, samples that occur during reclamation are not
charged directly to any token, but rather are distributed to all tokens that cause allocation in proportion to the
amount of storage they allocate. This technique gives only a first approximation to accurate charge back,
since storage management is a complex process. It is, however, generally within the accuracy that is obtain
able with low-frequency sampling.

4.3 Displays of Measurement Data

Measurement data is formatted by post processing programs to put it in a form that can be easily analyzed
by the user. There are two basic forms of displays: counts and averages.

Counts simply give the total count for the program tokens—activity, sampling, or allocation. Averages are
more useful for samples and the number of words allocated per token.

Figure 1 shows a portion of a typical output from counting the activity of tokens. Note that the leftmost
digit of each value is aligned under the leftmost character of the token. Values are written on successive lines
where there is inadequate space between tokens to place the values on the same line.

every i := f ind("ab", line) do write(i)
100 100 6850 100 100 6750 6750

6750 6750

Figure 1. An Example of Token Counting.

Counts show the number of times each token is activated. For example, the every loop in the example above
was executed 100 times. A total of 6750 positions of the string "ab" were found in line. The additional 100
activations of find occurred for each of the 100 times no substring was found. Note that in goal-directed
evaluation, the generator is repeatedly activated without re-evaluating the arguments.

Program activity gives insight into program behavior such as the number of times a loop is entered. Token
activity may also show interesting characteristics of familiar computations. Figure 2 shows the activity result
ing from the computation of Ackerman's function. The call that produced these results was acker(3,5).

procedure acker(n,m)
if n = 0 then return m + 1
42438 42438 21096 21096

42438 21096
42438 21096

if m = 0 then return acker(n - 1 , 1)
21342 21342 247 247 247 247

21342 247 247
21342 247

return acker(n - 1,acker(n,m - 1))
2I095 2I095 2I095 2I095 2I095 2I095

2I095 21095
2I095 2I095

2I095 21095

end

Figure 2. Computation of Ackerman's Function.

An example of the number of words allocated per token is shown in Figure 3. This procedure constructs
"meandering strings", strings that contain all substrings of a given length from a specified alphabet of charac
ters [cou80, gim70].

For sampling, the average values are adjusted to correspond to milliseconds of residency. An example.
using the substring location code given above, is shown in Figure 4.

5. Experience with I'se of the Measurement Facilities

The use of periodic sampling to locate "hot spots" is well established [knu71]. In high-level programming
languages, such measurements are less meaningful than they are in lower-level languages, since complex
processes may be associated with apparently simple language constructions and it is often misleading to
assume that the performance of a program in a high-level language may be improved by concentration of the
areas of the program where most of the time is spent. It is often difficult to determine if such "hot spots" arc
due to inefficient coding, unusual amounts of storage allocation (possibly indicating inappropriate data
representation), poor algorithms, or a combination of causes. The following examples, taken from real experi
ences using the various performance measurement tools described in this paper, illustrate the range of possibil
ities.

procedure meander(alpha,n)
local s, t, i, c, k
i := k := size(alpha)
t := 1-n

l.OO

s := repl(alpha[1],n-1)
2.75 2.00

whi le c := alphafi] do {
1.99

if find(section(s,t) || c, s)
0.28 2.70

2.00

then i - else {s := s || c; i := k}
34.8

}
return s

end

Figure 3. An Example of Average Allocation.

every i := f ind("ab", l ine) do write(i)
I6.5 0.03 0.I2 0.06

0.76 0.20

Figure 4. An Example of Average Time.

5.1 Automatic Type Coercion

One potential inefficiency in Icon relates to automatic type coercion. For the Icon programmer, not hav
ing to worry about whether a value is a string or a character set, for example, is a convenience—but a poten
tially expensive one. If a value happens to be a character set, but it is used in an operation that requires a
string, the coercion is performed automatically and the program works the same way it would if the value were
a string. The cost may be high, indeed, if the coercion is performed in an inner loop. For each iteration of the
loop, there is both the cost of the coercion itself and the space allocated for the string. Periodic sampling mav
show the loop to be time consuming but not show the cause (if the operation itself is a high-level one. the pro
grammer may assume that the operation itself is consuming the time). Measurement of average storage alloca
tion, however, makes the problem clear.

Consider the two lines of code in an inner loop shown in Figure 5.

write(map(line, Icons,ucons))
18.5 7.25 7.25

write(map(line,ucons,lcons))
!8.5 7.25 7.25

Figure 5. Average Storage Allocation Showing Coercion.

Here Icons and ucons are character sets containing the upper- and lower-case consonants, respectively. The
function map, however, requires its arguments to be strings. The allocation measurement shows the problem
clearly, since there is allocation associated with arguments. This section of code runs nearly four times faster it
Icons and ucons are converted to strings outside the loop.

Examples such as this have led to the development of coding caveats [cou80] for Icon programmers. Such
examples also suggest possible heuristics for the implementation and even potential changes in the design of
the language.

-9

5.2 Ordering Program Components

In some programs, the order in which tests are made or in which processing is done is optional, but it may
affect program performance. The best order may be impossible to determine analytically if it depends on data.
Here token counting proves useful.

An example occurred in a typesetting program in which formatting codes in the document being processed
select processing functions through a very large case expression. In Icon, case selectors are examined linearly.
Originally, the case selectors were arranged alphabetically (a logical choice and useful for program develop
ment). Unfortunately, alphabetical order was far from optimal in terms of case selection and the problem was
obvious, even if the optimal order was not.

One method of obtaining a more nearly optimal order would be to analyze existing documents. This
would require writing an auxiliary program to do the analysis, and in some situations might have been unsatis
factory, since the documents might not be accessible to the author of the typesetting program. Token count
ing, however, provided the data as the program was actually used—and showed unexpectedly frequent use of
some formatting codes. A reordering of the case selectors to reflect this empirical data resulted in an 8fV
improvement in overall program performance.

5.3 Coding Errors in "Correct" Programs

Some kinds of errors in coding may not affect program output, but they may, nonetheless, be sources of
inefficiency. An example occurred in the division of the large case expression described in the example above
into a number of smaller case expressions to accommodate the limitations of a particular Icon translator.
After the modification, the program worked properly. An analysis of token counts, however, immediately
pinpointed an error in the way the division into smaller case expressions was done. Instead of exiting a case
expression once a clause in it was selected, the program continued on through all the subsequent case expres
sions. Of course, no clause was selected in these subsequent case expressions and the program was "correct".
However, considerable time was spent needlessly searching for subsequent matches.

Correcting the coding mistake was worthwhile—because of the very large number of case selectors, overall
program performance improved nearly 10% when the mistake was rectified.

It is worth noting that, since the program produced correct output, the coding error would never have been
located due to program malfunction. Neither would periodic sampling have shown the problem. The problem
was easily identified because of an exact match in token counts at the head of each of the case expressions.

5.4 Algorithm Design

Whether an algorithm is "good" or "bad" often depends on the data it processes. This was shown dramati
cally in a program for determining transitive closure of a graph. In this program, graph nodes are represented
by single characters and arcs by character pairs. For example, AB represents an arc from node A to node B. A
graph is then represented by a list of two items, one consisting of the nodes and the other consisting of a string
of its arcs. One frequently used procedure, successors(n,g), determines the set of successors of a set of nodes
n in graph g. There are basically two approaches to computing the required set:

(1) Examine every position in which a member of n occurs to determine if it is odd; or

(2) Examine every odd position to determine if it is a member of the set n.

Method I was the one used when the program was initially written. On examination of token activity, it was
immediately obvious that this was the wrong choice. When method 2 was selected, the entire program ran two
to five times faster, depending on the graph! Figures 6 and 7 clearly show why.

It might be argued that method 2 should have been used in the first place. While that may be true, it is
nonetheless a fact that the program was written using method I and the source of inefficiency was discovered
by examining token activity. Furthermore, information from token sampling, as opposed to token activity, is
open to different interpretations (such as possible disparities in timings for different operations). It is also
interesting to note that the most efficient choice actually depends on the data: for graphs that are very dense,
method 1 is more efficient, while for sparse graphs, method 2 is more efficient.

- 10

procedure successors(n,g)
local i, arcs, t
arcs := g[2]
67 67 67

67
67

n := cset(n)
67 67 67

67

every i := 1 to size(arcs) by 2 do
67 67 67 67 67 67

ll792 11792
11859

if upto(n,arcs[i]) then t := 11| arcs[i+1]
H792 11792 I 1792 I7l I7I I7I I7l

I 1792 II792 I7I I7l I7l I7I
II792 I7I

I7l

return cset(t)
67 67 67

end

Figure 6. Token Counts for Method I.

procedure successors(n,g)
local i,arcs,t
arcs := g [2]
67 67 67

67
67

n := cset(n)
67 67 67

67

every i := upto(n,arcs) do
67 67 I I90 67 I I23

1123 67

if mod(i,2) = 1 then t := 11| arcs[i+1]
I I23 1123 1123 171 171 171 171

1123 1123 1123 171 171 171
171 171

171

return cset(t)
67 67 67

end

Figure 7. Token Counts for Method 2.

6. Instrumentation of Storage Management in Icon

Earlier work on the measurement of the storage management system of an implementation of SNOBOL4
[rip78] indicated that performance analysis could give new insights and suggest improvements, even to well-
established systems. In particular, it was discovered that some heuristics, which appeared to be sound in the
abstract, either did little to improve performance or actually degraded it. Similarly, measurement suggested
new heuristics that produced significant performance improvements. That work produced the following
recommendations.

(1) A basically simple strategy for storage management should be chosen for the initial implementa
tion;

(2) a measurement facility should be incorporated in the design from the beginning; and

(3) using this measurement facility, sources of inefficiency should be sought and heuristics or more
complex strategies should be added only as there is evidence of the need for them and their utility in
practice.

6.1 Measurement of Storage Management

Icon provided an ideal opportunity to test these recommendations. The Icon storage management system
had to support allocations of many kinds of objects for a language with which experience was lacking. The
storage requirements of Icon were sufficiently different from those of SNOBOL4 that details of earlier work
were not directly applicable. Finally, the implementation of storage management in Icon could be modified
easily if the results of measurement suggested changes.

There were two specific a priori concerns about storage management in Icon. One was the issue of allocat
ing integers. Integers are also allocated in the MACRO SPITBOL implementation of SNOBOL4 [dew77].
While the allocation of integers appears to have no significant impact on the overall performance of MACRO
SPITBOL, there is no quantitative data to verify this [shi79].

Another issue was "thrashing', which may occur when the available space in a region is small compared to
the amount needed. In this situation, an allocation request may result in a regeneration of storage with very
little excess space being recovered beyond the amount that was requested. As a result, storage regenerations
may occur very frequently.

Following the recommendations given above, the storage management system made no a priori provision
for handling these two issues. Rather, instrumentation was added and measurements were performed.

This instrumentation simply accumulates, in memory, the following information for each storage region:

(1) the number of allocation requests;

(2) the number of elements allocated (the number of words per element is machine dependent and
varies from region to region);

(3) the number of storage regenerations;

(4) the time, in milliseconds, required for storage regeneration;

(5) the number of times a region must be expanded;

(6) the time, in milliseconds, required for expansion; and

(7) the final size of each region.

The accumulated information is printed when program execution is completed. Figure 8 shows a typical sum
mary of storage management activity.

CPU time: 396600 ms

Allocations
Elements alloc.
Regenerations
Elements recov.
Regen. time
Expansions
Expan. time
Final size

String
60008
2160222
3076
2159352
16559
0
0
999

Qual.
60011
60011
3076
59982
11637
0
0
200

Int.
10002
9901
102
9894
1126
0
0
200

Heap
21
653
0
0
0
0
0
653

Total

29322

Figure 8. Summary of Storage Management Activity.

The CPU time is the total time required for program execution, which may, for example, be compared with
the time required for storage regenerations.

The time required for allocation is not given, since it is so small that the measurement artifact would be
unacceptably large. Allocation time, however, can be computed from analysis of the code in the allocation
routines and the number and amount of allocation shown in the summary. Regeneration time, however,
depends very much on the history of program execution and the configuration of memory when regeneration
occurs and is not amenable to analytic approaches.

The summary in Figure 8 is for a program that does a great deal of string processing, but in which most of
the data is of a transient nature. As indicated, storage regeneration reclaims space for continued processing
without the need for expanding the storage regions. To illustrate how much storage management may vary
from program to program, storage activity for the computation of Ackerman's function is shown in Figure 9.

CPU time: 42906 ms

Allocations
Elements alloc.
Regenerations
Elements recov.
Regen. time
Expansions
Expan. time
Final size

String
5
139
0
0
0
0
0
999

Qual.
8
8
0
0
0
0
0
200

Int.
63537
11954
73
11649
2041
1
56
416

He<
16
609
0
0
0
0
0
609

Total

2041

56

Figure 9. Summary of Storage Management for Ackerman's Function.

6.2 Results

Measurement confirmed that integer allocation is not a major source of inefficiency in most programs
(although it does degrade performance in some kinds of programs). Measurement indicated some impro\e-
ment could be made by special casing commonly occurring integers and effectively pre-allocating them per
manently. This heuristic helps to reduce the number of integer allocations for loop indices, for example. The
improvement ranged from 5% for most programs to 30% for programs that allocated many transient integers.
The implementation of this heuristic was directed by experiment and measurement. It was found that beyond
a certain point, little performance improvement was obtained and the permanent allocation of additional
integers was not justified. At the present time, the integers 0 through 100 are pre-allocated.

The most dramatic improvement was obtained by adding a dynamic "breathing room" heuristic [han80b].
This heuristic allows storage areas to adapt their expansion requirements to the demands that are experienced
by the running program. By performing measurements and experimenting with heuristics, an average
improvement of over 50% in the overall running speed of Icon programs was obtained as a result, and some
programs run five times faster than before. While some improvement was expected, the magnitude of the
effect was a surprise.

7. Conclusions

Few of the instrumentation techniques used in Icon are novel. It is unlikely, however, that the instrumen
tation for counting could have been incorporated if it had not been anticipated in the early stages of the imple
mentation of Icon. This is an example of the value of incorporating measurement facilities as part of the
implementation design. Phrased another way, a measurement system added onto an existing implementation
of Icon would probably have had quite different characteristics, dictated by the problems of modifying a com
pleted implementation.

13-

7.1 Usefulness of Measurement Tools to Programmers

Experience has shown that performance measurement facilities for high-level programming languages can
be useful in aiding the programmer to improve the efficiency of programs, to locate errors, and to understand
program behavior. Information gained from studying measurement data may lead to better programming
techniques in general, especially in the use of language features that have no correspondence in conventional
machine architecture. Algorithmic inefficiencies, especially in cases where performance depends on data, can
also be detected by use of performance measurement. Similarly, data representation can be improved by
experiments in situations where analysis is intractable.

Tallying has proved remarkably useful. The low artifact makes the tools easy and economical to use and
the information obtained is adequate for most purposes. Historical records have an inherent appeal because
they have the potential for providing great detail and also for showing the way performance and behavior may
change during the time a program executes. However, experience with the use of the tools described here,
compared with those developed earlier for SNOBOL4 [rip77b, rip78] suggests that simplicity and economy arc
more desirable, in actual practice, than completeness and detail.

Measurement of program activity at the token level proved unexpectedly useful, both in locating perfor
mance problems and in understanding program behavior. Much of the usefulness of activity measurement
stems from its exact nature. While timings often admit of numerous interpretations, counts of activations do
not. Furthermore, program activity, reflected in such counting, whether at the token level or some other, is
relevant in almost all programming languages and should be given greater attention.

A relatively unexplored area in Icon is the measurement of token activity to illuminate the processes that
go on during goal-directed evaluation. The combinatorial aspects of generators deserve study, especially as
they relate to the relative efficiency or inefficiency of searches. Icon contains the potential hazard of allowing
concise expression through goal-directed evaluation without exposing potential combinatorial problems that
would be self-evident in more traditional loop-oriented paradigms. On the other hand, goal-directed evalua
tion often allows more efficient computation by internalizing loops. A simple illustration is given by the
activity shown in Figure I.

Despite the success of the measurement tools, there are limitations to the usefulness of performance meas
urement in Icon as well as in other high-level programming languages. The most fundamental problem is the
inherent conflict between measurement and the motivation for high-level languages. In a lower-level language
such as Fortran, a programmer can readily relate measurement data to the program and see direct ways ot
making improvements. One of the motivations for high-level languages, however, is to get closer to the prob
lem domain and farther from the constraints of conventional computer architecture. Program constructs are
phrased in terms the programmer can relate to the problem to be solved and not in terms of machine instruc
tions. As a result, measurement data related to the machine on which a high-level program is run may be
essentially meaningless to the programmer. On the other hand, if the measurement data are related to the
high-level constructs, it is hard for the programmer to detect inefficiencies or to see how to correct them.

In fact, the user of a high-level language may need to have an expert understanding of its implementation
in order to user measurement data to its best advantage. This, however, is in conflict with the motivation for
high-level languages—that the programmer not have to know about what is going on, but rather may concen
trate on the problem domain and the concepts appropriate to it. This conflict appears fundamental and
unreconcilable.

7.2 Usefulness of Measurement Tools to Implementors

The implementors of high-level programming languages may be able to make more direct use of such facil
ities than the programmers that use the languages. In a number of instances program measurement has
highlighted an implementation problem—either a bug or an inefficiency. Whether or not it should be the case,
it is clear that implementors of high-level languages rely on conventional wisdom, experience (perhaps imper
fectly verified), and on intuition, especially in the design of systems to support high-level processes such as
automatic storage management. Instrumentation and measurement brings the real situation to light and
reduces conjecture to fact. There appears to be no better method to dispel myths in this complex and difficult
area.

-14-

Experience with Icon has highlighted the importance of incorporating measurement facilities in the initial
design of an implementation, rather than waiting until the implementation is complete. In the first place, it is
usually very difficult to add measurement facilities to a completed implementation. Even if they can be added,
it may be necessary to make compromises that would not have been necessary if they had been considered in
the design.

Since a major benefit of performance measurement of high-level languages appears to be in improving the
quality of implementations, measurement tools and their instrumentation should be an integral part of the
design and implementation and should be used while there is still time to modify the implementation.

Acknowledgements

Jack Davidson, Tim Korb, and Steve Wampler all made contributions to the work described in this paper.

References

[cou79a]
C. A. Coutant and R. E. Griswold, Instrumenting Icon for Performance Measurement, Tech. Rep. 79-9.
Univ. Arizona, Tucson, AZ, May 1979.

[cou79b]
C. A. Coutant and R. E. Griswold, Tools for the Measurement of Icon Programs, Tech. Rep. 79 10. Univ.
Arizona, Tucson, AZ, May 1979.

[cou80]
C. A. Coutant, R. E. Griswold, and S. B. Wampler, Reference Manual for the Icon Programming
Language; Version3, Tech. Rep. 80-2, Univ. Arizona, Tucson, AZ, May 1980.

[dew77]
R. B. K. Dewar and A. P. McCann, "MACRO SPITBOL— a SNOBOL4 Compiler," Software—Practice
and Experience, vol. 7, pp. 95-1 13, J an.-Feb. 1977.

[knu71]
D. E. Knuth, "An empirical study of Fortran programs," Software—Practice and Experience, vol. 1. pp.
105-133, Apr.-June 1971.

[gim70]
J. F. Gimpel and W. Keister, Minimal Meandering Strings, Tech. Rep., Bell Labs.. Holmdel. N.I. July
1970.

[gri79]
R. E. Griswold, D. R. Hanson, and J. T. Korb, "The Icon programming language: an overview."
SIGPLAN Notices, vol. 14, pp. 18-31, Apr. 1979.

[gri80a]
R. E. Griswold and D. R. Hanson, Reference Manual for the Icon Programming Language, Tech. Rep.
79-1 a, Univ. Arizona,Tucson, AZ, Feb. 1980.

[gri80b]
R. E. Griswold. D. R. Hanson, and S. B. Wampler, Transporting the Icon Programming Language. Tech.
Rep. 79-2b, Univ. Arizona, Tucson, AZ, Feb. 1980.

[gri80c]
R. E. Griswold and D. R. Hanson, "An alternative to the use of patterns in string processing."' ACM
Trans. Programming Languages and Systems, vol. 2, pp. 153-172, Apr. 1980.

[han80a]
D. R. Hanson, Icon Implementation Notes, Tech. Rep. 79-12b, Univ. Arizona, Tucson, AZ, Feb. 1980.

[han80b]
D. R. Hanson, "A portable storage management system for the Icon programming language," Software—
Practice and Experience, vol. 10, pp. 489-500, June 1980.

15-

[ing72]
D. Ingalls, "The execution time profile as a measurement tool," in Design and Optimization of Compilers,
R. Rustin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 107-128.

[ias72]
S. Jasik, "Monitoring program execution on the CDC 6000 series machines," in Design and Optimization
of Compilers, R. Rustin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 129-136.

[ker76]
B. W. Kernighan and P. L. Plauger, Software Tools, Reading, MA: Addison-Wesley, 1976.

[rip77a]
G. D. Ripley and G. R. Owens, Code Segment Optimization of Fortran Programs, Tech. Rep., Univ.
Arizona, Tucson, AZ, 1977.

[riP77b]
G. D. Ripley, "Program perspectives: a relational representation of measurement data," IEEE Trans.
Software Eng., vol. SE-3, pp. 296-300, July 1977.

[rip78]
G. D. Ripley, R. E. Griswold, and D. R. Hanson, "Performance measurement of storage management in
an implementation of SNOBOL4," IEEE Trans. Software Eng., vol. SE-4, pp. 130-137, Mar. 1978.

[shi79]
D. Shields, private communication, 1979.

[wul71]
W. A. Wulf, D. B. Russell, and A. N. Habermann, "BLISS: a language for systems programming."
Comm. ACM, vol. 14, 780-790, Dec. 1971.

16-

