
An Implementation of Generators in C* 

Timothy A. Budd 

TR81-5 

ABSTRACT 

This report describes a new language, Cg, that extends the programming language C to 
include generators, and facilitates backtracking and goal directed evaluation. The first 
section introduces the idea of generators and their uses in backtracking and goal directed 
evaluation. This is followed by examples showing how the solution of several classic 
programming problems can be simplified using these concepts. A more complicated 
example, a program for matching regular expressions, is then described. The paper 
concludes with a description of the current implementation of Cg. 

August 21, 1981 

Department of Computer Science 

The University of Arizona 

Tucson, Arizona 85721 

Th i s work was supported by the National Science Foundation under Grant MSC79-03890. 





An Implementation of Generators in C 

In its most basic form, a generator is any expression that can be repeatedly activated to provide a 
succession of different values. This notion of generators is found in a number of languages, notably Alphard 
[9], CLU [8], Icon [3] and MLISP [1], For example, in Alphard and CLU generators can be used to iterate 
over the elements of a programmer-defined data structure, but are only accessible in the context of a 
particular type of for statement. In contrast, more sophisticated uses of generators involve notions of 
backtracking and goal directed evaluation [7]. These features are found in the language Icon [3], a descendent 
of SNOBOL4 and SL5 [4]. In Icon any expression can be a generator or drive other generators. 

This paper describes a new language, Cg, that extends the programming language C [6] to include 
generators. As in Alphard and CLU, but unlike Icon, the activation of generators in Cg is restricted to two 
specific language constructs, the every statement and the drive statement. However the domain of objects that 
generators can manipulate and produce is not restricted to any particular datatype. 

This paper is divided into four sections. The first section introduces the idea of generators and their use in 
backtracking. The second section presents several examples of the use of generators in solving several classic 
programming problems. The third section examines in detail a solution using generators to a problem that is 
difficult to solve using conventional methods. Finally the paper concludes with a description of an 
implementation of Cgon the PDP-11/70. 

1. Generators and Backtracking 

The task of enumeration is a commonly occurring process in many computer programs. For example, the 
Algol for or FORTRAN DO statements can be regarded as enumerating a sequence of values in an arithmetic 
progression. Other data objects, such as nodes in a linked list, leaves in a binary tree, or characters from a 
sequential file, are also frequently enumerated. Syntactically, the for loop in the language C goes a long way 
towards capturing the enumerative nature of these other cases. However there are still situations, such as 
enumerating leaves in a binary tree, that are difficult to describe using a for statement. 

What is basic to these operations is the notion of generation. That is, the user has a data object (binary 
tree, sequential file) or set (arithmetic progression) and wants to generate, one by one, elements from the data 
object or set. The generated objects need not be of any fixed type, nor does the set need to be finite; one can 
imagine, for example, generating the set of primes, or the set of Fibonocci numbers. 

Consider, for example, binary trees composed of nodes containing a left and right pointer (set to zero in 
leaf nodes) and an integer value field. Suppose a user wants to perform two different operations on such trees: 
The first operation adds one to each value field in each node in the tree, the second operation computes the 
sum of the value fields. 

addtree(node) 
struct tree *node; 

{ 
if (tree->left != 0) 

addtree(tree->left); 
tree->value += 1; 
if (tree->right != 0) 

addtree(tree->right); 

Figure 1: A conventional tree traversal algorithm 



There are two conventional methods for solving this problem. The first involves writing a separate 
function for each operation, for example the postorder tree traversal algorithm shown in Figure 1. The 
disadvantage with this solution is the redundant code that must be written to perform the tree traversal for 
each new operation. In order to avoid this, a second conventional solution would pass the name of a 
procedure which performs the operation as an argument to the tree traversal function, as shown in Figure 2. 
The disadvantage here is that each operation requires the creation of a new subfunction, and each subfunction 
so defined must have the same number and type of parameters. 

ptree(node, process) 
struct tree "node; 
int process(); 

i 
if (node->left != 0) 

pnode(node->left, process); 
process(node); 
if (node->right != 0) 

pnode(node->right, process); 

Figure 2: A tree traversal algorithm using function parameters 

Neither of these solutions correspond closely to the user's abstract view of the operation. In the abstract, 
the first process can be described as "for every node in the tree, add one to the value field". Thus the 
generation of a new element is abstractly a subordinate task to the task at hand, which is just the opposite 
from the situation in the two conventional solutions given above. 

A closer approximation to the abstract description is provided by co-routines [2]. Here the main program 
and the subprogram producing leaf nodes each run independently. The main program is a consumer, 
processing values (nodes) produced by the second program, which is a producer. 

Although the co-routine model corresponds more closely to the abstract description of the problem, and 
indeed any generator can be thought of as a specialized type of co-routine, co-routines are both more powerful 
and more complex than the situation requires. Using co-routines, the user must design an initialization 
protocol in order to ensure the procedures synchronize correctly. Furthermore, in order to accommodate 
recursive procedure calls and/or multiple copies of procedures, co-routines are usually implemented using 
dynamically allocated, rather than stacked, activation records. It is not unusual for this to increase by a factor 
of 3 or more the run-time overhead of a procedure call [10]. 

By concentrating on a less general control structure than the co-routine, generators can hide from the user 
most of the details of initilization and synchronization. Furthermore it is possible to produce a very efficient 
run time implementation (Section 4). 

Before describing generators in detail it is necessary to consider the several problems that generators are 
designed to avoid. The first is initialization, meaning the actions taken on the first function invocation (and 
perhaps the second, and so on), are different from the actions taken on subsequent invocations. For example 
a generator producing the list of Fibonocci numbers produces the value 1 the first two times it is invoked, and 
thereafter it returns the sum of the last two numbers generated. Hence there must be some mechanism by 
which the generator can distinguish which invocation is taking place. 

The second problem is memory, since the generator must have some ability to remember information from 
preceding invocations, in order to produce new values. 

A third problem is termination; finding a way to terminate the enumeration loop when all the elements 
have been produced. 

All of these problems can be solved using conventional means, such as using global or static variables. 
However the user is required to explicitly design and construct code to handle these problems, rather than 
letting the language hide unnecessary implementation details. The advantage of generators is one of 
conceptual simplicity. 

- 2 -



Instead of producing a value and then terminating, a generator procedure produces a value and then goes 
into a state of "suspended animation." If a subsequent value is requested the function is "reawakened" and 
processing continues in the procedure just as if the suspension had never taken place. That is, local variables 
and the values of parameters retain whatever values they had at the time of suspension, and execution 
continues from the point immediately following the statement that caused the suspension. 

In order to differentiate it from the conventional process of terminating via a return statement, the 
statement 

suspend(value); 

indicates the process of producing a value and going into "suspended animation". Any procedure that 
suspends, rather than returning, is called a generator, since it may generate a succession of values. A 
generator for producing Fibonocci numbers is shown in Figure 3. 

intfib() { 
int lastl, last, sum; 

lastl = 0; 
Iast2 = 1; 
suspend(1); 
while (1) { 

sum = lastl + Iast2; 
suspend(sum); 
lastl - Iast2; 
Iast2 = sum; 
} 

Figure 3: A generator for Fibonocci numbers 

Notice how both the problems of initialization and memory have been solved. On subsequent calls, 
execution continues from the point of last suspension. Thus the program can suspend following some 
initialization code, and subsequently suspend in a different way in the normal case. The variables lastl. Iast2 
and sum are all local, and no procedure other than fib can gain access to them. 

The routine fib produces a potentially infinite sequence of values. That is, as long as the user continues to 
ask for values it continues to produce new Fibonocci numbers. Many generators, however, such as the 
generator which produces leaves from a binary tree, produce only a finite number of values. In cases where a 
successor value is undefined, a request for the next value is said to cause the generator to fail. A generator 
fails by executing the statement 

fail; 

Failure is a terminal state; once a generator has failed it cannot be reinvoked for a subsequent value. A 
generator that fails is said to have exhausted its values. Figure 4 illustrates a generator that fails after 
producing the list of prime numbers less than ten. 

Up to now the syntactic context in which generators can be invoked has not been discussed. One solution 
is to simply let successive calls on a generator produce successive values. The system function getchar(), which 
produces the next character from the standard input file, can be thought of as such a generator. In general, 
however, such a solution is unsatisfactory for several reasons. The first reason is that without a detailed 
examination of the code it is impossible to tell where the first invocation of a generator occurs. Thus in 
executing a procedure the results may depend on the (potentially unknown) previous calling history of all 
generators referenced in the program. This problem could be avoided with some mechanism for saying 
"initialize generator x," In fact in this case such a mechanism would be necessary if generators were to be 

-3-



intp10() 
{ 

suspend(2); 
for (i = 3; i <= 7; i = i + 2) 

suspend(i); 
fail; 

} 

Figure 4: A generator for the primes less than 10 

allowed to produce any more than their initial sequence of values (i.e., to produce the list of primes a number 
of times, or in different places). However the elimination of such an initialization protocol was precisely one 
of the motivations given for the use of generators. 

The solution to this problem in Cg is to have special statements which mark the syntactic scope of the 
generation process. The first such statement is the every statement.1 Like the looping statements (while, for) 
in C, the every statement is followed by the statement it acts upon. Following successful execution of this 
statement, the most recently suspended generator is reinvoked and control continues from that point. Thus 
the following statement would print the list of primes produced by the prime number generator plO (Figure 4). 

every { 
i = p10(); 
printf(" %d ",!); 
} 

struct tree *nodein(x) 
struct tree *x; 
{ 

struct tree *y; 

if (x != 0) { 
every 

suspend(nodein(x-> left)); 
suspend(x); 
every 

suspend(nodein(x -> right)); 
} 
fail; 

} 

Figure 5: A generator to return the leaves of a tree 

Figure 5 shows a recursive generator for enumerating the leaves of a binary tree. The following statement 
would add one to every node in the binary tree pointed to by the variable top. 

every { 
node = nodein(top); 
node->value+= 1; 
} 

1. Note that the every statement in Cg is not identical to the every statement in Icon. In particular the Cg every 
statement cannot be followed by a do clause. 



Note that every is not a looping construct, although it is in may respects similar to one. When the inner 
statement is completed, the last suspended generator is reinvoked, and control proceeds from that point. Thus 
the statement 

every{ 
sum = 0; 
sum += nodein(top)->value; 
} 

produces the sum of the value fields. The final failure of the generator nodein causes the inner statement, and 
the every statement which contains it, to be immediately terminated. 

If two or more generators are referenced within the scope of the same every statement, the failure of one 
generator causes the reinvocation of the most recently suspended generator. When control again reaches the 
generator that failed, it is reinitialized. Thus all possible combinations of generated values can potentially be 
produced. 

fil4(x) 
int x; 

{ 
if (x >= 4) 

suspend; 
fail; 

Figure 6: A generator used as a filter 

As a simple example, consider the generator shown in Figure 6. Here a generator is being used as a filter to 
eliminate unwanted values, in this case values less than four. Note the use of the suspend statement without a 
value, used to merely indicate success. 

Using the filter fil4 in conjunction with the generator plO, the statement 

every { 
i = p10(); 
fil4(i); 
printf("%d",i); 

} 
causes the values 5 and 7 to be printed. The failure of the generator fil4 when presented with the values 2 and 3 
causes the generator plO to be reinvoked for new values. This process of backtracking, of searching for values 
that satisfy some criterion (or goal, hence the term goal directed evaluation), is one of the most powerful 
applications of generators and is extensively used the examples. 

In using backtracking to solve a problem it is frequently the case that instead of examining all possible 
combinations of generator values the user merely want to find the first set of values that satisfy some criterion. 
For this reason there is a second control structure, called the drive statement, that reinvokes generators only 
until one completely successful execution of the inner statement has been accomplished. For example the 
statement 

drive { 
i = p10(); 
fil4(i); 
printf("%d",i); 

} 
prints only the value 5. 

Control passes from the drive statement in one of two ways. Either values are generated that permit a 
complete execution of the inner statement to take place, or all generators become exhausted before such 

5-



values can be found. In many cases the solution to a problem may require knowing which of these two cases 
has occurred. In order to allow for this, a drive statement can be followed by two optional clauses, a then 
clause and / or an else clause. 

In the statement 

drive 
statement.,; 

then 
statement^ 

else 
statement^ 

statement is executed only if the driven statement, completed normally. If all generators in statement. 
became exhausted without the statement being able to complete, statement, will be executed. Neither 
statements 2 or 3 can activate generators (except, of course, within the context of nested every or drive 
statements). 

There are problems where it is neither appropriate to find all combinations of generator values that satisfy 
some criterion, nor to find only the first. For these problems the goal is to enumerate values until some 
condition is specified. An example problem of this sort is to produce all Fibonocci numbers up to and 
including the first number greater than 50. Note that a filter (as we used in the prime number problem in 
Section 1) cannot be used in this case, since the Fibonocci generator does not terminate. One way to solve this 
problem is to write a special routine, as was done for the prime number example. A better solution is to use 
the drive statement with an until clause, as in the following example: 

drive { 
i = fib(); 
printf("%d",i); 
} 

until (i >50); 

The until clause indicates that the inner statement is to be repeatedly reinvoked until the condition 
becomes true. Thus an every statement can written as "drive .. until (0);". 

As in looping constructs, it is not always convenient to test for termination at the beginning or end of the 
inner statement. This problem is handled in a manner similar to that used in looping constructs. The 
statement 

break; 

causes the innermost drive or every statement to be immediately terminated, and execution continues with the 
next statement not in the scope of the drive or every statement ("breaking out" of the loop). The statement 

continue; 

acts like a generator failure, in that it causes the most recently suspended generator to be reinvoked. For 
example the following statement can be used to produce the list of Fibonocci numbers less than 50. 

every{ 
i = fib(); 
if (i > 50) 

break; 
printf("%d",i); 

} 

Using break and continue, the every statement can be described in terms of the drive statement, and vice 
versa. These equivalences are shown in Figure 7. 



drive every { 
statement; statement; 

break; 
} 

every drive { 
statement; statement; 

continue; 
} 

Figure 7: Drive and Every equivalences 

2. Recursion, Data structures 

A generalization of the prime number generator in Section 1 is a program for generating all the primes less 
than some value n. The body of such a program might look something like the following 

intprime(n) 
intn; 

{ 
int i; 
suspend(2); 
for (i = 3; i < = n ; i = i + 2) 

if (i is a prime) 
suspend(i); 

fail; 
1 

Here the only difficulty is to fill in the "if i is a prime" conditional. A number is defined to be prime if it is 
not divisible by any smaller prime number. This definition points clearly to a recursive solution to the 
problem, since the primality test is defined in terms of earlier prime numbers. Note also that it is only 
necessary to check primes smaller than sqrt(i), since primes larger than sqrt(i) cannot possibly divide i. A 
complete recursive solution is shown in Figure 8. 

int prime(n) 
int n; 

{ 
int i, j ; 

suspend(i); 
for (i = 3; i <= n; i = i + 2) 

drive { 
j = prime(i-l); 
if (i % j == 0) 

break; 
} 

until (j * j > i); 
then suspend(i); 

fail; 
} 

Figure 8: A generator for prime numbers 

A classic problem used to illustrate backtracking methods is the eight queens problem [11]. The problem 
involves finding the ways that eight queens can be placed on a chess board so that no queen can attack any 



other. 

The solution given here is based on the Icon solution given in [3]. A generator q(c) attempts to place queen 
number c. If it is successful at finding a free location, it suspends. If it is unable to find a free location, it fails, 
causing the most recently suspended queen to search for a new location. 

Three arrays keep track of the free rows, upward facing diagonals, and downward facing diagonals. Free 
squares are indicated by zero values, while squares which are occupied are indicated by the value one. 

A program to solve the eight queens problem is shown in Figure 9. Note that the program finds all 
solutions to the eight queens problem. Replacing the every statement in the main routine with a drive 
statement causes the program to halt after producing the first solution. 

int up[15] = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 
int down[15] = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 
int rows[8] = 0,0,0,0,0,0,0,0; 

main(){ 
every printf("%d %d %d %d %d %d %d %d\n" , 

q(1)>q(2),q(3),q(4),q(5),q(6),q(7),q(8)); 
} 

t 

int q(c) 
int c; 

{ 
int r; 

for(r = 1 ; r <= 8; r++) 
if (rows[r-1] = 0 && up[r-c+7] = 0 && down[r+c-2] = 0) { 

rows[r-1] = upfr-c+7] = down[r+c-2] = 1; 
suspend(r); 
rows[r-1] = up[r-c+7] = down[r+c-2] = 0; 
} 

fail; 
} 

Figure 9: A solution to the eight queens problem 

3. An Application of Generators to the Problem of Pattern Matching 

In Chapter 5 of their book Software Tools [5], Kernighan and Plauger present a simple pattern matching 
module. Their code implements literal matches, character classes (simple one character alternation), 
beginning-of-line and end-of-line matching, arbitrary character matching, and closures of any single character 
pattern. The omission of arbitrary alternation and closures (which would allow the pattern matcher to 
recognize any regular expression) seems curious, until one attempts to write such a regular expression pattern 
matcher based on the model in [5]. As such an attempt quickly illustrates, the problems of alternations and 
closures can be very subtle. Consider, for example, the pattern (a*|aba*)* matching the text aabaaba. 

Conventional solutions which do implement complete regular expression matching tend to do so by 
simulating the non-deterministic finite state automata recognizer, and tend to be larger and more complex 
than the software tools program. In contrast, the generator solution described here is much closer in style and 
spirit to the solution in [5]. 

There are six basic patterns. These patterns are translated into an internal character encoding, represented 
here using the symbolic character constants CHAR, BOL, EOL, ANY, CCL, and CLOSURE. Each basic 
pattern, encoding, and meaning is given by the following chart. 



Symbol 
c 
% 
S 
7 
[chartist] 
[~charlist] 

Encoding 
CHARc 
BOL 
EOL 
ANY 
CCL number char list 
NCCL number charlist 

Meaning 
Matches the literal character c 
Matches the beginning of line 
Matches the end of line 
Matches any single character 
Matches any single character from the character list 
Matches any single character not in the character list 

In addition, any pattern except % and $ can be followed by a * to represent zero or more repetitions of the 
indicated pattern. The largest string matching the pattern is tested first, and if that fails successively smaller 
matches are attempted. 

Closures are represented internally by the symbolic constant CLOSURE, followed by number of 
characters to the end of closure character (EOC), followed by the pattern to be replicated, followed by the 
symbolic constant EOC. Alternation is represented internally by the constant BA, the number of characters 
to the end of the alternatives, the number of characters to the next alternative, the first alternative pattern, the 
list of alternatives, and finally the constant EA. The list of alternatives is composed of the constant AL, 
followed by the number of characters to the next alternative, followed by the alternative pattern, repeated as 
often as necessary. 

The details of how the external representation gets translated into the internal form are covered in [5], and 
are not presented here. 

The primary routine involved in this portion of the pattern matcher is amatch, which takes a text line, a 
position in the line, a pattern, and a position in that pattern, and returns either zero, if the pattern fails to 
match the given position, or the position of the next character following the pattern match. In the generator 
solution, amatch simply drives the generator rmatch, attempting to find a valid match. If rmatch terminates 
unsuccessfully, amatch returns zero. The code for amatch is as follows (EOS is a symbolic constant used to 
represent the end of character strings). 

intamatch(lin, i, pat, j) 
char lin[], pat[]; 
int i, j ; 
{ in tk ; 

drive { 
k = rmatch(lin, i, pat, j , EOS); 
return(k); 
I 

return(O); 
} 

At the heart of the pattern matcher is a conventional routine that implements simple pattern element 
matching. The routine omatch takes the pattern starting at patfj] and sets the variable bump to the number of 
characters matched. For successful matches, this is either zero (for BOL and EOL) or 1 (for all other 
patterns). For unsuccessful matches, bump is set to -1. omatch returns either zero (if the match is 
unsuccessful) or the updated position in the text pattern. The program omatch is shown in Figure 10. 

9-



int omatch(lin, i, pat, j) 
char lin[], pat[]; 
int i, j ; 
{ int bump; 

char c; 

bump = - 1 ; 
c = lin[i]; 
if (c = 0) 

return (0); 
switch (patfj]) { 

case CHAR: if (c = pat[j+1]) 
bump = 1; 

break; 
case BOL: if (i = 1) 

bump = 0; 
break; 

case EOL: if (c == '0) 
bump = 0; 

break; 
case ANY: if (c != '0) 

bump = 1; 
break; 

case CCL: if (locate(c, pat, j + 1)) 
bump = 1; 

break; 
case NCCL: if (c != '0 & locate(c, pat, j + 1) == 0) 

bump = 1; 
break; 

default: 
error("in omatch: can't happen"); 

} 
if (bump < 0) 

return (0); 
return (i + bump); 

Figure 10: Matching pattern elements 

Without closures and alternatives, a simple version of rtnatch can then be written as follows: 

int rmatch(lin, i, pat, j , delim) 
char lin[], patfj, delim; 
int i, j ; 
{ int k, I, m, ap; 

for (; patfj] != EOS && patfj] != delim; j = j + patsize(patj)) 
if ((i = omatch(lin, i, pat, j)) = 0) 

fail; 
suspend (i); 
fail; 

} 

Now consider the problem of alternation, say for example the pattern "(a)ab)c". There are two separate 
problems: matching the current alternative ("a" or "ab") and matching the remainder of the pattern ("c"). 

10-



Expressed generally, the solution is to try to match the current alternative; if that is successful try to match the 
remainder, if both matches are successful update the text marker, otherwise if either match fails try the next 
alternative. If no alternatives remain the match fails. 

The only complication to this approach involves nested alternations, for example "((a|ab)|b)'\ Instead of 
simply matching the current alternative and the continuation, they must be driven through all possible 
outcomes, and only if no successful matches can be found is the next alternative attempted. Thus the code for 
alternation is as follows: 

if (patfj] == BA) { /* beginning of alternatives */ 
k = j + patfj+1]; /* pointer to continuation 7 
ap = j+1; 
while (1){ 

every { 
I = rmatch(lin, i, pat, ap+2, AL); 
m = rmatch(lin, I, pat, k, delim); 
suspend(m); 

} 
if (pat[ap+1]==0) 

break; 
ap = ap + pat[ap+1]; 
} 

fail; 
} 

Now consider the problem of closures. Again there are two subpatterns; the pattern to be replicated and 
the remainder pattern. The simplest way to manage this is with a recursive routine cmatch 

intcmatch() { 
try to match closure pattern 
if successful 

recursively call cmatch 
suspending the result 

try to match remainder 
} 

Again, in order to handle nested closures it is necessary that the recursive calls to rmatch be driven through 
all possibilities. The final routine cmatch is shown in Figure 11. The final routine rmatch is Figure 12. 

int cmatch(lin, i, pat, els, ens, delim) 
char lin[], patfj, delim; 
int i, els, ens; 
{ int k; 

every { 
k = rmatch(lin, i, pat, els, EOC); 
if (k > i) 

suspend( cmatch(lin, k, pat, els, ens, delim) ); 
} 

every 
suspend( rmatch(lin, i, pat, ens, delim) ); 

fail; 
} 

Figure 11: The routine cmatch 

11 -



int rmatch(lin, i, pat, j , delim) 
char lin[], pat[], delim; 
int i, j ; 
{ int k, I, m, ap; 

for ( ; patfj] && patfj] != delim; j = j + patsize(patj)) 
if (patfj] = CLOSURE) { 

k = j + patfj+1]; /* end of closure 7 
every { 

I = cmatch(lin, i, pat, j+2, k, delim); 
suspend(l); 
} 

fail; 
} 

else if (patfj] = BA) { /* beginning of alternatives 7 
k = j + pafj+1]; /* pointer to continuation */ 
ap = j+1; 
while (1) { 

every { 
I = rmatch(lin, i, pat, ap+2, AL); 
m = rmatch(lin, I, pat, k, delim); 
suspend(m); 
} 

if (patfap+1] = 0) 
break; 

ap = ap + pat[ap+1]; 
} 

fail; 
} 

else if ((i = omatch(lin, i, pat, j)) == 0) 
fail; 

suspend (i); 
fail; 

Figure 12: The routine rmatch 

12 



4. Implementation 

Cg is implemented as a preprocessor to the C compiler [6]. The preprocessor was written using YACC, a 
compiler-complier running under the UNIX2 timesharing system. In the resulting C programs, registers 2 and 
3 are reserved for the use of the generator runtime primitives. With the exception of declarations for these 
registers, a few built-in generators, and the translation of drive and every statements, the source program is 
left unchanged. 

There are five primitive routines, written in assembly code, which implement the generation process. In 
order to provide a context for understanding the interaction of these primitives, note that an every statement 
is translated into the code shown in Figure 13, and a drive statement into the code shown in Figure 14. Parts 
of the drive code sequence may be omitted out if there are no optional clauses. Within the context of an every 
or drive statement, breaks are translated into the sequence "unmark(); break;". 

do if (!mark()) 
statement; 

while (drive(),0); 

Figure 13: The code produced for an every statement 

do 
if(!mark()){ 

statement; 
if (! (untilcondition) 

continue; 
unmark(); 
thenstatement; 
break; 

} 
else { 

driveQ; 
elsestatement; 
break; 

} 
while (drive(),0); 

Figure 14: The code produced for a drive statement 

The primitive operations are as follows: 

Mark mark the current stack position 

Suspend suspend execution 

Fail indicate generator failure 

Drive revive the most recently suspended generator 

Unmark remove generator information from the stack 

Detailed descriptions of each of these primitive operations follow. 

2. UNIX is a Trademark of Bell Laboratories 

-13 



mark 

This routine marks the stack position at the beginning of a driven statement. There are two pointers which 
are used to save/restore information: the expression frame pointer and the generator frame pointer. For 
efficiency, both are kept in registers. 

The mark routine saves the previous expression frame and generator frame pointers, in addition to the 
return program counter for the call on mark. This block is called the expression frame. The expression frame 
pointer is set to the address of this block, and the generator frame pointer is set to zero. The resulting stack is 
as shown in Figure 15. 

efp— 

s p -

old efp 

old gfp 

return pc 

Figure 15: The stack after calling mark 

suspend 

efp— 

s p -

expression frame 

procedure frame 
for P 

Figure 16: The stack before calling suspend 

When suspend is called the current stack looks something like Figure 16. Here a contains any temporaries 
placed on the stack prior to calling the generator P. P creates a procedure frame, containing the arguments to 
P, return program counter, registers, and automatic storage. (3 contains any temporaries that P may have 
created. 

The suspend routine first saves the registers, including the generator and expression frame pointer 
registers. This block is called the generator frame and the generator frame pointer is set to its address. Next 
the area a is duplicated on the stack. Finally the registers saved by P are restored, and the suspended value is 
returned to the procedure which called P. To the calling routine, the stack now looks exactly as if P had 
returned normally. The information between the expression frame and generator frame pointers is effectively 
hidden from any access by the calling program. 

In the case of multiple generators, the stack at the time of the suspend operation looks something like 
Figure 18. The actions taken by suspend are the same as in the previous case, with the exception that only the 
area between the last generator frame pointer and the current procedure frame (7) is duplicated. 

14-



efp— 

g f p -

s p -

expression frame 

procedure frame 
for P 

generator frame 

Figure 17: The stack after calling suspend 

efp— 

g*P-

s p -

expression frame 

procedure frame 
for P 

0 

generator frame 

procedure frame 
for Q 

0 
** 

J 1 

? 
M 

1 

Figure 18: The situation with multiple generators 

fail 

Fail basically simulates a nonzero value being returned from the most recent call on mark. The return 
program counter for this purpose is taken from the current expression frame. Note that mark in this case 
transfers to the routine drive. Branching to mark is necessary since the program counter for the current call 
on drive is not known to the generator routines, and the correct call on drive must be invoked in case there are 

_ if .*&!' 



r 
no pending generators (see the description below). 

drive 

efp^ 

gfp^ 

sp-

expression frame 

procedure frame 
for P 

generator frame 

Figure 19: The stack just before calling drive 

If there are no dormant generators, the drive routine simply calls unmark, and returns. If there are 
dormant generators the stack is as shown in Figure 19. Here a and B are as in Figure 16, and y is the 
temporary area for P. The stack is popped down to the generator frame pointer (note that y cannot contain 
any currently relevant information) and the registers saved in the generator frame are restored. The generator 
frame is popped, and execution passed back to the statement following the suspend statement in P. The 
registers and stack are now just as if control had never passed from P. The stack at the end of the drive 
operation is shown in Figure 20. 

efp— 

s p -

expression frame 

procedure frame 
for P 

Figure 20: The stack just after calling drive 

16-



unmark 

The unmark routine pops the stack down to the last expression frame, and restores the previous values the 
the expression frame and generator frame pointers. Unmark returns normally to the caller. 

5. Time and Space Requirements 

In analyzing the overhead involved in using generators there are two factors to consider, time and space. 
The overhead involved in time is not excessive, since each basic run-time routine is only an handful of 
instructions. The greatest cost, and the only loop, in the run-time system is in copying the part of the stack 
saved in the suspend operation. 

The amount of stack space used depends on several variables. If the generator suspended is several levels 
below the statement which is driving the generator, it is possible for the duplicated area to contain several 
procedure frames and hence to be quite large. In the more usual situation the suspended procedure is only one 
level below the driving statement, and the area which is saved contains only those temporary values used in 
calling the generator, the generator procedure frame, and those temporary variables used in computing the 
suspended value. It is more common for the saved area to be on the order of a few dozen bytes. 

6. Conclusions 

The notion of generators is not unique to Cg, having been adapted from the language Icon. What is novel 
about Cg is that fact that generators have been adapted for use in a conventional programming language. The 
examples cited in this paper demonstrate that generators can be beneficial in the solution of many 
programming problems. However, up to now the use of generators has been restricted to a handful of 
languages and they have not received widespread recognition. Programmers tend to have favorite languages, 
and to write almost exclusively in those languages, often bending the problem to fit the language. By 
extending a language that has already acquired a widespread user community, Cg allows programmers to add 
a new capability to their repertoire of tools, without the need to learn a totally new computer language. 

Acknowledgments 

The language Icon is principally due to Ralph Griswold, and he is responsible for introducing me to the 
idea of generators. Cary Coutant provided invaluable aid in describing the implementation of generators in 
Icon on the PDP-11/70, and in writing the assembly language run time routines for Cg. The binary tree 
example was suggested by Steve Wampler. This work has also benefited from discussion on the nature of 
generators with the Icon group at the University of Arizona, consisting of Ralph Griswold, Cary Coutant, 
Steve Wampler, Dave Hanson and Tim Korb. Ralph Griswold provided extremely detailed and helpful 
comments on an earlier draft of this report. 

- 1 7 -



References 

[I] D. C. Smith, and H. K. Enea, Backtracking in MLISP2, Proceedings of the 3rd International 
Joint Conference on Artificial Intelligence. Page 677-685. 

[2] M. E. Conway, Design of a separable transition-diagram compiler, Communications of the 
ACM 6(7), July 1963, 396-408. 

[3] C. A. Coutant, R. E. Griswold, and S. B. Wampler, Reference Manual for the Icon 
Programming Language; Version 4, University of Arizona Technical Report 81-4, 1981. 

[4] D. R. Hanson and R. E. Griswold, The SL5 procedure mechanism, Communications of the 

ACM 21, May 1978, 392-400. 

[5] B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976. 

[6] B. W. Kernighan and D. M. Richie, The C Programming Language, Prentice-Hall, 1978. 

[7] J. T. Korb, The Design and Implementation of a Goal-Directed Programming Language, PhD 
thesis, University of Arizona, 1979. Also University of Arizona Technical Report TR 79-11. 

[8] B. Liskov, A. Snyder, R. Atkinson and C. Schaffert, Abstraction mechanisms in CLU, 
Communications of the A CM 20(8), August 1977, pages 564-576. 

[9] M. Shaw, W. A. Wulf and R. L. London, Abstraction and verification in Alphard: defining 
and specifying iteration and generators, Communications of the ACM, 20(8), 553-564, August 
1977. 

[10] K. Thompson, D. M. Ritchie, cr (VII), coroutine scheme. In Unix Programmers Manual, 
sixth edition, May 1975. 

[II] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, 1976. 

- 1 ! 


