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Seque: An Experimental Language for Manipulating 
Sequences 

1. Introduction 
A companion report [1] presents a notation for describing and manipulating sequences. This notation is 

intended as a basis for programming language facilities for treating sequences as data objects. In particular, it 
is oriented toward sequences that are produced over a period of time by computations as well as the more 
traditional storage-oriented sequences, where the elements of the sequences exist in memory. This report 
describes an experimental programming language called Seque. Seque is embedded in the Icon programming 
language [2]. 

Embedding new features in an existing language is much easier than designing and implementing a new 
language from scratch. This approach is particularly appropriate here, since the ideas are experimental and 
likely to be changed as the result of experience with their use. By embedding the new features in an existing 
language, a full repertoire of computational facilities is available to support the new facilities without any 
extra implementation effort. Icon is particularly suitable for the embedding language, since its expression 
mechanism is capable of producing sequences of results, which is closely related to the new features. Further
more, Icon has the necessary facilities for creating and manipulating sequences as data objects. 

The implementation of Seque is accomplished via a preprocessor that translates new syntactic construc
tions into standard Icon with calls to procedures in a runtime support library. The implementation is 
described in a separate report [3]. 

One disadvantage of embedding Seque in Icon is that concessions have to be made to the existing syntax of 
Icon. As a result, some aspects of the notation for manipulating sequences are represented in slightly awkward 
ways. More seriously, some of the semantic features of Seque do not co-exist well with those of Icon. This 
leads to potential problems in programming, which are discussed in Section 3. 

2. Seque Language Features 
The language features of Seque are based on the concepts described in [1] with a few additions and exten

sions for programming considerations. The features from [1] are represented in Seque as described in the fol
lowing section. 

2.1 Basic Features 
Sequences are data objects of type Sequence. In the sections that follow, identifiers that begin with 

uppercase letters are used to indicate sequence-valued expressions. 
The following global identifiers have predefined sequences as values: 

Phi 
Izero 
Iplus 

*^0 
A ={0,1,2,3,. 
A ={1,2,3,4,. 

• •} 
• •} 



The following expressions are available for manipulating sequences: 

feature 

explicit sequence 
concatenation 
subsequence 
pre-truncation 
post-truncation 
generator 
sequence length 
element selection 
reduction 

formal notation 

\X\, x2, x3, ...} 

x e Y 
X, J 
X l i 
X U 
[I : Hi)X] 
\x\ 
X\ i 
RedQ(X) 

Seque syntax 

seq{x1, x2, x3, ... } 
Cat(X, Y) 
Subseq(X, i, j) 
X %% i (%X is an abbreviation for X %% 1) 
X AA i 
gen[ : I: lambda(j) X] 
Length(X) 
X!i 
Red(X, p) 

Except for sequence length, element selection, and reduction, these expressions all produce sequences. 
The precedence and associativity of A A is the same as that of A , and the precedence and associativity of %% 

is the same as that of % . The operator ! associates to the left and has a precedence greater than that of \ 
but less than that of unary operators. 

A few points deserve note: 

• Expressions can be used in all places where identifiers are shown above, except for the identifiers in 
lambda expressions. An example is 

seq{i, i + 1, i - 1, i + 2, i - 2} 

• gen, lambda, and seq are reserved words. 
• The generation sequence and the lambda expression are optional in generators. All the following 

forms are allowed: 

gen[X] 
gen[ : I : X] 
gen[lambda(i) X] 

Note the additional colon in the Seque representation of generators. It is necessary to avoid syntactic 
ambiguities. 

• The second argument in reduction must have a procedure value or a string value that represents a 
binary operator or procedure. Examples are 

Red(l,"+") 
Red(S.trim) 

• Sequences need not be homogeneous with respect to type and sequences can be elements of 
sequences. An example is 

seq {"a", 1, seq {1,2}} 

• The argument X in X A A i, X %% i, %X, and X!i is limited to at most one result. 

• X!i is not a variable. For example, X!i := x results in runtime Error 111. 
• The define facility described in [1] is not supported in Seque because of the availability of Icon pro

cedures. See Section 2.3 for a description of recurrence declarations, however. 

2.2 Additional Features 
The following procedures related to sequences also are available in Seque: 



• Compress(X) converts a sequence containing sequences as elements to a sequence of scalar values. 
For example, if 

I := seq {1, seq {2, 3, seq {3, 4}}, 4, 5, seq {seq {seq (5, 6}, 7}, 8}} 

then Compress (I) produces a sequence that corresponds to 

seq {1,2, 3, 3,4,4, 5, 5, 6, 7, 8} 

• Copy(X) creates a copy of the sequence X. 
• Empty (X) succeeds and produces X if X is an empty sequence but fails otherwise. 

• lmage(X, i) produces a string image of X, limited to i elements. The default for i is 5. 

• Read (f) produces a sequence of values resulting from reading file f. 
• Trace(X, i) writes the result of lmage(X, i) and produces the value of X. 
• Write(X) writes the elements of X with separating linefeeds. 

• Writes(X) writes the elements of X without separating linefeeds. 
In addition, gen [expr] produces a sequence corresponding to the Icon result sequence for expr. For exam

ple, 

gen{1 to 5} 

produces a sequence that is equivalent to 

seq{1,2,3,4,5} 

To differentiate gen[ . . . ] and gen{. . . }, the former is referred to as a Seque generator and the later is 
referred to as an Icon generator. 

2.3 Recurrence Declarations 
Recurrence relations provide a natural and intuitive way of specifying many commonly used sequences. 

The well-known Fibonacci sequence is typical: 

Fib (I) = I 

Fib (2) = 1 

Fib (/) = Fib (i - 1) + Fib (/ - 2), i = 3, 4, . . . 

A more complicated nested recurrence from [4] is: 

G(i,k)=0,i <1 

G(i,k)=i -G(G(i ~k,k),k),i = 1, 2, 3,. . . ; k >0 

Note that this procedure has a parameter, k, whose value characterizes a particular recurrence in a family of 
recurrences. Note also that G is defined to be a constant for all values of i less than 1, independent of k. 

Many recurrences can be characterized in terms of at most five components: 

1. A generation variable, i, that takes on values from 3+. 

2. A fixed number y of initial values for / =1,2, . . J. 

3. A constant value for i < 1. 
4. A generation expression expr in the generation variable i. 
5. Parameters that appear in expr that allow the specification of a particular recurrence from a family 

of recurrences. 

Seque provides a recurrence declaration for those recurrences that can be characterized in the form 
described above. This declaration produces a procedure that generates the corresponding sequence, using 
tabulation techniques for efficient computation [2]. 



A recurrence declaration has the form 

recur name ( generation variable ; [ parameters ] ; [ constant ] ; [ initial values] ) 
expr 

end 

As in other declarations, recur is a reserved word. The name identifies the sequence. The generation variable 
is an identifier that appears in expr and takes on values from 3+. The parameters consist of a list of identifiers 
separated by commas. The constant value is used as the value of any instance of the recurrence that has not 
been previously computed in the generation process. This usually occurs for values of the generation variable 
that become less than 1 in the computation (see G(i,k) above), but may also occur for previous uncomputed 
combinations of the generation variable and the parameters. The initial values consist of a list of expressions 
exprp expr2, ... that provide the initial values of the sequence. Note that the parameters, constant, and initial 
values are all optional. 

The following recurrence declaration for the Fibonacci sequence provides an example: 

recur Fib(i;;; 1,1) 
Fib(i - 1) + Fib(i - 2) 

end 

The nested recurrence given above illustrates the use of a default value and a parameter: 

recur G(i; k; 0;) 
i - G(G(i - k,k),k) 

end 

The invocation of a procedure produced by such a declaration is typically used in the form 

F := gen{Fib()} 

which assigns to F an expression that generates the Fibonacci sequence. Note that the generation variable is 
not specified in the call — it is merely part of the definition. Any parameters in the recurrence declaration are 
specified as arguments in the call, however. An example is 

G2 := gen{G(2)} 

which supplies the value 2 for the parameter k and produces a sequence corresponding to 

seq{1,2,2,2,3, ... } 

Recurrences are not limited to the generation of integer values. For example, the "Fibonacci strings" as 
given in [5] are declared by 

recur Fibs(i;;; "a", "b") 
Fibs(i - 1) || Fibs(i - 2) 

end 

Another example is given by the "chaotic strings", derived from the chaotic integer sequence given in [6]. 

recur Qs(i;;; "a", "ab") 
Qs(i - *Qs(i - 1)) || Qs(i - *Qs(i - 2)) 

end 

The constant and initial values can be expressions. These expressions are inserted in the code for the 
corresponding procedure. For example, the initial values can be parameterized, as in 

recur Qs(i;x,y;;x, x || y) 
Qs(i - *Qs(i - 1,x,y),x,y) || Qs(i - *Qs(i - 2,x,y),x,y) 

end 

Thus, 
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gen{Qs("c","d")} 

specifies the sequence of chaotic strings with the initial values C and cd. Note that the parameters x and y occur 
as arguments to all instances of Qs. This is necessary, since the tabulation of computed values depends 
not only on the values of the generation variable but also on the values of the parameters. 

Note that sequences specified by recurrence declarations produce values over &. No other generation 
sequence can be specified. The recurrence also must be self contained. For example, mutual recurrences, such 
as the following pair of "married sequences" [6] cannot be handled by recurrence declarations: 

F(0) = 1 

F(i)=i -M(F(i - 1 ) ) , / >0 

M(i)=i -F(M(i - 1 ) ) , / >0 

2.4 Expression Evaluation 
There are two kinds of expression evaluation available in Seque programs: ordinary Icon evaluation with the 

usual operations and functions, and Seque evaluation, in which expressions are limited to at most one result and 
operations and functions are extended to apply to values of type Sequence. The type of evalua
tion used depends on context, which is determined as follows: 

• Seque evaluation applies in procedures that are declared with the reserved word procedure. Such 
procedures are called Seque procedures. 

• Within a Seque procedure, Seque evaluation applies in all expressions with operator syntax and in 
function and procedure calls in which the function or procedure is given by an identifier that begins 
with an initial lowercase letter . Note that Seque evaluation applies to the built-in repertoire of Icon. 

• Icon evaluation applies in procedures that are declared with the reserved words icon procedure. 
Such procedures are called Icon procedures. For example, 

icon procedure main() 

end 

declares the main procedure to be an Icon procedure. 

• Icon evaluation applies in recurrence declarations. 

• Seque evaluation applies in explicit sequences and Seque generators, regardless of the context in 
which such expressions occur. 

• Icon evaluation applies in Icon generators, regardless of the context in which such expressions occur. 

• Icon evaluation applies all assignment operations, regardless of where they occur. 

• Control structures behave in the way they do in Icon, regardless of the context in which they appear. 

Note that it is possible to write Seque programs using exclusively Seque or Icon evaluation. Icon evaluation is 
the exception, however. Unless otherwise stated, Seque evaluation is assumed in the remainder of this report. 

In Seque evaluation, arguments of operations and functions are limited to at most one result. Conse
quently, 

every write(repl("a" | "b", 2 | 3)) 

only writes aa, instead of aa, aaa, bb, and bbb as in Icon evaluation. However, in a Seque procedure, Icon 
evaluation can be obtained by using function-valued identifiers with initial uppercase letters, as in 

Procedure and function calls may have at most four arguments in Seque evaluation contexts. This is an implementation 
limit only. 
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Xwrite := write 
Xrepl := repl 
every Xwrite(Xrepl("a" | "b", 2 | 3)) 

which writes aa, aaa, bb, bbb. Since Seque evaluation applies only to functions given by an identifier with an 
initial lowercase letter, Icon evaluation can also be obtained by disguising the name, as in 

every (write)((repl)("a" | "b" ,2 | 3)) 

which also writes four values as in the example above. Similarly, Icon evaluation for operators can be 
obtained by using string invocation [7], as in 

every write("+"(find(s1,s2),find(s1,s2))) 

In Seque evaluation, operations and functions, when applied to arguments whose values are sequences, 
produce sequences of the corresponding operations. That is, the operations are "distributed" over the 
corresponding sequences. For example, 

gen{1 to 3} + gen{1 to 3} 

produces a sequence corresponding to 

seq{2,4,6} 

As defined in [1], the length of such a sequence is the minimum of the lengths of the sequences of the argu
ments. Thus 

gen{1 to 3} + gen{1 to 1000} 

produces the same sequence as the example above. Note that this expression is erroneous in an Icon evalua
tion context, since the Icon addition operation does not accept sequences as arguments. 

In contexts where values of type Sequence are expected, scalar values are automatically converted to the 
corresponding unit sequences. For example, 

Cat(3, Iplus) 

produces a sequence that corresponds to 

seq{3,1,2,3,4, ... } 

In the case of operations and functions that are "polymorphic" with respect to sequences, scalar values are 
coerced to sequences only if at least one argument is a sequence. For example, 

1 + 3 

produces the scalar value 4, but 

seq{1,2} + 3 

produces a value of type Sequence corresponding to the unit sequence 

seq {4} 

There is one important exception to the coercion of scalars to corresponding unit sequences in sequence 
contexts: the null value is coerced to the empty sequence, Phi. Thus, 

X!i 

fails if X is null-valued. This interpretation of the null value in sequence contexts causes uninitialized variables 
to be treated as empty sequences rather than as unit sequences containing null values. 
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2.5 The Evaluation of Sequences 

The elements of sequences can be specified by values, as in 

seq{1,3,17} 

or they can be produced by the evaluation of expressions, as in 

gen{1 to 1000} 

The elements of a sequence are produced only when then are needed. This is essential to the use of infinite 
sequences. 

When a sequence is created, none of its elements is computed. As elements are required, they are computed 
and stored. Thus previously computed elements can be obtained without recomputing them. The evaluation 
of the fth element of a sequence requires the evaluation of elements 1,2,..., i—1. 

If an element is produced by an expression that has side effects, these side effects do not occur until the ele
ment is first evaluated. Subsequent references to that element do not cause its producing expression to be re
evaluated. 

Normally, the elements of a sequence are not specified by expressions that have side effects, so this aspect 
of the evaluation of sequence elements is not noticeable. Consider, however, 

X := seq{write(1), write(2), write(3)} 

The creation of this sequence and its assignment to X does not evaluate the calls of the write function and 
there is no output. However, the expression X!2 causes the first and second elements of X to be evaluated, 
which cause 1 and 2 to be written. Subsequent references to X!1 or X!2 do not cause output, however. 

All operations that produce sequences, such as Cat(X, Y) and Copy(X), create sequences that are distinct 
from their arguments. None of the elements in these sequences is evaluated when the new sequences are 
created, nor are values that were previously computed and stored used in the new sequences. Instead, the 
values of the elements in the new sequences are produced as needed from the original expressions. 

When a value of type Sequence is created, any identifiers in it are bound to the values they have at the 
time the sequence is created. Thus, 

x := 3 
X := seq {x, x + 2, x + x} 
x := 0 
Write (X) 

writes 3, 5, and 6. 
If an element of a sequence is specified by an expression that fails when it is evaluated, no corresponding 

value is produced in the sequence. For example, 

seq{1,\k,2} 

is equivalent to 

seq{1,k,2} 

if the value of k is nonnull, but is equivalent to 

seq {1,2} 

if the value of k is null. 

3. Programming Considerations 
Because of the important distinction between values of type Sequence and other values, it is helpful to 

use identifiers with initial uppercase letters as a mnemonic device to indicate where sequences are expected in 
Seque programs. 
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The runtime support library uses identifiers that end in underscores for internal purposes. To avoid possi
ble name collisions, such identifiers should not be used in Seque programs. 

As a general rule, it is not advisable to mingle Icon-style use of result sequences with Seque sequences. 
Where Icon result sequences are needed, the gen {expr} expression should be used. For example, 

I := gen{1 | (1 to 3) + (2 to 4)} 

provides a natural bridge between Icon result sequences and Seque sequence values, but 

I := seq{1, (1 to 3) + seq{2 to 4}} 

does not produce the sequence that it may appear to represent. 

It is advisable to avoid the use in sequences of expressions that may have side effects when they are 
evaluated. 

Obviously care must be taken when dealing with infinite sequences. For example, Length (I plus) does not 
terminate. There is a more serious problem with termination, however. Consider 

Ip := gen[l!i > 0] 

for an arbitrary sequence I. Although Ip may be used in a context in which only one value is used, the genera
tor itself may continue indefinitely without producing that value. 

Seque employs a heuristic to avoid this problem in the case of finite sequences. In a Seque generator, this 
heuristic terminates generation from a sequence X if X!i fails . 

4. Examples 

Seque Generators 

Seque generators provide ways of expressing many sequences in concise ways. For example, 

gen[X] 

is the repeated concatenation of X with itself. 
The generation sequence in a Seque generator need not be integer-valued. An example is 

gen[:Read():lambda(s) p(s)] 

which is a sequence consisting of the procedure p applied to the lines of standard input. 

Use of Procedures 
Procedures provide a way of parameterizing Seque generators so that they can be used in a variety of con

texts. For example, the following procedure "filters" X, returning a sequence in which all instances of x are 
omitted: 

procedure Remove(X,x) 
return gen[x - = = X!i] 

end 

The generator uses the fact that Icon comparison operations return the value of their right argument if they 
succeed. Note that comparisons that fail contribute nothing to the resulting sequence. 

Another example of a parameterized generator is 

procedure Interleave^, Y) 
return gen[seq{X!i, Yli}] 

end 

This heuristic is analogous to the termination of the Icon expression \expr if expr fails. 

file:///expr


which produces the result of interleaving the elements of X and Y. If one sequence is longer than the other, the 
trailing elements of the longer sequence are appended at the end of the result. 

The library of "built-in" Seque procedures has been kept small deliberately, since many operations on 
sequences can be formulated as procedures in Seque. An example is the reversal of a (finite) sequence: 

procedure Reverse(X) 
if Empty(X) then return X 
else return Cat(Reverse(%X),X!1) 

end 

Reversal can also be done iteratively, as follows: 

procedure Reverse(X) 
local Y 
Y := Phi 
while Y := Cat(X!1,Y) do 

X := %X 
return Y 

end 

Reduction 
An interesting use of reduction is illustrated by the following program, which writes the maximum of 

numbers given in standard input: 

procedure main() 
write(Red(Read(), ">")) 

end 

Like Remove above, this program uses the value returned by successful comparisons. Note that unsuccessful 
comparisons do not terminate the reduction. 

Variations on Cross Product Evaluation 
As described in [1], cross-product evaluation can be constructed using nested generators. An example is 

procedure Kross(X, op, Y) 
return gen[gen[lambda(j) op(X!j, Y!i)]] 

end 

This procedure applies op to X and Y to produce a cross-product sequence in which the elements of the first 
sequence, X, are selected first. For example, the result of 

U := gen{!"ABC"} 
L := gen{!"ab"} 
Write(Kross(U,"||", L)) 

produces 

Aa 
Ba 
Ca 
Ab 
Bb 
Cb 

Note that Icon-style cross-product evaluation is given by 

gen[gen[lambda(j) op(X!i,Ylj)]] 



An Example of Indexing Sequences 
As defined in [1], an indexing sequence consists of the indices of a sequence for which some condition is 

satisfied. A use of indexing sequences arises in [4], where the question of the locations of the zeroes of a differ
ence sequence arises for the recurrence G(i ,k) given in Section 2.3. The following program illustrates the 
computation of the indexing sequence for different values of the parameter k : 

procedure main(a) 
local j , k, n, Gk 
i := a[1] | 5 
n := a[2] | 5 
every k := 1 to j do { 

write("parameter=", k) 
Gk:= gen{G(k)} 
Write(Zeros(%Gk - Gk) AA n) 
write (" ") 
} 

end 

recur G(i;k;0;) 
I - G(G(i - k, k), k) 

end 

procedure Zeros(l) 
return gen [if Mi = 0 then i] 

end 

In this program, the values of k and n can be specified on the command line when the program is run. The default 
values for k and n are 5. The sequence Gk is given by a recurrence declaration as noted previously. The sequence 

%Gk - Gk 

is the "backward difference" sequence for Gk — that is, it consists of values of the form G (/' +l,k) — G(i,k). 
The procedure Zeros(l) produces a sequence consisting of the indexes for which I is zero. 

Output of this program for k = 2 and n = 5 is 

parameter=1 
1 
4 
6 
9 
12 

parameter=2 
2 
3 
8 
9 
12 
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5. Running Seque 
Seque is run by the command 

Seque [options] file [-x] [arguments] 

where file is the name of a file containing a Seque program. Such file names must end in the suffix .seq. The 
result of running Seque is an executable version of the Seque program in the base name file corresponding to 
deleting the .seq suffix from the source-program file name. For example, 

Seque model.seq 

produces an executable file model. 
The - x option, which occurs after the program file name, is analogous to the corresponding option for 

Icon [8] and causes the program to be executed automatically after it is translated. Any arguments that appear 
after the —x option are passed as a list to the main procedure. 

There are two options that may appear before the file name: 

-i saves the result of preprocessing the Seque program in a file with the base name and the suffix .icn. 
For example, 

Seque - i model.seq 

produces a file model.icn. It is the .icn file that is actually run, and having the source available is 
useful for locating errors from runtime diagnostics. 

—g causes the —x option to be effective even if there are syntax errors in the Seque program. This 
option is intended for system debugging. 

In addition, any other options that appear before the file name are passed onto Icon and used when the .icn 
file is translated. For example, 

Seque - t -u model.seq -x 

causes tracing to be set and undeclared identifiers to be noted. 

Seque is available only with Version 5.8 of Icon including the experimental extensions [7], running on the 
VAX-11 under UNIX1. 

6. Potential Problems in Using Seque 
The major problem likely to be encountered with the use of Seque is the computational resources that it 

requires. In Seque evaluation, Icon operations and functions are processed by procedures in the runtime 
library instead of being evaluated directly. Co-expressions, which are used in values of type Sequence, are 
large and impose a substantial overhead in terms of storage throughput. 

To improve runtime speed of Seque programs: 

• Do not create sequences unnecessarily. 

• Do not use parameters in recurrence declarations unless they are necessary. 
• Use Icon procedures instead of Seque procedures where appropriate. This is often possible even in 

cases where sequences are being manipulated. 
The heuristic used to prevent endless generation is not always effective in nested generators. It is advisable 

to limit generation sequences explicitly in such cases, as in 

gen[ : (plus AA 100 : X ] 

The use of co-expressions in sequences precludes the use of the Icon control structures break and next in 
expressions that appear in explicit sequences, Seque generators, and Icon generators. Similarly, the scope of 
identifiers in such expressions is confined to the sequence. See Reference 9 for details. 
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Because co-expression stack overflow is not checked in Icon, it is possible that Seque programs may mal
function mysteriously. If this problem arises, it is likely to be related to excessive recursion. The size of co-
expression stacks can be specified as an option to Seque. See Reference 8. 

Since Seque translates a Seque program into an Icon program, which is then translated and run, runtime 
error messages refer to the Icon program, not the Seque program. The use of co-expressions in the implemen
tation also tends to obscure the locality of runtime errors. 

Linguistically, Seque evaluation and Icon evaluation do not co-exist comfortably. This problem is most 
likely to be manifested as apparent malfunction of sequence computations or mysterious runtime errors. 
Observing the precautions given in Section 3 is strongly advised. 

The implementation of Seque is somewhat arcane. It is very likely that it contains errors. 
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