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Measuring the Performance and Behavior of the Icon 

Programming Language 

1. Introduction 

The importance of the ability to measure the performance of programs written in high-level languages is 
well known [knu71]. The most obvious advantage of measurement facilities is the possibility of locating and 
correcting inefficiencies. While compilers can perform many optimizations automatically, there are also many 
situations in which user optimizations, based on measurement data, can improve program performance where 
automatic techniques cannot [rip77]. Measurement also provides an experimental tool for analyzing and 
understanding program behavior. In the case of complex algorithms whose performance is sensitive to data 
load, analytic techniques may be impractical and measurement may be the only practical solution. 

High-level languages, by their nature, present problems in understanding performance and behavior that 
lower-level languages do not. A Fortran programmer, for example, can usually relate Fortran language con
structs to the machine code produced by the Fortran compiler and hence to the basic operations of the com
puter. Most conventional computers after all are "Fortran machines'". A SNOBOL4 or SETL programmer, 
on the other hand, has no such ready mapping between the source language and the operations of the com
puter. This is, of course, the intent of such high-level languages: to provide language constructs suitable for 
formulating solutions to complex problems that are unrelated to conventional computer architecture. 

Despite the evident importance of being able to measure the performance of programs written in high-le\ el 
languages, existing facilities typically are difficult to use and the results are frequently misleading. Major 
shortcomings include inadequate or incomplete resolution, lack of appropriate charge-back information, and 
excessive overhead. 

Earlier work with the SNOBOL4 programming language [rip78] showed that measurement tools, as 
expected, can aid the programmer of a high-level programming language in improving program performance. 
They also can give insight into the behavior of complex language implementations, and. in fact, can lead to 
improvements in implementations that cannot be achieved by other means. 

The work with SNOBOL4, however, required adding instrumentation to a long finished implementation. 
One of the conclusions of that work was that much better measurement tools would have been possible if their 
design and implementation were done concomitant with the implementation of the language itself, as opposed 
to being ad hoc appendages (as is typically the case). 

This paper describes measurement tools developed for Icon, a recently developed high-level programming 
language [gri79, gri80a]. Since the measurement tools in Icon were designed and implemented in conjunction 
with the implementation of the language, they provided and opportunity to test the conclusions drawn from 
the earlier work with SNOBOL4. In addition, Icon has a number of unusual features for which the measure
ment of program performance and behavior is, in itself, of interest. 

Some of the instrumentation of Icon is of a conventional nature and is not described here. An example is 
sampling with charge back to runtime routines. Such information is fairly easy to obtain and is typical of 
measurements made by implementors at the stage where implementation improvements are being considered. 
This paper, however, is concerned with less traditional approaches and techniques, particularly (I) measure
ment tools that give the user information on program behavior and performance directly related to the pro
gram text, and (2) instrumentation of the storage management system to aid in the development and improve
ment of its implementation. 

The next section gives an overview of Icon and its implementation. Section 3 reviews the major issues in 
the design and implementation of performance measurement tools for programming languages in general. In 
Section 4. the instrumentation of Icon is described and examples of the more important measurement facilities 
are given. Some typical experiences in the use of the measurement facilities are given in Section 5. Analysis of 



the storage management system in Icon and its use to improve the implementation are the subjects of Section 
6. In Section 7 results are summarized and conclusions drawn. 

2. The Icon Programming Language and its Implementation 

The characteristics of the programming language being measured strongly affect the nature of the measure
ment facilities. This is both inevitable and desirable—the user needs measurement results that are easily 
related to the programming language being used. 

The organization of the Icon system and the way that it is implemented affect program performance (but. 
hopefully, not behavior). They also affect how instrumentation may be done and, to some extent, what is 
measured. The aspects of the Icon language and its implementation that are relevant to these concerns are 
described in the following sections. 

2.1 Characteristics of the Icon Programming Language 

Syntactically, Icon is an expression-based language in the style of Algol 68 and Bliss [wul71 ] and has most 
of the traditional control structures. The syntax of a programming language has important effects, both in the 
selection of data to be measured and in methods of presenting this data to the user. There is a substantial 
difference in the approaches that can be taken between a language whose syntax is hierarchical, such as 
SNOBOL4 [rip77b], and a language with a recursive syntax, such as Icon. This matter is discussed in more 
detail in the next section. 

The major semantic characteristics of Icon, as they affect program measurement, are: 

(1) automatic, dynamic storage management; 

(2) a variety of data types, including some unusual ones such as character sets and tables (in the style of 
SNOBOL4); 

(3) lack of type declarations, with automatic type checking and coercion in context; and 

(4) goal-directed expression evaluation. 

The first three characteristics of Icon are shared by other, longer established languages like SNOBOL4. Goal-
directed evaluation is more novel, especially since it is a general feature of Icon, instead of being limited to a 
particular part of the language, as it is in SNOBOL4 pattern matching [gri80c]. 

Associated with goal-directed evaluation in Icon are conditional expressions that may succeed or fail (as in 
SNOBOL4) and generators, which are expressions that may yield more than one value, if this is required to 
achieve success (the "goal") in a larger, surrounding expression. Comparison operations are typical of condi
tional expressions. For example, 

x > y 

succeeds if x is greater than y and fails otherwise. In Icon, success and failure drive control structures, as in 

if x > y then z := x else z := y 

The concepts of success and failure, as opposed to Boolean values, are more general in that they are transmit
ted to enclosing expressions, so that any operation in Icon may fail (if, for example, one of its operands fails). 

One of the most basic generators in Icon is alternation, which produces first one value and then another it 
the first value does not lead to the success of the expression in which the alternation is contained. Alternation 
is a binary operation, e1 | e2. An example of the use of alternation is 

if (x | y) > u then z := x else x := u 

which assigns the value of x to z if either x or y is greater than y; otherwise it assigns the value of u to x. 

Another Icon generator is 

i to j by k 

which generates successive integer values from i to j , inclusive, using k as an increment. For example. 
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if x = (0 to 10 by 2) then z := 0 

assigns zero to z if the value of x if an even number between zero and ten, inclusive. 

There are many other generators in Icon, a number of which are associated with string processing. For 
example 

find(s1,s2) 

returns the position in s2 at which s1 occurs as a substring of s2 (failing if there is no such position). Further
more, it generates additional positions, as needed, from left to right, in case s1 occurs as a substring of s2 in 
more than one place. Thus 

if find(s1,s2) > 10 then z := 10 

assigns ten to z if si occurs as a substring of s2 at a position greater that ten. 

One important control structure in Icon causes generators to produce all their values in sequence: 

every e1 do e2 

For each value produced by e1 , e2 is evaluated. For example 

every i := find(s1 ,s2) do write(i) 

prints all the'positions at which s1 occurs as a substring of s2. 

A knowledge of all the features of Icon is not necessary to understand the examples given in this paper 
most of the features used in the examples are obvious, at least in their general nature. For a more complete 
description of Icon, see [gri79, gri80a, gri80c]. 

2.2 The Implementation of Icon 

The Icon system is written in Ratfor [ker76, gri80b] and is designed to be portable. It has been imple
mented on a number of computers, including the DEC-IO, Cyber 175, IBM 370, and VAX-l I 780. Its instru
mentation, as part of the portable system is, itself, essentially portable. The results described in this paper were 
obtained from the DEC-IO implementation. 

The Icon system consists of two parts: a translator and a runtime system [han80a]. The translator converts 
an Icon program into executable code. This translated program, in turn, consists primarily of calls to the run
time routines that carry out the language operations. Because of language features like runtime type checking 
and coercion, very little actual computation is performed by the code produced by the translator. This imple
mentation strategy, which is used in a number of implementations of SNOBOL4 [dew77], is not actually inter
pretive, since the translated program is executable. However, the translated program is primarily a driver and 
most program execution occurs in the runtime system. In fact, measurements of Icon programs indicate that 
typically less than 5% of program execution time is spent in the translated program itself. (This figure. 
obtained by traditional measurement methods, indicates that little improvement in program performance can 
be expected from optimization of the translator output.) 

A major component of the runtime system consists of storage management routines [han80b]. Because of 
the importance of storage management in Icon and its affect on the overall performance of the language, 
storage management is an important issue in itself. In fact. Icon programmers, like SNOBOL4 programmers, 
are often forced to consider the utilization of storage, even though it is not part of the semantics of the 
language, perse. 

The Icon storage management system consists of allocation routines and regeneration (garbage collection) 
routines. Allocation is a simple and fast process. Space is allocated contiguously within a region. A pointerto 
the beginning of free space is incremented to provide the space specified in an allocation request. Storage 
regeneration, which occurs when there is not enough space remaining to satisfy an allocation request, is a com
plicated and relatively slow process that involves distinguishing data that must be saved from data that may be 
discarded, relocation of saved data, and so on. 

There are four regions in which data is allocated, corresponding to the nature of the data: integer, string, 
qualifier, and heap. Integers are allocated because the Fortran virtual machine model used by Icon does not 
allow any spare bits to differentiate between words that contain integers and those that contain pointers and 
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such. A level of indirectness is therefore needed to differentiate types. The string region contains character 
data, while the qualifier region contains pointers into the string regions that identify specific strings. Miscel
laneous objects, such as lists, records, and character sets are allocated in the heap region. 

Each region has its own allocation routine and regeneration routine. There are provisions for enlarging 
regions and relocating adjacent regions if necessary. 

3. Technical Problems in the Design of Measurement Facilities 

In general, there are a number of problems related to the design and implementation of programming 
language measurement facilities: 

(1) methods of measurement, 

(2) selection of activities to be measured, 

(3) charge back of activity to program function, 

(4) instrumentation, 

(5) space and time artifact, and 

(6) presentation of the results. 

3.1 Measurement Methods 

There are several methods of measurement that are commonly used. One is periodic sampling, in which 
the measurement facilities are activated by external interrupts from a system clock. When an interrupt occurs, 
measurement routines gain control and generate measurement data such as the location where the interrupt 
occurred. If enough samples are taken, the measurement data resembles randomly selected data and. on the 
average, gives an approximation to the actual behavior of the program. For example, average times for the 
execution of an operation may be approximated from the percentage of samples in which that operation is 
active. This technique is the standard way of generating program histograms and similar data [ing72. jas72]. 

There are several problems with periodic sampling. The clocks available to the user typically lack 
resolution—a 60-Hz frequency is common. With such a low sampling rate, a program must run for a long 
period of time in order to get enough samples to give a meaningful picture of program activity. Furthermore, 
for fast CPUs such long periods of program execution may be inordinately expensive or may require artificial 
techniques (such as multiple runs) to get enough samples to measure real programs. 

In some cases, other uses of the clock may bias or invalidate the results of sampling. For example, if the 
operating system and a measurement routine use the same clock, there may be effects that violate the underK -
ing assumptions on which the interpretation of measurement data are based. For example, on the DEC-IO 
running under TOPS-10, the clock generally available for measurement is also used by the system for schedul
ing. Under heavy load conditions, the two uses tend to interfere, resulting in "drift". For example, a program 
running under heavy load conditions may be timed as taking as much as 20% longer than when run under light 
load conditions. Such problems not only reduce the accuracy of and confidence in sampling measurements, 
but may make comparisons between runs virtually useless. This problem is strongly dependent on hardware 
and operating system characteristics. 

The other commonly used method of measurement is event monitoring. In this technique, selected pro
gram activities trigger measurement routines. For example, a garbage collection might cause a measurement 
routine to be called. Thus data can be gathered on specific events or on classes of activities. This method is 
strongly influenced by the properties of the language being measured and by the characteristics of its imple
mentation. 

3.2 Selection of Activities for Measurement 

The selection of activities to be measured and the actual data to be produced is an interesting and complex 
problem. At one extreme, specific aspects of program activity can be selected for measurement. For example, 
storage allocation might be measured as an item of particular interest. At the other extreme, a measurement 
facility might attempt to provide data on all aspects of program behavior. While there are clearly limitations 
to this approach, an approximation to it is appealing as a starting point, especially with the measurement of 



high-level languages, since a priori assumptions about the most important aspects of program behavior are 
suspect, given the present state of knowledge. 

One of the first problems to resolve is the viewpoint from which measurements are to betaken. Measure
ment may be at the source-language level, in terms of the syntax and semantics of a program: elementary 
operations, statements, blocks, procedures, and so forth. On the other hand, measurement may be in terms of 
categories of program behavior, such as input/output, storage allocation, structure referencing, and so forth. 
Progressing farther from the source language, measurement may be in terms of the specific implementation 
characteristics, such as interpretive overhead and garbage collection for languages like LISP and SNOBOL4. 
For the implementor, information on activity of the translated program or on utilization of runtime routines 
may be of interest. 

Determination must be made as to what data are to be produced when program activity is sampled or when 
an event occurs. For the most complete measurement, a record of relevant data, perhaps including the time, 
may be produced for each sample or event. For any significant amount of measurement, such records cannot 
be kept in memory and must be written to external storage, typically a disk file. At the other extreme, there 
are summaries, such as the total counts for particular activities. Such data usually can be kept in memory. 

3.3 Charge Back 

Charge back is concerned with the attribution of measurement data to components of a program. For 
example, the fact that a particular routine is called frequently may not as interesting as are the program activi
ties that cause this routine to be called. As with the selection of activities to be measured, charge back may be 
related to the hierarchical structure of the program itself, to categories of behavior, or to implementation 
specifics. 

3.4 Instrumentation 

Instrumentation, the means by which measurement data is obtained, is an implementation matter and of 
less direct interest here than problems related to the selection and interpretation of the data. Furthermore, 
instrumentation varies widely with the details of the implementation being measured, as well as with hardware 
and operating system architecture. 

There are, however, two significantly different types of instrumentation: external and internal. External 
instrumentation is that which does not require modification of the system being instrumented. As such, it is 
usually the most tractable. External instrumentation, while generally easier to implement, often cannot pro
vide the desired data. Internal instrumentation, consisting of modifications to the implementation itself, usu
ally requires considerable knowledge of the system being instrumented. Internal instrumentation is. of course. 
much easier to include as part of the original language implementation than after the implementation is com
plete. In fact, consideration of the desired characteristics of internal instrumentation may allow instrumenta
tion to be accommodated easily in the early stages of language implementation, while such instrumentation 
may be impractical if provisions are not made for it in advance. 

The type of instrumentation depends on the type of measurement. Periodic sampling can generally be 
done primarily by external instrumentation, while event monitoring almost always requires internal instru
mentation. Most instrumentations have both internal and external components, although the former may be 
minor. For example, periodic sampling may, in itself, only require an external interrupt routine. Interpreta
tion of the data, especially charge back, may require some internal modification. For example, relating the 
value of the program counter to the appropriate program activity may require insertion of entry points not 
present in the original implementation. Similarly, if measurement data is kept in memory rather than being 
written to a file, some modifications to permit communication of locations may be desirable if not actually 
essential. 

3.5 Measurement Artifact 

The artifact of measurement—additional computation time, memory space, and external storage required 
by the measurement process—is an important matter. For performance measurement to be useful, its artifact 
must be tolerable. 
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Computational artifact can generally be kept within acceptable ranges. Some forms of measurement can 
be accomplished with less than a 10% increase in program running time, although 30% is more typical. 

Memory space artifact similarly is usually in manageable ranges, unless the processor is already using most 
of the memory available. Artifacts of 5% to 20% are typical, depending on the nature of the instrumentation. 

External storage requirements often pose the most serious problem, especially when "historical" measure
ment data is needed. If the measurement facility tends toward the "complete", it may be necessary to write 
dozens or even hundreds of words for each sample or event measured. Such measurement data can quickly get 
out of hand. 

Behavioral artifact also deserves consideration. In some systems, notably those with dynamic storage 
management systems, performance may be sensitive to the environment. A measurement system may. unin
tentionally, affect the system it is measuring. For example, a measurement tool that uses significant amounts 
of memory may produce very misleading results for implementations that use dynamic memory allocation 
within a fixed region. This problem may be subtle and it usually requires analytical treatment and clear under
standing of the implementation and its sensitivity to, for example, the amount of memory available to it. 

3.6 Presentation of Measurement Results 

Perhaps the most challenging aspect of the design and implementation of performance measurement facili
ties is the presentation of the results in a manner that is meaningful and useful to the user. The commonest 
measurement tools simply present a histogram of program location counters, displayed against a program load 
map [knu7I]. While such displays may be of some use in lower-level languages, such as Fortran. the\ are 
essentially useless in a higher-level language such as Icon. 

One of the most basic difficulties in presentation is selection. Most measurement facilities have the capa
bility of generating enormous amounts of data. Systems that generate historical records are the most prone to 
this problem. A programmer, however, needs to relate measurement data to the corresponding program in u 
meaningful way. Moreover, in order to gain insight and isolate problem areas, the relevant aspects of the 
measurement data must be sharply focused and properly related to the source program. 

It is typical for the display of measurement data to be produced by post-processing programs. This pro
vides for flexibility—a particularly important commodity—that is not feasible to incorporate in the instru
mentation of a processor itself. 

Post-processing artifact cannot be ignored. If the amount of measurement data is large and post process
ing is complex, the processing time easily may exceed the time required to obtain the data in the first place. It 
is not only the cost of this processing that is important—the user of the program may be discouraged from 
using a measurement tool that significantly adds to the program development effort. 

4. The Instrumentation and Measurement of Icon 

The novel aspects of Icon and lack of experience with some techniques used in its implementation 
motivated extensive instrumentation to provide a variety of measurement tools. 

4.1 Choice of Measurement Tools 

One problem immediately encountered was relating measurement data to the syntax of Icon. In 
SNOBOL4, statements provide clearly delimited syntactic units that are also a natural semantic units. In Icon, 
expressions may be nested to arbitrary depths and, unlike SNOBOL4, there is no fixed hierarchy of program 
structure except the procedure. 

The decision was made, therefore, to associate measurement with elementary "tokens"—literals, identil-
iers. function calls, operators, structure references, and so on [cou79a, cou79b]. For example, the following 
expressions consist of tokens beginning at the places marked by arrows: 
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sum := sum + 1 
t t t t t 
line := process(read(f)) 
t t t tt t 
count [n] = 0 
t ft t t 

The call of a programmer-defined procedure, such as process(x), involves both runtime access of the pro
cedure name and its invocation. Hence there is a token both for the procedure name and for the left 
parenthesis. For built-in functions, like read(f), there is only a single token. 

In order to reduce the measurement artifact, most of measurement tools for Icon were designed around tal
lying rather than the production of historical records. Three kinds of data are obtained for the tokens in a pro
gram: 

(1) Activity—counting each time a token is evaluated; 

(2) Sampling—noting at periodic intervals which token is currently being evaluated; and 

(3) Allocation—keeping track of the amount of storage allocated by each token (not all types of tokens 
cause allocation). 

The results of such measurements are simply totals: how many times each token is evaluated, how often 
each token is sampled (hence an approximation to the time spent evaluating each token), or how many words 
of storage are allocated by each token. 

The major advantages of this scheme are that (1) measurement data can be kept in memory during execu
tion and written out at program termination, rather than continually writing during program execution, and 
(2) the amount of data is small compared to that required for historical records. The artifact is thus reduced in 
all ways: running time, disk storage, and post processing. The penalty, of course, is that less information is 
obtained by counting than with historical records. The data is continually integrated, and the details of pro
gram behavior over the course of program execution are lost. The choice of counting constituted an experi
ment to determine if that technique would prove sufficiently useful in practice to compensate for the loss of 
information. Conclusions concerning the usefulness of tallying are given in Section 7. 

4.2 Instrumentation Techniques 

To support the various kinds of counting, the Icon translator was modified to generate, conditionally, 
extra code to post token numbers and save and restore them as necessary during operations that change pro
gram context [cou79a]. As a byproduct of translation, a file relating token numbers to their position in the 
source program is produced. This file is used by post-processing programs that produce displays of measure
ment data. Counts are kept in internal arrays during execution—one each for token activity, token sampling, 
and allocation. The sizes of these arrays are proportional to the number of tokens in the program. At the end 
of program execution, these arrays are written to files that are used by post processing programs. 

Storage management has a significant effect on sampling. M ost of the storage management time is usually 
associated with reclamation (garbage collection), not allocation. On the other hand, reclamation may be 
caused by any allocation request, regardless of the amount of storage required. This tends to distort time dis
tributions, since a token that triggers reclamation may be charged for the time needed to reclaim the space 
allocated by many other tokens. To compensate for this effect, samples that occur during reclamation are not 
charged directly to any token, but rather are distributed to all tokens that cause allocation in proportion to the 
amount of storage they allocate. This technique gives only a first approximation to accurate charge back, 
since storage management is a complex process. It is, however, generally within the accuracy that is obtain
able with low-frequency sampling. 

4.3 Displays of Measurement Data 

Measurement data is formatted by post processing programs to put it in a form that can be easily analyzed 
by the user. There are two basic forms of displays: counts and averages. 

Counts simply give the total count for the program tokens—activity, sampling, or allocation. Averages are 
more useful for samples and the number of words allocated per token. 



Figure 1 shows a portion of a typical output from counting the activity of tokens. Note that the leftmost 
digit of each value is aligned under the leftmost character of the token. Values are written on successive lines 
where there is inadequate space between tokens to place the values on the same line. 

every i := f ind("ab", line) do write(i) 
100 100 6850 100 100 6750 6750 

6750 6750 

Figure 1. An Example of Token Counting. 

Counts show the number of times each token is activated. For example, the every loop in the example above 
was executed 100 times. A total of 6750 positions of the string "ab" were found in line. The additional 100 
activations of find occurred for each of the 100 times no substring was found. Note that in goal-directed 
evaluation, the generator is repeatedly activated without re-evaluating the arguments. 

Program activity gives insight into program behavior such as the number of times a loop is entered. Token 
activity may also show interesting characteristics of familiar computations. Figure 2 shows the activity result
ing from the computation of Ackerman's function. The call that produced these results was acker(3,5). 

procedure acker(n,m) 
if n = 0 then return m + 1 
42438 42438 21096 21096 

42438 21096 
42438 21096 

if m = 0 then return acker(n - 1 , 1 ) 
21342 21342 247 247 247 247 

21342 247 247 
21342 247 

return acker(n - 1,acker(n,m - 1)) 
2I095 2I095 2I095 2I095 2I095 2I095 

2I095 21095 
2I095 2I095 

2I095 21095 

end 

Figure 2. Computation of Ackerman's Function. 

An example of the number of words allocated per token is shown in Figure 3. This procedure constructs 
"meandering strings", strings that contain all substrings of a given length from a specified alphabet of charac
ters [cou80, gim70]. 

For sampling, the average values are adjusted to correspond to milliseconds of residency. An example. 
using the substring location code given above, is shown in Figure 4. 

5. Experience with I'se of the Measurement Facilities 

The use of periodic sampling to locate "hot spots" is well established [knu71]. In high-level programming 
languages, such measurements are less meaningful than they are in lower-level languages, since complex 
processes may be associated with apparently simple language constructions and it is often misleading to 
assume that the performance of a program in a high-level language may be improved by concentration of the 
areas of the program where most of the time is spent. It is often difficult to determine if such "hot spots" arc 
due to inefficient coding, unusual amounts of storage allocation (possibly indicating inappropriate data 
representation), poor algorithms, or a combination of causes. The following examples, taken from real experi
ences using the various performance measurement tools described in this paper, illustrate the range of possibil
ities. 



procedure meander(alpha,n) 
local s, t, i, c, k 
i := k := size(alpha) 
t := 1-n 

l.OO 

s := repl(alpha[1],n-1) 
2.75 2.00 

whi le c := alphafi ] do { 
1.99 

if find(section(s,t) || c, s) 
0.28 2.70 

2.00 

then i - else {s := s || c; i := k} 
34.8 

} 
return s 

end 

Figure 3. An Example of Average Allocation. 

every i := f ind("ab", l ine) do write(i) 
I6.5 0.03 0.I2 0.06 

0.76 0.20 

Figure 4. An Example of Average Time. 

5.1 Automatic Type Coercion 

One potential inefficiency in Icon relates to automatic type coercion. For the Icon programmer, not hav
ing to worry about whether a value is a string or a character set, for example, is a convenience—but a poten
tially expensive one. If a value happens to be a character set, but it is used in an operation that requires a 
string, the coercion is performed automatically and the program works the same way it would if the value were 
a string. The cost may be high, indeed, if the coercion is performed in an inner loop. For each iteration of the 
loop, there is both the cost of the coercion itself and the space allocated for the string. Periodic sampling mav 
show the loop to be time consuming but not show the cause (if the operation itself is a high-level one. the pro
grammer may assume that the operation itself is consuming the time). Measurement of average storage alloca
tion, however, makes the problem clear. 

Consider the two lines of code in an inner loop shown in Figure 5. 

write(map( line, Icons,ucons)) 
18.5 7.25 7.25 

write(map(line,ucons,lcons)) 
!8.5 7.25 7.25 

Figure 5. Average Storage Allocation Showing Coercion. 

Here Icons and ucons are character sets containing the upper- and lower-case consonants, respectively. The 
function map, however, requires its arguments to be strings. The allocation measurement shows the problem 
clearly, since there is allocation associated with arguments. This section of code runs nearly four times faster it 
Icons and ucons are converted to strings outside the loop. 

Examples such as this have led to the development of coding caveats [cou80] for Icon programmers. Such 
examples also suggest possible heuristics for the implementation and even potential changes in the design of 
the language. 
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5.2 Ordering Program Components 

In some programs, the order in which tests are made or in which processing is done is optional, but it may 
affect program performance. The best order may be impossible to determine analytically if it depends on data. 
Here token counting proves useful. 

An example occurred in a typesetting program in which formatting codes in the document being processed 
select processing functions through a very large case expression. In Icon, case selectors are examined linearly. 
Originally, the case selectors were arranged alphabetically (a logical choice and useful for program develop
ment). Unfortunately, alphabetical order was far from optimal in terms of case selection and the problem was 
obvious, even if the optimal order was not. 

One method of obtaining a more nearly optimal order would be to analyze existing documents. This 
would require writing an auxiliary program to do the analysis, and in some situations might have been unsatis
factory, since the documents might not be accessible to the author of the typesetting program. Token count
ing, however, provided the data as the program was actually used—and showed unexpectedly frequent use of 
some formatting codes. A reordering of the case selectors to reflect this empirical data resulted in an 8fV 
improvement in overall program performance. 

5.3 Coding Errors in "Correct" Programs 

Some kinds of errors in coding may not affect program output, but they may, nonetheless, be sources of 
inefficiency. An example occurred in the division of the large case expression described in the example above 
into a number of smaller case expressions to accommodate the limitations of a particular Icon translator. 
After the modification, the program worked properly. An analysis of token counts, however, immediately 
pinpointed an error in the way the division into smaller case expressions was done. Instead of exiting a case 
expression once a clause in it was selected, the program continued on through all the subsequent case expres
sions. Of course, no clause was selected in these subsequent case expressions and the program was "correct". 
However, considerable time was spent needlessly searching for subsequent matches. 

Correcting the coding mistake was worthwhile—because of the very large number of case selectors, overall 
program performance improved nearly 10% when the mistake was rectified. 

It is worth noting that, since the program produced correct output, the coding error would never have been 
located due to program malfunction. Neither would periodic sampling have shown the problem. The problem 
was easily identified because of an exact match in token counts at the head of each of the case expressions. 

5.4 Algorithm Design 

Whether an algorithm is "good" or "bad" often depends on the data it processes. This was shown dramati
cally in a program for determining transitive closure of a graph. In this program, graph nodes are represented 
by single characters and arcs by character pairs. For example, AB represents an arc from node A to node B. A 
graph is then represented by a list of two items, one consisting of the nodes and the other consisting of a string 
of its arcs. One frequently used procedure, successors(n,g), determines the set of successors of a set of nodes 
n in graph g. There are basically two approaches to computing the required set: 

(1) Examine every position in which a member of n occurs to determine if it is odd; or 

(2) Examine every odd position to determine if it is a member of the set n. 

Method I was the one used when the program was initially written. On examination of token activity, it was 
immediately obvious that this was the wrong choice. When method 2 was selected, the entire program ran two 
to five times faster, depending on the graph! Figures 6 and 7 clearly show why. 

It might be argued that method 2 should have been used in the first place. While that may be true, it is 
nonetheless a fact that the program was written using method I and the source of inefficiency was discovered 
by examining token activity. Furthermore, information from token sampling, as opposed to token activity, is 
open to different interpretations (such as possible disparities in timings for different operations). It is also 
interesting to note that the most efficient choice actually depends on the data: for graphs that are very dense, 
method 1 is more efficient, while for sparse graphs, method 2 is more efficient. 
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procedure successors(n,g) 
local i, arcs, t 
arcs := g[2] 
67 67 67 

67 
67 

n := cset(n) 
67 67 67 

67 

every i := 1 to size(arcs) by 2 do 
67 67 67 67 67 67 

ll792 11792 
11859 

if upto(n,arcs[i]) then t := 11| arcs[ i+1] 
H792 11792 I 1792 I7l I7I I7I I7l 

I 1792 II792 I7I I7l I7l I7I 
II792 I7I 

I7l 

return cset(t) 
67 67 67 

end 

Figure 6. Token Counts for Method I. 

procedure successors(n,g) 
local i,arcs,t 
arcs := g [2 ] 
67 67 67 

67 
67 

n := cset(n) 
67 67 67 

67 

every i := upto(n,arcs) do 
67 67 I I90 67 I I23 

1123 67 

if mod(i,2) = 1 then t := 11| arcs[ i+1] 
I I23 1123 1123 171 171 171 171 

1123 1123 1123 171 171 171 
171 171 

171 

return cset(t) 
67 67 67 

end 

Figure 7. Token Counts for Method 2. 

6. Instrumentation of Storage Management in Icon 

Earlier work on the measurement of the storage management system of an implementation of SNOBOL4 
[rip78] indicated that performance analysis could give new insights and suggest improvements, even to well-
established systems. In particular, it was discovered that some heuristics, which appeared to be sound in the 
abstract, either did little to improve performance or actually degraded it. Similarly, measurement suggested 
new heuristics that produced significant performance improvements. That work produced the following 
recommendations. 



(1) A basically simple strategy for storage management should be chosen for the initial implementa
tion; 

(2) a measurement facility should be incorporated in the design from the beginning; and 

(3) using this measurement facility, sources of inefficiency should be sought and heuristics or more 
complex strategies should be added only as there is evidence of the need for them and their utility in 
practice. 

6.1 Measurement of Storage Management 

Icon provided an ideal opportunity to test these recommendations. The Icon storage management system 
had to support allocations of many kinds of objects for a language with which experience was lacking. The 
storage requirements of Icon were sufficiently different from those of SNOBOL4 that details of earlier work 
were not directly applicable. Finally, the implementation of storage management in Icon could be modified 
easily if the results of measurement suggested changes. 

There were two specific a priori concerns about storage management in Icon. One was the issue of allocat
ing integers. Integers are also allocated in the MACRO SPITBOL implementation of SNOBOL4 [dew77]. 
While the allocation of integers appears to have no significant impact on the overall performance of MACRO 
SPITBOL, there is no quantitative data to verify this [shi79]. 

Another issue was "thrashing', which may occur when the available space in a region is small compared to 
the amount needed. In this situation, an allocation request may result in a regeneration of storage with very 
little excess space being recovered beyond the amount that was requested. As a result, storage regenerations 
may occur very frequently. 

Following the recommendations given above, the storage management system made no a priori provision 
for handling these two issues. Rather, instrumentation was added and measurements were performed. 

This instrumentation simply accumulates, in memory, the following information for each storage region: 

(1) the number of allocation requests; 

(2) the number of elements allocated (the number of words per element is machine dependent and 
varies from region to region); 

(3) the number of storage regenerations; 

(4) the time, in milliseconds, required for storage regeneration; 

(5) the number of times a region must be expanded; 

(6) the time, in milliseconds, required for expansion; and 

(7) the final size of each region. 

The accumulated information is printed when program execution is completed. Figure 8 shows a typical sum
mary of storage management activity. 

CPU time: 396600 ms 

Allocations 
Elements alloc. 
Regenerations 
Elements recov. 
Regen. time 
Expansions 
Expan. time 
Final size 

String 
60008 
2160222 
3076 
2159352 
16559 
0 
0 
999 

Qual. 
60011 
60011 
3076 
59982 
11637 
0 
0 
200 

Int. 
10002 
9901 
102 
9894 
1126 
0 
0 
200 

Heap 
21 
653 
0 
0 
0 
0 
0 
653 

Total 

29322 

Figure 8. Summary of Storage Management Activity. 



The CPU time is the total time required for program execution, which may, for example, be compared with 
the time required for storage regenerations. 

The time required for allocation is not given, since it is so small that the measurement artifact would be 
unacceptably large. Allocation time, however, can be computed from analysis of the code in the allocation 
routines and the number and amount of allocation shown in the summary. Regeneration time, however, 
depends very much on the history of program execution and the configuration of memory when regeneration 
occurs and is not amenable to analytic approaches. 

The summary in Figure 8 is for a program that does a great deal of string processing, but in which most of 
the data is of a transient nature. As indicated, storage regeneration reclaims space for continued processing 
without the need for expanding the storage regions. To illustrate how much storage management may vary 
from program to program, storage activity for the computation of Ackerman's function is shown in Figure 9. 

CPU time: 42906 ms 

Allocations 
Elements alloc. 
Regenerations 
Elements recov. 
Regen. time 
Expansions 
Expan. time 
Final size 

String 
5 
139 
0 
0 
0 
0 
0 
999 

Qual. 
8 
8 
0 
0 
0 
0 
0 
200 

Int. 
63537 
11954 
73 
11649 
2041 
1 
56 
416 

He< 
16 
609 
0 
0 
0 
0 
0 
609 

Total 

2041 

56 

Figure 9. Summary of Storage Management for Ackerman's Function. 

6.2 Results 

Measurement confirmed that integer allocation is not a major source of inefficiency in most programs 
(although it does degrade performance in some kinds of programs). Measurement indicated some impro\e-
ment could be made by special casing commonly occurring integers and effectively pre-allocating them per
manently. This heuristic helps to reduce the number of integer allocations for loop indices, for example. The 
improvement ranged from 5% for most programs to 30% for programs that allocated many transient integers. 
The implementation of this heuristic was directed by experiment and measurement. It was found that beyond 
a certain point, little performance improvement was obtained and the permanent allocation of additional 
integers was not justified. At the present time, the integers 0 through 100 are pre-allocated. 

The most dramatic improvement was obtained by adding a dynamic "breathing room" heuristic [han80b]. 
This heuristic allows storage areas to adapt their expansion requirements to the demands that are experienced 
by the running program. By performing measurements and experimenting with heuristics, an average 
improvement of over 50% in the overall running speed of Icon programs was obtained as a result, and some 
programs run five times faster than before. While some improvement was expected, the magnitude of the 
effect was a surprise. 

7. Conclusions 

Few of the instrumentation techniques used in Icon are novel. It is unlikely, however, that the instrumen
tation for counting could have been incorporated if it had not been anticipated in the early stages of the imple
mentation of Icon. This is an example of the value of incorporating measurement facilities as part of the 
implementation design. Phrased another way, a measurement system added onto an existing implementation 
of Icon would probably have had quite different characteristics, dictated by the problems of modifying a com
pleted implementation. 
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7.1 Usefulness of Measurement Tools to Programmers 

Experience has shown that performance measurement facilities for high-level programming languages can 
be useful in aiding the programmer to improve the efficiency of programs, to locate errors, and to understand 
program behavior. Information gained from studying measurement data may lead to better programming 
techniques in general, especially in the use of language features that have no correspondence in conventional 
machine architecture. Algorithmic inefficiencies, especially in cases where performance depends on data, can 
also be detected by use of performance measurement. Similarly, data representation can be improved by 
experiments in situations where analysis is intractable. 

Tallying has proved remarkably useful. The low artifact makes the tools easy and economical to use and 
the information obtained is adequate for most purposes. Historical records have an inherent appeal because 
they have the potential for providing great detail and also for showing the way performance and behavior may 
change during the time a program executes. However, experience with the use of the tools described here, 
compared with those developed earlier for SNOBOL4 [rip77b, rip78] suggests that simplicity and economy arc 
more desirable, in actual practice, than completeness and detail. 

Measurement of program activity at the token level proved unexpectedly useful, both in locating perfor
mance problems and in understanding program behavior. Much of the usefulness of activity measurement 
stems from its exact nature. While timings often admit of numerous interpretations, counts of activations do 
not. Furthermore, program activity, reflected in such counting, whether at the token level or some other, is 
relevant in almost all programming languages and should be given greater attention. 

A relatively unexplored area in Icon is the measurement of token activity to illuminate the processes that 
go on during goal-directed evaluation. The combinatorial aspects of generators deserve study, especially as 
they relate to the relative efficiency or inefficiency of searches. Icon contains the potential hazard of allowing 
concise expression through goal-directed evaluation without exposing potential combinatorial problems that 
would be self-evident in more traditional loop-oriented paradigms. On the other hand, goal-directed evalua
tion often allows more efficient computation by internalizing loops. A simple illustration is given by the 
activity shown in Figure I. 

Despite the success of the measurement tools, there are limitations to the usefulness of performance meas
urement in Icon as well as in other high-level programming languages. The most fundamental problem is the 
inherent conflict between measurement and the motivation for high-level languages. In a lower-level language 
such as Fortran, a programmer can readily relate measurement data to the program and see direct ways ot 
making improvements. One of the motivations for high-level languages, however, is to get closer to the prob
lem domain and farther from the constraints of conventional computer architecture. Program constructs are 
phrased in terms the programmer can relate to the problem to be solved and not in terms of machine instruc
tions. As a result, measurement data related to the machine on which a high-level program is run may be 
essentially meaningless to the programmer. On the other hand, if the measurement data are related to the 
high-level constructs, it is hard for the programmer to detect inefficiencies or to see how to correct them. 

In fact, the user of a high-level language may need to have an expert understanding of its implementation 
in order to user measurement data to its best advantage. This, however, is in conflict with the motivation for 
high-level languages—that the programmer not have to know about what is going on, but rather may concen
trate on the problem domain and the concepts appropriate to it. This conflict appears fundamental and 
unreconcilable. 

7.2 Usefulness of Measurement Tools to Implementors 

The implementors of high-level programming languages may be able to make more direct use of such facil
ities than the programmers that use the languages. In a number of instances program measurement has 
highlighted an implementation problem—either a bug or an inefficiency. Whether or not it should be the case, 
it is clear that implementors of high-level languages rely on conventional wisdom, experience (perhaps imper
fectly verified), and on intuition, especially in the design of systems to support high-level processes such as 
automatic storage management. Instrumentation and measurement brings the real situation to light and 
reduces conjecture to fact. There appears to be no better method to dispel myths in this complex and difficult 
area. 
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Experience with Icon has highlighted the importance of incorporating measurement facilities in the initial 
design of an implementation, rather than waiting until the implementation is complete. In the first place, it is 
usually very difficult to add measurement facilities to a completed implementation. Even if they can be added, 
it may be necessary to make compromises that would not have been necessary if they had been considered in 
the design. 

Since a major benefit of performance measurement of high-level languages appears to be in improving the 
quality of implementations, measurement tools and their instrumentation should be an integral part of the 
design and implementation and should be used while there is still time to modify the implementation. 
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