
Programmer-Defined Control Operations In Icon*

Ralph E. Griswold and Michael Novak

TR 82-8a

August 3, 1982. Revised November 22, 1983

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

•This work was supported by the National Science Foundation under Grant MCS881-01916.

Programmer-Defined Control Operations In Icon

1. Introduction

Broadly speaking, a control operation is any program mechanism that directly affects the flow of control
in a program. Fisher (1970) identifies six types of control operations: sequential processing, parallel process
ing, testing, monitoring, synchronization, and relative continuity. The scope of this report, and hence of the
discussion that follows, is more limited and only considers operations that affect the sequencing of expression
evaluation. The term control operation is used here to cover mechanisms in this domain, implicit or explicit,
while the term control structure is reserved for such operations that are distinguished syntactically. For exam
ple.

if expij then e\pi\ else expr,

is a control structure. On the other hand, argument evaluation in a typical expression-oriented programming
language is an implicit control operation. A control operation that is broadly applicable to expression evalua
tion, as is argument evaluation, is referred to as a control regime.

While most programming languages have facilities that allow programmers to define procedures that aug
ment the repertoire of built-in functions, comparatively few programming languages have facilities for defin
ing control operations. There are exceptions, including Madcap 6 (Morris and Wells, 1972) and the extensible
language ELI (Wegbreit. 1970). Some work (Leavenworth. 1969 and Fisher, 1970) has been focused directly
on the definition of control operations.

The comparative lack of facilities for programmer-defined control operations is not surprising. While the
number of programming language constructs that can be classified as control operations is large, most of them
are variants on a few control themes. Furthermore, the number of different control operations that can be
comfortably and consistently accommodated in most programming languages is relatively small. The design
of a set of control operations usually is more a matter of selection and refinement than of invention. The
motivation for programmer-defined control operations therefore is relatively small in the context of conven
tional programming languages.

The Icon programming language is another matter. Expression evaluation in Icon, in which an expression
can generate a sequence of results, poses many interesting and novel problems in control operation design. In
the evolution of Icon through several versions, more significant changes were made in control operation
design than in any other area of the language (Griswold. 1982).

The manipulation of sequences of results adds a dimension to control operations that is lacking in most
programming languages. The question is not what traditional control operations to select, but which of many
possibilities to explore. In Icon, the problem of control operation design becomes very similar to the design of
the built-in operation repertoire in most programming languages. As with the selection of a set of built-in
operations, the problem remains of providing facilities for the definition of others.

This report describes a simple programmer-defined control operation mechanism (PDCO) and gives a
number of examples of its use.

2. Control Aspects of Icon

In order to understand all the programming examples in this report, the reader should be familiar with Icon
(Griswold and Griswold. 1983). The following sections review the most relevant material, concentrating
on concepts related to control operations.

2.1 Expression Evaluation

2.1.1 Result Sequences

In most programming languages, the evaluation of an expression produces exactly one result. Thus it is
typical for a comparison expression, such as

' > J

to produce a Boolean value, true or false, depending on whether or not the specified relation holds.

In Icon, an expression is capable of producing a sequence of zero or more results. Ordinary computational
operations, such as

i + J

produce a single result as they do in more conventional languages. On the other hand, a comparison expres
sion, such as

' > J
produces a result (the value of j) if the specified relation holds, but it does not produce a result if the relation
does not hold. That is, a comparison expression has a sequence of zero or one results, depending on the values
of its arguments. A sequence of zero results corresponds to failure, while a sequence of more than zero results
corresponds to success.

SNOBOL4 (Griswold, Poage and Polonsky, 1971) resembles Icon in this respect. While SNOBOL4 termi
nology refers to success and failure as 'signals', expression evaluation in SNOBOL4 can be described equally
well in terms of sequences of zero or one results.

The motivation for using sequence terminology rather than signals comes from expressions that may pro
duce more than one result. An example is

i to j

which is capable of producing the integers in sequence from i to j , inclusive. Thus

1 to 5

is capable of producing the sequence 1. 2, 3, 4, 5.

The sequence of results that an expression is capable of producing is called its result sequence (Wampler.
1981) and is denoted by the sequence of results enclosed in braces. For example, the result sequence for

1 to 5

is {1.2,3.4,5}.

Expressions that are capable of producing more than one result are called generators (Griswold, Hanson
and Korb, 1981). Such expressions occur in pattern matching in SNOBOL4. For example, the pattern ARB
is capable of matching strings of length zero, one, two, and so on. There is no way in SNOBOL4. however, to
access these results directly; they are implicit in the pattern-matching process. The used of the term generator
serves to emphasize the capacity of some expressions to produce more than one result. There is, however, no
actual distinction in Icon between generators and other expressions. All expressions have result sequences,
although some result sequences may be of length zero or one.

Icon has many generators. One example is find(s1,s2), whose result sequence is the positions in s2. from
left to right, at which s1 occurs as a substring. For example,

find("on","one motion is optional")

has the result sequence {1,9, 19}.

A similar generator is upto(C, s), whose result sequence is the positions in S, from left to right, at which
any character in c occurs. For example.

2-

upto("on", "one motion is optional")

has the result sequence {1. 2. 6. 9. 10. 15. 19. 20].

Another generator is !x. whose result sequence is the elements of x. from left to right. For example, if a is a

l i s t

a := ["a", "an", "the"]

then the result sequence for !a is {"a", "an", "the"}.
The alternation control structure.

expi-j | expr2

has a result sequence consisting of the concatenation of the result sequences for expr, and expi\ For example,
the result sequence for

(1 to 4) | (6 to 10)

is {1.2.3.4.6.7.8.9. 10}.

Whether an expression produces all the results in its result sequence depends on context. Once a generator
has produced a result, it must be resumed to produce another result. A generator that has produced all the
results in its result sequence is said to be depleted. The resumption of a depleted generator does not produce a
result.

There are two contexts in which expressions are resumed: iteration and goal-directed evaluation.

2.1.2 Iteration

The control structure

every expi-j do expr,

resumes expr, repeatedly, producing all the results in the result sequence for expr.. For each result produced
by expr.. expr, is evaluated (not resumed). For example

every i := (1 to 5) do write(i A 2)

writes

1
4
9
16
25

Note that the assignment is performed for each result that is produced by its right argument as if the following
expressions had been evaluated.

= 1
= 2
= 3
= 4
= 5

The do clause in the iteration control structure is optional, allowing the expression above to be recast as

every write((1 to 5) A 2)

2.1.3 Goal-Directed Evaluation

While iteration over result sequences is performed explicitly by a control structure, goal-directed evalua
tion is implicit.

3-

In the evaluation of an expression, any generators in it are resumed until the expression produces a result
(succeeds) or until all the generators in the expression are depleted.

Consider the expression

(x I y) = 10

The left argument of the comparison operation has the result sequence {x. y}. The first result produced by the
left argument expression is x. The situation at this point is equivalent to the evaluation of

x = 10

If the value of x is 10. the comparison succeeds and the evaluation of

(x I y) = 10

is complete. The left argument expression is not resumed and the result y is not produced.

If the value of x is not 10. however, the comparison fails and the left argument expression is resumed, pro
ducing y. The situation at this point is equivalent to the evaluation of

y = 10

If the value of y is I0. the comparison succeeds. If the value of y is not 10. the left argument expression is
resumed again. Since it is depleted, no result is produced and the entire expression fails.

Thus

(x I y) = 10

succeeds if either x or y has the value 10 but it fails otherwise.

2.1.4 Compound Generators

If an expression contains several generators, the results it produces are determined by the order in which
the generators are resumed. This order is fundamental to expression evaluation in Icon.

Operators, in expressions such as

i + J

and functions, in expressions such as

find(s1,s2)

differ only in syntax. To simplify the discussion that follows, the term function is used for both.

In the absence of control structures, the arguments of a function call are evaluated from left to right. If
evaluation of any argument expression fails, the last argument expression to be evaluated is resumed to pro
duce another result. If it is depleted and does not produce a result, the next previous argument expression is
resumed, and so on. When a resumed argument expression produces a result, the remaining argument expres
sions to the right are evaluated again. If the first argument expression fails to produce a result, the function is
not invoked and the entire expression fails. If all the arguments produce a result, the function is invoked with
those argument values. If the function fails for these argument values, the last argument expression is
resumed for another result and evaluation of the argument expressions proceeds as described above. Thus
generators are resumed in a last-in, first-out manner.

In the context of iteration, all possible combinations of results from the result sequences of all expressions
are produced. In goal-directed evaluation, results are produced until the expression succeeds or until all gen
erators are depleted. For example, in

find(s1 | s2, s3 | s4)

the order of function invocation is

-4 -

find(s1,s3)
find(s1, s4)
find(s2, s3)
find(s2, s4)

Similar!). the result sequence for

(1 | 3) + (2 to 5)

is {3. 4. 5. 6. 5. 6. 7. 8}.

To summarize, left-to-right evaluation, coupled with last-in. first-out resumption applies to the evaluation
of all operations and functions in Icon and is the only built-in argument evaluation regime.

2.1.5 Other Generative Control Structures

The control structure

expi'j \ expr-,

limits the result sequence for expi-j to at most expr-, results. For example, the result sequence for

find(s1,s2) \ 10

is at most the first 10 positions at which s1 occurs as a substring of s2. expr, is evaluated before expij (con
trary to the normal left-to-right mode of evaluation in Icon) and expr,can be a generator. For example, the
result sequence for

(1 to 3) \ (1 to 3)

is [I. 1.2. 1.2.3],

Repeated alternation.

\expr

produces the result sequence for expr repeatedly. For example, the result sequence for

1(1 to 3)

is {!. 2. 3. I. 2. 3. I. 2. 3. ... }. This result sequence is infinite, but it can be limited as described above. To
prevent the possibility of an internal resumption loop that could not be limited at the source-language level,
repeated alternation has the additional property that if expr ever produces an empty result sequence, repeated
alternation terminates at that point. For example, the result sequence for

|read()

is the sequence of lines from input. This sequence terminates when read() fails at the end of the input file.

2.2 Procedures

Procedures in Icon are similar to those in most traditional programming languages, except that they can
fail or can produce a sequence of results. Return of a single result is indicated by

return expr

while failure is indicated by fail. For example

procedure fcount(s1, s2)
count := 0
every find(s1,s2) do count +:= 1
if count > 0 then return count else fail

end

produces the number of times s1 occurs as a substring in s2 unless the count is zero, in which case it fails.

Flowing off the end of a procedure body without an explicit return is equivalent to fail.

-5

file:///expr

A sequence of results can be produced by using

suspend expr

which returns the result of evaluating expr but leaves the procedure environment intact so that it can be
resumed to produce another result. For example

procedure To(i, j)
while i <= j do {

suspend i
i +:= 1
}

end

is a procedural version of

i to j

The suspend control structure iterates over the result sequence for its argument in the fashion of every-do.
suspending with successive results. Consider the procedure

procedure octcodeQ
suspend (0 to 1) || (0 to 7) || (0 to 7)

end

The expression octCOde() has the result sequence {000. 001 007. 010 077. 100 177}.

Sometimes it is useful to encapsulate a generator in a procedure so that its result sequence can be obtained
anv u here the procedure is called. Given an expression expr and a procedure

procedure p()
suspend expr

end

both expr and p() have the same result sequence, provided there are no side effects or dependencies in expr on
the values of local identifiers.

For example.

procedure odd()
suspend (i := 1) | |(i +:= 2)

end

encapsules the expression

(i := D I Id +:= 2)

and both odd() and this expression have the infinite result sequence {l, 3. 5. 7 }.

Procedures and functions, which are simply built-in procedures, are data objects in Icon. Thus the value of
write is a function; write is a global identifier whose initial value is a function. Similarly, a procedure declara
tion causes the name of the procedure to be a global identifier whose initial value is the procedure itself. The
term procedure is used subsequently to refer to functions as well as procedures.

In a call of the form

expr {exprrexpry ..., exprfj)

expr can be any procedure-valued expression. Consider, for example, the following list of two procedures

plist := [find, upto]

Then

plist[1](s1,s2)

is equivalent to

find(s1,s2)

The expression that produces the procedure value also can be a generator. For example, the result sequence
for

(!plist)(s1,s2)

consists of the concatenation of the result sequences for find (s1, s2) and upto(s1, s2).

2.3 Co-Expressions

The only way that an expression can be resumed to produce a sequence of results is by iteration or goal-
directed evaluation. Consequently, the results that an expression can produce are strictly limited to the lexical
site of the expression.

Co-expressions overcome this limitation. A co-expression 'captures' an expression and its environment so
that the expression can be explicitly resumed at any time and place.

The expression

create e.xpr

produces a co-expression for expr. This co-expression is a data object that consists of the information that is
necessary to evaluate e.xpr. a reference to e.xpr itself, a location that indicates where the evaluation of expr is to
resume, and copies of the local identifiers that are referenced in e.xpr. For example.

e := create find(s1, s2)

assigns to e a co-expression for the expression find(s1, s2). If s1 and s2 are local to the procedure in which
this expression occurs, the co-expression contains copies of these identifiers with the values that s1 and s2
have when the create is performed. The expression find(s1,s2) is not evaluated when the create is per
formed.

A co-expression is activated by the operation

@e

When a co-expression is activated, its expression is resumed to produce a result (when a co-expression is
activated the first time, the expression is evaluated to produce its first result). For example.

write(@e)

writes the first position at which s1 occurs as a substring of s2. The activation of a co-expression fails if its
expression does not produce a result. Thus

e := create find(s1, s2)
while write(@e)

is equivalent to

every write(find(s1, s2))

Since activation is an explicit operation, the results of an expression can be produced wherever or whenever
they are needed. For example,

e := create find(s1,s2)
while write(@e) do

@e

writes the odd-numbered results from the sequence for find(s1, s2).

The operation

*e

produces the number of results that have been produced by activating e — its current 'size'. For example

e := create find(s1, s2)
while @e
write(*e)

w rites the number of positions at which s1 occurs as a substring of s2.

The activation of a co-expression fails after its expression has produced its last result, and the 'size' of the
co-expression does not increase.

The operation

Ae

produces a copy of the co-expression e with its evaluation location and the values of its local identifiers
restored to the values they had when e was created. Thus the refresh operation provides a means of repeating
the sequence of results for an expression. For example

e := create ("L" || (1 to 1000))
write(@e)
write(@e)
e := Ae
write(@e)

writes

L1
L2
L1

When a refreshed copy of a co-expression is produced, the copies of the local identifiers in the co-expression
are restored to their values at the time the co-expression was created. Global identifiers are not affected by
refreshing.

For more information on co-expressions, see Wampler and Griswold (1983).

3. The PDCO Facility

The PDCO facility is an extension to Icon. It relies on co-expressions to provide the control over expres
sion evaluation and resumption that is necessary to define control operations.

The expression

p[exprj,expr2, exprj

indicates a call of the procedure p with a single argument that consists of a list of co-expressions for expr,.
expr, expr . That is,

p{exprrexpr2 exprj

is equivalent to

p([create expr]t create expr2, ..., create exprn])

Thus when p is called, expr,, expr, exPr„ a r e n o t evaluated but instead are passed to p as a list of co-
expressions. The procedure p can then activate these co-expressions as necessary to perform a desired control
operation. The number of arguments in the call is not limited. Some control operations may expect a fixed
number of co-expressions, while other control operations may operate on an arbitrary number of co-
expressions.

The braces in place of the usual parentheses to indicate a procedure call serve two purposes: (1) they obvi
ate the writing of the list and creation expressions, and (2) they differentiate visually between an ordinary pro
cedure call and the invocation of a control procedure.

An example of the use of this facility is given by the control operation

AW {exprj, expr-,}

that models the control structure

expij | expr.

The control procedure is

procedure Alt(a)
local x
while x := @a[1] do suspend x # produce sequence for first expression
while x := @a[2] do suspend x # produce sequence for second expression

end

which is invoked as

A\\{expr,, expr-,}

The expressions a[1] and a[2] are co-expressions for exprj and expr-,. respectively. Alt first activates a[1]
repeatedly, suspending with each result for expr,. When the activation of a[1] fails, the same process is per
formed for a[2]. This control procedure shows how simple alternation really is.

Note that the way Alt is written, it must be called with two arguments. A check on the size of a could be
added to detect a call w ith on incorrect number of arguments.

Since a control procedure can be called with an arbitrary number of arguments, it is easy to generalize
operations like Alt. For example.

procedure Galt(a)
local e, x
every e := !a do # get next expression

while x := @e do suspend x # produce sequence for expression
end

produces the alternation of an arbitrary number of arguments (the generator !a produces the co-expressions in
the list from left to right). For example, the result sequence for

Galt{1 to 5,4 to 6,2 to 5]

is {1.2.3.4.5.4.5.6,2.3.4.5}.

4. Examples

The following sections present a number of examples of the use of PDCO. First some of the built-in gen
erative control structures of Icon are modeled using PDCO. Next some examples of control operations that
are not built into Icon are introduced. Finally, the power of PDCO is demonstrated by the definition of new
argument evaluation regimes.

4.1 Modeling Built-in Control Structures

4.1.1 Iteration

The relationship between the traditional control structure

while exprj do expr-,

in which exprj is repeatedly evaluated, and

every exprj do expr-,

in which expr, is repeatedly resumed, is shown in the following model for iteration:

procedure Every(a)
while @a[1] do { # resume first expression

@a[2] # evaluate second expression
a[2] := Aa[2] # refresh for next time
}

end

That is.

models

Every {expr., expr,}

every expr, do expr.

Note that a refreshed copy of the second argument co-expression is made after it is activated. This
corresponds to the fact that expr, is evaluated anew for each result produced by the resumption of exprr This
procedure can be made more concise by noting that the refreshed copy can be activated directly uithout
changing the second value in the argument list:

procedure Every(a)
while @a[i] do @Aa[2]

end

This procedure assumes that it is called with two arguments. A check on the size of a can be added easih
to take care of the common usage

every expr

4.1.2 Limiting Result Sequences

The limitation control structure

expr. \ expr,

can be modeled by the following control procedure:

procedure Limit(a)
local i, x
while i := @a[2] do { # get limit

every 1 to i do # produce sequence to limit
if x := @a[1] then suspend x
else break

a[1] := A8[1]
}

end

In Limit, the second argument co-expression is repeatedly activated in a loop to produce a sequence ol limits,
i. for activations of the first argument. The first argument co-expression is activated repeated and Limit
suspends with each result it produces. When the inner loop is completed, a refreshed copy of the first argu
ment is made for use with subsequent values of i. The second argument co-expression is activated again in the
outer loop, and so on.

4.1.3 Repeated Alternation

Repeated alternation is modeled by the following control procedure.

10-

procedure Repalt(a)
local x
repeat {

while x := @a[1] do suspend x # produce the sequence
if *a[1] = 0 then fail # exit on empty sequence
else a[1] := Aa[1] # else refresh and repeat
}

end

After suspending with the sequence of results for the argument, the size of the co-expression is checked. If it is
zero, indicating that no results were produced, the procedure terminates. Otherwise, the argument co-
expression is refreshed and the loop is repeated.

It is worth noting that repeated alternation can be used to make the coding of some control procedures
more concise. The expression

suspend |@a[i]

suspends with the same sequence of results as

while x := @a[i] do suspend x

For example. Gait can be written as

procedure Galt(a)
local e
every e := !a do suspend |@e

end

Consider, however, the following proposed revision:

procedure Galt(a)
suspend |@!a

end

This procedure does not work as intended, since the generator !a is resumed before the repeated alternation.
The analysis of the result sequence produced by this procedure is a good test of understanding of generators
and argument evaluation in Icon. See Section 4.2.4.

4.2 New Control Operations

While the implementation of built-in control operations using PDCO demonstrates its capabilities and
illustrates programming techniques used in control procedures, the really interesting applications involve con
trol operations that are not built into Icon.

4.2.1 The LISP Conditional Control Structure

The LISP conditional control structure, cond (McCarthy. 1965). is an example of a control structure that
does not appear in Icon and has no direct relation to generators. It can be modeled by

Lcond{exprj,e.xpr-,, ..., exprn]

where /; is even. Beginning with expr^ every other 'test' expression is evaluated from left to right until one
succeeds (corresponding to a value that is not nil in LISP). The argument immediately to the right of this one
is evaluated and produces the result of the control operation. If none of the tests succeeds. Lcond fails (in
LISP the result is undefined). It is natural to adapt the LISP form of condxo Icon so that the selected expres
sion produces a sequence of results, not just one:

procedure Lcond(a)
local i
every i := 1 to *a by 2 do # test expressions

if @a[i] then {
suspend |@a[i + 1] # produce selected sequence
fail

end

E\en more natural to Icon is the combination of the test with the selection, so that the first expression that
succeeds provides the result sequence for the control operation:

procedure Cond(a)
local i, x
every i := 1 to *a do

if x := @a[i] then { # test for success
suspend x # produce first result
suspend |@a[i] # produce rest of results
fail

end

4.2.2 Selecting Results from Sequences

In the limitation control structure

e.xpij \ expr-,

if the value of expr-, is /'. results 1.2, . . . / are produced from the result sequence for expr,. This is just a special
case of selecting results /'. / r ... from the result sequence for exprj. If this selection operation is called Select,
then, for example, the result"sequence for

Select{octcode(), odd()}

is {000.002 008.010 100 176).

In order to make a reasonable implementation of this control operation possible, the selecting values are
required to be in monotone nondecreasing order. The control procedure for this operation is

procedure Select(a)
local i, j , x
j := 0
while i := @a[2] do { # selector

while j < i do # count through the sequence
if x := @a[1] then j +:= 1 # count up
else fail # or exit if none

if i = j then suspend x # produce the selected one
else stop("selection sequence error")
}

end

The control operation fails if the result sequence for the first argument is depleted before the selecting value
reached. If a selecting value is not in monotone nondecreasing order, program execution is terminated with an
error message.

-12-

4.2.3 Limited Iteration

Expressions of the form

every e.xpi'j \ exp>\

occur so frequently in Icon that a control operation for explicitly resuming an expression a fixed number of
times is useful. The control operation

Resu me \expr, ,expr,}

does this. The control procedure is

procedure Resume(a)
local i
while i := @a[2] do { # number of resumptions

every 1 to i do @a[1] | fail
a[1] := Aa[1] # refresh first argument
}

end

4.2.4 Collating Results

Because of the order of resumption in iteration and goal-directed evaluation, it is not possible to produce
the results from several expressions 'in parallel'. For example, if a1 and a2 are lists, alternate results cannot be
obtained from them by using !a1 and !a2.

It is easy to formulate a control operation. Colseq. that produces results from several expressions in
parallel. In fact the proposed, but incorrect compact version of Gait performs just this control operation:

procedure Colseq(a)
suspend |@!a

end

Thus the result sequence for

Colseq {1 to 5,6 to 10}

is {I. 6. 2. 7. 3.8. 4. 9. 5. 10).

In this formulation, if the result sequence for one expression is depleted before another, the remaining
results from the longer sequences are produced. Therefore the result sequence for

Colseq {1 to 3,6 to 10}

is 11.6. 2. 7. 3.8. 9. 10}.

4.2.5 Comparing Result Sequences

Another operation that cannot be performed with the built-in control operations of Icon is the comparison
of two result sequence to determine if they are the same. The following control procedure performs this opera
tion, failing if the result sequences for the two expressions are different, but returning the length of the result
sequences if they are the same.

procedure Comseq(a)
local x1, x2
while x1 := @a[1] do # result from first compared

(x1 === @a[2]) | fail # to result from second
fail if second is longer

if @a[2] then fail else return *a[1]
end

Note that this procedure does not terminate if the result sequences are the same and they are infinite in length.
It is easy to modify this control procedure to limit the comparison to a finite number of results.

13

file:///expr

4.2.6 Random Argument Resumption

The following control procedure is somew hat whimsical, but it suggests some unusual possibilities for con
trol operations.

procedure Ranseq(a)
local x
while x := @?a do suspend x

end

Ranseq repeatedly selects at random an argument co-expression to be activated. Note that Ranseq ter
minates if activation of the selected co-expression fails, even if there are remaining results for other arguments.

4.3 Argument Evaluation Regimes

4.3.1 Lifo Resumption
As described in Section 2.2. the call of a procedure amounts to the evaluation of a list of expressions, the

first of which produces the procedure to which the remaining values are supplied. The evaluation of the
expressions is from left to right. In the case that an expression fails, the previous expression is resumed. This
lifo resumption is built into the evaluation of all procedure calls and is implicit in Icon (Wampler and
Griswold 1983a). In the absence of side effects, the left-to-right order of argument evaluation is not impor
tant. The order of resumption is important, since it determines the order in which the possible combinations ol
argument values are produced.

Modeling the built-in argument evaluation regime of Icon illustrates the capabilities of PDCO and also
focuses attention on an essential aspect of expression evaluation in Icon.

Since the expression that produces the procedure to be applied is not treated any differently from the other
expressions in the argument evaluation process, a call that has the form

exprt(expryexprr exprn)

can be modeled by the control operation

Lifo {expr., expr,, expr,, ..., expr }

There are two parts to the modeling of a procedure call: (1) the evaluation of the argument expressions,
and (2) the invocation of the procedure. If the invocation of the procedure fails, both parts are repeated. This
process is repeated until there are no more combinations of argument values.

The control procedure is

14-

procedure Lifo(a)
local i, x
x := list(*a)
i := 1
repeat {

while 1 <= i <= *a do
if x[i] := @a[i] then {

i +:= 1
a[i] := Aa[i]
}

else i - : = 1
if i < 1 then fail
else {

suspend Call(x)
i := *a

list for argument values

if argument produces value, go to next

refresh it

if argument fails, go back to previous one
fail if first argument failed

else call function
set up to resume last argument

end

The do clause in the while loop is evaluated as long as i is in range of the argument list. If an argument pro
duces a result, i is incremented. In this case the next argument is refreshed so that it will produce its first result
when it is next activated. This expression fails if the new value of i is greater than *a. but this does not matter,
since the while loop terminates immediately.

If an argument does not produce a result, i is decremented so that the previous argument is activated again
on the next iteration of the while loop.

The while loop terminates when i is either less than l or greater than *a. The former case occurs if there is
no combination of argument values to pass to the procedure. The latter case occurs when there is a combina
tion of argument values to pass to the procedure.

The procedure Call implements the actual application of the procedure to its arguments. Note that if Call
fails, the argument evaluation process resumes argument expressions to provide another list of argument
values for Call. On the other hand, if call succeeds, the value it produces is produced by Lifo. If Lifo is
resumed again, either because of iteration or goal-directed evaluation. Call is resumed first. Argument
expressions are resumed only if Call fails.

Since there is no way in Icon to invoke a procedure with an arbitrary number of arguments, the invocation
in Call is broken down into cases according to the size of a.

procedure Call(a)
suspend case *a of {

a[l]()
a[l](a[2])
a[1](a[2],a[3])
a[1](a[2],a[3],a[4])
a[1](a[2],a[3],a[4],a[5])
a[1](a[2],a[3],a[4],a[5],a[6])

default: stop("too many arguments to Call")

end

Note that a[1] is the procedure that is actually invoked. If the invocation succeeds. Call suspends with the
result so that if Lifo is resumed. a[1] is resumed in turn.

15

4.3.2 Fifo Resumption

Although lifo resumption is built into Icon, it is not the only way that argument lists can be produced. An
alternati\e method is fifo resumption, in which the first, rather than the last, argument is resumed if invoca
tion of the procedure fails. For convenience, arguments are evaluated from right to left.

This alternative argument evaluation regime requires only a small variation on the control procedure Lifo:

procedure Fifo(a)
local i, x
x := list(*a)
i := *a
repeat {

while 1 <= i <= *a do
if x[i] := @a[i] then {

i - : = 1
a[i] := Aa[i]
}

else i +:= 1
if i > *a then fail
else {

suspend Call(x)
i := 1

end

The difference between lifo and fifo resumption is illustrated by the order of the calls for an expression like

find(s1 | s2, s3 | s4)

In the model for lifo resumption, the call is

Lifo{find,s1 | s2, s3 | s4}

and the order of invocation of find is

find(s1,s3)
find(s1, s4)
find(s2, s3)
find(s2, s4)

In the model for fifo resumption, the call is

Fifo{find,s1 | s2, s3 | s4}

and the order of invocation of find is

find(s1,s3)
find(s2, s3)
find(s1, s4)
find(s2,s4)

These two different orders of invocation of find produce the same results but in different orders. In lifo
resumption, the last argument is 'varied'first, which the converse is true in fifo resumption. Either order might
be preferred, depending on the situation. In lifo resumption, the primary concern is on the positions of a sub
string in different strings, while in fifo resumption, the primary concern is where different substrings occur in a
string.

I6-

4.3.3 Parallel Resumption

One of the well-known deficiencies of lifo resumption is its inability to allow parallel evaluation of expres
sions (Griswold. Hanson and Korb. 1981). A special case of parallel generation is given in Section 4.2.4. but
there is no control regime for parallel evaluation. One approach to parallel evaluation is to simply resume
even, argument each time a new list of argument values is required. The control procedure for doing this is
considerably simpler than for lifo and fifo resumption:

procedure Parallel(a)
local i, x
x := list(*a)
repeat }

every i := 1 to *a do
x[i] := @a[i] | fail

suspend Call(x)
}

end

Evaluation stops when any argument fails to produce a value.

The usefulness of parallel resumption is illustrated by the following call:

Parallel}|write, octcodeQ, \" ", deccodeQ, |" ", hexcodeQ}

In this expression, octcode is a generator of octal codes as given in Section 2.2. while deccode and hexcode
are similar generators of decimal and hexadecimal codes, respectively.

Since all argument are resumed in parallel, arguments, such as write, that would be single values in lifo or
fifo resumption are generated repeatedly in a parallel resumption call.

The result of evaluating this expression is a table of corresponding octal, decimal, and hexadecimal codes.
The expression terminates when any of the generators, such as octcode. is depleted. The form of the output
for this example is:

000
001
002
003
004
005
006
007
010
011
012
013

000
001
002
003
004
005
006
007
008
009
010
011

00
01
02
03
04
05
06
07
08
09
0A
0B

5. Implementation

The implementation of PDCO is quite simple. All that is necessary is a mechanism for translating the syn
tax for invoking control procedures into standard Icon. That is, expressions of the form

piexpi^expij, ..., exprj

must be translated into

- 17-

p([create expr]t create expr,, ..., create exprf])

There are se\ eral ways of doing this. One is a preprocessor. Such a preprocessor, to be correct and general.
must accurately parse Icon programs.

Instead, a variant Icon translator was constructed. This was easy to do. since the Icon parser (Griswold.
Mitchell and Wampler. 1983) is generated automatically by yacc (Johnson. 1978). A rule was added to the
grammar to recognize constructions of the form

p{exprt,expr:, ..., exprj

with a semantic action to produce the same result as

p([create expr]t create expr,, ..., create exprn])

Because normal procedure invocations and control procedure invocations can be nested within each other, it
is necessary to maintain a stack in the parser-generator whose top value indicates whether an expression in an
argument list is to have co-expression creation code inserted.

Note that standard Icon syntax is a proper subset of the PDCO syntax. The variant translator therefore
correctly processes standard Icon programs.

6. Limitations

One possible objection to PDCO is that it provides no syntactic support for casting defined control opera
tions as control structures. For example, there is no way to cast Select {expr,. expr,} as a syntactically dis
tinguished construction such as

exprj \ \ expr,

This objection is not really relevant to PDCO. which is designed to provide a means of adding control
operations to the repertoire of built-in ones much as procedures provide a means of adding to the repertoire of
built-in functions. Indeed, different programs may use different control operations. Casting these in a control
structure syntax would be little more useful than casting every procedure in a different syntax.

Problems in the programming and use of control operations are more significant. The absence of some
features in Icon forces awkward program constructions. Most of these problems arise because Icon pro
cedures cannot be declared with an arbitrary number of parameters. Furthermore, there is no way for an Icon
procedure to determine how many arguments have been passed to it.

These considerations motivated the model of control procedures with a single argument that is a list of co-
expressions. This in itself if not particularly awkward, since any built-in language mechanism for dealing with
an arbitrary number of arguments would necessarily involve some syntactic overhead also.

The most offensive instance of this problem occurs in the implementation of argument evaluation regimes,
where Call applies an actual procedure to a list of arguments. There is no way to sublimate the problem at this
point and a number of special cases must be written explicitly. In theory there is the additional problem that
no fixed number of cases can handle the general instance, but in practice this is not an important considera
tion. Fortunately this manifestation of the problem can be isolated in one procedure.

There are. however, more significant problems with the PDCO facility. These have to do with scope, con
text, and dereferencing.

When an co-expression is created, copies of the local identifiers in the expression are made. These copies
then have no further connection with the corresponding local identifiers in the procedure in which the co-
expression was created. Consequently, assignment to a local identifier in a co-expression has no effect on the
value of the corresponding identifier outside that co-expression. Thus local identifiers cannot be used to com
municate values between the arguments in a control operation. An expression such as

every i := find(s1,s2) do write(i)

does not work properly when cast as the control operation

Everyfi := f ind(s1, s2), wri te(i)]

unless i is a global identifier.

There are other manifestations of this problem. While

every (i := oddQ) \ 7

assigns the seventh result in the octal sequence to i. the corresponding control operation does not affect the
value of i unless i is global.

Another scoping problem occurs when co-expressions are refreshed, since the values of the copies of the
local identifiers in the co-expression are restored to the values they had at the time the co-expression was
created. Thus a co-expression cannot use local identifiers for memory after it is refreshed. For example, in

i := 0

every wri te(|(i +:= 1) \ (1 to 3))

the values written are 1. 2. 3. 4. 5. and 6. On the other hand.

i := 0
every write(Repalt{i +:= 1} \ (1 to 3))

writes 1. 1.2. 1. 2. 3 unless i is global.

These scoping problems can be circumvented at the expense of program organization by using only global
identifiers in control operations.

There are also problems of syntactic context. For example, the return expressions return, fail, and
suspend cannot occur in the scope of a create, since they subsequently could be used out of context. While it
is possible (and good idiomatic Icon) to use expressions of the form

cxpr | fail

such as appears in Comseq.

Alt {cxpr, fail}

is syntactically erroneous.

More seriously, break and next cannot occur in the scope of create unless they are within loops that are
in the scope of create. Therefore the common Icon idiom

every expr do
if expij then expr, else break

cannot be cast as

Every {expr, if expr{ then expr, else break}

A less obvious, but sometimes annoying problem occurs because the result produced by activating a co-
expression always is dereferenced. Control procedures therefore can only return values, not variables. While
it is possible, if obscure, to assign 0 to three identifiers by

every (x | y | z) := 0

the expression

every Galt{x, y, z} := 0

produces a run-time error, since Gait returns only the values of the identifiers. This problem exists whether or
not x. y. and z are local or global and no matter how Gait is written, since the activation operation always
produces a dereferenced result. Since there is no fundamental reason why the activation operation has to
dereference global identifiers, this problem can be attributed to the implementation of co-expressions instead
of to language design.

19-

7. Conclusions

Programmer-defined control operations in Icon have proved to be useful in two ways. In the first place,
thex have been used in a number of programming situations where the existing features of Icon are inade
quate. An example is the generation of tabular text, in which the parallel resumption of arguments is particu
lar!} apt. More importantly, programmer-defined control operations have provided insights into the interac
tion of generators and sequencing of expression evaluation. PDCO provides a tool that can be used to verify
conjectures and to stimulate new ideas.

Experience has shown that despite the limitations mentioned in the preceding section. PDCO is nonethe
less a useful facility. This is probably largely due to the fact that the built-in control structures are adequate for
handling those cases that would otherwise produce problems if defined control operations had to be used.
The situation would be quite different if. for example, every-do were not built into the control repertoire of
Icon.

A facility for programmer-defined control operations in the style of PDCO can be added to any program
ming language, such as LISP, in which expressions can be treated as data objects. Unevaluated expressions in
SNOBOL4 and in SL5 (Griswold and Korb. 1977) are in fact quite similar to co-expressions in Icon and the
techniques of PDCO can be carried oxer into these languages in a straightforward way. In fact, the extended,
function definition facility for SNOBOL4 (Druseikis and Grisxvold. 1973) and SL5"s defined argument
transmission mechanism allow arguments to be transmitted by expression without any additional support. In
other languages, a preprocessor can be prox ided.

The usefulness of programmer-defined control operations in other programming languages is debatable.
however. Most of the interesting applications of PDCO depend on the properties of generators. For example,
when an unex aluated expression is evaluated in SNOBOL4. it can only fail or produce a single result. It is the
richness of expression exaluation prox ided by sequences of results that makes programmer-defined control
operations potentially valuable for users instead of being just a programming language design tool. The emer
gence of generators as a general aspect of expressions in other languages (Budd. 1982) suggests a growing area
of applicability for defined control operations.

The most promising areas for further exploration of control operations in Icon appear to lie in argument
exaluation regimes and control of procedure inxocation. Work in these areas will be presented in a subsequent
report.

Acknowledgements

The authors are indebted to Stexe Wampler for the co-expression facility upon which PDCO is built. Stexe
Wampler and Daxe Hanson prox ided a number of helpful suggestions on the PDCO facility and on the
presentation of the material in this report.

References

Budd. T. A. (1982). An implementation of generators in C. Computer Languages, Vol. 7, 69-87.

Druseikis. F. C. and Griswold. R. E. (1973). An Extended Function Definition Facility for SNOBOL4.
Technical Report S4D36, Department of Computer Science, The University of Arizona.

Fisher, D. A. (1970). Control Structures for Programming Languages, Ph.D. dissertation. Computer Science
Department. Carnegie-Mellon University.

Griswold. R. E. (1982). The evaluation of expressions in Icon. TOPLAS. Vol. 4, No. 4, pp. 563-584.

Griswold. R. E.. and M. T. Griswold (1983). The Icon Programming Language, Prentice-Hall, Inc.

Griswold. R. E.. Hanson D. R.. and Korb. J. T. (1981). Generators in Icon. TOPLAS. Vol. 3. No. 2, pp. 144-
161.

20-

Griswold. R. E. and Korb. J. T. (1977). A Catalog of Built-in SL5 Operators and Functions. Technical
Report S5LD3g. Department of Computer Science. The University of Arizona.

Griswold. R. E.. Mitchell. W. H.. and Wampler. S. B. (1983). The C Implementation of Icon; A Tour
Through Version 5. Technical Report TR 83-11, Department of Computer Science. The Universsity of
Arizona.

Griswold. R. E.. Poage. J. F.. and Polonsky, I. P. (1971). The SNOBOL4 Programming Language. 2nd ed..
Prentice-Hall. Inc.

Johnson. S. C. (1978). Yacc: Yet Another Compiler-Compiler. Bell Telephone Laboratories. Inc.

Leavenworth. B. M. (1969). Programmer-defined control structures. Proceedings of the Third Annual Prince
ton Conference on Information Sciences and Systems, pp. 30-34.

McCarthy. J. et al. (1965). LISP 1.5 Programmers Manual. 2nd ed., M.I.T. Press.

Morris. J. B. and Wells. M. B. (1972). The specification of program flow in Madcap 6, S1GPLAS Notices.
Vol. 7. No. 11, pp. 28-35.

Wampler. S. B. (1981). Control Mechanisms for Generators in Icon. Ph.D. dissertation. Department of Com
puter Science. The University of Arizona.

Wampler. S. B. and Griswold. R. E. (1983). Co-expressions in Icon. The Computer Journal. Vol. 26. No. 1. pp.
72-78.

Wampler. S. B. and Griswold. R. E. (1983a). Result sequences. Computer Languages. Vol. 8. No. 1. pp. 1-14.

Wegbreit. B. (1970). Studies in Extensible Programming Languages. Ph.D. dissertation. The Division of
Engineering and Applied Physics. Harvard University.

21-

