
A Tour Through the C Implementation of Icon; Version 4*

Cary A. Coutant

Stephen B. Wampler

TR 81-11

ABSTRACT

This paper documents the C implementation of Version 4 of the Icon programming
language. Version 4 of Icon is available in two forms: a compiler that produces a directly
executable object program, and an interpretive system that translates an Icon source pro
gram into an intermediate code that can be executed by an interpreter. The three major
parts of the implementation — the translator, the linker, and the runtime system — and the
details of the interpreter are described. An additional section discusses how the implemen
tation may be modified for new language features.

July 1981

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This work was supported by the National Science Foundation under Grant MCS79 03890.

A Tour Through the C Implementation of Icon; Version 4

Introduction

This paper describes an implementation of Version 4 of the Icon programming language [I] for PDP-1 I
computers running under UNIX.* This implementation is intended to be portable to other systems with C
compilers, but this is not a primary goal. The major objectives are an efficient implementation and ease of
modification. The implementation does, however, share much of its design with the portable Ratfor imple
mentation [2].

There are two implementations of Version 4 of Icon: a compiler and an interpreter. The compiler pro
duces an object program that can be directly executed. The interpreter translates the source program into an
intermediate code, and executes the program by interpretation. Sections I through 3 describe the compiler,
and Section 4 describes the details of the interpreter and its differences from the compiler. Section 5 describes
how to modify or extend either implementation.

The implementation of the compiler consists of three parts: the translator, the linker, and the runtime sys
tem. The translator converts an Icon source program into an intermediate code, called ucode. The linker
combines separately translated ucode files, binds inter-procedure references, and produces PDP-II assembly
language, which is then assembled and loaded with the runtime system to form an executable object program.

The implementation of the interpreter is only slightly different from that of the compiler. The linker com
bines separately translated ucode files and binds inter-procedure references as before, but instead of producing
assembly language, it produces a form of ucode that can be efficiently interpreted. The interpreter itself is the
runtime system with a short interpreter loop serving as the main program.

This paper is intended to be used in conjunction with the source listings of the Icon system, although a gen
eral overview of the system can be obtained from this document alone.

1. Translator
The Icon translator is written entirely in C [3]. The translator builds a parse tree for each Icon procedure,

then traverses the tree to generate code. The translator consists of eleven files of source code and nine header
files. Three of the eleven source files contain only data initialization and are automatically generated from
specification files. In addition, the LALR(l) parser is automatically generated by the Yacc parser generator
[4]-

The translator produces two output files, both of which are processed by the linker: a file containing the
entire global symbol table, and a file of intermediate code.

The following sections discuss the four parts of the translator: the lexical analyzer, the parser, the code
generator, and the symbol table manager.

1.1 Lexical Analyzer

The lexical analyzer reads the Icon source program, breaking it into tokens, and delivers the tokens to the
parser as requested. A token is the basic syntactic unit of the Icon language; it may be an identifier, a literal, a
reserved word, or an operator.

Four source files comprise the lexical analyzer: lex.C, Char.c, optab.C, and toktab.C. The last two of
these files contain operator and token tables, respectively, and are automatically generated from operator and
token specification files, described below. The file char.c contains character mapping tables and the file lex.C
contains the lexical analyzer itself.

*UN1\ is a trademark of Bell Laboratories.

The parser requests a token by calling yylex, which finds the next token in the source program and deter
mines its token type and value. The parser bases its moves on the token type: if the token is an operator or
reserved word, the token type specifically identifies the operator or reserved word; otherwise, the token type
indicates one of the five "primitive" types identifier, integer literal, real literal, string literal, or end-of-file. The
token value is a leaf node of the parse tree, which, for the primitive types, contains the source program
representation of the token. The token value node also contains the line and column numbers where the token
starts. A pointer to this node is placed in the global variable yychar, and yylex returns the token type.

The lexical analyzer finds the next token by skipping all white space and comments. The first character of
the new token then indicates that it belongs to one of four classes. A letter or underscore begins an identifier
or reserved word; a digit begins an integer or real literal; a single or double quote begins a string literal; any
other character is assumed to begin an operator. An identifier or reserved word is completed by gathering all
subsequent letters, digits, and underscores. The reserved word table is consulted to determine if the token is
an identifier or a reserved word. A numeric literal is recognized by a finite-state automaton, which distin
guishes real from integer literals by the presence of a decimal point or the letter "e". A string literal is com
pleted by reading until the opening delimiter is repeated, converting escapes in the process and continuing to
new lines as necessary. A table-driven finite-state automaton, described below, recognizes operators.

An important task of the lexical analyzer is semicolon insertion. The grammar requires that semicolons
separate expressions in a compound expression or procedure body, so they must be inserted into the token
stream where they are omitted in the source program. This process is table driven. Associated with each
token type are two flags, BEGINNER and ENDER. The BEGINNER flag is true if a token may legally begin
an expression (i.e., if it may follow a semicolon). Similarly, the ENDER flag is true if a token may legally end
an expression (i.e., if it may precede a semicolon). When a newline appears between two tokens, and the
ENDER flag of the first is true, and the BEGINNER flag of the second is true, then a semicolon is inserted
between the two tokens.

The token table is initialized in the file toktab.C. The table is divided into three sections: primitive types,
reserved words, and operators. The primitives types are fixed in the first five slots in the table, and must not
be changed, since they are referenced directly from the code. The reserved words follow, and must be in
alphabetical order. The operators follow in no special order. The last entry merely marks the end of the table.

Also in toktab.C is an index to reserved words. To speed up the search for reserved words, this table effec
tively hashes the search using the first letter as the hash value. The search needs only to examine all reserved
words that begin with a single letter.

The operator table, in optab.c, describes a finite-state automaton that recognizes each operator in the
language. Each state is represented by an array of structures. Each structure in the array corresponds to one
transition on the input symbol. The structure contains three fields: an input symbol, an action, and a value
used by the action. The recognizer starts in state 0; the current input symbol is the first character of the opera
tor. In a given state with a given input symbol, the recognizer searches the array associated with the current
state for an entry that matches the current input symbol. Failing a match, the last entry of the array (the input
symbol field is 0) is used. The recognizer then performs one of the following actions, depending on the value
of the action field:

• goto the new state indicated by the value field and get the next input character;

• issue an error;

• return the value field as a pointer to the token table entry for the operator; or

• return the value field, but push the current input character back onto the input.

The difference between the last two actions is that some operators are recognized immediately (e.g., ";"). while
others are not recognized until the character following the operator is read (e.g., "=").

The token table, reserved word index, and operator table are automatically constructed by the Icon pro
gram mktoktab.icn. This program reads the file tokens and builds the file toktab.C. The file tokens con
tains a list of all the tokens, their token types (given as defined constants), and any associated flags. This list is
divided into the three sections detailed above. The program then reads the file optab and builds the file
optab.c. The former is a skeleton for the operator table; it contains the state tables, but the program fills in
the pointers to the token table entries.

-2-

1.2 Parser

The parser, in the file parse.C, is automatically generated by Yacc. The grammar and semantic actions are
contained in the file ucon.g. From these specifications, Yacc generates parser tables for an LALR(l) parser.

The file ucon.g contains, in addition to the grammar, a list of all the token types in the language and
declarations necessary to the actions. Yacc assigns an integer value to each token type, and generates define
statements, which are written to the file token.h. These defined constants are the token types returned by the
lexical analyzer.

The grammar is context-free, with actions associated with most of the rules. An action is invoked when
the corresponding rule is reduced. The actions perform two duties: maintaining the symbol tables and con
structing the parse tree. The parse tree is built from the bottom up — the leaves are supplied by the lexical
analyzer and the actions build trees from the leaves and smaller trees with each reduction.

The parser requests tokens from the lexical analyzer, building a parse tree until it reduces a procedure. At
this point, it passes the root of the parse tree to the code generator. Once the intermediate code has been gen
erated, the parse tree is discarded, and a new tree is begun for the next procedure.

Record and global declarations affect only the symbol table, and do not generate parse trees. External
declarations (legal only in the compiler implementation) are handled the same as global declarations, except
that a flag in the symbol table indicates that the identifier refers to a function (built-in procedure).

A complete parse tree is rooted at a proc node, which identifies the procedure, and points to the subtrees
for the initial clause (if any) and the body of the procedure. Each node in the parse tree represents a source
program construction or some implicit semantic action. A node can contain up to six fields, the first of which
is the node type. The second and third fields are always line and column numbers that are used for error mes
sages and tracing. Any additional fields contain information about the construction, and possibly pointers to
several subtrees. Appendix A contains a description of all the node types.

The grammar, shown in Appendix B, has several ambiguities. The well-known "dangling else" problem
exists not only in the if-then-else expression, but also in the while-do, until-do, and every-doexpressions.
In each of these expressions, the last clause is optional, so that when the parser sees an else, for example, it
does not know whether to shift the token (associating it with the most recent If), or to reduce the preceding if-
then expression (leaving the else "dangling"). The latter choice is obviously incorrect, since the else would
never be shifted, and Yacc correctly resolves such conflicts in favor of the shift. Thus, each else is paired with
the most recent unpaired if. All the control structures (except case) have an additional ambiguity: they do
not have a closed syntax, yet they may appear in an expression at the highest precedence level. For example,
the expression

x := y + if a = b then z else -z * 3

could parse in either of two ways:

x := y + (if a = b then z else (-z * 3))
x := y + (If a = b then z else -z) * 3

This problem, too, is resolved in favor of the shift, such that the first parse is always used. Thus, in the
absence of parentheses, the entire expression to the right of a control structure is part of the control structure.

Unfortunately, little attention has been paid to error recovery. A few error productions have been placed
in the grammar to enable Yacc to recover from syntax errors; the technique for doing so is described by Aho
and Johnson [5]. The parser is slightly modified by the editor script pscript so that the parser state is passed
to the routine yyerror. This routine prints an error message from the file err.h that is associated with the
current parser state. This error table must currently be constructed by hand from the verbose listing of parser
states obtained by running Yacc with the -v option.

1.3 Code Generator

The parser calls the code generator upon recognition of each Icon procedure, giving it the root of the parse
tree. The code generator traverses the parse tree recursively, emitting code in the intermediate language.
ucode. Appendix C contains a description of the intermediate language.

The file code.c contains both the tree node allocation and the code generation routines. There are two
include files: code.h contains macros and definitions needed by the code generator, while tree.h defines the
tree nodes and the macros that allocate them. The macros in tree.h provide the interface between the parser
and the code generator.

The tree traversal routine, traverse, is a recursive procedure with one argument, a pointer to the root of a
tree or subtree for which code is to be generated. The routine examines the type field of the root, and, through
a switch statement, generates a sequence of ucode instructions as determined by the type. If the node has sub
trees, traverse calls itself recursively at the appropriate point to generate code for the subtree. For example,
the code generated for a binary operator first generates code for its two subexpressions, then emits the code
that calls the appropriate runtime library routine.

The returned value of the traversal routine is used for counting elements of expression lists. If the root of
the tree being traversed is an elist node (expression list), traverse returns the sum of the returned values of its
two subtrees. Otherwise, it returns I. This count is used when generating code for procedure calls and literal
lists, which need to know the number of arguments that will be pushed onto the stack.

When generating code for loops, the code generator needs to save three pieces of information for each
nested loop: the break label, the next label, and the expression nesting level. This information is kept on the
loop stack. The break label is a label placed just past the end of the loop; it is the place where control is passed
when the loop is finished. The next label is placed near the end of the loop, at a point where the next iteration
of the loop can be started. The code for break and next expressions branches to these labels, but in either
case, any incomplete expression frames (see Section 3.2) within the loop must first be popped from the stack.
The expression nesting level counts the number of currently active expression frames within the current loop;
an unmark instruction is generated for that many expression frames (less one for a next expression).

The possibility of nested case expressions requires that certain information be kept on a case stack. For
each case expression, the code generator allocates a label for the end of the expression and pushes it onto the
case stack. When a default clause is encountered, its subtree is placed on the top of the case stack to delay
code generation for it until the end of the case statement.

1.4 Symbol Table Manager

The symbol table manager consists of the symbol table data structures and routines that operate upon
these data structures. The source code for the symbol table manager is contained in two files. The file
keyword.C contains only the keyword table and is automatically constructed from a keyword list file dis
cussed below. The remainder of the symbol table manager is located in the file sym.C.

The symbol table manager operates with two logical data structures, the symbol table proper and the
string space. When the lexical analyzer identifies a token as either an identifier or a literal, the lexical analyzer
requests the symbol table manager to enter the token into the string space. The symbol table manager returns
a pointer into the string space for that string. The lexical analyzer then places this pointer in the token value
node. To help keep the size of the string space small, all entries are hashed, and only one copy of any string is
kept. This has the added benefit that two strings may be compared by checking only the pointers into the
string space.

The parser determines the context of the token, and requests the symbol table manager to enter the token
into the symbol table proper. It is the responsibility of the symbol table manager to verify that the use of the
token is consistent with prior use. Appropriate diagnostics are issued if the use is inconsistent.

The symbol table proper is physically divided into three separate structures: the global, local, and literal
tables. Each of these tables is hashed, using the pointer into the string space as the key. Since this pointer is
an offset into the string space, hashing is simply and effectively performed by taking the rightmost n bits of the
offset (where 2" is the size of the hash vector for the table).

The global table contains identifiers that have been declared as globals, procedures, or records. The local
table holds all identifiers declared as locals, formal parameters for procedure declarations, field names for
record declarations, and all other identifiers referenced in the procedure (including those declared as global
elsewhere). The literal table contains entries for literal strings and csets, integers, and floating-point constants.

Both the local and literal tables are associated with the current procedure being parsed, and are written to
the intermediate code file when the procedure has been successfully parsed. If a record declaration has been

-4 -

parsed, then the local table, containing only the field name identifiers, is written to the global declarations file.
After all procedure, record, and global declarations in a Icon source file have been parsed, the global table is
written into the global declarations file.

An entry into any of the three symbol table sections is a structure with three fields: a link, a name, and a
flag. The link field holds the pointer to the next entry in the same hash bucket. The name is the pointer to the
identifier or literal name in the string space. The flag field contains the type (formalparameter, static local,
procedure name, etc.) of the entry. Global table entries have a fourth field, an integer providing the number of
formal parameters for a procedure declaration, or the number of fields in a record declaration.

Lookup in the local and global tables is merely the process of following a hash chain until an entry of the
same name is found, or until the hash chain is exhausted. If a previous entry is found, the flags of the existing
and new entries are compared, and diagnostics are printed if the use of the new entry conflicts with the previ
ous usage. The new entry is ignored whenever such an inconsistency is found.

The literal table uses the same lookup procedure, except the search down the hash chain stops when an
entry is found with the same name and flag fields. Thus the string literal "123" and the integer literal 123 have
separate entries in the literal table, even though they have the same string representations. An unfortunate
consequence of this technique is that the integer literals 123 and 0123 have separate entries in the literal table,
even though they have the same numeric value. Since most programmers use a reasonably consistent style
when expressing literals, this technique should not produce an unreasonable number of duplicate constants.

A final task of the symbol table manager is the identification of keywords. The symbol table manager
maintains a list of the legal keywords and, upon request, returns a numeric identification for a keyword iden
tifier to the parser. An automatic procedure exists for creating the keyword table: the Icon program
mkkeytab.icn reads a list of keywords from the file keywords and produces the keyword table in
keyword.C. The file keywords is simply a list of the keywords and a numeric identification for each. Since
the number of keywords is small, and only a few references to keywords are typical in an Icon program,
lookup in the keyword table is done using a linear search.

The sizes of the respective portions of the symbol table may be altered with command line arguments to
the Icon translator. Some thought has been given to allowing automatic expansion of the symbol table on
overflow, but this enhancement has been omitted from the current version.

2. Linker

The linker performs three tasks: combining the global symbol tables from one or more runs of the transla
tor, resolving undeclared identifiers, and translating the ucode to assembly code. The first task is done first;
the resulting combined global symbol table is used for determining the scope of undeclared identifiers during
the second task. The second and third tasks are done during a single pass over each intermediate code file. A
single file of assembly code is produced.

The linker consists of eight files of C source code and four header files. The symbol table module, in the
file sym.C, is similar to the symbol table module of the translator, except that there is an additional table for
storing field names of records. The input module, in the file lex.c, recognizes the instructions in both the glo
bal symbol table files and the intermediate code files. The global symbol tables are merged by the routine in
glob.c, and the intermediate code files are produced by the routines in code.c. Of the remaining source files,
ulink.c and mem.c contain the main program, miscellaneous support routines, and memory initialization.
The files builtin.c and opcode.C contain table initializations for the list of built-in procedures (orfunctions)
and the ucode operations, respectively.

The first phase of the linker consists of reading the global symbol table file from each translator run, and
entering all the global symbols into one combined table. The format of a global symbol table file is described
in Appendix C. This phase also builds the record/field table that cross-references records and field names,
and sets the trace flag for execution-time tracing if any of the files being linked were translated with the -t
option.

As records are entered into the global symbol table and the record/field table, they are numbered, starting
from I. These record numbers are used to index the record/field table at runtime when referencing a field.

- 5

The second phase reads each intermediate code file in sequence, emitting assembler code as each procedure
is encountered. Appendix C describes the intermediate code. The intermediate code contains a prologue for
each procedure, beginning with a proc opcode, followed by a series of loc opcodes describing the local symbol
table, a series of con opcodes describing the constant table, and a declend opcode terminating the prologue.
The local symbol table contains not only local symbols, but all identifiers referenced in the procedure — glo
bal, local, or undeclared. When an undeclared identifier is entered into the local symbol table, its scope is
resolved by the following steps:

• if the identifier has been entered in the global symbol table, it is entered into the local symbol table as a glo
bal variable;

• if the identifier matches the name of a function, it is entered into the local symbol table as a function;

• otherwise it is entered as a local variable and a warning is issued (if the linker was run with the -u option).

The constant table contains an entry for each literal used in the procedure.

Once the prologue has been processed, a procedure data block (see Section 3.1) is emitted into the assem
bler code. The initial value of the procedure variable has type procedure and will point to this block.

Opcodes following the prologue represent execution-time operations, and cause code to be emitted. Most
assembler.code is emitted through the routine emit, which outputs code according to several templates. This
routine is called with an arbitrary number of arguments, a list of template calls. Each template call is a tem
plate name, defined in the file code.h, followed by parameters to that template. The last template call must be
followed by a 0 to indicate the end of the argument list to emit. For example, the following code, taken from
the processing for the mark opcode, causes the assembler output shown to be emitted.

emit(C_PUSH, "r4",
C-MOV, "sp", "r4",
C_PUSH, "r3",
C_CLR, "r3",
0);

mov
mov
mov
clr

r4-(sp)
sp,r4
r3,-(sp)
r3

The end opcode signals the end of a procedure, and causes the linker to emit data blocks for real numbers,
and long (32-bit) integers, and cset literals in the procedure's constant table. Literal references to these data
types generate code that builds a descriptor (see Section 3.1) that points to these blocks. References to short
(16-bit) integer literals generate code that builds a descriptor containing the value. References to string literals
generate code that builds a descriptor pointing into the identifier table (see below).

When all the intermediate code files have been processed, the linker emits procedure data blocks for all
record constructors, followed by the record/field table, initial values and names for all global and static vari
ables, then the identifier table.

The record/field table is a doubly-indexed table, first indexed by a field number assigned to each identifier
that is used as a field name, next by a record number assigned to each record type. The value at the selected
position in the table is the index of the field in a record of the given type, or -1 if the given record type does not
contain the given field.

The initial value for global and static variables is the null value unless the global variable is a procedure,
function, or record constructor, in which case the initial value is a descriptor of type procedure pointing to the
appropriate procedure data block. The values output use the data representations described in Section 3.1.

The names of global and static variables are output as string qualifier descriptors (see Section 3.1), and are
used by the function display. All string qualifiers contained in the generated procedure data blocks and glo
bal and static names point into the identifier table, which is just a static string space for that purpose.

3. Runtime System

The runtime library is a collection of routines that collectively provide support for the execution of an Icon
program. This library is searched by the loader for those routines necessary for a particular Icon program.
The assembly code generated by the linker contains subroutine calls to library routines to perform most high-
level operations where in-line code would be inappropriate. An executable program is created by assembling
the linker output, then loading a startup routine and the assembler output with the runtime library and the C
library. The startup routine, runtime library, and C library together form the runtime system.

Three directories contain routines relating directly to source-language operations: functions, operators,
and lib. The first two directories contain one routine per function or operator, respectively. The lib directory
contains routines relating to Icon control structures. A fourth directory, rt contains routines for performing
common operations needed by many routines in the other three directories. In particular, rt contains routines
that handle storage allocation and reclamation, type conversion, data comparison, integer arithmetic with
overflow checking, program initialisation, generator suspension, and tracing.

All of the object files in the four runtime directories are archived together in the file bin/Lib. To create a
new runtime library in bin/libi.a. it must be processed by the system program ranlib, since the library is not in
topological order.

Most of the runtime system is coded in C; of the routines coded in assembly language, one is the startup
routine, one does integer arithmetic with overflow checking (C does not provide this), and the others are con
cerned with stack management.

3.1 Data Representations

Icon has two elementary forms of data objects — values and variables. Values can often be converted
from one data type to another; when done automatically, this is called coercion. There are three kinds of vari
ables, each discussed below: natural variables, created variables, and trapped variables. The process of
obtaining the value referred to by a variable is called dereferencing.

In this implementation of Icon, all data objects are represented by a two-word descriptor, which may,
depending on the type of the object, refer to some other area of memory for the actual value. The first word of
the descriptor always indicates the data type, and the second word either contains the value or a pointer to it.
There are six descriptor formats, pictured in Appendix D: null, string qualifier, short integer, value, variable,
and trapped variable. These formats are distinguished from one another by the first few bits of the first word
(except that a null descriptor is distinguished from a string qualifier only by the contents of the second word).
Among short integer, value, and trapped variable descriptors, the low-order six bits of the first word identify
the type of object represented; the remaining bits in the first word contain flags classify the object as numeric,
integer, aggregate (e.g., list, table, stack), and whether or not the second word is a pointer (historically, a
"floating address"[6]).

The null descriptor represents the null value. A string qualifier represents a string, and contains the length
of the string and a pointer to the first character of the string. A short integer descriptor represents an integer
small enough to fit in the second word of the descriptor; all larger integers are represented by a value descrip
tor, which represents values of all data types other than string and null. The value descriptor contains a
pointer to a data block of appropriate format for a value of the given type. The data block formats for each
data type are shown in Appendix D.

A variable descriptor represents either a natural variable or a created variable. A natural variable contains
a pointer to a descriptor at a fixed location (for a global variable) or a location on the stack (for a local vari
able) where the value of the variable is stored. A created variable, formed by a table or list reference, contains
a pointer to a descriptor in a table or list block, where the referenced element is located. Since table and list
elements are often in the heap, created variables also contain an offset which indicates the distance (in words)
from the beginning of the data block to the referenced descriptor. This offset is used during the marking phase
of garbage collection, discussed in Section 3.3.

A trapped variable [7] descriptor represents a variable for which special action is necessary upon dere
ferencing or assignment. Such variables include substrings, non-existent elements of open lists and tables, and
certain keyword variables. Each type of trapped variable is distinguished by the first word of the descriptor.

Substring trapped variables, created by a section or subscripting operation, contain a pointer to a data
block which contains a variable descriptor identifying the value from which the substring was taken, an
integer indicating the beginning position of the substring, and an integer showing the length of the substring.
With this information, assignment to a substring of a variable can modify the contents of the variable prop
erly. Substrings of non-variables do not produce substring trapped variables since assignment to such sub
strings is meaningless and illegal; instead, taking the substring of a non-variable produces a string qualifier.

Table element trapped variables, formed by referencing a non-existent element of an open table, similarly
contain a pointer to a data block that contains enough information for assignment to add the element to the
referenced table.

Trapped variables for the keywords &pos, &trace, and &random need no additional information. It is
sufficient to know the type of trapped variable on dereferencing — the value of the keyword can be accessed
and returned. On assignment, the new value is coerced to integer type, checked for validity, and assigned to
the keyword. The trapped variable for the keyword &subject is similar to a substring trapped variable,
except that the original variable is unnecessary (since it is implicit in the datatype). This trapped variable is
used only when a substring of &subject is formed by the function move, tab, or insert, or by the prefix =
operator. Assignment to a subject trapped variable causes coercion of the new value to string type, and an
automatic assignment to &pos.

Strings formed during program execution are placed in the string space; string qualifiers for these strings
point into this region. Substrings of existing strings are not allocated again; instead, a string qualifier is
formed that points into the existing string. When storage is exhausted in the string space, the garbage collec
tor (see Section 3.3) is invoked to reclaim unused space and compact the region; if enough space cannot be
reclaimed, the region is expanded if possible.

Data blocks formed during program execution are placed in the heap. Data blocks have a rigid format
dictated by the garbage collection algorithm. The first word of the block always contains a type code which
identifies the structure of the rest of the block. Blocks that contain pointers to other blocks always use vari
able descriptors for the pointers, and the descriptors always follow all non-descriptor information in the
block. If the size of the block is not determined by its type, the size (in bytes) is contained in the second word
of the block. When storage is exhausted in the heap, the garbage collector is invoked to reclaim unused space
and compact the heap; if enough space cannot be reclaimed, the heap is expanded if possible.

3.2 Stack Organization

The system stack is the focus of activity during the execution of an Icon program. All operators, func
tions, and procedures expect to find their arguments at the top of the stack, and replace the arguments with
the result of their computation. Local variables for Icon procedures are also kept on the stack. The argu
ments, local variables, and temporaries on the stack for an active Icon procedure are collectively called a pro
cedure frame. This is one of several kinds of stack frames discussed in this section. Appendix E summarizes
the layouts of all the stack frames.

Before an Icon procedure calls another Icon procedure, the caller pushes the procedure to be called (a
descriptor — procedures are data objects in Icon) onto the stack. The caller then pushes each argument (also
a descriptor) onto the stack, leftmost argument first. Since the stack starts in high memory and grows down
ward, the arguments appear on the stack in reverse order. The caller then pushes one word onto the stack
indicating the number of arguments supplied, which may be different from the number of arguments
expected. The runtime library routine invoke is then called, which checks that the first descriptor pushed
above actually does represent a procedure or a variable whose value is a procedure. This descriptor points to a
procedure data block, which contains various information about the called procedure, including the number
of arguments expected, the number of local variables used, and the procedure's entry point address. Invoke
next adjusts the number of arguments supplied to match the number expected, deleting excess arguments or
supplying the null value for missing ones. It then dereferences the arguments. A procedure marker is then
pushed onto the stack, and the procedure frame pointer is set to point to the new procedure marker. The pro
cedure marker contains, among other things, the return address in the calling procedure and the previous
value of the procedure frame pointer. Next, the null value is pushed onto the stack as the initial value for each
local variable. Invoke then transfers control to the procedure's entry point, and execution of the Icon pro
gram resumes in the new procedure.

When a procedure is ready to return to its caller, it pushes its return value (a descriptor) on the stack. It
then transfers control to pret, which moves the return value to the location occupied by the descriptor that
represented the called procedure; that is, the return value is stored in place of the first descriptor that was
pushed at the beginning of the calling sequence described above. The return sequence then restores the state
of the previous procedure from the current procedure marker (the procedure marker that the procedure frame
pointer currently points to). This includes restoring the previous value of the procedure frame pointer, retriev
ing the return address, and popping the returning procedure's local variables, procedure marker, and argu
ments. Thus, when the calling procedure regains control, the arguments have been popped and the return
value is now at the top of the stack.

Functions and operators are written in C, and therefore obey the C calling sequence. By design, the Icon
calling sequence described above is similar to the C calling sequence. When an Icon procedure calls a func
tion, a boundary on the stack is introduced, where the stack below the boundary is regimented by Icon stan
dards, and the stack above the boundary contains C information. This boundary is important during garbage
collection: the garbage collector must ignore the area of the stack above the boundary, since the structure of
this area is unknown, whereas the structure of the area below the boundary is well-defined. In particular, all
data below the boundary is contained in descriptors or is defined by the structure of a frame, so that all
pointers into the heap or string space may be located during a garbage collection.

Functions and operators are written to "straddle" the boundary. From below, they are designed to resem
ble Icon procedures; from above, they are C procedures. An Icon procedure calls a function in the same way
as it calls another Icon procedure; in fact, functions are procedure-typed data objects just as Icon procedures
are. When invoke recognizes that a function is being called, it bypasses the argument adjustment if the field in
the procedure data block that indicates the number of arguments expected contains - I , which indicates that
the function can take an arbitrary number of arguments. It also does not push local variable initiali/ations for
functions since the C procedure allocates its own stack space. C procedures have an entry sequence that
creates a new procedure frame; since invoke has already done this, the entry point for functions is four bytes
past the actual beginning of the code (the entry sequence consists of a 4-byte jsr instruction).

All functions are written with the first argument nargs, which corresponds to the word that contains the
number of arguments supplied. For functions that expect a fixed number of arguments, they are also listed as
arguments, in reverse order. For functions that can take an arbitrary number of arguments, the macro
ARG (/?) is available that uses the address and contents of nargs to calculate the location of the ni\\ argu
ment. Thus, ARG (1) accesses the first argument (as a descriptor), and ARG (nargs) accesses the last argu
ment. Each function is responsible for supplying defaults for missing arguments and for dereferencing argu
ments that are variables. Because of the calling protocol, ARG (0) accesses the location where the return
value should be stored. Functions must place their result there, then return through normal C conventions,
which transfers control to cret. This routine merely restores the previous procedure state, pops the argu
ments, and returns to the calling Icon procedure. Each function must also supply a procedure data block that
contains the number of arguments expected (or - l) , its entry point, and a string qualifier representing its
name.

Operators are written like functions, with one exception. Since operators are not variables (as function
and procedure names are), the name of the operator is known at translation time, and the Icon procedure calls
it directly (at its normal entry point) without going through invoke. Thus, operators do not need procedure
data blocks. Instead of pushing a procedure descriptor pointing to a procedure block, a null value is pushed
instead to hold a place for the return value.

When an operator or function fails to produce a value, it calls fail. This routine initiates backtracking as
described below.

Expressions are evaluated within an expression frame. When the evaluation of an expression is complete,
whether it has produced a result or failed, the expression frame must be popped from the stack and the result
of the expression must be pushed back onto the stack. The expression frame marks the stack height at the
point that the expression began to be evaluated, so that the stack may be restored to" its original state when the
evaluation of the expression is complete. The stack would normally be restored to the original height (that is,
the pops would match the pushes) except when an expression fails at some midpoint in its evaluation. The
expression frame is also used to limit the backtracking: backtracking is restricted in the language to the
current expression only.

When evaluation of a driven expression begins, an expression marker is pushed on the stack, the expres
sion frame pointer is set to point to it, and the generator frame pointer, discussed below, is cleared. The
marker contains the previous values of the expression and generator frame pointers, and a failure label. When
an expression produces a result, that result, on the top of the stack, is popped and saved. Then the stack is
popped to the expression marker, and the previous values of the two frame pointers are restored. The marker
is popped, and the result of the expression is pushed back onto the stack, now a part of the previous expres
sion frame. If an expression fails to produce a result, fail pops the stack to the expression marker, restores the
previous values of the two frame pointers, and branches to the failure label. In the special case that the failure
label is zero, fail is effectively called again to indicate failure in the new expression frame; thus the failure is
propagated from one expression to an enclosing one.

If an expression has any generators, then there is a generator frame within the current expression frame for
each generator that is dormant (that is, that has produced a value but is not yet exhausted). A generator frame
preserves the state of the stack at the point just before the generator (whether it be operator, function, or pro
cedure) suspended (went dormant). If fail is called and there are dormant generators, then instead of exiting
the current expression frame, the most recent dormant generator is reactivated by restoring the stack to the
state saved in the most recent generator frame.

A function or operator suspends itself by calling suspend. This routine preserves the state of the stack by
duplicating the current expression frame, bounded on one end by the most recent generator frame (or, if there
are not dormant generators, the current expression frame), on the other end by the beginning of the suspend
ing function or operator's argument list. A generator marker is pushed onto the stack, followed by the dupli
cate expression frame. Suspend then causes the suspending function or operator to return to its caller,
instead of itself returning.

When reactivated by fail, the stack is restored to the generator marker, which is used to restore the various
frame pointers; then the marker is popped. The stack is then in the same state that it was in when suspend
was called. Fail then returns to the generator as if the original call to suspend had returned. Thus, the fol
lowing schema is typical of operators and functions that generate a sequence of values.

initialize',
while (not exhausted) {

compute next value',
store return value',
suspend ()
}

fail ();

The effect of driving an expression containing generators is that suspend actually causes the generator to
return. If alternatives are needed, backtracking occurs, and the effect is, as far as the generator can tell, that
suspend has finally returned. The generator computes the next value, and suspends with that value. When
the generator is exhausted, it merely fails without suspending, which just passes the failure back to the next
most recent dormant generator, if any.

Just as functions and operators can return normally, suspend, or fail, so can Icon procedures. The
mechanics are essentially the same, but the differences in stack layout require different primitives. When Icon
procedures return normally, the return value is presumed to be at the top of the stack, and pret is called.
Similarly, Icon procedures call psusp to suspend. Both of these routines also dereference the return result if it
is a local variable. Pfail causes an Icon procedure to return with no result.

The same three primitives are also needed at the expression level: eret, esusp, and efail. Eret, like
unmark, is not a library routine, but is generated as inline code. Both cause an exit from the current expres
sion frame; but eret is supplies a result to the enclosing expression, while unmark does not. Esusp creates a
dormant generator before supplying a result to the enclosing expression; it is used by the alternation control
structure. Efail simply causes backtracking within the current expression frame. In fact, fail and pfail merely
exit their procedure frame before branching to efail.

10-

3.3 Storage Allocation and Reclamation

During program execution, storage allocation is necessary when a data object is created. The two primi
tive routines allocate and alcstr allocate storage in the heap and string space, respectively. Both routines
return pointers to the beginning of the newly allocated regions. Neither routine is responsible for ensuring
that enough space remains in the data regions. Ensuring that enough space remains in the data regions is the
responsibility of a predictive need strategy described below.

In the heap, allocate (n) returns a pointer to n contiguous bytes of storage. Because a wide variety of
objects may reside in the heap, a number of support routines are provided to simplify the storing of various
objects. There is a specific routine to allocate a block for each datatype in the heap. Where appropriate, these
routines have the actual values to be stored as their arguments. All of the routines call allocate to obtain
storage for the object, and establish the block header for that datatype within the newly allocated region.

In the string space, alcstr (.v, /) allocates room for a string of length /and copies the string pointed to by s
into this space. Since some routines such as left, right and center need room in the string space in which to
construct a string, a call to alcstr with the defined constant NULL as the first argument results in the alloca
tion of storage without attempting to copy a string.

Source code for all of the allocation routines is contained in the file rt/alc.c. Almost all interaction with
the storage management is made through these routines. Two exceptions occur in string concatenation and
reading a fixed number of bytes. In each case, it is simpler and more efficient to have these operations deal
directly with storage management.

As mentioned earlier, a predictive need strategy is employed to ensure that enough room remains for data
storage. Simply put, predictive need states that it is the responsibility of any routine that calls an allocation
routine both to ensure that enough room remains in the proper data region and to maintain the validity of any
temporary pointers into the data regions, should a garbage collection be necessary to free up storage space.

Since the check for storage space only needs to occur before the allocation takes place, each routine may
perform this check at its convenience. This approach permits the minimization of the number of temporary
pointers that must be protected during garbage collection. As an aid, space for several descriptors is automat
ically protected by the procedure invocation mechanism, and is usually used to hold information pertaining to
the arguments of the procedure (see Section 3.4).

Routines to ensure space are provided for each of the two storage regions. The routine sneed (n) ensures
that at least n bytes of storage remain in the string space, and hneed («) performs the same function in the
heap. If either routine finds that there is insufficient storage remaining, it will invoke the garbage collector in
an attempt to obtain that storage. If that fails, then program execution is aborted with an appropriate diag
nostic.

Garbage collection, or storage reclamation, is a process that identifies all valid data in storage and com
pacts that data in order to provide a contiguous area of unused storage. The algorithm used for identifying
valid data is based upon the algorithm described by Hanson [6]. Only the more novel features are discussed
here.

Whenever a predictive need request discovers that insufficient storage remains in either the heap or string
space, the garbage collector is invoked to free up space in both regions. This approach is more efficient in
situations where both regions are heavily allocated, and only slightly less efficient otherwise.

The approach is to sweep through the permanent data regions and the stack, looking for descriptors that
are either pointers into the heap or string qualifiers. When a string qualifier is found, a pointer to that qualif
ier is saved in a temporary data region at the end of the heap. If the descriptor is a pointer into the heap, then
that heap data block contains valid information. The block is marked as valid, the descriptor is placed on a
back chain headed in the block, and the marking process is called recursively on any descriptors within that
block. Blocks that are already marked as valid are not processed a second time. To simplify the marking of
heap blocks, all data blocks have been designed so that all descriptors within them exist as a contiguous sec
tion at the end of the block. Thus to sweep through the descriptors within a block, the marking algorithm
need only know the size of the block and the location of the first descriptor. Information concerning a data
block's size, as well as the offset for the first descriptor is maintained in the file rt/dblocks.C.

Alter the marking phase is completed, the string region is compacted. The algorithm used is described by

Hanson [8]. The pointers to the string qualifiers are sorted so that the order of all valid strings within the
string space is identified. The string qualifiers are then processed in order, and modified as the valid strings
are compacted. If this compaction does not free up enough space within the string space to satisfy the request,
the heap must be moved in order to provide more room in the string space. An attempt is also made to pro
vide some additional "breathing room" in the string space to permit future expansion.

The heap cannot be moved until after the valid pointers into it are adjusted and the storage is compacted.
The pointer adjustment and heap compaction phases are two linear passes through the heap which must be
performed during standard heap garbage collection. The only difference when the heap is to be moved is that
the adjusted pointers point to where that data will be after the heap has been moved. If not enough breathing
room is freed in the heap, then more space is requested from the operating system. As a last step, if the string
space needs more room, the heap is relocated.

This method has proved to be quite satisfactory for most applications. A shortcoming of the implementa
tion is the absence of a process for decreasing the size of a data region, should it become too large. It is also
possible that insufficient room would be available for storing the pointers to the string qualifiers, even though
enough storage would become available if the heap were collected separately. In practice, this has not been a
problem. The source code for the garbage collector is maintained in the file rt/gc.C.

3.4 Coding Conventions

The calling conventions for functions and operators have been mentioned earlier. Several other aspects of
the runtime system are explained here.

All header files for the runtime system are in the directory h. The file h/rt.h (or, for assembly-language
routines, h/defs.s) is included by almost every source file in the runtime system, and contains machine-
dependent defined constants, runtime data structure declarations, external declarations, and defined con
stants and macros for flags, type codes, argument accessing, and bit manipulations.

The macros tstb and setb are the basic primitives used in conversions between csets and strings. These are
defined as macros rather than as procedures for efficiency: both appear within tight loops where the overhead
for calling procedures would be a significant portion of the processing time. However, because the arguments
appear several times within the macro expansion, care must be taken to avoid auto-incrementing the argu
ments.

During the execution of an Icon program, many type conversions are done on temporary values, where
data storage is not required beyond the bounds of the current operation. For this reason, the type conversion
routines all operate with pointers passed to them that reference buffers in the calling procedure. Any routine
calling for type conversion must determine if heap or string space storage is needed, and perform the alloca
tion. Most of the conversion routines return the type of the result or NULL if the conversion cannot be per
formed. One exception is cvstr which, in addition to NULL, returns 2 if the object was already a string, and 1
if the object had to be converted to a string. This distinction makes it possible to avoid a large number of
predictive need checks. The second exception is cvnum which returns either real ox long integer, and makes
no attempt to distinguish between short and long integers.

As mentioned in Section 3.3, there is space set aside to hold temporary descriptors and to protect the vali
dity of these descriptors during garbage collection. The garbage collector knows about this region, and tends
it during storage reclamation. The region is defined in the file rt/Start.s, and is bounded by the labels tended
and etended. This area can be referenced from C by considering tended to be an array of descriptors. Since
a garbage collection can occur only during a call to sneed or hneed, or between suspension and reactivation,
the only places where C routines need to ensure that all pointers into the heap or string space are tended are
just before calls to sneed, hneed, or suspend.

All Icon procedure names are converted to a numeric label preceded by the letter P so that there is effec
tively no limit to the length of their names. All function names are preceded by the letter X, and their pro
cedure blocks are preceded by the letter B. This prevents name collisions between Icon procedures and other
routines, such as those for operators, type conversions, and storage management. Reference from the gen
erated code to functions is made entirely through the procedure block; the entry point field of the procedure
block references the function itself.

- 12

4. Interpreter

The translator for the interpreter is, with two exceptions, exactly the same as the one in the compiler
implementation. The linker is mostly the same, except for the code generator, which produces a binary file
containing the interpreter code. There is one additional directory in the runtime system, iconx, which con
tains the core ol the interpreter itself. This core is loaded with the Icon runtime libraries and the C library to
form the program iconx, which interprets translated and linked Icon programs.

One of the differences in the translator is that an attempt to use the external declaration results in a trans
lator error, since external procedures cannot be used with the interpreter system. The only other difference is
that internal labels in the ucode are generated beginning from L1 in each procedure, rather than being num
bered consecutively throughout the entire file. The reason for this change is that the linker resolves label refer
ences on a procedure-by-procedure basis. In the compiler version, that task is deferred to the assembler,
which resolves label references globally, even though there are no inter-procedure label references.

The ucode is output by the linker in several regions. The first region contains constants, procedure blocks,
and code for the Icon procedures. The next region contains the record/field table and procedure blocks for
record constructors. The next four regions contain the global variables, the names of the global variables, the
static variables, and the identifier table. Data is output in essentially the same form as in the compiler imple
mentation, except that it is in binary instead of assembly language. The code is a sequence of one-, three-, or
five-byte instructions, each with a one-byte opcode and one or two two-byte operands. Most instructions
correspond exactly to instructions in the ucode that is output by the translator. The opcode values are those
used internally by the linker (defined in the file link/opcode.h).

The linker has a few more tasks in the interpreter implementation because there is no assembly phase. In
the compiler version, the linker does not resolve references to program labels, global or static variables, con
stants, or procedures or functions. Additional fields are provided in the global symbol and literal tables for
associating a location with each entry. As the prologue is being read, each cset, real, or long-integer literal
entered into the literal table is output immediately and its location is stored in the literal table. Thus, the loca
tions of all constants are known before their reference.

The same is true of references to procedures, since these references only occur in the initialization for glo
bal variables, which is not output until all procedures have been output. When the prologue for a procedure
has been completely processed, the procedure data block is output, and its location is noted in the globai sym
bol table.

References to program labels require backpatching, since there are often forward references. Because pro
gram label references are always local to the current procedure, the linker buffers the output code for a pro
cedure. A table of values for all program labels is initialized to zero at the beginning of each procedure. When
a label is referenced and its table entry is zero, the location of the reference is negated and stored in the table
entry and a zero is output for the operand. If a label's table entry is negative, the location of the reference is
negated and stored in the table entry as before, but the previous value of the table entry is output for the
operand. This forms a linked list of references to the as-yet-undefined label. When a label is defined, each
reference on the linked list is replaced with the correct value of the label.

References to global and static variables are resolved at runtime. The glob and static instructions have an
integer operand referring to the variable by position in the global or static variable region. When one of these
instructions is interpreted, the actual address is calculated from the position and the known.address of the glo
bal or static variable region.

References to functions are also resolved at runtime. Each function is assigned an integer index (its posi
tion in the table of functions in link/builtin.c). When the global variable initialization for a function is out
put, the negated index is output instead of an address. The interpreter fills in the correct address at the begin
ning of execution.

Before the interpreter begins executing the Icon program, it reads in the ucode file generated by the linker.
The first eight words of this file contain header information indicating the total size of the rest of the file, the
initial value of &trace, and the relative offsets from the beginning of the file to the various regions. These
offsets are converted to actual addresses by adding the base address of the ucode buffer. Several pointers in
the ucode must also be relocated. The interpreter sweeps through the global variables, looking for procedures,
functions, and record constructors. For each function, it supplies the address of the appropriate procedure

13-

block. For each procedure, it relocates pointers from its procedure block to the procedure entry point and to
procedure and local variable names in the identifier table. For each record, it supplies the address of mkrec,
the routine that constructs new records, as the entry point field in the procedure block.

The interpreter then begins execution by invoking the first global variable, which must be the procedure
main. Invoke is slightly different in the interpreter, in that the entry point for procedures does not refer to
machine code, but to interpreter code. It therefore sets register r2, the interpreter pi; to the entry point, and
branches to interp.

Interp is the main interpreter loop. It fetches the next opcode, and branches to the appropriate processing
routine through a jump table. The processing routine for a given ucode operation is similar to the code gen
erated for that ucode operation in the compiler version. Each processing routine ends by branching back to
interp.

Since instructions are always an odd number of bytes in length, their operands are not guaranteed to be on
word boundaries. Two-byte operands must therefore be accessed in two memory accesses and combined.
This could cause a noticeable degradation in performance, so many of the most common operations that take
one operand have abbreviated forms that can be used when their operands are small enough, making them
into single-byte instructions. For example, there are 16 separate one-byte opcodes for accessing the first 16
global variables.

S. Modifying the Implementation

This section is intended to serve as a brief guide for those who wish to modify the Icon system. It is not
comprehensive; it only points to various parts of the implementation that need to be considered when making
various kinds of changes.

Perhaps the most common kind of change that one might expect to make is to add new functions (built-in
procedures). To add a function, first write it according to the conventions described in Section 3.4. (Use an
existing function similar to the new one as a prototype. Appendix F contains severak example functions.) Be
especially careful to observe the rules concerning storage allocation and tended descriptors. A new function
can be tested before being installed in the system by using the external declaration (in the compiler implemen
tation only). Then prepare to add the new function to the runtime library by moving the source code into the
functions directory and adding its name to functions/Makefile (the name must be added in three places —
there are many examples already in the makefile). Then add the name to the file link/builtin.c in proper
alphabetical order for use by the linker.

The file bin/Makefile is set up to compile whatever needs to be compiled to make a new system. When all
changes have been made to the source code, simply change to the bin directory and run make. This runs
make in each of the six system directories — tran, link, functions, operators, lib, and rt — and then copies
the new versions into the bin directory.

Adding new operators is more complicated — this is described in detail since many other kinds of modifi
cations require many similar changes. Again, the first step is to write the routine, place it in the operators
directory, and add its name to the Makefile there. Next, the operator must be added to the translator, as fol
lows:

(1) Add the operator to the operator table in tran/optab; the structure of the table is described in Section 1.1.

(2) Create a unique name for the new token and make a new token table entry in tran/tokens in the operators
section of the table. Although the operators section of the table is in alphabetical order by token name as
distributed, there is no need to preserve this order. (Do not put any tabs in the file tokens if it is to be pro
cessed by the Icon program mktoktab.icn discussed in Section 1.1.)

(3) If a running Version 4 of Icon is not available, edit the files tran/optab.C and tran/toktab.C to
correspond to the changes made in steps 1 and 2. This sometimes involves a renumbering of token table
entries in both files (but nowhere else). If a running Version 4 of Icon is available, a make in tran executes
mktoktab to produce the new token tables. (In the interpreter, the make interprets mktoktab.u)

14-

(4) Add the operator to the grammar in tran/ucon.g. The token name must be added to the list of terminal
symbols at the beginning of the grammar file, and the operator must be inserted into the syntax at the
appropriate precedence level. If the precedence is the same as that of an existing operator, simply add the
operator as an alternative to the existing production; otherwise, insert a new production, and change the
production at the next lower precedence level to refer to the new one. The semantic action should create
either a BlNOP or a {/NOP node in the parse tree; use existing actions as a prototype.

(5) The new operator must now be added to the code generator in tran/code.c. Insert a case in either of the
routines binop or unop for the new token name that assigns a new intermediate code opcode to name, as
for other operators — this causes the new opcode to be emitted into the ucode. The opcode should have
the same name as the library routine that performs the operation.

The new intermediate code opcode must also be added to the linker. Add a defined constant to
link/opcode.h; order here is not important. Then add the opcode name and the defined constant to
link/opcode.c; alphabetical order must be preserved here, since a binary search is used. Then edit the code
generator in link/code.C, adding a case in the routine gencode with either the binary or the unary operators.
The standard processing here emits code that evaluates the operand(s), then calls a library routine with the
same name as the intermediate code opcode. The system is then be ready to be made as described above.

Adding a new control structure is similar in nature to adding a new operator. Most often, a new reserved
word must be added to tran/tokens; this part of the token table must be kept in alphabetical order. The new
token must be added to the grammar, and productions must be added, usually at the highest precedence level
(the same as if, for example). The semantic action for the new production will probably involve creating a
parse tree node of a new type. The new node type should be added to tran/tree.h and a new case in the rou
tine traverse (in tran/code.c) should be added to generate intermediate code. The intermediate code gen
erated can use any of the existing opcodes or can use new ones created specifically for the new control struc
ture. If new opcodes are created, they must be added to the linker as described above, and a new case in the
routine gencode must generate code for it. The generated code can be either entirely in-line or can call a new
library routine (see, for example, the generated code for scan expressions). If new code generation templates
are needed, modify the routine emit in link/code.C and the list of templates in I ink/code.h. If the code calls
a new library routine, add it to the lib directory and the Makefile there. Then the system is ready to be made.

Modifying the semantics of existing control structures, operators, or functions, often involves changing
only the generated in-line code or a library routine. Modifying the syntax without disturbing any semantics
usually requires only a change to the grammar.

Adding a new datatype means making many of the above changes. A new datatype code must be added to
h/rt.h and h/defs.S, and a new data block format must be defined, if necessary. The size and location of the
first descriptor of the new data block must be entered in rt/dblocks.cso that the garbage collector knows how
to treat the block. The routines in functions/image.C and rt/outimage.C must be extended so that images of
the new datatype can be produced. New functions and operators need to be created, and possibly new coer
cion routines must be added to rt.

Adding a new keyword entails a change to tran/keywords(and, if a running Version 4 of Icon is not avail
able, to tran/keyword.h) and a new case in lib/keyword.c. A make in tran runs the program mkkeytab (or
interprets mkkeytab.u if it is the interpreter that is being modified) to produce both tran/keyword.h and
tran/keyword.c. Many keywords require trapped variables, which requires changes to h/rt.h.
operators/asgn.c, and rt/deref.c; the trapped variable for &subject serves as a good model.

As mentioned above, the examples in this section are intended to identify what parts of the system are
affected by certain kinds of changes or extensions. A thorough understanding of the system is suggested, how
ever, for other than minor changes.

15

Acknowledgements

Many features of the current implementation of Icon are based upon the original Ratfor implementation
by Dave Hanson, Tim Korb, and Walt Hansen [2, 9]. We would like to thank Ralph Griswold and Dave Han
son for their many suggestions regarding the implementation and for many careful readings of this paper.

References
[1] Coutant, Cary A., Ralph E. Griswold, and Stephen B. Wampler. Reference Manual for the Icon Pro

gramming Language, Version 4. Technical Report TR 81-4, Department of Computer Science, The
University of Arizona, Tucson, Arizona, July 1981.

[2] Hanson, David R., and Walter J. Hansen. Icon Implementation Notes. Technical Report TR 79-12a,
Department of Computer Science, The University of Arizona, Tucson, Arizona, February 1980.

[3] Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1978.

[4] Johnson, Stephen C. "Yacc: Yet Another Compiler-Compiler." Unix Programmers Manual, Seventh
Edition. Bell Telephone Laboratories, Inc., Murray Hill, New Jersey, 1979.

[5] Aho, A. V., and S. C. Johnson. "LR Parsing." Computing Surveys 6, 2 (June 1974), 99-124.

[6] Hanson, David R. "Storage Management for an Implementation of SNOBOL4." Software—Practice
and Experience 7,2 (March 1977), 179-192.

[7] Hanson, David R. "Variable Associations in SNOBOL4." Software—Practice and Experience 6, 2
(April 1976), 245-254.

[8] Hanson, David R. The Manipulation of Variable-Length String Data in Fortran IV. Technical Report,
Department of Computer Science, The University of Arizona, Tucson, Arizona, May 1975.

[9] Korb, John Timothy. The Design and Implementation of a Goal-Directed Programming Language.
Ph.D. Dissertation, Technical Report TR 79-11, Department of Computer Science, The University of
Arizona, Tucson, Arizona, June 1979.

16

Appendix A

The Parse Tree

The parse tree is a collection of nodes, described below, rooted at a proc node. Nodes have a common for
mat: the first field contains the node type, the second and third fields contain a line and column number relat
ing the node to the source program, and the next zero to four fields contain node-dependent information. The
line and column numbers arc usually those of the first token or the central token of the construct; for example,
in binop nodes, they are the location of the operator; in if nodes, they are the location of the if token.

The following list of node types gives a brief description of the node and a list of the node-dependent fields
and their uses. The fields are named val if they contain an integer value, str if they contain a pointer to a
string, or tree if they contain a pointer to another node (a leaf or subtree). A digit between 0 and 3 is appended
indicating its position in the node.

Seven of the nodes — cset, id, int, op, real, res, and str — are leaf nodes. These nodes, allocated and
returned by the lexical analyzer, represent source program tokens. The remaining nodes contain one or more
pointers to other nodes, either leaves or subtrees.

alt An alternation (the I operator).
treed The left operand.
tree I The right operand.

augop An augmented assignment.
treeO The operator (pointer to an op node).
tree! The left operand.
tree2 The right operand.

binop A binary operation.
treeO The operator.
tree! The left operand.
Iree2 The right operand.

break A break expression.
treeO The expression following the break.

case A case expression.
treeO The control expression.
treel The list of case clauses. If there is only one case clause, this field points to the eels

node; if there are more, it points to a clist node.

eels A case clause, as in el: e2.
treeO The case selector expression, el. For a default clause, this field points to a res node

that contains the reserved word default.
tree! The expression, e2, that is executed if the selector matches the control expression.

clist A list of case clauses. The list is represented as a binary tree, with left branches pointing to case
clauses and right branches pointing to a list of the remaining case clauses. The right branch of
the last clist node points directly to a eels node.

treeO A case clause (pointer to a eels node).
treel Pointer to another clist node, or to the last eels node in the list.

17

conj A conjunction (the & operator).
treeO The left operand.
treel The right operand.

cset A leaf node representing a cset literal.
strO The string equivalent of the literal.
vail The length of the string.

elist An expression list, as in a list construction or the argument list in a procedure call. An expres
sion list, like a list of case clauses, is represented as a binary tree.

treeO An expression.
treel Pointer to another elist node, or to the last expression in the list.

empty This node is used as a placeholder for missing expressions in control structures and expression
lists.

field A field reference to a record (the . operator)
treeO The left operand.
treel Pointer to an id node, containing the field name.

id A leaf node representing an identifier.
strO The name of the identifier.

if An if expression.
treeO The control expression.
treel The then clause.
tree2 The else clause.

int A leaf node representing an integer literal.
sirO The string representation of the literal.

invok A procedure call (invocation).
treeO The expression naming the procedure.
treel The argument list. If there is one argument, this field points to the expression; if there

are more, it points to an elist node.

key A keyword reference.
valO The index of the referenced keyword, defined in the file tran/keyword.h.

limit A limitation control structure.
treeO The left operand (the expression being limited).
treel The right operand.

list A list construction, as [el, e2,...].
treeO The list of elements. If there is one element, this field points to the expression; if there are

more, it points to an elist node.

loop A loop expression.
treeO The style of loop. This field points to a res node, which identifies the reserved word

that introduced the loop.
tree! The control expression.
tree2 The do clause.

next A next expression.

not A not control structure.
treeO The expression following the not.

op A leaf node representing an operator.
va/0 The token type of the operator.

proc A procedure. This node is always at the root of the parse tree.
treeO The procedure name. This field points to an id node containing the name.
free I The initial clause.
free! The procedure body. If there is one expression in the procedure body, this field points

to it; if there are more, it points to an elist node.
treeJ A node containing the end token. This field is used to supply a line number for the-

implicit return at the end of a procedure.

real A leaf node representing a real number literal.
strO The string representation of the literal.

res A leaf node representing a reserved word.
valO The token type of the reserved word.

ret A return or fail expression.
treeO The type of return. This field points to a res node, which contains the reserved word

return or fail.
tree I The expression following return, or a pointer to an empty node.

scan A scan or transform expression.
treeO The reserved word scan or transform.
tree I The control (scanned) expression.
tree! The using clause.

sect A section operation, as el[e2:e3].
treeO The first operand, el.
tree/ The second operand, e2.
tree! The third operand, ei.

slist A list of expressions separated by semicolons, as in a procedure body (a statement list). This list,
like expression lists and case lists, is represented as a binary tree.

treeO An expression in the list.
tree/ A pointer to another slist node, or to the last expression in the list.

str A leaf node representing a string literal.
strO The string value of the literal.
vail The length of the string, necessary because the string may contain the ASCII /;//// charac

ter, which would otherwise terminate the string.

susp A suspend expression.
treef) The expression following the suspend.

toby A to-by operation.
treeO The initial value expression.
tree/ The to clause.
tree2 The by clause.

to A to operation.
treeO The left operand.
tree I The right operand.

unop A unary operation.
treeO The operator.
tree I The operand.

19

Appendix B

Icon Formal Syntax

The following grammar describes the Icon language. Reserved words and operators are shown in a sans-
serif type face; non-terminals are in italics. The non-terminals idenl, literaL and empty are left undefined in
the syntax.

program — decls

dec Is -* empty
— decls dec!

dec I — record
— proc
— global

global — global idlist

— external idlist

record — record idem (arglist)

proc — prochead ; locals initial nprocbody end

prochead — procedure We/7/ (arglist)

arglist — empty
— W//.V/

W//.V/ — We/;/
— W//1v/ , idem

locals — empty
— locals retention idlist ',

relent ion — local
— static
— dynamic

initial -* empty
— initial e.v/?r ;

procbody — empty
—• nexpr ; procbody

nexpr — empty
— f.v/;r

e.v/?r — exprl

- 21

exprl — expr2
— exprl op I exprl
— expr2 op la exprl

opl - := | :=: | <- | <->

opla - +:= | - : = | *:= | /:= | %:= | A:= | ++:= | — : = | **:=

expr2 — expr3
— expr2 to expr3
— expr2 to expr3 by expr3

expr3 — expr4
— expr3 I expr4

expr4 — expr5
— expr4 op4 exprS

op4 - < | <= | = | >= | > | ~=
— « I « = I == I » = I » I ~==

expr5 — expr6
— exprS II expr6
— expr5 HI ?.Y/?r(5

expr6 — expr7

— expr6 op6 expr7

op6 - + | - | ++ | —

expr7 — expr8

— expr7 op7 expr8

opl - * | / | % | **

expr8 — expr9
— expr9 A expr8

expr9 — exprlO
— expr9 \ expr9

exprlO — exprl 1
— not exprlO
— o/?/0 exprlO

oplO - I | . | ! | + | - | - | = | * | / | \ | ?

22 -

expr11 —•

while

until

every

repeat

if

case

case list

ident
literal
& ident
expr11 . ident
expr 11 [expr]
expr II (expr list)
[expr list]
(expr)
{ compound }
while
until
every
repeat
next
break nexpr
if
case
scan
return
section

while expr
while expr do expr

until expr
until expr do expr

every expr
every expr do expr

— repeat expr
— if expr then expr
— if <'.\y>r then expr else pjc/̂ r

— case expr of { caselist }

cc/ause
caselist (clause

cc/ause — default : expr
— expr : expr

scan —• scan expr using expr
— transform expr using expr

return

section

sectop

expr list

compound

—
—
—

—

—

—
—
—
—

fail
return nexpr
suspend nexpr

exprII [expr sectop expr]

: | +: | -:
nexpr
expr/ist , nexpr
nexpr
nexpr ; compound

-23

r%

.iw

Appendix C

The Intermediate Language

The intermediate language generated by the Icon translator, ucode, resembles a stack-oriented assembler
language. A ucode program is a sequence of labels and instructions. A label marks a location in the program
to which other instructions may transfer control. Labels are of the form "lab Ln"\ where n is a decimal
number. A ucode instruction either describes an imperative operation or communicates information to the
Icon linker. Instructions consist of an opcode followed by zero or more arguments. Arguments can be
decimal or octal integers, names, or label references.

The intermediate language operates exclusively on the stack. There are several kinds of objects that can
appear on the stack: descriptors, which represent Icon values and variables; procedure frame markers, which
mark the beginning of a new procedure frame; expression frame markers, which delimit driven expressions;
and generator frame markers, which mark dormant generators. For more details about the stack, refer to Sec
tion 3.2.

The opcodes and their arguments are described in three groups below. The global symbol table file has a
format similar to the ucode file; the opcodes used there are described in the fourth group.

Imperative Instructions

The instructions below, together with the operators described in the next section, represent runtime
actions for which code must be generated.

bscan
Save the scanning subject and position on the stack, and establish a new subject and position. This
operation is reversible.

bxform
Save the variable being transformed and the scanning subject and position on the stack, and estab
lish a new subject and position. This operation is reversible.

cease
Duplicate the value on the stack just below the current expression frame. Used in case expres
sions.

chfail lab
Change the failure label for the current expression frame to tab. Used for repeated.evaluation.

cset n
Push the cset literal at constant table location n onto the stack.

dup
Duplicate the value on the top of the stack. Used in augmented assignments.

efail
Signal failure in the current expression. If there are any dormant generators, reactivate the most
recent one. If there are none, branch to the failure label for the current expression frame. If the
failure label is null, exit the current expression frame, and signal failure in the enclosing one.

25

eret
Return a value from an expression. Save the value on top of the stack, exit the current expression
frame, and push the value onto the stack as part of the enclosing expression frame.

escan
Restore &subject and &pos from the stack. This operation is reversible.

esusp
Suspend a value from an expression. The value on the top of the stack is saved, and a generator
frame hiding the current expression frame is created. The surrounding expression frame is dupli
cated, and the value is pushed onto the stack as part of that expression frame. When reactivated,
esusp in turn reactivates any dormant generators in the suspended expression.

exform
Assign the current value of &subject to the variable being transformed, and restore &subject and
&pos from the stack. This operation is reversible.

field name
Access the field name from the record object on the top of the stack.

file name
Set the file name to name for use in error messages and tracing. Used at the beginning of each
procedure.

goto lab
Transfer control to the instruction following label lab.

init? lab
If the initialization statement for the current procedure has already been executed once, go to lab.

int n
Push the integer literal at constant table location n onto the stack.

invoke n
Invoke a procedure or create a record. The number of arguments or fields on the stack is given by
n. The procedure or record creation object is on the stack, just beyond the arguments. After invo
cation, the arguments are popped from the stack, and the returned value is pushed (see return).

keywd n
Push a value or trapped variable representing keyword n onto the stack. (See keyword.h for key
word numbers.)

limit
Check the value on the top of the stack for a legal limitation value. If the value is zero, failure is
signalled in the current expression (see efail).

line n
Set the line number to n for use in error messages and tracing.

Hist n
Create a list of n literals. The literals are popped from the stack and the created list is pushed back
onto the stack.

Isusp
Decrement the limitation counter for the current expression frame. If the counter becomes zero,
then return a value from the current expression frame (see eret); otherwise, suspend a value from
the current expression frame (see esusp).

mark lab
Save the current expression and generator frame pointers on the stack, then create a new expres
sion frame, with failure label lab. Control is transferred to lab if failure occurs in the expression
frame and there are no dormant generators to reactivate (see efail).

pfail
Return from the current procedure, and signal failure (see efail).

-26

pnull
Push the null value onto the stack.

pop
Pop the top element off of the stack.

pret
Return from the current procedure with the result that is on top of the stack.

psusp
Suspend from the current procedure with the result that is on top of the stack.

pushl
Push the integer I onto the stack.

real n
Push the real literal at constant table location n onto the stack.

str n
Push the string literal at constant table location n onto the stack.

- 2 7 -

Appendix D

Data Representations

Descriptor Formats

The figures below depict each of the six descriptor types mentioned in Section 3.1.
16-bit words long; the first word is shown on top of the second.

Each descriptor is two

Null

String Qualifier length

address of string

Short Integer 0 flags type — 1

16-bit integer

Value 0 flags type > 2
address of data block

Variable offset

address of descriptor

Trapped Variable 1 I flogs type
address of data block

Data Block Formats

The data blocks used by the Icon system are pictured below. The data type code, shown as both a
mnemonic and an integer, is always the first word of the block and has the same value as the type code in the
value or trapped variable descriptor that refers to it. All name fields in the data blocks are string qualifier
descriptors, and all pointers in the data blocks are variable descriptors.

- 29

Long Integer T_LONGINT = 2

32-bit integer

Real T_REAL = 3

— double-precision real —

Cset T_CSET = 4

256-bit character set

File T_FILE = 5

UNIX file descriptor
file status

file name

Procedure T_PROCEDURE = 6

size of this data block

entry point address

number of arguments

number of dynamic locals

number of static locals

index of first static local

procedure name

— name of first local —

name of last local

-30

List T_LIST = 7

current size of list

— pointer to first list block —

— pointer to last list block —

List Block T_L1STB =

size of this data block
number of slots in this block

index of first slot used

number of slots used

pointer to previous list block —

— pointer to next list block

first slot

last slot

Table T_TABLE = 8

current table size

—

—

default value

first hash bucket

.

—

—

last hash bucket

Table Element

—pointer to next element in bucket-

T_TELMT = 10

table element reference —

table element value

31 -

Record T_RECORD = 9

size of this data block

pointer to record constructor

— first field of record

— last field of record —

Substring Trapped Variable T_TVSUBS = 12

length of substring

relative position of substring

— variable containing substring —

Subject Trapped Variable T_TVSUBJ = 13
length of substring

relative position of substring

Table Element Trapped Variable TJTVTBL = 14

pointer to table

— table element reference —

32

Appendix E

Stack Frame Formats

The three kinds of stack frames are described below. For each kind of frame, a frame pointer points to the
most recent frame marker, which marks one end of the frame. Each frame marker contains a pointer to the
next most recent marker of the same kind.

On the PDP-11, the frame pointers are contained in registers r3, r4, and r5 whenever an Icon procedure is
active. The procedure frame pointer is in r5, the expression frame pointer is in r4, and the generator frame
pointer is in rJ. In the interpreter implementation, r2 contains the interpreter's program counter (it points to
the next ucode operation to be done). When a C procedure is active, only the procedure frame pointer is kept
in a register; registers r2-r4 are used for local variables by C procedures.

Procedure Frames
A procedure frame contains a procedure's arguments, local variables, and temporary storage for incom

plete computations. When an active procedure invokes another procedure, a new procedure frame is created
for the new procedure, which then becomes active. As such, the new procedure represents an incomplete com
putation in the calling procedure, so the new procedure frame is "nested" within the old one. The procedure
marker is placed on the stack between the arguments and local variables. The format of the procedure marker
is shown in the following table; the locations are shown relative to the contents of r5, the procedure frame
pointer.

10(r5) previous source program fie name
-8(r5) previous source program line number
-6(r5) previous contents of r2
-4(r5) previous contents of r3 (generator frame pointer)
-2(r5) previous contents of r4 (expression frame pointer)
0(r5) previous contents of r5 (procedure frame pointer)
2(r5) return address
4(r5) number of arguments

Expression and generator frames are always contained wholly within a procedure frame, and their respective
frame pointers are cleared to zero after being saved in the procedure marker.

The first argument to a procedure is located at 6(r5), the second at 10(r5), and so on. The first local vari
able is located at -14(r5), the second at -18(r5), and so on.

Procedure markers created for functions and operators do not contain the source program line number or
file name, since functions and operators do not change it. Because they are C procedures, their local variables
are not descriptors and are subject to C language conventions, but everything above the marker (higher
addresses) is subject to Icon language conventions. The location of the procedure marker for functions and
operators is considered the boundary, mentioned in Section 3.2.

- 3 3 -

Kxpression Frames

An expression frame limits the scope of backtracking. No dormant generator outside the current expres
sion frame may be reactivated until evaluation of the current expression is complete. The format of an expres
sion marker is shown in the following table; locations are shown relative to r4, the expression frame pointer.

-4(r4) failure label for expression frame
-2(r4) previous contents of r3 (generator frame pointer)
0(r4) previous contents of r4 (expression frame pointer)

When an expression frame is created, the generator frame pointer is cleared after being saved in the expression
marker, to indicate that there are no dormant generators that may be reactivated while the new expression
frame is current. An expression frame extends from its expression marker to the top of the stack. Expression
frames are not disjoint; new frames are always nested within older ones.

When failure occurs within an expression frame and there are no dormant generators to reactivate, the
expression frame is exited, and control is transferred to the failure label. If the failure label is null, however,
another failure occurs within the new expression frame, and the logic is the same.

For limited expressions, the limitation counter is contained in an Icon integer just below the expression
marker at 2(r4). This counter is decremented each time the expression suspends a result.

Generator Frames

A generator frame preserves the state of execution of a dormant generator. When a suspending procedure
calls psusp, a generator marker is placed on the stack to mark the point of suspension, then the most recent
expression frame outside the suspending procedure frame (the expression frame that was current just prior to
invocation of the suspending procedure) is then duplicated and pushed onto the stack. The suspending pro
cedure then returns, so that the expression frame that was duplicated is current. Thus, the generator frame is
contained within the expression frame, and "hides" the dormant generator. The format of the generator
marker is shown in the following table; locations are shown relative to r i , the generator frame pointer.

-6(r3) previous source program file name
-4(r3) previous source program line number
-2(r3) previous value of &level
0(r3) previous boundary address
2(r3) previous contents of r2 (loop frame pointer)
4(r3) previous contents of ri (generator frame pointer)
6(r3) previous contents of r4 (expression frame pointer)
8(r3) previous contents of r5 (procedure frame pointer)

10(r3) reactivation address

The last five words of the generator marker are actually part of a procedure marker, created by the call to
psusp. Thus, the reactivation address is just the return address for psusp.

When a function or operator suspends, there is a boundary that becomes hidden. This boundary address
needs to be restored upon reactivation. It is also important to the garbage collector, since the portion of a gen
erator frame between the hidden boundary and the generator marker does not have the well-defined structure
required.

34-

Appendix F

Sample Functions

The following routines are examples of the source code for Icon functions. As indicated in the report, each
routine consists of a C procedure performing the indicated function, and a procedure block linking the C pro
cedure with the Icon procedure invocation mechanism.

The first example is the code for the routine write, as supplied with the Icon distribution, and is included
to how a routine is written to handle a variable number of arguments.

#include "../h/rt.h"

/*
* write(a,b,...) - write arguments.
7

Xwrite(nargs)
int nargs;

{
register int n;
char sbuf[MAXSTRING];
struct descrip arg;
static struct descrip nullstr = {0, ""} ;
FILE *f;

f = stdout;
arg = nullstr;

for (n = 1; n <= nargs; n++) {
arg = ARG(n);
deref(&arg);

35

if (IQUAL(arg) && TYPE(arg) == T_FILE) {
if (n > 1)

putcfO, f);
if ((BLKLOC(arg)->file.status & FS_WRITE) = 0)

runerr(213, &arg);
f = BLKLOC(arg)->file.fd;
arg = nullstr;

}
else {

defany(&arg, &nullstr);
if (cvstr(&arg, sbuf) = NULL)

runerr(109, &arg);
putstr(f, STRLOC(arg), STRLEN(arg));

}
}

putc('0, f);
if (STRLOC(arg) >= sbuf && STRLOC(arg) < sbuf + MAXSTRING) {

sneed(STRLEN(arg));
STRLOC(arg) = alcstr(STRLOC(arg), STRLEN(arg));
}

ARG(O) = arg;
}

struct b_proc Bwrite = {
T_PROC,
sizeof(struct b_proc),
(int *)Xwrite + 2,
-1,
-1 ,
0,
0,
{5, "write"}
};

The remaining two routines are intended to be examples of typical external procedures, but could just as
easily be added to the runtime system using the technique described in this report. The first of these routines,
seek, interfaces to the C library routine fseek.

36 -

#include "../h/rt.h"

/*
* seek(file,offset,start) - seek to offset byte from start in file.

if start = 0 then offset is from start of file
if start = 1 then offset is from current file position
if start = 2 then offset is from end of file

* seek fails on improper seeks.
7

Xseek(nargs, arg3, arg2, arg l , argO)
int nargs;
struct descrip arg3, arg2, arg l , argO;

{
long 11, 12;
int status;
FILE *fd;
long ftellQ;

deref(&arg1);
if (argl.type != D_FILE)

runerr(106);

defint(&arg2, &I1, 0);
defshort(&arg3, 0);

fd = BLKLOC(arg1)->file.fd;

if ((BLKLOC(arg1)->file.status = = 0) ||
(fseek(fd, 11, arg3.value.integer) = -1))

failQ;
mkint(ftell(fd), &arg0);

struct b_proc Bseek = {
T_PROC,
sizeof(struct b_proc),
(int *)Xseek + 2,
3,
- 1 ,
0,
0,
{4, "seek")
};

The second external routine, getenv, provides access to shell environment variables through the C library
procedure getenv.

- 37

#include "../h/rt.h"

/*
* getenv(s) - return contents of environment variable s
7

Xgetenv(nargs, a rg l , argO)
int nargs;
struct descrip arg l , argO;

{
register char *p;
register int len;
char sbuf[MAXSTRING];

deref(&arg1);

if (!QUAL(arg1)) /* check legality of argument 7
runerr(103, &arg1);

if (STRLEN(argl) <= 0 || STRLEN(argl) >= MAXSTRING)
runerr(401, &arg1);

qtos(&arg1, sbuf); /* convert argument to C-style string 7

if ((p = getenv(sbuf)) != NULL) { /* get environment variable 7
len = strlen(p);
sneed(len);
STRLEN(argO) = len;
STRLOC(argO) = alcstr(p, len);
}

else /* fail if variable not in environment 7
failQ;

struct b_proc Bgetenv =
T_PROC,
sizeof(struct b_proc),
(int *)Xgetenv + 2,
1,
- 1 ,
0,
0,
{4, "getenv"}

38

