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Models of String Pattern Matching 

1. Introduction 

In an earlier report [1], a model for string pattern matching in the style of SNOBOL4 was developed using 
Icon. That report showed how most of the pattern-matching mechanism of SNOBOL4 could be translated 
into Icon and, in effect, provided a model for implementing pattern matching in the style of SNOBOL4. 

This report examines the issue of string pattern matching in more depth and detail. Two models for 
implementing SNOBOL4 string pattern matching are presented. The first model is concerned only with the 
side effects of pattern matching, while the second model uses strings that are returned by the matching 
processes. Next a more general model is developed in which various proposals for extensions to pattern 
matching in SNOBOL4 can be implemented. Finally, some of the major issues of pattern matching are 
discussed and a proposal for a pattern-matching facility based on Icon is presented. 

An understanding of pattern matching in SNOBOL4 and a working knowledge of Version 3 of Icon [2] are 
prerequisite to understanding the material that follows. Version 4 of Icon is used in this report, but significant 
differences between Versions 3 and 4 are noted. 

2. Basic Concepts 

In SNOBOL4, pattern matching involves a subject, which is examined during pattern matching, and a 
cursor, which is the position in the subject at which the examination takes place. In the Icon models of pattern 
matching that follow, the subject and cursor are represented by two global identifiers, declared as 

global subject, cursor 

Patterns are embodied in Icon procedures that obey a protocol that assures that the matching process 
works properly. Such procedures, called matching procedures [I], have the form 

procedure p() 
suspend e 

end 

Such a procedure is said to encapsulate the expression e and the evaluation of p() produces the same outcome 
as the evaluation of e. (In Version 4 of Icon, an implicit procedure return produces no result, so the implicit 
return following the suspend produces no additional result.) 

The protocol for matching procedures therefore amounts to rules that expressions must obey or, stated 
differently, determines the class oi matching expressions. 

Since only the expression e varies from matching procedure to matching procedure, an abbreviated syntax 
for matching procedures is useful. In this paper, the notation 

p ::= e 

stands for 

procedure p() 
suspend e 

end 

The ::= "operator" represents a compile-time declaration. (The Icon structure assignment operator ::=is used 
for structure assignment in Version 3 of Icon, but is absent from Version 4. That operator is used here because 
of its familiar connotation of definition.) Some expressions are parameterized with identifiers whose values 
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are passed in calls of the corresponding matching procedures. The notation above is naturally extended so 
that, for example 

p(x,y) ::= e 

stands for 

procedure p(x,y) 
suspend e 

end 

Finally, local identifiers may be provided so that, for example 

p(x,y)s,t ::= e 

stands for 

procedure p(x,y) 
local s,t 
suspend e 

end 

In SNOBOL4, patterns are data objects that are constructed at run time. Their status as data objects 
allows them to be used in computations (the construction of other patterns) and, more importantly, to be 
transmitted through a program as the value of variables and arguments of functions. Thus a pattern may be 
used in many places as well as at many times. 

Icon procedures are also data objects. The important difference between patterns in SNOBOL4 and 
matching procedures in Icon is that patterns include an additional level of structure. In fact, SNOBOL4 
patterns contain (or reference) matching procedures [3]. These SNOBOL4 matching procedures are internal 
to the implementation of SNOBOL4 and are inaccessible to the SNOBOL4 programmer. The significance of 
this additional "layer" is discussed in Section 9. 

3. The Cursor Model 

In order to provide matching procedures for the patterns of SNOBOL4, one sufficient protocol is given by 
the following three conditions. 

(1) Evaluation of e must not result in a change to the value of subject. 

(2) Evaluation of e must leave the value of cursor between its value prior to the evaluation of e and the 
end of subject, inclusive. 

(3) If e fails it must leave cursor unchanged. 

The nondecreasing aspect of Condition 2 reflects an idiosyncrasy of SNOBOL4 and is in no way essential 
to the underlying concepts of pattern matching. Condition 3 allows e to change cursor as specified in 
Condition 2, but requires cursor to be restored if e fails. 

Note that matching procedures are used only for their side effects — changing the value of the global 
identifier cursor. It lends some uniformity to the model, however, if matching procedures produce a uniform 
result, even though this result is not used. Hence in the following sections, matching procedures also return 
the value of cursor. 

This protocol for matching procedures defines the cursor model for pattern matching, so called since it 
involves changing the value of cursor. This model corresponds closely to the way that pattern matching is 
actually implemented in SNOBOL4 [3]. 

To demonstrate that the protocol described above is sufficient to implement pattern matching requires 
only the specification of matching procedures for the patterns of SNOBOL4 and a procedure that corresponds 
to the SNOBOL4 pattern-matching statement. 

It simplifies the coding of matching procedures if Condition 3 is incorporated in the shell of matching 
procedures. Thus in this model 
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p ::= e 

stands for 

procedure p() 
local tcursor 
tcursor := cursor 
suspend e 
cursor := tcursor 

end 

Thus e itself need not restore cursor. 

The following sections detail the matching procedures for the cursor model. The prefix c_ is used to 
distinguish procedures in the cursor model. Upper-case letters are used for SNOBOL4 identifiers, while 
lower-case letters are used for corresponding identifiers in Icon. 

3.1 Positional Patterns 

Positional patterns are those that change or test the value of the cursor without regard for the actual 
characters in the subject. There are six kinds of positional patterns: five that are constructed by the pattern-
valued functions LEN(I), TAB(I), POS(I), RTAB(I), and RPOS(I) as well as the built-in pattern ARB. 

LEN(I) adds I to the value of the cursor, provided that I is positive and that the resulting value is not 
greater that the length of the subject. A corresponding matching procedure is 

c_len(i) ::= if 0 <= i <= *subject+1-cursor then cursor := cursor+i 

(In Version 4 of Icon, *s is the length of s and if el then e2 fails if el fails.) Note that it is possible to set 
the cursor at the end of the subject. This reflects the fact that cursor positions in SNOBOL4 (and Icon) are 
between characters. A value of cursor equal to *subject+1 corresponds to a position after the last character 
of the subject. Note also that the result of c_len(i) is the value of cursor as specified earlier. If i is too great, 
cursor is not changed and c_len(i) fails. Otherwise cursor is incremented. The restoration of cursor is done 
by the shell of the matching procedure. 

TAB(I) is similar to LEN(I), but sets the cursor to the value of I. The matching procedure is 

c_tab(i) ::= if cursor-1 <= i <= *subject then cursor := i+1 

Here the value assigned to cursor is one greater than i, since SNOBOL4 character positions start at 0 but Icon 
positions start at 1. The argument i to c_tab is in terms of SNOBOL4 indexing, while the value assigned to 
cursor is in terms of Icon indexing (the position 0 in Icon is a specification for the position after the end of a 
string). It is important that the value actually assigned to cursor be in terms of Icon indexing to avoid 
complicating subsequent procedures. 

POS(I) tests that the value of the cursor is equal to I and has the matching procedure 

c_pos(i) ::= (cursor = i+1) 

RTAB(I) and RPOS(I) are similar to TAB(I) and RPOS(I), except that positions are determined relative 
to the right end of the subject. Their matching procedures are included in Appendix A. 

ARB is a built-in pattern that has "alternatives". It first does nothing. However, if the context in which it 
is used requires an alternative action, it increments the cursor by one, then by two, and so on. For example, 
the pattern 

ABPAT = "A" ARB "B" 

matches any string that contains an A followed (not necessarily immediately) by a B. Once an A is matched, 
ARB increments the cursor by 0, 1, 2,... as needed until a B is reached. 

The matching procedure corresponding to ARB uses a simple Icon generator: 

c_arb ::= (cursor := (cursor to *subject+1)) 

The standard Icon syntax makes the operation of the matching procedure clearer: 



procedure c_arb() 
local tcursor 
tcursor := cursor 
suspend (cursor := (cursor to *subject+1)) 
cursor := tcursor 

end 

Each time c_arb() is reactivated, cursor is incremented by one. 

3.2 Lexical Patterns 

Lexical patterns are those that change the cursor depending on the characters contained in the subject. 
There are seven kinds of lexical patterns: matches of specific strings, five kinds that are constructed by the 
pattern-valued functions ANY(S), NOTANY(S), SPAN(S), BREAKX(S), and BREAK(S) as well as the 
built-in pattern BAL. The matching for these patterns is analogous to the lexical functions in Icon. 

In SNOBOL4, the match of a specific string is indicated by simply including the string in the pattern — 
there is no visible syntax. Patterns for string matches are constructed as a byproduct of automatic type 
coercion. For example, in the pattern 

ABPAT = "A" ARB "B" 

The literals "A" and "B" are coerced into patterns that match the strings A and B. 

The corresponding matching procedure for string matches is 

c_match(s) ::= (cursor := match(s,subject,cursor)) 

ANY(S), which adds one to the cursor provided the character following the cursor is contained in the 
string S, has the matching procedure 

c_any(s) ::= (cursor := any(s,subject,cursor)) 

NOTANY(S) is the converse of ANY(S), adding one to the cursor if the character following the cursor is 
not contained in the string S: 

c_notany(s) ::= (cursor := any(~s,subject,cursor)) 

SPAN(S) is similar to ANY(S), but increments the cursor by the number of consecutive characters in S 
that occur following the cursor. Its matching procedure is 

c_span(s) ::= (cursor := many(s,subject,cursor)) 

BREAKX(S) increments the cursor by the number of characters following the cursor up to a character in 
S. Its matching procedure is 

c_breakx(s) ::= (cursor := upto(s,subject,cursor)) 

BREAKX(S), which is an extension to SNOBOL4 first introduced in SPITBOL [4], has alternatives like ARB 
and may set the cursor to alternative positions if required by the context in which it is used. For example, the 
pattern 

LOCTHE = BREAKXft") " th" 

sets the cursor to the position of the first t followed by an h, even if there are previous ts in the subject, such as 

two tanks rammed the wall 

in which LOCTHE would set the cursor to the third t after setting it to the first and second, only to have th fail 
to match in those cases. 

Since upto is an analogous generator in Icon, the matching procedure given above behaves similarly. The 
standard SNOBOL4 pattern BREAK(S), however, does not set the cursor to alternative values. Its matching 
procedure therefore requires that upto be. limited to a single result: 
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c_break(s) ::= (cursor := upto(s,subject,cursor) \ 1) 

(In Version 4 of Icon, el \ e2 limits el to at most e2 results.) 

The built-in pattern BAL sets the cursor to the position after a string that is balanced with respect to 
parentheses. An idiosyncrasy of BAL is that it must increment the cursor by at least one. This idiosyncrasy 
makes its formulation in Icon more complex than it would be otherwise. (A function BAL(S) that matched a 
balanced string up to a character in S would be a constrained form of BREAKX(S), just as bal(s) is a 
constrained form of upto(s) in Icon.) Here it is convenient to start with a more elementary procedure 
analogous to C_upto: 

c_balu ::= (cursor := bal(")",,.subject,cursor)) 

and an auxiliary procedure that embodies the idiosyncrasies of BAL: 

c_bbal ::= (c_match("(") & c_balu() & c_len(1)) | c_notany("()") 

Then 

c_bal ::= c_bbal() & c_arbno(c_bbal) 

C_arbno applies c_bbal an arbitrary number of times and is given in the next section. Note the use of the 
previously defined matching procedures c_match, c_len, and c_notany. 

3.3 Applicative Patterns 

The SNOBOL4 operation P1 P2 constructs a pattern that first applies P1 and then applies P2. The 
corresponding matching procedure is 

C_cat(p1,p2) ::= p1() & p2() 

Note that p1 and p2 are procedure-valued arguments and that these procedures are invoked in the procedure 
C_cat. The standard Icon syntax makes the situation clearer: 

procedure c_cat(p1,p2) 
local tcursor 
tcursor := cursor 
suspend p1() & p2() 
cursor := tcursor 

end 

The conjunction operator, &, is used to provide mutual goal-directed evaluation between invocation of the 
matching procedures p1 and p2, and provides the backtracking that occurs in pattern matching in 
SNOBOL4. Since p1 and p2 are matching procedures, saving and restoring cursor in the procedure above is 
redundant. 

The SNOBOL4 operation P1 | P2 constructs a pattern that matches P1 but then matches P2 if P1 fails to 
match in context. The corresponding matching procedure is 

c_alt(p1,p2) ::= p1() | p2() 

The SNOBOL4 function ARBNO(P) matches P repeatedly, but as few times as are needed in context. Its 
matching procedure is recursive: 

c_arbno(p) ::= cursor | (p() & c_arbno(p)) 

The first operand of the alternation could be any value, since ARBNO(P) first does nothing (i.e. it matches P 
zero times). The value of cursor is provided to conform to the uniform value constraint given earlier. 



3.4 Assignment 

There are three patterns that assign values to identifiers during pattern matching: assignment of the cursor 
value and immediate and deferred assignment of "matched substrings". Since Icon has neither call-by-
reference nor pointers, these patterns cannot be represented by matching procedures in which the identifier is 
an argument. However, there are corresponding matching expressions. 

Assignment of the cursor value, @V, is simple: 

v := cursor 

(In cases where patterns involve assignments and hence cannot be represented by matching procedures, the 
corresponding matching expressions can simply be substituted where calls to matching procedures would 
otherwise occur.) 

The term "matched substring" refers to the substring of the subject between the values of the cursor before 
and after a pattern is applied. Thus in immediate substring assignment, P $ V, the value assigned to V is the 
substring of the subject between the values of the cursor before and after P matches. The corresponding 
matching expression is 

v := substr(p) 

where substr is a procedure that returns the substring matched by p and is defined as follows: 

procedure substr(p) 
local tcursor 
return (tcursor := cursor) & p() & subject[tcursor:cursor] 

end 

This procedure may be coded more compactly by the use of somewhat arcane techniques: 

procedure substr(p) 
return subject[.cursor:(p() & cursor)] 

end 

Here cursor must be explicitly dereferenced (.cursor), since Versions 3 and 4 of Icon do not dereference 
identifiers in argument lists until all the arguments are evaluated. The conjunction in the second part of the 
range specification produces the value of cursor after p() is invoked, where p is a matching expression 
corresponding to the pattern P. In order to conform to the uniform result constraint, the matching expression 
that performs substring assignment must be augmented so as to produce the value of cursor: 

(v := substr(p)) & cursor 

Conditional substring assignment can be approximated in the model here by the use of reversible 
assignment: 

(v < - substr(p)) & cursor 

The deferred aspect of conditional substring assignment cannot be incorporated in this model because Icon 
lacks pointers. In any event, the way conditional substring assignment works in SNOBOL4 is an idiosyncratic 
carry-over from earlier versions of SNOBOL [5]. 

3.5 Applying Patterns 

Patterns in SNOBOL4 are applied in a pattern-matching statement that has the form 

S ? P 

(The explicit pattern-matching operator of SPITBOL is used for clarity here as opposed to the implicit 
operator in standard SNOBOL4.) 

In such a statement, S provides the subject on which P is matched. The statement may either succeed (P 
matches) or fail (P does not match), although values may also be assigned to variables as side effects of the 
matching process. 



A simple Icon procedure that corresponds to a pattern-matching statement is 

procedure c_apply(s,p) 
subject := s 
cursor := 1 
return p() 

end 

The first two assignment expressions establish the subject and the initial cursor value. Then the procedure p, 
passed by value to c_apply, is invoked. If p() succeeds, the pattern match is successful and C_apply 
succeeds. If p() fails, c_apply fails (return fails if evaluation of its argument fails). 

SNOBOL4 has two modes of matching: anchored and unanchored. In the anchored mode, the pattern 
must match beginning at the first character of the subject. In the unanchored mode, the pattern may match 
anywhere in the subject; a match is first attempted beginning at the first character. If this fails, a match is 
attempted at the second character, and so on. Unanchored matching is equivalent to placing ARB at the 
beginning of the pattern. 

These two pattern-matching modes can be incorporated in the model here by defining two matching 
procedures: 

c_anchor ::= cursor 

and 

c_float ::= (cursor := (1 to *subject+1)) 

or simply 

c_float := c_arb 

The pattern matching procedure above then can be generalized as follows: 

procedure c_apply(s,p) 
subject := s 
cursor := 1 
return (c_mode() & p()) 

end 

where 

c_mode := c_anchor 

establishes the anchored mode and 

c_mode := c_float 

establishes the unanchored mode. The procedure c_anchor returns cursor to conform to the uniform result 
constraint established earlier. The significant aspect of c_anchor is that it does not allow the cursor to be 
changed as c_f loat does. 

The pattern-matching expression S ? P in SITBOL [6] returns the substring matched by P as opposed to 
just succeeding or failing as in the pattern-matching statement in standard SNOBOL4. This extension is easy 
to accommodate: 

procedure c_apply(s,p) 
subject := s 
cursor := 1 
return (c_mode() & substr(p)) 

end 

One further SNOBOL4 statement remains — the replacement statement, which has the form 



S1 ? P = S2 

in which the subject S1 is matched by the pattern P and if P matches, the substring it matches is replaced by 
S2, thus modifying S1. 

Frequently the replacement string is the result of evaluating an expression that contains identifiers to 
which values are assigned during pattern matching. An example is 

S ? BREAKft") . TPART = "[" TPART " ] " 

Replacement is essentially the concatenation of three strings: (1) the head portion of the subject prior to where 
the pattern matches, (2) the replacement string, and (3) the tail portion of the subject following the substring 
matched by the pattern. 

Given global identifiers head and tail, a procedure c_repl can be written to assign values to the head and 
tail portions: 

procedure c_repl(s,p) 
local mid 
subject := s 
cursor :- 1 
return { 

(head := substr(c_mode)) & 
(mid := substr(p)) & 
(tail := subject[cursor:0]) & 
mid 
} 

end 

The auxiliary identifier mid is the last element in the conjunction and provides the value matched by p() as the 
value returned by c_repl. 

Then the SNOBOL4 replacement statement 

S ? P = S 

where S is, in general, a string-valued expression, is represented in the cursor model as 

s := head || (c_repl(p,s) & ,v) || tail 

Note that head and tail are not dereferenced until after c_apply is evaluated. Note also that the value 
returned by c_repl is discarded, since its conjunction with.v produces only the result of evaluating s. 

4. The Substring Model 

The cursor model of pattern matching described in Section 3 concentrates on the minimum facilities 
needed to implement SNOBOL4-style pattern matching. That is, changing cursor position is the basic result 
of applying most patterns. The "substring matched" by a pattern is only used in value assignment and the 
SITBOL-style pattern matching expression. For these cases, the substring matched can be obtained by 
separate mechanisms as it is, in fact, in actual implementations of SNOBOL4. 

In an earlier report [ l] , however, a more powerful model was used in which matching expressions returned 
the substring matched in addition to changing the cursor. While this substring modelis more powerful (and 
inefficient) than is necessary to implement SNOBOL4, it provides the basis for a number of extensions that 
are not possible in the cursor model as well as even more powerful generalizations. 

In the substring model, the following condition is added: 

(4) If e succeeds, the value it returns must be the substring of subject between the values of cursor 
before and after the evaluation of e. 

This additional condition requires revisions in the details of matching procedures given in Section 3, but it 
offers no substantial difficulties. Some examples of the changes required are given below. The prefix s_ is 
used to distinguish procedures in the substring model. A complete list of matching procedures for the 



substring model is given in Appendix B. 

4.1 Positional Patterns 

The heart of the changes lies in the positional patterns. LEN(I) and TAB(I) have matching procedures 

s_len(i) ::= if 0 <= i then subject[.cursor:cursor := cursor+i] 

and 

s_tab(i) ::= if cursor-1 <= i then subject[.cursor:cursor := i+1] 

The range tests are included only to assure SNOBOL4 constraints are met and to avoid incorrect results due to 
the different indexing schemes in SNOBOL4 and Icon. As mentioned earlier cursor must be dereferenced in the 
range specifications. In each case, the substring matched is the result. Note that the range tests are 
simplified, since Icon substring specifications perform range checks. 

4.2 Lexical Patterns 

The matching procedures for lexical patterns are similarly straightforward adaptation of those of the 
cursor model. For example, the matching procedure for BREAKX(S) in the substring model is 

s_breakx(s) ::= subject[.cursor:cursor := upto(s,subject,cursor)] 

4.3 Applicative Patterns 

Patterns that apply patterns are the same in the cursor and substring models, except for the use of 
concatenation, not conjunction, since the substring matched by concatenated patterns is the concatenation of 
the substrings matched by the patterns. Thus 

s_cat(p1,p2) ::= p1() || p2() 

and 

s_arbno(p) ::= " " | (p() || s_arbno(p)) 

Note that S_arbno first returns the empty string — the substring matched by zero applications of p. 

4.4 Assignment 

Immediate and conditional substring assignment are straightforward in the substring model: 

v := p() 

and 

v < - p() 

Cursor position assignment in the substring model requires the kind of augmentation that immediate and 
conditional substring assignment require in the cursor model: 

(v := cursor) & " " 

4.5 Applying Patterns 

In the substring model, the procedure for applying patterns is similar to that for the cursor model: 

procedure s_apply(s,p) 
subject := s 
cursor := 1 
return (s_mode() & p()) 

end 



where s_mode is either s_anchor or s_float as before, with 

s_anchor ::= " " 

and 

s_float ::= subject[1:(cursor := (1 to *subject+1))] 

Since p() returns the substring matched, this procedure also serves for the SITBOL pattern-matching 
expression. 

The procedure used for replacement is also similar to that used in the cursor model. See Appendix B. 

5. A Generalized String Model 

In the substring model, matching procedures return the substring they match. A natural consequence of 
this model is that an entire pattern matches the substrings of its (concatenated) components. 

The substring matched is frequently useful, but it is unnecessarily restrictive. Doyle earlier proposed 
extending pattern matching to allow, among other things, contributions other than matched substrings as well 
as the suppression of unwanted substrings [7]. In this model, pattern matching is a process in which analysis and 
synthesis are concomitant, and they produce a result that may or may not contain components matched in 
the subject. 

Such extensions are easily added to the substring model (but not the cursor model). Condition 4 can 
simply be relaxed as follows. 

(4*) The value returned by e may be any string. 

Condition 4* defines the generalized string model of pattern matching. The prefix g_ is used to 
distinguish procedures in this model. 

5.1 Concatenation 

In the substring model, Condition 4 requires the value returned by a matching expression to be the substring 
of the subject between the values of the cursor before and after the expression is evaluated. Hence the value 
returned by the concatenation of two patterns is required to be the concatenation of the substrings matched by 
the two patterns. In the generalized string model, Condition 4* imposes no such requirement. It 
is, however, most natural to define the concatenation of patterns to produce the concatenation of their values: 

g_cat(p1,p2) ::= p1() || p2() 

In other words 

g_cat := s_cat 

Similarly 

g_arbno := s_arbno 

since ARBNO(P) is effectively concatenation an indefinite number of times. It also follows that 

g_apply := s_apply 

5.2 Indigenous and Exogenous Contributions 

Doyle used the term "indigenous contribution" to refer to matched substrings and the term "exogenous 
contribution" to refer to strings not obtained by matching the subject. 

Indigenous contribution is essentially defined by the substring model and all s_ matching procedures 
make indigenous contributions (some of them, such as s_pos(i), contribute the empty string). 

Doyle's pattern /P matches P but produces the empty string (i.e., the value produced by P is discarded). A 
corresponding matching procedure is 
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g_discard(p) ::= p() & " " 

Doyle's pattern \ S produces S; subject is ignored and cursor is not changed. A corresponding matching 
procedure is 

g_exog(s) ::= s 

Doyle's replacement pattern P = S matches P but produces S (it is equivalent to the concatenation /P \S ) . 
A corresponding matching procedure is 

g_replace(p,s) ::= p() & s 

5.3 Transformational Synthesis 

Indigenous and exogenous contribution are merely special cases of a more general operation, 
transformational synthesis, in which the matched substring is transformed by some procedure. The matching 
procedure is 

g_xform(p1,p2) ::= p2(p1()) 

where p2 is some (string-valued) procedure that is applied to the result of evaluating p1(). A simple example 
of transformational synthesis is 

rev(p) ::= g_xform(p,reverse) 

which produces the reversal of the string produced by p. 

The transforming procedure need not, of course, be built in. For example, 

procedure period(s) 
local c, t 
t := "" 
every c := !s do t ||:= c || "." 
return t 

end 

when used in 

dform(p) ::= g_xform(p,period) 

inserts periods after every character of the string produced by p. 

6. Extensions to Pattern Matching 

The cursor and substring models are two models for SNOBOL4-style pattern matching. The generalized 
string model allows extensions to the SNOBOL4 repertoire, primarily in the area of synthesis. In any of these 
models, there are various other extensions that are difficult or impossible to formulate in the framework of 
SNOBOL4 pattern matching but that would nonetheless significantly enhance it. The extensions that follow are 
based on the substring and generalized string models, although several apply, with obvious modifications, 
to the cursor model. The prefix x_ is used to distinguish procedures for such extensions. 

6.1 Generalizations of Existing SNOBOL4 Patterns 

SNOBOL4 requires that all patterns change the cursor in a nondecreasing fashion. Thus in LEN(I), I must 
be nonnegative and in TAB(I), I must be greater than or equal to the value of the cursor. These restrictions are 
unnecessary. Furthermore the definition of "substring matched" need not be changed — it can still refer to the 
substring of the subject between the cursor before and after the pattern is applied. Condition 2 must be 
revised as follows to allow the value of the cursor to be decreased: 

(2*) Evaluation of e must leave the value of cursor between 0 and the end of subject, inclusive. 

For LEN(I) and TAB(I), the procedures are actually somewhat simpler than before. 
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x_len(i) ::= subject[.cursor:cursor := cursor+i] 
x_tab(i) ::= if 0 <= i then subject[.cursor:cursor := i+1] 

The range test in x_tab(i) prevents negative position specifications from being incorrectly interpreted. 

A "contracting pattern" similar to ARB, but starting by setting the cursor to end of the subject and 
working backward would often be useful: 

x_marb ::= (cursor := (*subject+1 to cursor by -1)) 

(The arguments of to are evaluated, only once, prior to generation of the sequence.) 

Several SNOBOL4 patterns can be generalized in a useful manner simply by parameterizing them. Thus 
ARB can be viewed as a special case of ARB(I), which increments the cursor by successive values of I. 

The matching procedure is 

x_arb(i) ::= (cursor := (cursor to *subject+1 by i)) 

In a further generalization, a negative value of I could be interpreted as decreasing the cursor and a zero value 
of I leaving the cursor unchanged (equivalent to the infrequently used pattern SUCCEED). The matching 
procedure for this interpretation is more complicated but basically straightforward. 

Another example of a useful parameterization would be BAL(S1 ,S2), where S1 and S2 specify strings of 
characters with respect to which the balancing is determined. This generalization is incorporated in Icon's 
lexical analysis function bal. 

6.2 Limiting Goal-Directed Evaluation 

One of the most insidious hazards in pattern matching is the unnecessary search for alternatives, which 
may assume exponential proportions. This usually occurs when the application of a pattern is destined to fail. 
In fact, backtracking during pattern matching was disallowed in COMIT because of the fear of the 
inefficiencies it would introduce [8]. In practice, unnecessary backtracking in SNOBOL4 does not produce 
catastrophic effects. Its effect on program performance is generally unknown, however, and the programmer 
has no way of observing it, since pattern matching procedures cannot be traced in SNOBOL4. (The problem 
is painfully evident when SNOBOL4 patterns are translated into Icon, whose matching procedures can be 
traced.) 

If unnecessary backtracking is known or suspected to be a possibility, the pattern FENCE can be used to 
abort pattern matching on backtracking. In practice, FENCE is used infrequently, partly because its potential 
value is imponderable. Furthermore, the effects of FENCE are drastic — it is not possible to inhibit 
backtracking at one site without aborting pattern matching altogether. 

A more attractive approach is to limit the goal-directed evaluation in a specific pattern. 

x_limit(p,i) ::= (p() \ i) 

In use i normally would be 1, although the generalization does no harm. 

Using limit, BREAK(S) is subsumed by BREAKX(S): 

x_break(s) ::= x_limit(s_breakx,1) 

6.3 Pattern Location 

The unanchored mode of pattern matching in SNOBOL4 provides a convenient, if limited, means of 
locating the first position at which a pattern matches. This can be cast in a more general way by 

x_locate(p) ::= (cursor := (cursor to *subject+1)) & p() 

Note that the substring matched by locate in the substring model is the substring matched by p, while in the 
cursor model it includes the substring starting at the original value of cursor. This discrepancy can be 
eliminated by using concatenation instead of conjunction, but the substring matched by p probably is the 
more desirable choice. 
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Location of a string occurs frequently, as evidenced by the common occurrence of SPITBOL patterns such 
as 

BEGIN = BREAKX("b") "begin" 

A specific pattern for this purpose, based on Icon's lexical analysis function find is worthwhile: 

x_find(s) ::= s_tab(find(s,subject,cursor)+1) 

Note that the substring matched by x_find(s) is the substring up to s. 

6.4 Nested Pattern Matching 

As mentioned earlier, pattern matching in SITBOL is an expression, not a statement. Thus it is possible to 
write 

(S ? P1) ? P2 

This expression first applies P1 to S. If that match succeeds, P2 is then applied to substring matched by 
S ? P1. If P2 fails, however, an alternative match is not attempted for P1. 

In order to allow mutual goal-directed evaluation in pattern-matching expressions, significant 
modifications must be made to the application procedure. The procedure that follows is named x_apply to 
indicate that it is an extension to standard SNOBOL4 pattern matching. The procedure given here is based on 
the substring model; it can be adapted easily to the cursor model. 

In the definitions for c_apply and s_apply given earlier, subject and cursor are simply set on entry. In 
order for nested pattern matching to work properly, x_apply must restore subject and cursor to their 
former values when it returns. In addition, x_apply itself must be a matching procedure, capable of 
performing a sequence of matches. Such a procedure follows. 

procedure x_apply(s,p) 
local tsubject, tcursor, value 
suspend { 

(tsubject := subject) & 
(tcursor := cursor) & 
(subject < - s) & 
(cursor < - 1) & 
(mode() & (value := p())) & 
(subject < - tsubject) & 
(cursor < - tcursor) & 
value 
1 

end 

The heart of x_apply is a suspend whose argument is a complex conjunction of assignment expressions, 
tsubject and tcursor first are used to save the values of subject and cursor so that they can be restored on 
exit from the procedure, subject and cursor are then set to their initial values. Reversible assignment is used 
so that their prior values are restored should p() fail. If p() succeeds, its value is saved and subject and 
cursor are restored to their values prior to invocation of x_apply (note that p() may change cursor but not 
subject under Condition 1 of the matching expression protocol). The final expression in the conjunction is 
value, which is the result returned by x_apply. 

Should x_apply be reactivated for an alternative match for p(), the expressions in the conjunction are 
reactivated in reverse order. (In Version 4 of Icon, enclosing braces do not inhibit goal-directed evaluation.) 
Thus subject and cursor are restored to the values they had when p() was previously activated. p() is then 
activated again. Should p() succeed, x_apply proceeds as before, suspending with the new value. Should p() 
fail, subject and cursor are restored as before and x_apply fails. 

Note that the argument of suspend is a matching expression in either model: although subject may be 
changed temporarily during its evaluation, it is restored before completion. Similarly x_apply is a matching 
procedure: 
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x_apply(s,p)tsubject,value ::= { 
(tsubject := subject) & 
(subject < - s) & 
(cursor < - 1) & 
(modeQ & (value := p())) & 
(subject < - tsubject) & 
(cursor < - tcursor) & 
value 
} 

Since x_apply is a matching procedure, it corresponds to a pattern and can be used like any other 
matching procedure. Note that tcursor is local by virtue of its inclusion in the "shell" of all matching 
procedures. 

7. Limitations of the Models 

None of the procedural models described in the preceding sections can handle all the features of pattern 
matching in SNOBOL4. This section discusses the limitations of the procedural models and assesses their 
importance. 

7.1 Binding Time 

Patterns in SNOBOL4 are constructed at run time, while matching procedures are defined at compile time. 
Consequently identifiers in matching procedures are bound when the procedures are invoked, while identifiers 
in patterns are normally bound when the patterns are constructed. This early binding time in patterns can be 
avoided, by use of the unevaluated expression operator, which is, in fact, necessary to obtain recursive 
references and defer evaluation of expressions until patterns are applied. Recursion in Icon matching 
procedures of course follows naturally. 

In most cases, all identifiers in SNOBOL4 patterns could be unevaluated and the patterns would produce 
the same results. This is usually not done because extra notation is required, not because the early binding is 
needed. Essential use of early binding is very rare in SNOBOL4 programs. In fact, a number of SNOBOL4 
programs containing many complex patterns have been translated into Icon programs with matching 
procedures such as those given in this report with no instance of a problem due to the difference in binding 
times. 

Since binding time is not optional in matching procedures, but is a concern and problem in patterns, 
matching procedures may, in fact, offer an advantage over patterns in this regard. 

7.2 Conditional Substring Assignment 

The deferred aspect of conditional substring assignment, which cannot be handled in the models, was an 
efficiency consideration, since the original implementation of SNOBOL4 creates physically distinct copies of 
every string created [3]. Since many tentative substrings may be created during pattern matching, a list of 
names and positions is kept so that strings are actually formed only when the pattern matching process is 
successfully completed. Originally this technique, as opposed to immediate but reversible assignment, was 
largely transparent to executing programs. As features were added, the situation became clouded. Very few 
SNOBOL4 programmers know, for example, what happens in a statement such as 

S ? P . *A[I] 

When is the unevaluated expression *A[I] evaluated? What happens if it fails because I is out of range? 

Immediate substring assignment was introduced so that the values of substrings matched could be used 
subsequently in the same pattern match. Quixotically, immediate substring assignment is faster than 
conditional substring assignment in some implementations of SNOBOL4 [4,6]. 

In any event, the idiosyncrasies of conditional substring assignment are a consequence of implementation 
considerations, and there is little evidence.that they offer any linguistic advantages over reversible assignment. 
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7.3 Aborting Pattern Matching 

SNOBOL4 has two built-in patterns, ABORT and FENCE, that abort pattern matching altogether, 
causing the entire pattern match to fail. ABORT causes failure when encountered in matching, while FENCE 
causes failure during backtracking. (ABORT and FENCE can be formulated in terms of each other in 
conjunction with the built-in patterns FAIL, which simply fails to match and NULL, which always matches; 
there is only one concept involved. FAIL and NULL of course can be represented easily by matching 
procedures.) 

The ability to abort a pattern match at an arbitrary point is not easy to add to the procedural models. It is 
possible, however, by addition of a distinctive "aborting" value, with a check for this value in all matching 
procedures that invoke other matching procedures. This technique is actually employed in the original 
implementation of SNOBOL4 [3]. It is, however, cumbersome and would greatly complicate the models given 
here. An alternative is adding more power to the procedural model. In SL5 [9], for example, a pattern match 
could be aborted by resumption of the environment that serves as the root of the matching process. The 
semantics needed to implement a procedural model of pattern matching are discussed in Section 8. On the 
other hand, while the ability to abort pattern matching (even successfully [7]) is intellectually appealing, most 
actual uses of such a facility can be accomplished other ways. 

7.4 Pattern-Matching Heuristics 

Different dialects of SNOBOL4 employ various heuristics to avoid "futile" attempts to match and hence to 
speed the process [4,6]. Heuristics are also used to avoid left-recursive plunges during the matching process. 

When the heuristics were first conceived, they were motivated entirely by concerns of efficiency and were 
transparent to the running program except as they affected the time required for program execution. As 
language features were added, they became linguistically significant, since components of a pattern that might 
have side effects might not be applied at all as a consequence of the heuristics. 

In retrospect, the heuristics appear to be a language design mistake. Most programs actually run faster 
without use of the heuristics (checking takes longer than the "futile" matching that is saved). Few if any 
SNOBOL4 programmers fully understand the heuristics. The Macro SPITBOL dialect of SNOBOL4 [10], 
which does not implement any heuristics, is used without apparent difficulty, even with respect to left 
recursion. 

Since the heuristics are neither well defined nor consistently interpreted in different implementations, nor 
apparently necessary or useful, the fact that they cannot be incorporated easily in the procedural models is of 
little consequence. 

8. Facilities Required to Implement Pattern Matching 

The pattern-matching facilities described above are given in terms of Icon expressions and procedures. 
That is to say, the facilities of Icon are adequate to implement such pattern-matching facilities with the 
exceptions discussed in the preceding section. Not all of the facilities of Icon are needed, however. 

Before going on to consider a possible new pattern-matching facility, it is worth examining the minimum 
set of features that are needed: 

(1) Goal-directed evaluation. 

(2) Reversible assignment. 

(3) The alternation control structure. 

(4) Procedures that are data objects. 

(5) A procedure mechanism capable of suspending activation with the return of a value and subsequent 
reactivation. 

(6) Elementary string operations: comparison, concatenation, and substring specification. 

Goal-directed evaluation underlies much of the pattern-matching mechanism and is essential to the proper 
functioning of the models. Furthermore, it must be a general aspect of expression evaluation. 
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Reversible assignment is essential to the limited form of data backtracking needed (more general data 
backtracking could be used, but is unnecessary). 

Alternation is a very important control structure. Unlike conjunction, which is an essentially vacuous 
operation that facilitates mutual goal-directed evaluation among expressions, alternation controls the order in 
which the results of generators are produced. 

Procedures must be data objects so that they can be passed as arguments to other procedures and invoked 
at the proper time. 

The suspend mechanism in Icon procedures is about the minimum procedural facility that is needed. A 
more general coroutine mechanism with the proper characteristics would also do, but that generality is not 
necessary. Note that all built-in Icon generators, such as to-by, can be written as Icon procedures. 

Elementary operations on strings are obviously needed in a string pattern-matching facility. Icon offers a 
wide variety of such features as well as syntactic devices, such as range specifications, that make string 
processing concise and easy to formulate. All of these features can be composed from more elementary 
operations, however. 

9. Design of a New Pattern-Matching Facility 

There is ample evidence that pattern matching in the style of SNOBOL4 is a valuable programming 
language facility. Some of the faults of pattern matching in SNOBOL4 can be attributed to idiosyncrasies and 
specific design flaws. Other faults are a consequence of the basic structure of SNOBOL4 on which the 
pattern-matching facilities are built. This section discusses a possible new pattern-matching facility that could 
be incorporated into a more suitable base language. 

9.1 Adequacy of a Procedural Model 

The procedural models described in Sections 3 through 5 have the capability of representing most of the 
features of pattern matching in SNOBOL4. None of the limitations described in Section 7, with the possible 
exception of the ability to abort pattern matching at an arbitrary point, are significant. In fact, the procedural 
models are, if anything, more naturally consistent and uniform than SNOBOL4's pattern-matching facility. 
Furthermore, the procedural models offer clear opportunities for extensions, unifications, and generalizations 
that are needed in any pattern-matching facility that would be an improvement over SNOBOL4. 

9.2 Choice of a Procedural Model 

Of the three models presented earlier, the generalized string model offers the greatest possibilities. While 
the production of matched substrings is inherently more expensive in time and space than the change of the 
cursor alone, this problem can be reduced by lazy evaluation and other clever implementation techniques. In 
any event, the use of pattern matching is often motivated more by a need for problem solving power than by 
execution efficiency. Consequently the proposal here is based on the most general of the three models. 

The protocol in the generalized string model, revised to include possible extensions discussed in Section 6, 

is: 

(1) Evaluation of e must not result in a change to the value of subject. 

(2) Evaluation oie must leave the value of cursor between 0 and the end of subject, inclusive. 

(3) If e fails, it must not leave cursor changed. 

(4) If e succeeds, the value it returns may be any string. 
This model imposes few restrictions on matching expressions — it even allows them to change subject 

temporarily. Condition 1 could be lifted entirely, although this raises a number of sticky issues. Condition 3 
also could be lifted, but experience and a little experimentation suggest that it serves a valuable purpose in 
imposing structure on pattern matching. 



9.3 Design Criteria 

The many and conflicting considerations in programming language design are well known and extensively 
discussed in the literature. In the limited scope of this paper, the considerations are confined to the area of 
pattern matching. In the final say, decisions among competing factors are made on the basis of philosophy, 
taste, and intuition. The following design criteria are suggested: 

(1) The pattern-matching facility should be integrated into the base language. This integration will avoid 
the proliferation of similar but distinct facilities (four types of assignment in SNOBOL4 for example) and will 
avoid the linguistic schism that plagues SNOBOL4[l 1]. 

(2) A capability for programmer-defined matching procedures is essential. The lack of such a facility in 
SNOBOL4 is its most significant weakness and contributes to the large size and idiosyncratic nature of its 
pattern-matching facilities. 

(3) The cursor and subject should be accessible to the programmer so as not to limit the power of defined 
matching procedures. Specifically, it should be possible to write any built-in matching procedure as a defined 
matching procedure. The programmer should not have to refer to the cursor and subject to perform basic 
pattern matching, however. 

(4) A set of built-in features should be selected as a compromise between simplicity and conciseness on 
the one hand and facility as evidenced by need on the other. 

This report does not attempt to propose a final design. However, suggestions for built-in features, which 
may serve as a point of discussion, are given in the next section. No prefix is used to distinguish matching 
procedures corresponding to these facilities. New mnemonics are introduced to improve terminology, but 
analogies to earlier features should be clear. 

9.4 Proposed Built-in Features 

Much of Icon's model for string scanning provides a good basis for the proposed new facility. Specifically, 
its system for specifying character positions, which allows nonpositive specification relative to the right end of 
the string, is superior to SNOBOL4's system for specifying character positions. 

Icon's move(i) and tab(i), equivalent to x_len(i) and x_tab(i) adapted to Icon's character position 
specification, are proven matching procedures: both relative and absolute change of cursor position are 
commonly needed. 

Icon's underlying lexical functions seem well chosen and provide the basis for a set of matching 
procedures: 

taba(s) ::= subject[.cursor,cursor := any(s,subject,cursor)] 
tabb(s1,s2,s3) ::= subject[.cursor,cursor := bal(s1,s2,s3,subject,cursor)] 
tabf(s) ::= subject[.cursor,cursor := find(s,subject,cursor)] 
tabm(s) ::= subject[.cursor,cursor := many(s,subject,cursor)] 
tabs(s) ::= subject[.cursor,cursor := match(s,subject,cursor)] 
tabu(s) ::= subject[.cursor,cursor := upto(s,subject,cursor)] 

(Better names are needed. The natural choices, those of Icon's lexical analysis functions, are not used here to 
avoid confusion.) 

In addition, testing the value of cursor is often useful: 

pos(i) ::= (cursor = poseq(i)) & " " 

where poseq(i) returns the positive equivalent of i: 

procedure poseq(i) 
if i < 1 then i := *subject+1+i 
if 1 <= i <= *subject+1 then return i else fail 

end 

A new matching procedure that seems useful simply checks for the existence of a substring in subject. 
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look(s) ::= find(s,subject,cursor) & " " 

look(s) can be used to avoid much unnecessary processing. 

9.5 Icon as a Base Language 

Since Icon is evidently adequate for implementing a pattern-matching facility at the source level, it is 
natural to consider Icon as a base language for a built-in pattern-matching facility. 

Icon's major advantages for such a base language are its goal-directed evaluation and related control 
structures. These exist in no other programming language in such a general form and are specially suited to 
needs of pattern matching. Icon also has an adequate procedure mechanism (although a call-by-rcference 
facility, or even something more powerful would be helpful). 

Icon is, however, already a "large" language, both syntactically and semantically. Adding a pattern-
matching facility on top of Icon would produce an overbearing result. Fortunately, there are a number of 
features in Icon that could be removed to provide a smaller base language. 

The entire string-scanning facility of Icon could be replaced by the one described here. Expunging string 
scanning involves removing the scan-using and transform-using control structures, all scanning functions. 
One side effect of removing these facilities is the elimination of the somewhat awkward concept of a "scanned 
substring" to which assignment can be made to change the subject. 

A more radical possibility is removing the lexical functions such as find(s) and upto(s). The rationale for 
this proposal is that such functions are unnecessary and lead to confusing programming techniques that mix 
high-level and low-level string processing. This change has the additional advantage of decreasing the 
linguistic size of the language. 

9.6 Programmer-Defined Matching Procedures 

The existing procedure mechanism of Icon is adequate for programmer-defined matching procedures. 
There are two issues that need to be addressed, however: 

(1) Should there be built-in support for common aspects of matching procedures? 

(2) Should the protocol for matching expressions be enforced as part of the matching procedure 
mechanism? 

Some syntactic support for matching procedures is a practical necessity. Much of the form of a matching 
procedure is stylized. No programmer would want to have to enter standard information repetitiously —just 
as a more compact notation was used in this paper to avoid constantly repeating the procedural shell that is 
common to all matching procedures. 

Enforcing the protocol on matching expressions comes down to two matters: (1) ensuring that values 
assigned to the cursor are in the range of the subject, and (2) restoring the cursor when matching procedures 
fail. 

Range enforcement as it is presently done with &pos in Icon seems to be a clean method: assignment to 
&pos simply fails if the value would be out of the range of &subject. This internal checking avoids many of 
the explicit tests that a programmer would otherwise have to perform (review C_len(i) and c_tab(i) given in 
Section 3). 

The great advantage that programmer-defined matching procedures provide is the elimination from the 
built-in repertoire of procedures that are not needed frequently and that can be easily written by the 
programmer. Most of the matching procedures discussed in Sections 5 and 6 fall into this category. Other 
examples are given in Section 10. 

9.7 Patterns Versus Matching Procedures 

In SNOBOL4, LEN(I) is a pattern-valued function, not a pattern. This detail is often overlooked, since 
patterns are constructed at run time and pattern-valued expressions can be written in-line in pattern-matching 
statements. Consider a pattern-valued expression such as 



P = LEN(3) | (TAB(5) BREAK("x") 

Each function in this expression constructs a pattern. Two are combined by the concatenation operation 
which forms another pattern. This pattern, in turn, is combined by the alternation operation to form the final 
pattern assigned to P. Using matching procedures as described in preceding sections, there would be a 
procedure declaration for each pattern: 

p1 ::= len(3) 
p2 ::= tab(5) 
p3 ::= break("x") 
p4 ::= cat(p2,p3) 
p ::= alt(p1,p4) 

If this is not clear, recall that cat and alt are called with procedure-valued arguments; these procedures are not 
invoked until after cat and alt are called. On the other hand 

alt(len(3),cat(tab(5),break("x"))) 

would evaluate the procedures prior to invocation of alt and cat — with quite different results! 

Fortunately, it is not necessary to encapsulate alternation and concatenation in matching procedures — 
they can simply be written using the corresponding Icon operations: 

p ::= len(3) | (tab(5) || break("x")) 

This reflects the fundamental difference between patterns and matching procedures. In SNOBOL4, matching 
procedures are contained in patterns, and they cannot be used directly with other language operations. The 
direct use of matching procedures eliminates the need for a repertoire of pattern-building and application 
operations that mimic other operations in the language. Thus the SNOBOL4 substring assignment operation 

P $ S 

builds a pattern containing a matching procedure to perform assignment. With matching procedures, this 
level is eliminated and is simply 

s := p() 

This is the essential advantage of matching procedures over patterns. In SNOBOL4, operations that are 
invoked during pattern matching are hidden in the implementation. In the Icon model, however, matching 
procedures are not contained in patterns, and they can be invoked directly using Icon control structures and 
operations. 

9.8 Applying Matching Procedures 

One disadvantage of the application procedures, such as x_apply(s,p), is that p must be a procedure, 
which requires a separate declaration for even the simplest case. Thus the SNOBOL4 statement 

S ? LEN(3) 

becomes 

move3 ::= move(3) 

and 

apply(s,move3) 

A better solution is a control structure in the style of Icon's scan-using, but perhaps cast in operator 
syntax 

el ? e2 

The example above then becomes 



s ? move(3) 

The main difference between scan el using e2 and el ? e2 based on x_apply is that the expressions el and e2 
are restricted to a single result in scan-using, while el ? e2 allows goal-directed evaluation of el and e2. 

Another syntactic convenience is "augmented pattern application": 

el ?:= t'2 

which is equivalent to 

el := (<?/ ? e2) 

except that el is only evaluated once. The result of evaluating el must be a variable, of course. 

10. Comparison of String Processing Facilities 

In this section, solutions of several "typical" string processing problems are given in SNOBOL4, Icon, and 
the new facility proposed in Section 9. These solutions provide a basis for comparison, discussion, and 
evaluation. 

10.1 Examples 

Reformatting Lines 

One of the simplest and frequently occurring string processing problems is reformatting lines of data. A 
simple example is given in Reference 12, pages 42-43. In this example the data consists of a list of 
congressmen from New Jersey, for which information is formatted in specific columns as shown below. 

I 
1 William T. Cahill 
2 Thomas C. McGrath, Jr. 
3 James J. Howard 

30 36 
1 i 
Rep Collingswood 
Dem Margate City 
Dem Wall 

14 Dominick V. Daniels 
15 Edward J. Patton 

Dem 
Dem 

Jersey City 
Perth Amboy 

The problem is to print a new set of data with only the names left justified at column 1 and the address right 
justified at column 44. The desired output is 

\ 
William T. Cahill 
Thomas C. McGrath, Jr. 
James J. Howard 

44 
i 

Collingswood 
Margate City 

Wall 

Dominick V. Daniels 
Edward J. Patton 

Jersey City 
Perth Amboy 

A SNOBOL4 program, adapted from Reference 12 follows. 
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&ANCHOR = 1 
INFO = TAB(3) TAB(29) . NAME TAB(35) REM . PO 

READ LINE = INPUT :F(END) 
LINE ? INFO :F(ERROR) 
NAME = TRIM(NAME) 
OUTPUT = NAME DUPL(" ",44 - (SIZE(NAME) + SIZE(PO))) PO 

+ :(READ) 

END 

This solution is sufficiently obvious that it needs no discussion. 

A straightforward Icon solution follows. 

procedure main() 
local line, name, po 
while line := read() do { 

scan line using { 
tab(4) 
name := tab(30) 
tab(36) 
po := tab(O) 
} 

write(left(trim(name),30),right(po,14)) 
} 

, end 

Again no explanation is needed — the correspondence to the SNOBOL4 solution is evident. 

A solution using the new facility is: 

info ::= write(tab(4) & left(trim(tab(30)),30),(tab(36) & right(tab(0),14))) 

procedure main() 
local line 
while line := read() do 

(line ? info()) 
end 

This solution is a bit more "ingenious" and takes advantage of the ability to use the entire function repertoire 
during pattern matching. Note that no auxiliary identifiers are required. This is, however, not a feature of the 
new facility, per se. An alternative Icon solution, motivated by this technique, is 

procedure main() 
local line 
while line := read() do 

scan line using 
write( 

tab(4) & left(trim(tab(30)),30), 
tab(36) & right(tab(0),14) 
) 

end 

This problem is simple enough that low-level string processing is really more appropriate. Such a solution in 
Icon provides a contrast with the high-level solutions: 
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procedure main() 
local line 
while line := read() do 

write(left(line[4:30],30),right(line[36:0],4)) 
end 

Line Justification 

Another standard example is line justification — adding blanks between words in paragraphed text to get 
an even right margin. There are many approaches to this problem. One is discussed in Reference 13, pages 
176-178, from which the following SNOBOL4 solution is adapted: 

&ANCHOR = 1 
BLANKS = BREAK(" ") . HEAD SPAN(" ") . SEP 
DEFINE("JUST(JUST,LENGTH)LINE,HEAD,SEP,DIFF") 

READ 

JUST 

JUST1 
JUST2 

JUST3 

JUST4 

END 

LINE = INPUT 
OUTPUT = JUST(LINE,60) 

DIFF = LENGTH - SIZE(JUST) 
LE(DIFF.O) 
JUST BLANKS = 
JUST BLANKS = 
LINE = LINE HEAD SEP " " 
DIFF = GT(DIFF,1) DIFF - 1 
JUST = LINE JUST 
LINE = 
JUST = LINE JUST 

:F(END) 
:(READ) 

S(RETURN) 
F(RETURN)S(JUST2) 
F(JUST3) 

:S(JUST1)F(JUST4) 

:(JUST1) 
:(RETURN) 

This solution simply grinds through text, looking for blanks and adding one at each occurrence. Since more 
than one blank may need to be added at each possible place, the code at JUST3 starts the loop over if 
necessary. A solution that avoids "rivers" by adding blanks from the right and left alternatively is given on 
page 178 of Reference 13 and involves reversing the text on alternative lines before processing. 

For Icon, a "natural" approach to this problem is to use transform-using rather than scan-using: 

procedure just(line,length) 
local diff 
if not upto(" ",line) then return line 
diff := length - *line 
while diff > 0 do 

transform line using { 
while tab(upto(" ")) do { 

tab(many(" ")) 
insert(" ") 
diff - := 1 
if diff = 0 then break 
} 

tab(O) 
} 

return line 
end 

In the new facility, the more natural approach is to synthesize the desired result by concatenation in a 
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matching procedure: 

global newline 

expand ::= (newline ||:= tabu(" ") || tabm(" ") || " ") & tab(O) 

procedure just(line,length) 
local diff 
if not (line ? look(" ")) then return line 
diff := length - *line 
newline := "" 
while diff > 0 do 

if (line ?:= expandQ) then diff - := 1 
else {line := newline || line; newline := "") 

return newline || line 
end 

This approach, could, of course, be taken in Icon — it merely is not obvious without the "discipline" implied 
by the new facilities. Note that expand produces two results — one assigned to newline and the other 
(tab(O)) returned to be assigned to line. 

Again, a low-level approach is easily formulated and provides a contrast with the high-level solutions: 

procedure just(linejength) 
local diff, i 
if not upto(" ".line) then return line 
diff := length - *line 
while diff > 0 do f 

i := 1 
while i := upto(" ",line,i) do { 

line[i] ||:= " " 
i := many(" ",line,i+1) 
diff - := 1 
if diff = 0 then break 
} 

} 
return line 

end 

Infix-to-Prefix Conversion 

This problem involves converting arithmetic expressions from infix form to fully parenthesized prefix 
form. Examples of the desired conversions are: 

x x 
x+1 +(x,1) 
((x+(1))) +(x,1) 
x -y -z -(-(x,y),z) 
3*delta+2 +(*(3,delta),2) 
2A2^n A(2,A(2,n)) 
(x*n)/(z+1) /(A(x,n),+(z,1)) 

Only those operators shown above are considered here, and have their usual associativities and precedences. 

One problem in the conversion is the removal of possibly superfluous parentheses in the infix form. 
Handling precedence and associativity is the other main problem. Precedence can be taken care of by the 
order of processing. Left-associative operators, such as +, present the greatest problem, since all three string-
processing facilities operate in an essentially left-to-right manner, while transforming a left-associative 
operator requires finding its right-most occurrence. 

23-



The following SNOBOL4 solution is adapted from Reference 13, page 110: 

&ANCHOR = 1 
DEFINE("PREFIX(PREFIX)L,R,OP,M") 
STRIP = " ( " BAL . PREFIX " ) " RPOS(0) 
ASSIGN = *GT(M,0) TAB(*(M - 1)) . L LEN(1) . OP REM . R 
PMOP = (BAL ANY("+-") @M FAIL) | ASSIGN 
SSOP = (BAL ANY("*/") @M FAIL) | ASSIGN 
LASSOC = PMOP | SSOP 
RASSOC = BAL . L " A " . OP REM . R 

READ LINE = INPUT 
OUTPUT = PREFIX(LINE) 

:F(END) 
:(READ) 

PREFIX 

FORM 

END 

PREFIX ? STRIP 
PREFIX ? LASSOC 
PREFIX ? RASSOC 
PREFIX = OP " ( " PREFIX(L) "," PREFIX(R) " ) " 

S(PREFIX) 
S(FORM) 
F(RETURN) 
(RETURN) 

An Icon solution from Reference 2, page 80, with slight modifications, is as follows. 

procedure main() 
local line 
while line := read() do 

write(prefix(line)) 
end 

procedure prefix(s) 
s := strip(s) 
return lassoc(s,"+-"| "*/") | rassoc(s," A") | s 

end 

procedure strip(s) 
local t 
while scan s using ="(" & t := tab(bal(")")) & pos(-1) do 

s := t 
return s 

end 

procedure lassoc(s,c) 
local j 
J : = 0 
scan s using every j := bal(c) 
if j = 0 then fail else return form(s,j) 

end 
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procedure 
local j 
scan s 
return 

end 

procedure 

rassoc(s.c) 

using j := bal(c) 
form(s,j) 

form(s,k) 
local a1, a2, op 
scan s 

a1 : 
op : 
a2 : 
} 

return 
end 

using { 
= tab(k) 
= move(1) 
= tab(O) 

op || " ( " || prefixi 

I fa 

(a1) " || prefix(a2) || " ) " 

This solution illustrates the value of goal-directed evaluation — especially in the call of lassoc. The 
procedure lassoc itself demonstrates how the right-most left-associative operator is found using an iterative 
approach as opposed to failure-motivated pattern matching. 

Finally, a solution using the proposed new facility is 

strip ::= (tabs("(") & ( tabbf)") ? stripQ) || pos(-1)) | tab(O) 
prefix ::= (strip() ? (lassoc("+-"| "*/") | rassoc("*") | tab(O))) 
lassoc(s)t ::= (every t := tabb(s)) & form(tabs(\t)) 
rassoc(s) ::= form(tabb(s)) 

'form(s) ::= move(1) || " ( " || (s ? prefix()) || "," || (tab(O) ? prefixQ) || " ) " 

procedure mainQ 
local line 
while line := read() do 

write(line ? prefixQ) 
end 

This solution deserves more explanation. The matching procedure strip illustrates nested matching, and 
can be compared directly to the iterative processing in the SNOBOL4 and Icon. The solution in the new 
facility is essentially recursive — the expression 

tabb(")") ? strip() 

recursively applies strip to a string enclosed in parentheses. The tab(O) alternative is an escape in case there 
are no parentheses. The technique used in lassoc(s) to locate the right-most left-associative operator is 
similar to that used in the Icon solution. The expression \ t , a feature of Version 4 of Icon, fails if t is null, 
providing an escape similar to the test j = 0 in the Icon solution. Compare the recursive matching of 
prefix in form(s) to the recursive procedure calls in SNOBOL4 and Icon. 

In retrospect, both the SNOBOL4 and Icon solutions can be adapted to resemble the new solution more 
closely (and conversely). The SNOBOL4 and Icon solutions are essentially as they appear in the literature and 
hence represent the "best" solutions of the authors at the time they were written. The new solution 
undoubtedly was influenced by the other solutions (especially the Icon solution). 

10.2 Sentence Recognition 

Finally, the close equivalence of SNOBOL4, Icon, and the new facility in characterizing languages is 
illustrated by the problem of recognizing sentences from the language characterized by the following 
grammar: 

25 



<s> ::= a <s> | < t> b ] c 
< t > ::= d <s> a | e | f 

where <s> is the goal. 

A SNOBOL4 solution is: 

S = "a" *S | *T "b" | "c" 
T = " d " *S " d " | "e" | "f" 
GOAL = POS(O) S RPOS(O) 

READ LINE = INPUT :F(END) 
LINE ? GOAL :F(NO) 
OUTPUT = "accepted" :(READ) 

NO OUTPUT = "rejected" :(READ) 

END 

An Icon solution is: 

procedure main() 
local line 
while line := read() do 

if recogn(sjine) then write("accepted") else write("rejected") 
end 

procedure recogn(goal,text) 
return scan text using 

goal() & (&pos = pos(O)) 
end 

procedure s() 
suspend (="a" || s()) | (t() || ="b") | ="c" 

end 

procedure t() 
suspend (="d" || s() || ="d") | ="e" I ="f" 

end 

Finally, a solution using the new facility is: 

s ::= (tabs("a") || s()) | (t() || tabs("b")) | tabs("c") 
t ::= (tabs("d") || s() || tabs("d")) | tabs("e") | tabs("f") 
goal() ::= s() & pos(O) 

procedure main() 
local line 
while line := read() do 

if (line ? goalQ) then write("accepted") else write("rejected") 
end 

10.3 Discussion of Examples 

The problem of reformatting lines is sufficiently simple that a low-level approach is easy to formulate and 
to understand. This is to be expected — for sufficiently simple string processing, low-level facilities are certain 
to be superior to high-level ones in programming ease and clarity. Since the motivation here is to develop 
facilities suitable for complex string processing problems, the question is more how much burden such high-
level facilities place on the solution of simple problems. 
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For the problem of reformatting lines, the differences among the various solutions are not substantial, 
although the Icon string scanning solutions appear to be unnecessarily overbearing by comparison. The 
solution using the new facility is similar, in many respects, to the SNOBOL4 solution, although the 
advantages of being able to use the function repertoire in matching procedures is evident when compared to 
the necessity of separating string analysis and synthesis into separate statements in the SNOBOL4 solution. 

In the case of line justification, the algorithm used is itself somewhat awkward and this difficulty is 
reflected in all the solutions. As such, it serves to show how such problems must be dealt with. Here the low-
level solution is comparable in complexity to the Icon solution — the one case where transform-using shows 
to advantage. The low-level solution does use some non-obvious coding techniques (consider the first two 
lines of the inner while loop). The solutions in SNOBOL4 and in the new facility are comparable in many 
respects. The main difference in the new facility is that the developing result is augmented within the matching 
procedure. 

In infix-to-prefix conversion, the SNOBOL4 method of finding the right-most left-associative operator is 
particularly contorted and illustrates the frequent need in SNOBOL4 to use "failure-motivated" patterns [7]. 
The Icon solution uses goal-directed evaluation to advantage (see the second line of prefix), but it is also quite 
lengthy. (The ability to match from right to left would be very helpful here, but that raises several thorny 
issues [7].) Here the new facility is more impressive and the potential for matching procedures to be 
"descriptive" is evident. This solution also exhibits some coding techniques in the new facility that are 
discussed in the next section. 

In the sentence recognition problem, all the solutions are essentially isomorphic. The SNOBOL4 solution 
is somewhat more concise than the others. This conciseness is partly due to the way that patterns are formed 
and used and partly due to idiosyncrasies in SNOBOL4 syntax, such as the absence of an explicit operator for 
concatenation. (This aspect of SNOBOL4 causes its share of troubles also [5].) Some of the "busyness" of the 
new solution could be avoided by syntactic sugar, such as the use of =s for tabs(s), as in Icon. Note the 
conciseness obtained by procedural encapsulation also — another instance of syntactic sugar. 

10.4 Coding Techniques Using Matching Procedures 

The result of evaluating el ? e2 is the result of evaluating e2. This result generally depends on the value of 
el, of course. In most circumstances, the result is a concatenation of strings. Some of these strings, using 
Doyle's terminology, are indigenous, resulting from the application of matching functions such as tab(i) or 
programmer-defined matching procedures. Other strings are exogenous. Exogenous strings are frequently 
literals, but may result from any string-valued operation. As mentioned in Section 5, indigenous and 
exogenous strings are simply special cases of transformations. In the line reformatting solution 

left(trim(tab(30)),30) 

is an example of such a transformation. Another example from the infix-to-prefix solution is 

form(tabb(s)) 

Transformation is a useful paradigm. Transformation in this sense is simply a normal computational 
technique, as opposed to the transform-using construct in Icon, which returns the modified value of 
&subject. 

In developing a result by concatenation, it is frequently necessary to discard results of matching functions 
or procedures. This problem, discussed in Section 5, is illustrated in the solution to the line reformatting 
problem by 

tab(4) & left(trim(tab(30)),30) 

and by 

tabs("(") & (tabb(")") ? stripQ) 

in the solution to the infix-to-prefix conversion problem. 

In the first case, the first four characters of the subject are simply irrelevant. In the second case, the literal 
left parenthesis is required, but it is not a desired part of the result. As illustrated, conjunction serves to omit 
its first operand from the result. The use of conjunction in this fashion amounts to an idiom. For readability, 
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a different syntax for this situation might be desirable. Thus 

el - > e2 

would more clearly indicate that the result of evaluating el is "replaced" by the result of evaluating e2. (It is 
interesting to consider replacing the operator & by - > in Icon to indicate "goal-directed evaluation in 
sequence". The mental trick lies in the "mnemonic" implication of the symbol ->.) 

The application of matching procedures within matching procedures frequently proves valuable, as is 
illustrated in the solution to the infix-to-prefix problem. The interesting point is that in el ? e2, either el or e2 
may, themselves, be matching procedures. The "normal" case is for e2 to be a matching procedure — that is 
the implication of el ? e2. On the other hand, if el is a matching procedure, it produces a result based on the 
current subject. This is illustrated by 

tabb(")") ? strip() 

in which the matching procedure strip is applied to the balanced string up to a right parenthesis. 

In some cases, it is useful to "pass along" a string to another procedure. This is illustrated in the solution 
to the infix-to-prefix conversion problem by 

rassoc(s) ::= form(tabb(s)) 
form(s) ::= move(1) || " ( " || (s ? prefix()) || "," || (tab(O) ? prefix ()) || " ) " 

Here the first operand of an infix expression is produced by tabb(s). However, this operand is not needed in 
the desired result until the operator following it and an exogenous left parenthesis have been concatenated. In 
the first attempt to write a matching procedure to do this, a natural approach is to use an auxiliary identifier: 

rassoc(s)t ::= (t := tabb(s)) & move(1) || " ( " || (t ? prefixQ) . . . 

Use of the matching procedure form(s) avoids the auxiliary identifier t, since the value matched by tabb(s) is 
passed through the argument S of form. As a consequence, the "match and discard" construction 

(t := tabb(s)) & move(1) 

is avoided as well. 

In complicated string processing, this "pass along" idiom is naturally suggested when the result of a 
matching procedure is needed, but not at the time it is produced. The solution is simply to introduce another 
matching procedure at this point, where the new matching procedure takes the string in question as an 
argument and supplies the remainder of the result that is needed. 

For the programmer who is accustomed to using patterns in the style of SNOBOL4, the opportunity to use 
a variety of control structures in matching procedures may be difficult to perceive. The examples in Section 
10.1 do not make much use of such possibilities, but one instance from the solution to the infix-to-prefix 
conversion problem is suggestive: 

every t ':= tabb(s) 

All this expression does is assign to t the longest balanced string up to the operator S. Compare this to the 
possible techniques for accomplishing this in SNOBOL4 — or printing all the parenthesis-balanced substrings 
ofastringinSNOBOL4: 

S ? BAL $ OUTPUT FAIL 

In this new facility, the natural method is 

every write(s ? tabb()) 

There is, of course, a difference between the semantics of BAL in SNOBOL4 and tabb() in the new facility, 
but the point remains the same. 

More conventional control structures have their uses also. Consider the procedures for C_tab(i) and 
cJen(i) in Section 3. 

One rather serious problem with the. new facility is illustrated by the matching procedure used in the 
solution of the line justification problem: 
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expand ::= (newline ||:= tabu(" ") || tabm(" ") || " ") & tab(O) 

In this solution, expand essentially produces two results. As a side effect, the value of newline is augmented, 
while the value returned by expand is tab(O), which is assigned to line. The need to produce multiple results 
is common, especially in complex problems. In the solution to the line-justification problem, the second 
"result" is accomplished by assignment to newline. Such side-effect approaches are common and necessary in 
SNOBOL4 and are accepted because they arc necessary. While side-effect approaches are more 
uncomfortable in a language like Icon, the more serious underlying problem is the scope of identifiers. In the 
solution given, newline must be declared global. The necessity for such declarations is annoying, but could 
be avoided if Icon interpreted undeclared identifiers as global rather than local (this was done in an early 
version of Icon). Such a solution does not solve the basic problem however. Suppose expand needed to 
assign a value to an identifier, such as line, that was local in the context in which expand is called. 

Call-by-reference or pointers could be used to solve this problem. Another solution would be a dynamic 
scoping facility, such as is used in SL5 [9]. A more general solution to the problem of multiple results would 
be preferable, but it is difficult to see how such a solution could be formulated without major changes in the 
base language. 

11. Conclusions 

The cursor and substring models given in Sections 3 and 4 illustrate two ways that matching procedures 
can be used to implement pattern matching in the style of SNOBOL4. While there are a few aspects of pattern 
matching in SNOBOL4 that these models cannot accommodate, none of these exceptions limits the general 
aspects of pattern matching nor detracts from its facilities in any essential way. In fact, the procedural models 
are in many respects more general than pattern matching in SNOBOL4 and certainly allow many extensions 
and generalizations. 

The procedural models strip away a level of indirection that is present in SNOBOL4. Instead of using 
patterns that reference matching procedures, the procedural models use procedures directly. Consequently, 
matching procedures can be used in combination with all of the other features of the base language. Neither is 
the repertoire of operations that can be used in pattern matching limited, nor is it necessary to have a separate 
set of pattern-construction operations that parallels the control structures and operations of the base 
language. 

The penalty for removing this level of indirection is a somewhat less concise syntax. In addition, the 
availability of all base-language operations during pattern matching may lure programmers into awkward 
programming constructions — "a discipline of pattern matching" is not imposed by the language, but must be 
observed by programmers. 

Icon has most of the facilities needed to support matching procedures. The adaptation of Icon to this 
discipline is illustrated by the model given in Section 9 and supported by the programming examples of 
Section 10. 

There are, of course, remaining problems — especially with the scoping of identifiers. Nor does the 
proposal of Section 9 even begin to address more basic problems, such as the recurrent need for producing 
multiple results from pattern matching in a structured fashion. The proposal does, however, suggest a possible 
compromise between the linguistic schism that patterns impose on SNOBOL4 and the inadequate capacity for 
abstraction offered by string scanning in Icon. 
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Appendix A — Procedures for the Cursor Model of SNOBOL4 Pattern Matching 

c_len(i) ::= if 0 <= i <= *subject+1-cursor then cursor := cursor+i 
c_tab(i) ::= if cursor-1 <= i <= *subject then cursor := i+1 
c_pos(i) ::= (cursor = i+1) 
c_rtab(i) ::= if cursor-1 <= i <= *subject then cursor := *subject-i 
c_rpos(i) ::= if cursor-i <= i <= *subject then cursor = *subject+1-i 
c_arb ::= (cursor := (cursor to *subject+1)) 

c_match(s) ::= (cursor := match(s,subject,cursor)) 
c_any(s) ::= (cursor := any(s,subject,cursor)) 
c_notany(s) ::= (cursor := any(~s,subject,cursor)) 
c_span(s) ::- (cursor := many(s,subject,cursor)) 
c_breakx(s) ::= (cursor := upto(s,subject,cursor)) 
c_break(s) ::= (cursor := upto(s,subject,cursor) \ 1) 
c_balu ::= (cursor := bal(")"„,subject,cursor)) 
c_bbal ::= (c_match("(") & c_balu() & c_len(1)) | c_notany("()") 
c_bal ::= c_bbal() & c_arbno(c_bbal) 

c_cat(p1,p2) ::= p1() & p2() 
c_alt(p1,P2) ::= p1() | p2() 
c_arbno(p) ::= cursor | (p() & c_arbno(p)) 

procedure substr(p) 
return subject[.cursor:(p() & cursor)] 

end 

c_anchor ::= cursor 
c_float ::= (cursor := (1 to *subject+1)) 

procedure c_apply(s,p) 
subject := s 
cursor := 1 
return (c_mode() & substr(p)) 

end 

procedure c_repl(s,p) 
local mid 
subject := s 
cursor := 1 
return { 

(head := substr(c_mode)) & 
(mid := substr(p)) & 
(tail := subject[cursor:0]) & 
mid 
} 

end 
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Appendix B — Procedures for the Substring Model of SNOBOL4 Pattern Matching 

s_len(i) ::= if 0 <= i then subject[.cursor:cursor := cursor+i] 
s_tab(i) ::= if cursor-1 <= i then subject[.cursor:cursor := i+1] 
s_pos(i) ::= (cursor = i+1) & "" 
s_rtab(i) ::= if i <= *subject then subject[.cursor:cursor := *subject+1-i] 
s_rpos(i) ::= if cursor-1 <= i <= *subject then (cursor = *subject+1-i) & 
s_arb ::= subject[.cursor:cursor := (cursor to *subject+1)] 

s_match(s) ::= subject[.cursor:cursor := match(s,subject,cursor)] 
s_any(s) ::= subject[.cursor:cursor := any(s,subject,cursor)] 
s_notany(s) ::= subject[.cursor:cursor := any(~s,subject,cursor)] 
s_span(s) ::= subject[.cursor:cursor := many(s,subject,cursor)] 
s_breakx(s) ::= subject[.cursor:cursor := upto(s,subject,cursor)] 
s_break(s) ::= subject[.cursor:cursor := upto(s,subject,cursor) 1] 
s_balu ::= subject[.cursor:cursor := bal(")",,,subject,cursor)] 
s_bbal ::= (s_match("(") || s_balu() || s_len(1)) | s_notany("()") 
s_bal ::= s_bbal() || s_arbno(s_bbal) 

s_cat(P1,p2) ::= p1() || p2() 
s_alt(P1)P2) ::= p1() | p2() 
s_arbno(p) ::= "" | (p() || s_arbno(p)) 

s_anchor ::= "" 
s_float ::= subject[1:(cursor := (1 to *subject+1))] 

procedure s_apply(s,p) 
subject := s 
cursor := 1 
return (s_mode() & p()) 

end 

procedure s_repl(s,p) 
local mid 
subject := s 
cursor := 1 
return { 

(head := s_mode()) & 
(mid := p()) & 
(tail := subject[cursor:0]) & 
mid 
} 

end 
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