
TtiConstructtoPiPfVariant Translators for Icon·

JfdJith E. Gr,Jswo/d

Pecembet:~lt 1983; Revised June 2. 1984

Department'Of Computer Science

The University of Arizona

Tucson, Amona 85721

*This work was supported by the National-Science Foundation underGr_'MCS8t~QM6\

The Construction of Variant Translators for Icon

1. Introduction
A preprocessor, which translates text from source language d to source language SB,

(3 - S B

is a popular and effective means of implementing CI, given an implementation of SB. SB is referred to as the tar-
get language. Ratfor [1] is perhaps the best known and most widely used example of this technique, although
there are many others.

In some cases (2 is a variant of SB. An example is Cg [2], a variant of C that includes a generator facility
similar to that of Icon [3]. Cg consists of C and some additional syntax that a preprocessor translates into
standard C. A run-time system provides the necessary semantic support for generators. Note that the Cg
preprocessor is a source-to-source translator:

C g - C

where Cg differs from C only in the addition of a few syntactic constructs. This can be viewed as an instance
of a more general paradigm:

There are many other forms of variant translators. Some possibilities are:
• the deletion of features in order to subset a language
• the addition of monitoring code, written in the target language
• the insertion of termination code to output monitoring data
• the insertion of initialization code to incorporate additional run-time facilities
• the insertion of code for debugging and checking purposes [4,5]

Such translations can be characterized by

cr-ct
and

In the latter case, the input text and the output text may be different, but they are both in CI In both cases, the
output of the variant translator can be processed by a standard translator for the target language (3.

One way to implement a variant language is to modify a standard translator, avoiding the preprocessor.
This approach may or may not be easy, depending on the translator. In general, it involves modifying the code
generator, which often is tricky and error prone. Furthermore, if the variant is a trial one, the effort involved
may discourage experiments.

The standard way to produce variant translators is the one that is most often used for preprocessors in gen-
eral, including ones that do not fit the variant translator paradigm — writing a stand-alone program in any
convenient language. In the case of Ratfor, the preprocessor is written in Ratfor, providing the advantages of
bootstrapping.

This approach presents several problems. In the first place, writing a complete, efficient, and correct
preprocessor is a substantial undertaking. In experimental work, this effort may be unwarranted, and it is
common to write the preprocessor in a high-level language, handling only the variant portion of the syntax,
leaving the detection of errors to the final translator. Such preprocessors have the virtue of being easy to

produce, but they often are slow, frequently unfaithful to the source language, and the failure to parse the input
language completely may lead to mysterious results when errors are detected, out of context, by the tinal
translator.

Modern tools such as Lex [6] and Yacc [7], that operate on grammatical specifications, have made the pro-
duction of compilers (and hence translators in general) comparatively easy and have removed many of the
sources of error that are commonly found in hand-tailored translators. Nonetheless, the construction of a
translator for a large and complicated language is still a substantial undertaking.

If, however, a translator already exists for a language that is based on the use of such tools, it may be easy to
produce a variant translator that is efficient and demonstrably correct by modifying grammatical specifica-
tions. The key is the use of these tools to produce a source-to-source translator, rather than producing a source-
to-object translator. This technique was used in Cg. An existing Yacc specification for the C compiler was
modified to generate C source code instead of object code. The idea is a simple one, but it has consider-
able utility and can be applied to a wide range of situations.

This report describes a system that uses this approach for the construction of variant translators for Icon.
This system runs on the VAX1 under UNIX2. The reader should have a general knowledge of Icon, Yacc, C,
and UNIX.

2. Overview of Variant Translators for Icon
The heart of the system for constructing variant translators for Icon consists of an "identity translator" in

which the semantic actions in a Yacc grammar echo the input text. The output of this identity translator differs
from its input only in the arrangement of nonsemantic "white space" and in the insertion of semicolons between
expressions, which are optional in some places in Icon programs. The identity translator corresponds
to Version 5.8 of Icon with experimental extensions [8].

The semantic actions are cast as macro definitions, abstracting the format of the output from the grammar
itself. A set of standard macro definitions for echoing the input is included in the parser generated by Yacc.
Support software allows macro definitions to be changed via specification files, minimizing the clerical work
needed to vary the format of the output. There also is a provision for including user functions in the parser, so
that more complicated operations can be written in C. Finally, the grammar for the identity translator can be
modified in order to make structural changes in the syntax.

The following sections describe this system in more detail and include a number of examples of its use.

3. The Grammar for the Icon Identity Translator
The grammar for the identity translator is listed in Appendix A. Many variant translators can be con-

structed without modifying this grammar, and minor modifications can be made to it without a detailed
knowledge of its structure. Knowledge of a few aspects of this grammar are important, however, to under-
standing the translation process.

The grammar consists of two main parts: declaration syntax and expression syntax. The semantic actions
for declarations output text. For example, the rule for the declaration of global identifiers is

GLOBAL idlist { Global($2) } ;

where GLOBAL is the token for the reserved word global and idlist is the nonterminal symbol for an identif-
ier list. The definition of the macro Global (x) is

#define Global(x) printffglobal %s\n", x)

The semantic actions for expressions construct text but do not output it. For example, the rule for

VAX is a trademark of Digital Equipment Corporation.
"UNIX is a trademark of Bell Laboratories.

-2-

while expr{ do expr2

is

WHILE expr DO expr {$$ = While2($2, $4);} ;

The macro While2(x, y) produces the concatenation of "while ", x, " do ", and y.
The rules and the definitions that construct and output strings are provided as part of the identity transla-

tor. When a variant translator is constructed, changes are necessary only in situations in which the input is not
to be echoed in the output.

Deletions from the standard syntax can be accomplished by changing macro definitions to produce error
messages instead of output text. It is generally better, however, to delete rules from the grammar, so that all
syntactic errors in the input are handled in the same way, by Yacc.

Modifications and additions to the standard grammar require a more thorough understanding of the
structure of the grammar. Examples are given in Sec. 10.1.

4. Macro Definitions
The purpose of using macro calls in the semantic actions of the grammar is to separate the structure of the

grammar from the format of the output and to allow the output format to be specified without modification of
the grammar.

The macro definitions for declarations are comparatively simple and consist of calls to printf, such as the
one given above for global declarations. The macro definitions for expressions produce strings, generally
resulting from the concatenation of strings produced by other rules.

In order to simplify the definition of macros, a specification format is provided. Specifications are pro-
cessed by a program that produces the actual definitions. The specification for While2(x, y) is

While2(x,y) " while " x " do " y
Tabs separate the components of the specification. The first component is the prototype for the macro call,
which may include optional arguments enclosed in parentheses as illustrated by the example above. The
remaining components are the strings to be concatenated. Lines that begin with # or which are empty are
treated as comments. The specifications for the standard macro definitions provided with the identity transla-
tor are listed in Appendix B.

Definitions can be changed by modifying the standard ones or by adding new definitions. In the case of
duplicate definitions, the last one holds. Definitions can be provided in several files, so variant definitions can
be provided in a separate file that is processed after the standard definitions. See Sec. 8.

Definitions can be deleted by providing a specification that consists only of a prototype for the call. For
example, the specification

While2(x,y)

deletes the definition for While2(x, y). In order to delete a definition, the prototype given must be identical to
the standard definition prototype. For example,

While2(y, z)

does not delete the definition for While2(x, y).
The usual reason for deleting a definition is to use a C function in place of a macro. See Sec. 6 for an exam-

ple.

4.1 Macros for Operators
As shown in Appendix A, a distinct macro name has been supplied for each operator. Thus Blim(x, y) is

the macro for a limitation expression,

exprj \ expr2

To avoid having to know the names of the macros for the operators, specifications allow the use of operator
symbols in prototypes. The symbols are automatically replaced by the appropriate names. Thus

\(x,y)
can be used in a specification in place of

Blim(x, y)

In the case of unary operators, the parentheses are omitted. Thus Uques(x), which is the macro for 7expr, can
be specified as ?x.

In most cases, all operators of the same kind are translated in the same way. Since Icon has many opera-
tors, a generic form of specification is provided to allow the definition of all operators in a category to be given
by a single specification. In a specification, as string of the form <type> indicates a category of operators. The
categories are:

<uop> unary operators, except as follows
<UCS> control structures in unary operator format
<bop> binary operators, except as follows
<aop> assignment operators
<bcs> control structures in binary operator format

The category <ucs> consists only of |. The category <bcs> consists of ?, |, and \ .
The division of operators into categories is based on their semantic properties. For example, a preproces-

sor may translate all unary operators in the same way, but translate the repeated alternation control structure
into a programmer-defined control operation [9].

Examples of the use of generic specifications are given in Appendix B. For example, the specification for
binary operators is

<bop>(x, y) x " <bop> " y
This specification results in the definition for every binary operator: +(x, y), —(x, y), and so on. In such a
specification, every occurrence of <bop> is replaced by the corresponding operator. Note that blanks are
necessary to separate the binary operator from its operands. Otherwise,

would be translated into

i**S

which is equivalent to

i ** S

5. String Handling
The allocation and deallocation of storage for strings that are produced in the translation process is han-

dled automatically, but in some cases it is necessary to understand the protocol that is used.
Strings come from three sources during translation: strings produced by the lexical analyzer, literal strings,

and strings produced by semantic actions. All semantic actions that produce strings (those for expressions)
allocate storage using malloc(2). Concatenation is performed by the C function

cat(s1, s2, ..., sn)
which takes an arbitrary number of arguments and returns a pointer to the concatenated result. The function

- 4

char *cat(strs)
int strs;
{
char *s, **cs, *ns, *p;
int tlen, i, n, *argn;

/* concatenate strings */

/ * VAX-specific; not portable! */ argn = &strs - 1;
i = n = *argn;
tlen = 0;
for (cs = (char **)&strs; i—; tlen += strlen(*cs++));
ns = p = malloc(tlen+1);
for (cs = (char **)&strs; n—; cs++) {

s = *cs;
while (*p++ = *s++);
p—;
free(*cs); /* presumed to have been allocated */
}

return ns;
}

Note that it is presumed that all arguments of cat have been allocated. Since all strings produced by cat are
allocated, the only problems arise with literal strings and strings produced by the lexical analyzer.

The lexical analyzer produces tree nodes that have several fields, including the input line and column
numbers of the tokens. The structure of these nodes usually is not of interest in producing variant translators,
but see Section 10.2 for a use of the column and line numbers. The cases where the nodes that are produced by
the lexical analyzer are of interest occur where strings are recognized for identifiers and literals — the tokens
IDENT, STRINGLIT, INTLIT, REALIT, and CSETLIT. For such tokens, the macro Str{token) is used and
supplies an allocated copy of the appropriate string. See Appendix B for examples. Any new definitions that
involve these tokens must use Str in a similar fashion.

Literal strings must be copied into allocated storage. This is done by q(s) which is defined as:

#define q(x) strcpy(malloc(strlen(x)+1), x)

A call of this macro is provided automatically for any component of a macro specification that begins with a
quotation mark. For example.

While2(x,y) "while do

produces the definition

#define While2(x,y) cat(q("while "),x,q(" do "),y)

Note that the space allocated by q is freed by cat.
The strings that are written out by semantic actions in the declaration syntax are never used again and also

are freed. This is done explicitly as part of the semantic actions. See Appendix A.

6. Parser Functions
In some cases, semantic actions may be too complicated to be represented conveniently by macros. The file

ulibe.C is automatically included in the parser and can be used to provide functions that may be needed dur-
ing parsing.

An example is the automatic provision of initialization code. The easiest way to handle this is to recognize
the main procedure and treat it specially, writing out the initialization code when this procedure is encoun-
tered. Thus the semantic action that handles procedure declarations must perform different operations,
depending on the procedure name.

A function is preferable to a macro definition in this case because of the amount of code involved. The
form of the rule for a procedure declaration is

proc : prochead SEMICOL locals initial procbody END { Proc($1, $3, $4, $5);} ;
The first step is to delete the macro definition for procedure declarations by the specification

Proc(x, y, z, w)
Then a C function by this name is added to ulibe.c. Such a function might have the form

char *Proc(x, y,z, w)
char *x, *y, *z, *w;
{

if (strncmp(x, "procedure main(", 15) == 0) {

write out any global, record, and link declarations

printf("%s;\n%s%s",x,y, z); /* declaration heading, locals, ... */

write out any code to be executed before user code

printf("%s\n",w); /* procedure body */

write out code to be executed after user code

printf("end\n");
}

else printf("%s;\n%s%s%send\n", x, y, z, w);
}

The argument x, which is produced by a macro in the rule for prochead, is always in a standard form with a
single blank between the reserved word procedure and the procedure name, regardless of the form of the
declaration in the input. Similarly, semicolons and linefeeds are inserted by macro calls for the declarations
and between the expressions in the procedure body. See Appendix B.

7. Modifying Lexical Components of the Translator
The lexical analyzer for Icon is written in C rather than in Lex in order to make it easier to perform semi-

colon insertion and other complicated tasks that occur during lexical analysis [10]. Specification files are used
to build portions of the lexical analyzer, making it easy to modify. The three kinds of changes that are needed
most often are the addition of new keywords, reserved words, and operators.

The identity translator accepts any identifier as a keyword, leaving its resolution to subsequent processing
by the Icon translator. Nothing need be done to add a new keyword except for processing it properly in the
variant translator. See the examples in Sec. 10.1.

The specification file tokens contains a list of all reserved words and operator symbols. Each symbol has
associated flags that indicate whether it can begin or end an expression. These flags are used for semicolon
insertion.

To add a new reserved word, insert it in proper alphabetical order in the list of reserved words in tokens
and give it a new token name. To add a new operator, insert it in the list of operators in tokens (order there is
not important) and give it a new token name. The new token names must be added to the grammar. See
Appendix A.

The addition of a new operator also requires modifying the specification of a finite-state automaton,
optab. Its structure is straightforward.

6-

8. Building a Variant Translator
In order to build a variant translator, it first is necessary to modify Yacc, since the version of Yacc that

normally is distributed with UNIX does not have enough memory size for itran.g. To build a version of Yacc
with more memory, edit the Yacc source file dextern and change the definition of MEMSIZE in the HUGE
section to

#define MEMSIZE 22000

and use

#define HUGE
in files. Then rebuild Yacc.

The files that comprise a variant translator are listed in Appendix C. Unless changes to the lexical
analyzer are needed, at most three files need to be modified to produce a new translator:

itran.g Yacc grammar for the translator
Itran.defs variant macro definitions (initially empty)
ulibe.C parser functions (initially empty)

The translator Makefile is listed in Appendix D. A make first builds a new parser, parse.c. There are 210
shift/reduce conflicts in the identity translator. All of these conflicts are resolved properly. More conflicts
should be expected if additions are made to the grammar. Reduce/reduce conflicts usually indicate errors in
the grammar. After parse.c is built, Itran.defs is added to the standard macro specifications given in Appen-
dix B and processed to produce a definition file, tdefs.h, which is included along with ulibe.C when parse.C is
compiled. Finally, all the components of the system are linked to produce itran, the variant translator.

Rebuilding parse.C is a time-consuming process and it is preferable to confine changes, when possible, to
Itran.defs and ulibe.C.

If no changes have been made in the lexical analyzer, it is faster to use

make parser

which forces make to rebuild parse.C without rebuilding the the lexical analyzer, even if components of the
lexical analyzer are out of date. Once parse.C is built, the translator itself can be made with another make.

Most of the errors that may occur in building a variant translator are obvious and easily fixed. Erroneous
changes to the grammar, however, may be harder to detect and fix.

9. Using a Variant Translator
The translator, itran, takes an input file on the command line and translates it. The specification - ind i -

cates standard input. The output of itran is written to standard output. The translator accepts the same
options for translation that Icon does. For example, the option - s causes the translator to work silently
instead of listing procedures as they are translated. See icont(l) for details [11].

If a memory error occurs when a variant translator is run, the most likely cause is the freeing of an unallo-
cated string. If this happens, check to be sure that all literal arguments to cat are copied by q. Also be sure
that all identifiers and literals produced by the lexical analyzer are obtained via Str. Check the files Itran.defs
and ulibe.C in particular.

10. Examples

10.1 List Scanning
One use of a variant translator is to support an experimental list-scanning facility for Icon [12]. In this

facility, string and list scanning are fused and modeled by a procedure Cat in a run-time library. The specifica-
tions for variant macros for these operations are:

(x,y)
l(x,y)
:=(x, y)
|:=(x,y)

"Cat("
"Cat("
X
X

X
X
If

II

:= Cat("
:= Cat("

a

it
i

X
X

y ") "
y ") "
it it . - n\ n

The built-in list and string scanning operations must be available also, since the run-time library is written
using the string scanning facility itself. The operators normally used for transmission and remaindering are
used instead:

@(x,y) x " | | " y
%(x,y) x " HI " y
@:=(x,y) x " ||:= " y
%:=(x,y) x " |||:= " y

An alternative to sacrificing the transmission and remaindering operations would be to add new operator
symbols to the lexical analyzer.

The list-scanning facility also replaces the built-in scanning expression by a programmer-defined control
operation:

?(x,y) "Scan{" x " , " y "}"
?:=(x, y) x " := Scan{" x " , " y "}"

A new binary operation, exprl ! expr2, is included in the list-scanning facility. Its addition requires chang-
ing the grammar. The new binary operation, which uses an operator that already exists for element generator
in unary form, has the highest infix operator precedence — the same as field references — and is added to the
grammar at that place:

| expr11 DOT IDENT {$$ = Field($1, $3);} ;
| expr11 BANG exprlO {$$ = Bbang($1, $3);} ;
| CONJUNC FAIL {$$ = Kfail;} ;
| CONJUNC IDENT {$$ = Keyword($2);} ;

The new operator corresponds to subscripting in standard Icon and has the macro specification

Bbang(x,y) x " [" y "] "

The list-scanning facility also adds a new syntactic construction for explicitly constructed sets:

{expr},expr2, ...,exprn]

A rule for this construction is added to the grammar in the section that handles expressions enclosed in braces
and brackets:

| LPAREN exprlist RPAREN {$$ = Paren($2);} ;
| LBRACE compound RBRACE {$$ = Brace($2);} ;
| LBRACE setlist RBRACE {$$ = Set($2);} ;
| LBRACK exprlist RBRACK {$$ = Bracket($2);} ;

The rule for setlist is

setlist : exprlist COMMA nexpr {$$ = Exprlist($1, $3);} ;

Note that these rules require at least two expressions in a set. The construction

-8

{expr}

is a compound expression. A set expression is translated into a call on a run-time library function that con-
structs a set from a list of values. The macro specification is:

Set(x) "set([" x "])"

The list-scanning facility also illustrates the handling of keywords in a variant translator. Two standard
keywords, &pos and &subject, are translated into Pos and Subject, respectively. There are also two key-
words that are not in standard Icon: &element and &visit, which are translated into Subject[Pos] and
Visit(), respectively. The translation of keywords is handled by removing the macro definition

Keyword (x)

and adding the following function to ulibe.c:

char *Keyword(x)
char *x;
{
x = Str(x);
if (strcmp(x, "element") == 0) return q("Subject[Pos]");
else if (strcmp(x, "visit") = 0) return q("Visit()");
else if (strcmp(x, "subject") == 0) return q("Subject");
else if (strcmp(x, "pos") == 0) return q("Pos");
else return cat(q("&"), x);
}

Note the use of Str to obtain the string for the keyword.

10.2 A Cinematic Display of Pattern Matching
A variant translator also is used in a facility for displaying the details of the pattern-matching process as it

takes place [13]. The translation of string-scanning expressions is similar to that for the list-scanning facility.
In the display of pattern matching, however, scanning operators are highlighted on the terminal screen in
order to show which scanning operation is presently being evaluated. Highlighting requires knowing the posi-
tion of each scanning operator in the program. The rules for scanning expressions in the grammar for the
identity translator are:

| expMa QMARK expM {$$ = Bques($1, $3);} ;

| expr2 SCANASGN expM {$$ = Baugques($1, $3);} ;

The nodes produced by the lexical analyzer for the tokens QMARK and SACNASGN contain the necessary
column and line information in COL and LINE fields. However, these tokens are not included in the macro
calls . It therefore is necessary to use other macros:

The identity translator would be more general if all tokens were included as arguments in all macros. This would consid-
erably complicate the handling of the most frequent kinds of translations, however.

expria QMARK exprl {$$ = Scan($1, $2, $3);} ;

expr2 SCANASGN exprl {$$ = Scana($1, $2, $3);

The specifications for these macros are:

Scan(x, y, z) locer(y) "Scan (create " x " . c rea te" z ")}"
Scana(x, y, z) locer(y) x " := " "Scan (create " x ".create "z ")}"

where locer is included in ulibe.c:

char *locer(x)
{
char locbuf[30];
sprintf(locbuf, "{Loc := [%d, %d];", COL(x), LINE(x));
return q(locbuf);
}

Thus the translation for

exprj ? expr2

is

{Loc := [/,/]; Scan(create expr{, create expr2)}

where / and j are the column and line numbers of the ? operator in the input program. Loc is a global vari-
able, and the run-time library procedure Scan uses the values in Loc to highlight the ? operator.

11. Conclusions
The system described here for producing variant translators for Icon has been used successfully to provide

support for a number of language variants and tools. These include the list scanning facility mentioned in Sec.
10.1, the cinematic display of pattern matching mentioned in Sec. 10.2, an experimental language for manipu-
lating sequences [14,15], an Icon program formatter, and a tool for monitoring expression evaluation events.

The value of being able to construct a variant translator quickly and easily is best illustrated by the tool for
monitoring expression evaluation events. This translator copies input to output, inserting calls on procedures
that tally expression activations, the production of results, and expression resumptions. A similar system was
built for Version 2 of Icon [16] and used to analyze the performance and behavior of generators. In that case,
the code generator and run-time system were modified extensively. This involved weeks of tedious and diffi-
cult work that required expert knowledge of the internal structure of the Version 2 system. The variant trans-
lator for Version 5 was written in a few hours, and required only a knowledge of the format of variant macro
specifications and the Icon source language itself. The monitoring of expression evaluation events in Version
5 probably would not have been done if it had been necessary to modify the code generator and the run-time
system.

Although the system described in this report is specifically tailored to Icon, the techniques have much
broader applicability. The automatic generation of such systems from grammatical specifications is an
interesting project.

Acknowledgements
Tim Budd's Cg preprocessor was the inspiration for the Icon variant translator system described here. Bill

Mitchell assisted in adapting the standard Icon translator to its use here. Tim Budd, Dave Hanson, Bill
Mitchell, and Steve Wampler made a number of helpful suggestions on the variant translator system and the
presentation of the material in this report.

References
1. Kernighan, Brian W. "RATFOR — A Preprocessor for a Rational Fortran", Software — Practice and

Experience, Vol. 5 (1975), pp. 395-406.
2. Budd, Timothy A. "An Implementation of Generators in C", Computer Languages, Vol. 7 (1982), pp.

69-87.
3. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language, Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey. 1983.
4. Steffen, J. L. "Ctrace — A Portable Debugger for C Programs", UNICOM Conference Proceedings,

San Diego, California, January 1983, pp. 187-191.
5. Kendall, Samuel C. "Bcc: Runtime Checking for C Programs", USEN1X Software Tools Summer 1983

Toronto Conference Proceedings, 1983, pp. 5-16.
6. Lesk, M. E. and E. Schmidt. Lex — A Lexical Analyzer Generator, Bell Laboratories, Murray Hill,

New Jersey. 1979.
7. Johnson, S. C. Yacc: Yet Another Compiler-Compiler, Bell Laboratories, Murray Hill, New Jersey.

1978.
8. Griswold, Ralph E. and William H. Mitchell. Experimental Extensions to Version 5.8 of Icon, technical

report, Department of Computer Science, The University of Arizona. 1983.
9. Griswold, Ralph E. and Michael Novak. "Programmer-Defined Control Operations", The Computer

Journal, Vol. 26, No. 2 (May 1983), pp. 175-183.
10. Griswold, Ralph E., William H. Mitchell, and Stephen B. Wampler. The C Implementation of Icon; A

Tour Through Version 5, Technical Report TR 83-1 la, Department of Computer Science, The Univer-
sity of Arizona. 1983.

11. Griswold, Ralph E. and William H. Mitchell, kont(l), manual page for UNIX Programmer's Manual,
Department of Computer Science, The University of Arizona. 1983.

12. Anderson. Allan J. and Ralph E. Griswold. Unifying List and String Processing in Icon, Technical
Report TR 83-4, Department of Computer Science, The University of Arizona. 1983.

13. Griswold, Ralph E. Understanding Pattern Matching — A Cinematic Display of String Scanning.
Technical Report TR 83-14, Department of Computer Science, The University of Arizona. 1983.

14. Griswold, Ralph E. Seque: An Experimental Language for Manipulating Sequences, Technical Report
TR 83-16, Department of Computer Science, The University of Arizona. 1983.

15. Griswold, Ralph E. The Implementation of an Experimental Language for Manipulating Sequences.
Technical Report TR 83-20, Department of Computer Science, The University of Arizona. 1983.

16. Coutant, Cary A., Ralph E. Griswold, and David R. Hanson. "Measuring the Performance and
Behavior of Icon Programs", IEEE Transactions on Software Engineering, Vol. SE-9, No. 1 (January
1983), pp. 93-103.

- 11 -

Appendix A — Grammar for the Icon Identity Translator

/* Identity Translator; Version 5.8 of

/ * primitive tokens */

%token CSETLIT
EOFX
IDENT
INTLIT
REALLIT
STRINGLIT

/* reserved words */

%token BREAK
BY
CASE
CREATE
DEFAULT
DO
DYNAMIC
ELSE
END
EVERY
EXTERNAL
FAIL
GLOBAL
IF
INITIAL
LINK
LOCAL
NEXT
NOT
OF
PROCEDURE
RECORD
REPEAT
RETURN
STATIC
SUSPEND
THEN
TO
UNTIL
WHILE

/* operators */

%token ASSIGN
AT
AUGACT
AUGAND
AUGEQ
AUGEQV
AUGGE
AUGGT
AUGLE
AUGLT
AUGNE
AUGNEQV

Icon with Experiment

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

. /*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

break */
by 7
case 7
create 7
default 7
do 7
dynamic 7
else */
end 7
every */
external 7
fail 7
global */
if 7
initial */
link 7
link 7
next */
not 7
of 7
procedure */
record 7
repeat */
return */
static 7
suspend */
then 7
to 7
until 7
while 7

:= 7
@ 7
<§>:= 7
&:= 7
=:= 7
===:= 7
>=:= 7
>:= 7
<=:= 7
<:= 7
~=:= 7
-===:= 7

12-

AUGSEQ
AUGSGE
AUGSGT
AUGSLE
AUGSLT
AUGSNE
BACKSLASH
BANG
BAR
CARET
CARETASGN'
COLON
COMMA
CONCAT
CONCATASGN
CONJUNC
DIFF
DIFFASGN
DOT
EQUIV
INTER
INTERASGN
LBRACE
LBRACK
LCONCAT
LCONCATASGN
LEXEQ
LEXGE
LEXGT
LEXLE
LEXLT
LEXNE
LPAREN
MCOLON
MINUS
MINUSASGN
MOD
MODASGN
NOTEQUIV
NUMEQ
NUMGE
NUMGT
NUMLE
NUMLT
NUMNE
PCOLON
PLUS
PLUSASGN
QMARK
RBRACE
RBRACK
REVASSIGN
REVS WAP
RPAREN
SCANASGN
SEMICOL
SLASH
SLASHASGN
STAR
STARASGN
SWAP
TILDE
UNION
UNIONASGN

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/* /*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

=:= 7
»=:= 7
»:= 7
«=:= 7
«:= 7
-==:= 7
\ 7
! 7
1 7
A 7
A:= 7
: 7
, 7
II 7
ll:= 7
& 7
— 7
—:= 7
. 7
= = 7
** 7
**:= 7
f 7
[7
III 7
lli:= 7
== 7
» = 7
» 7
« = 7
« 7
~== 7
(7
-: 7
- 7
-:= 7
% 7
%:= 7
~=== */
= 7
>e 7
> 7
<= 7
> 7
~= 7
+: 7
+ 7
+:= 7
? 7
1 7
] 7
<- 7
<-> 7
(7
?:= 7
; 7
/ 7
/:= 7
* 7
*:= 7
:=: 7
~ 7
++ 7
++:= 7

13

%{
#define q(x) strcpy(malloc(strlen(x)+1), x)
#define Str(x) q(STRO(x))
#include "tdefs.h"
#include "itran.h"
#include "sym.h"
#include "tree.h"
#define YYSTYPE nodeptr
#define YYMAXDEPTH 500
%}

%%

%{
%}

/*
This grammar is organized into the following sections:

declaration syntax
expression syntax
error handling

program

/* declaration

decls

decl

link

Inklist

: decls EOFX ;

syntax */

: {$$ = Null;} ;
| decls decl ;

: record ;
I proc ;
I global ;
| link ;

: LINK Inklist {
Link($2);
free($2);
! ;

: Inkfile ;
t Inklist COMMA Inkfile

/* free allocated space */

= Linklist($1,$3);}

Inkfile : IDENT {$$ = Linkident($1);| ;
j STRINGLIT {$$ = Linkstring($1);(

global : GLOBAL idlist {
Global($2);
free($2); /* free allocated space */

EXTERNAL idlist {
External($2);
free($2); /* free allocated space */

record : RECORD IDENT LPAREN arglist RPAREN {
Record ($2, $4);
free($4);
loc_init();

/* free allocated space */
/* clear local symbol table 7

14

proc prochead SEMICOL locals initial procbody END {
Proc($1,$3, $4, $5);
free($1); / * free allocated space */
free($3);
free($4);
free($5);
treeinit(); /* clear tree space 7
loc_init(); / * clear local symbol table */

prochead

arglist

idlist

locals

retention

initial

procbody

PROCEDURE IDENT LPAREN arglist RPAREN {$$ = Prochead($2, $4);)

{$$ = Null;} ;
idlist ;

IDENT {$$ = ldent($1);} ;
idlist COMMA IDENT {$$ = ldlist($1, $3);] ;

Locals($1,$2, $3);}
: {$$ = Null;} ;
| locals retention idlist SEMICOL {!

: LOCAL ($$ = Local;} ;
| STATIC {$$ = Static;} ;
I DYNAMIC {$$ = Dynamic;} ;

: {$$ = Null;} ;
| INITIAL expr SEMICOL {$$ = lnitial($2);} ;

: {$$ = Null;} ;
| nexpr SEMICOL procbody {$$ = Procbody($1, $3);} ;

/* expression syntax */

nexpr

expr

exprla

: {$$ = Null;} ;
I expr ;

: exprla ;
| expr CONJUNC exprla Bamper($1,$3);}

: expM ;
I exprla QMARK exprl {$$ = Bques($1, $3);} ;

15

expri

expr2

expr3

expr4

expr5

expr6

expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2
expr2

SWAP expri (3
ASSIGN expri
REVSWAP expri {$$
REVASSIGN expri ;
DIFFASGN expri {$
UNIONASGN expri
PLUSASGN expri {
MINUSASGN expri
STARASGN expri {
INTERASGN expri
SLASHASGN expri
MODASGN expri [S
CARETASGN expri
AUGEQ expri {$$ =
AUGEQV expri [$$
AUGGE expri {$$ =
AUGGT expri ($$ -
AUGLE expri {$$ =
AUGLT expri {$$ =
AUGNE expri {$$ =
AUGNEQV expri {$
AUGSEQ expri {$$
AUGSGE expri {$$
AUGSGT expri {$$
AUGSLE expri {$$
AUGSLT expri {$$
AUGSNE expri {$$
CONCATASGN expri
LCONCATASGN expri

Bswap($1,$3);} ;
= Bassgn($1,$3);| ;
$ = Brswap($1,$3);j ;
{$$ = Brassgn($1,$3);j ;
5$ = Bdiffa($1,$3);) ;

{$$ = Buniona($1,$3);} ;
$ = Bplusa($1,$3);| ;
($$ = Bminusa($1,$3);J ;
;$ = Bstara($1,$3);l ;
$$ = Bintera($1,$3);j ;
{$$ = Bslasha($1,$3);) ;
$ = Bmoda($1,$3);) ;
{$$ = Bcareta($1,$3);} ;
Bauqeq($1,$3);} ;

= Baugeqv($1,$3);S ;
Baugge($1,$3);} ;
Bauggt($1,$3);(;
Baugle($1,$3);) ;
Bauglt($1,$3);} ;
Baugne($1,$3);j ;

f = Baugneqv($1,$3);j ;
= Baugseq($1,$3);} ;
= Baugsge($1,$3);} ;
= Baugsgt($1, $3);} ;
= Baugsle($1,$3);} ;
= Baugslt($1,$3);) ;
= Baugsne($1, $3);} ;

= Baugcat($1,$3);(
= Bauglcat($1,$3);

SCANASGN expri {$$ = Baugques($1, $3);)
AUGAND expri {$$ = Baugamper($1, $3);)
AUGACT expri ($$ = Baugact($1, $3);) ;

expr3 ;
expr2 TO expr3 {$$ = To2($1,$3);j ;
expr2 TO expr3 BY expr3 {$$ = To3($1, $3, $5);

expr4 ;
expr4 BAR expr3 {$$ = Alt($1,$3);

expr5 ;
expr4 LEXEQ expr5
expr4 LEXGE expr5
expr4 LEXGT expr5 {$$
expr4 LEXLE expr5 {$$ =
expr4 LEXLT expr5 {$$ =
expr4 LEXNE expr5 {$$ =
expr4 NUMEQ expr5 {$$
expr4 NUMGE expr5 {$$
expr4 NUMGT expr5 {$$
expr4 NUMLE expr5 {$$
expr4 NUMLT expr5 {$$
expr4 NUMNE expr5 {$$
expr4 EQUIV expr5 {$$:

expr4 NOTEQUIV expr5

expr6 ;
expr5 CONCAT expr6 {:
expr5 LCONCAT expr6

expr7 ;
expr6 PLUS expr7 {$$ =
expr6 DIFF expr7 {$$ =
expr6 UNION expr7 {$$
expr6 MINUS expr7 {$$

= Bseq($1,$3);} ;
= Bsge($1,$3);) ;
= Bsgt($1,$3);l ;
= Bsle($1,$3);J ;
= Bslt($1,$3);J ;
= Bsne($1,$3);l ;

= Beq($1,$3);} ;
= Bge($1,$3);j ;
= Bgt($1,$3);l ;
= Ble($1,$3);l ;
= Blt($1,$3);J ;
= Bne($1,$3);} ;

= Beqv($1,$3);} ;
{$$ = Bneqv($1,$3);

5$ = Bcat($1,$3);} ;
{$$ = Blcat($1,$3);}

= Bplus($1,$3);} ;
Bdiff($1,$3);) ;
= Bunion($1,$3);j ;
= Bminus($1,$3);) ;

- 1 6 -

expr7

expr8

expr9

exprlO

expr l l

expr8 ;
expr7 STAR expr8 {$$
expr7 INTER expr8 {$$
expr7 SLASH expr8 {$:
expr7 MOD expr8 {$$

expr9 ;
expr9 CARET expr8 {$

= Bstar($1,$3);} ;
= Binter($1,$3);|
= Bslash($1,$3);j
Bmod($1,$3);l ;

= Bcaret($1,$3);i

exprlO ;
expr9 BACKSLASH exprlO ($$ = Blim($1, $3);)
expr9 AT exprlO ($$ = Bact($1, $3);) ;

expr l l ;
AT exprlO {$$ = Uat($2);} ;
NOT exprlO {$$ = Not($2);} ;
BAR exprlO {$$ = Ubar($2);} ;
CONCAT exprlO !$$ = Ubar(Ubar($2));} ;
LCONCAT exprlO {$$ = Ubar(Ubar(Ubar($2)));j
DOT exprlO {$$ = Udot($2);) ;
BANG exprlO {$$ = Ubang($2);} ;
DIFF exprlO {$$ = Uminus(Uminus($2));l ;
PLUS exprlO
STAR exprlO {3
SLASH exprlO
CARET exprlO
INTER exprlO {
TILDE exprlO j
MINUS exprlO
NUMEQ exprlO
NUMNE exprlO
LEXEQ exprlO
LEXNE exprlO
EQUIV exprlO |
UNION exprlO
QMARK exprlO
NOTEQUIV exprlO

= Uplus($2);l ;
= Ustar($2);} ;
5 = Uslash($2);j ;
$ = Ucaret($2);) ;
= Ustar(Ustar($2));} ;
= Utilde($2);j ;

i = Uminus($2);l ;
5$ = Ueq($2);) ;
;$ = Utilde(Ueq($2));} ;
i = Ueq(Ueq($2));} ;
5 = Utilde(Ueq(Ueq($2)));) ;
; = Ueq(Ueq(Ueq($2)));} ;
£ = Uplus(Uplus($2));) ;
;$ = Uques($2);) ;

= Utilde(Ueq(Ueq(Ueq($2))));}

while

BACKSLASH exprlO {$$ = Ubacksl($2);

literal ;
section ;
return ;
if ;
case ;
while ;
until ;
every ;
repeat ;
CREATE expr !$$ == Create($2);j ;
IDENT {$$ = ldent($1);J ;
NEXT {$$ = Next;} ;
BREAK nexpr ($$ = Break($2);j ;
LPAREN exprlist RPAREN {$$ - Paren($2);} ;
LBRACE compound RBRACE {$$ = Brace($2);} ;
LBRACK exprlist RBRACK ($$ = Bracket($2);j ;
expr l l LBRACK expr RBRACK {$$ = Subscr($1, $3);} ;
expr l l LBRACE exprlist RBRACE ($$ = Pdco($1, $3);)
expr l l LPAREN exprlist RPAREN {$$ = lnvoke($1, $3);
expr l l DOT IDENT {$$ = Field($1, $3);| ;
CONJUNC FAIL {$$ = Kfail;! ;
CONJUNC IDENT {$$ = Keyword($2);| ;

WHILE expr i$$ = While1($2);} ;
WHILE expr DO expr [$$ = While2($2, $4);} ;

-17

until

every

repeat

return

case

caselist

cclause

exprlist

literal

section

compound

: UNTIL expr {$$ = Until1($2);J ;
| UNTIL expr DO expr {$$ = Until2($2, $4);} ;

: EVERY expr {$$ = Every 1($2);} ;
| EVERY expr DO expr ($$ = Every2($2, $4);)

: REPEAT expr {$$ = Repeat($2);) ;

FAIL }$$ = Fail;}
RETURN nexpr {!
SUSPEND nexpr

-- Return($2);j ;
= Suspend($2);}

: IF expr THEN expr {$$ = If2($2, $4);} ;

| IF expr THEN expr ELSE expr {$$ = If3($2, $4, $6);} ;

: CASE expr OF LBRACE caselist RBRACE {$$ = Case($2, $5);} ;

: cclause ;
| caselist SEMICOL cclause {$$ = Clist($1, $3);} ;
: DEFAULT COLON expr {$$ = Default($3);| ;
| expr COLON expr {$$ = Cclause($1, $3);} ;

: nexpr {Null;} ;
| exprlist COMMA nexpr {$$ = Exprlist($1, $3);} ;

: INTLIT {$$ = lliter($1);J ;
| REALLIT {$$ = Rliter($1);} ;
| STRINGLIT {$$ = Sliter($1);} ;
[CSETLIT {$$ = Cliter($1);} ;

: expr l l LBRACK expr COLON expr RBRACK {$$ = Sect($1, $3, $5);} ;
| expr l l LBRACK expr PCOLON expr RBRACK {$$ = Psect($1, $3, $5);}
| expr l l LBRACK expr MCOLON expr RBRACK {$$ = Msect($1, $3, $5);

: nexpr ;
| nexpr SEMICOL compound Semi($1,$3);}

/* error handling */

program
proc
expr
%%

error decls EOFX ;
prochead error procbody END
error ;

/* C functions used by the parser */

#include "cater.c"
#include "ulibe.c"

/* string concatenation */
/* auxiliary functions */

Appendix B — Specifications for the Standard Macros

Declaration Syntax

declarations

External(x) printf("external %s\n",x)
Global(x) printf("global %s\n", x)
Link(x) printf("link %s\n" , x)
Proc(x, y, z, w) printf("%s;\n%s%s%send\n", x, y, z, w)
Record(x, y) printf("record %s(%s)\n", Str(x), y)

" ; \ n "
y

"\""

z " ; \ n "
y
" (" y

syntax

Dynamic
Initial (x)
Linklist(x, y)
Linkident(x)
Linkstring(x)
Local
Locals(x, y, z)
Procbody(x, y)
Prochead(x, y)
Static

Expression

elemer

Cliter(x)
Ident(x)
Idlist(x.y)
lliter(x)
Keyword(x)
Kfail
Null
Rliter(x)
Sliter(x)

subsidiary to

"dynamic "
"initial "
x
Str(x)
" V "
"local "
X

I X

"procedure "
"static "

Syntax

its

'""
Str(x)
x
Str(x)
"&"
"&fail"
""
Str(x)
"\""

declari

X

", "

Str(x)

y
" ; \ n "
Str(x)

Str(x)

" "

Str(x)

Str(x)

Str(y)

"\"

- 1 9

reserved-word syntax
u

Break(x)
Case(x, y)
Cclause(x, y)
Clist(x.y)
Create(x)
Default(x)
Every1(x)
Every2(x, y)
Fail
If2(x, y)
If3(x, y, z)
Next
Not(x)
Repeat(x)
Return (x)
Suspend(x)
To2(x,y)
To3(x, y, z)
UntiH(x)
Until2(x,y)
While"! (x)
While2(x,y)

"break "
"case "
x
X
"create "
"default:"
"every "
"every "
"fai l"
"if "
"if "
"next "
"not "
"repeat "
"return "
"suspend "
X
X
"until "
"until "
"while "
"while "

operator syntax

binary operators

<bop>(x, y)
<aop>(x, y)
<bcs>(x, y)

X
X
X

unary operators

<uop>x
<ucs>x

miscel

Brace(x)
Bracket(x)
Exprlist(x, y)
Field(x, y)
lnvoke(x, y)
Msect(x, y, z)
Paren(x)
Pdco(x, y)
Psect(x, y, z)
Sect(x,y, z)
Semi(x, y)
Subscr(x, y)

"<uop>"
"<ucs>"

X
X

";"
" ; \ n "
X
X
X
X

X
X

X
X
X
X
" to "
" to "
X
X
X
X

" <bop> "
" <aop> "
" <bcs> "

X
X

laneous expressions

" { \ n "
" ["
X
X
X
X

"("
X
X
X
X
X

X
X

" "
"."
"("
" ["

"{"
" ["
" ["
" ; \ n "
" ["

" of j \ n "
y
y

" do "

" then "
" then "

y
y

" do "

" do "

y
y
y

" \ n j "
"] "
y
Str(y)
y
y
")"
y
y
y
y
y

y

y

y
y

" by "

y

y

")"

"}"
"+;"
n .a

"] "

" \ n j "

" else "

z

z

z
z

z

"] "

"] "
"] "

20-

Appendix C — Files for Building a Variant Translator

Bsyms macro names for binary operators
Define macro definition program
Define.icn source for Define
Makefile construction of translator
Usyms macro names for unary operators
cater.C string handling functions for the parser
char.C initialization for character classification
char.h character classification and transformation macros
COde.C routines for traversing parse trees
code.h structures used by code.c ,
err.C routines for producing error messages
itran.c main program that controls translation
itran.defs standard macro definitions for semantic actions
itran.g Yacc grammar for identity translator
itran.h external definitions used throughout the translator
lex.c routines for lexical analysis
lex.h structures and definitions used by the lexical analyzer
Itran.defs variant macro definitions for semantic actions
mem.C memory initialization and management
mktoktab program to build optab.c and toktab.c
mktoktab.icn source for mktoktab
optab specifications for operator recognition
optab.C state tables for operator recognition
pscript edit script to modify parser produced by Yacc
sym.c routines for symbol table management
sym.h structures for symbol table entries
synerr.h initialization of tables to map error states to messages
tdefs.h macro definitions produced from itran.defs and Itran.defs
token.h token definitions generated by Yacc
tokens token specifications
toktab.c initialization of structures containing token information
tree.h parse tree structures and accessing macros
ulibe.c parser functions for variant translators

21 -

CFLAGS = -0 -w
GRAM = itran.g
TRAN = itran
PARSE = parse
DEFS = Itran.defs

$(TRAN):

itran.o:
code.o:
$(PARSE).o:
lex.o:
sym.o:
mem.o:
err.o:
char.o:
optab.o:
toktab.o:

$(PARSE).c

parser:

toktab.c

mktoktab:

Define:

Listall:

List:

tdefs.h:

roft:

Appendix D - Translator Makefile

itran.o $(PARSE).o lex.o sym.o mem.o \
err.o char.o optab.o toktab.o code.o
cc -0 $(TRAN) itran.o $(PARSE).o lex.o sym.o mem.o \
err.o char.o optab.o toktab.o code.o

itran.h token.h tree.h sym.h
itran.h token.h tree.h code.h sym.h
tdefs.h ulibe.c cater.c itran.h tree.h sym.h
itran.h token.h lex.h char.h tree.h
itran.h token.h sym.h char.h
itran.h sym.h
itran.h token.h tree.h lex.h
char.h
lex.h
itran.h lex.h token.h

token.h: $(GRAM)
yacc -d $(GRAM); : expect 210 shift/reduce conflicts
mv y.tab.c $(PARSE).c
ed $(PARSE).c <pscript
mv y.tab.h token.h

$(GRAM)
yacc $(GRAM)
mv y.tab.c $(PARSE).c
ed $(PARSE).c <pscript
touch token.h
touch itran.o
touch lex.o
touch sym.o
touch err.o
touch toktab.o

optab.c: tokens optab mktoktab
mktoktab

mktoktab.icn
icont mktoktab.icn

Define.icn
icont Define.icn

@pr *.h *.c $(GRAM)
@date >List

char.h err.h lex.h sym.h \
token.h tree.h itran.h \
char.c err.c lex.c mem.c \
optab.c parse.c sym.c toktab.c itran.c $(GRAM)
@pr $?
@date >List

Define.icn itran.defs $(DEFS)
Define itran.defs $(DEFS) >tdefs.h

programs.roff
itroft prog rams. roft &

-22 -

