
Differences Between Versions 2 and 5 of Icon*

Ralph E. Griswold

TR 83-5

March 12, 1983

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant M CS81-0 1916.

Differences Between Versions 2 and 5 of Icon

1. Introduction
The Icon programming language has evolved through several versions with somewhat different language

features. The first two versions were implemented in Ratfor and were designed to be portable over a wide
range of computers. Starting with Version 3 and continuing through the current Version 5, Icon has been
implemented in C and tailored to run under the UNIX operating, system. The Ratfor implementation
remains at Version 2 and there are no plans to bring it up to date. Nonetheless, Version 2 is implemented on
several operating systems and computers for which Version 5 is not available. Consequently, both Version 2
and Version 5 are in use. Versions 1, 3, and 4, on the other hand, are obsolete.

There is a reference manual for Version 2 [1] that describes the features of the language. It does not include
program examples or discuss programming in Icon. The Icon book [2], which contains many program exam-
ples as well as chapters on programming techniques, describes Version 5. This report is a guide to that book
for users of Version 2.

2. Overview of Version 2 and Version 5 Differences
There are quite a few differences between Versions 2 and 5. Some of these differences are only syntactic.

Others have to do with the repertoire of operations. In some cases, there are substantial semantic differences,
although it is possible to recast most Version 5 programs in Version 2.

The major semantic differences between Versions 2 and 5 are:
• The null value is treated quite differently in Versions 2 and 5.
• Version 2 does not have the mutual evaluation, repeated alternation, and limitation control struc-

tures of Version 5. A number of common control structures are treated somewhat differently in the
two versions.

• Version 2 has a stack data type that does not exist in Version 5.
• The operations on lists in Versions 2 and 5 are considerably different.
• Version 2 does not have co-expressions.

The following descriptions of differences are keyed to the Icon book and pages numbers refer to that book.
Differences between Versions 2 and 5 that affect programs significantly are marked by asterisks. The Appen-
dix contains the procedures from the Icon book, rewritten for Version 2. Comparison of these procedures
with those in the Icon book reveals the patterns of differences between the two versions more clearly than the
detailed description that follows.

Because of the many minor differences between Versions 2 and 5, there are undoubtedly some omissions
and errors in the following list. Please notify the author of any errors in this report.

3. List of Differences
The following list covers differences in the part of the Icon book that describes the language: Chapters 1-13

and the Appendices. No attempt is made here to provide changes to all places in the book where there are

UNIX is a trademark of Bell Laboratories

differences; generally only the first occurrence of a difference is noted.

Chapter 1 — Getting Started

Page 1: Version 2 does not require parentheses in procedure declarations that have no parameters. Thus

procedure main
is acceptable in Version 2.

Page 3: Upper- and lowercase letters are equivalent in Version 2. For example, the identifiers label and Label
are equivalent in Version 2.

Chapter 2 — Control Structures

Page 12 : The do clauses in the while and until expressions are not optional in Version 2.

Pages 12-13 : The prefix not expression in Version 5 is represented by the suffix fails expression in Version 2.
For example, the Version 5 expression

if not expr, then expr7

is written in Version 2 as

if expr-j fails then expr-,

Page 13: The break and next expressions are not allowed in the control clauses of looping control structures in
Version 2.

Page 14 : The expression

repeat expr

terminates in Version 2 if expr fails. Note that

while expr

in Version 5 is equivalent to

repeat expr

in Version 2.

Page 16: The values in case clauses must be literals in Version 2 — they cannot be expressions. However,
several literals may appear in one case clause, separated by commas, as in

1, 2 : write("low")
This case clause is selected if the value of the case control expression is l or 2.

Page 16: Failure of the evaluation of the control expression in a case control structure in Version 2 is an error.

Chapter 3 — Numbers

Page 20: The remaindering operation is represented in Version 2 as mod(i, j), not as i % j as in Version 5.

Page 21: There is no absolute value function in Version 2.

Page 22*: There are no augmented assignment operations in Version 2. However, Version 2 has suffix

operations for incrementing and decrementing the values of variables by 1. That is, i+ in Version 2 is
equivalent to i +:= 1 in Version 5.

Page 23: The random number operation ?i of Version 5 is represented in Version 2 as random(i). In Version
2, random(O) is an error; it does not produce a randomly selected real number between 0.0 and l .0.

Chapter 4 — Character Sets and Strings

Page 25 : The characters \ , |, and ! are equivalent in Version 2 and all indicate escapes in quoted literals. Con-
sequently, "| ("represents a single vertical bar.

Page 25: In Version 2, the escape sequence for newline is \l.

Page 25: There are no cset literals in Version 2; csets can only be obtained from operations that produce them
or by implicit conversion of strings to csets. In Version 2, string literals can be enclosed in either single or dou-
ble quoatation marks. Thus 'aeiou' and "aeiou" are equivalent in Version 2 and both represent strings.
Strings are converted to csets automatically according to context in Version 2 as in Version 5. Generally
speaking, string literals can be used in Version 2 in places that cset literals might be used in Version 5.

Page 25: In Version 2, the values of &ascii, &lcase, and &ucase are strings, not csets as they are in Version 5.

Page 28 : The size operation *S in Version 5 is represented by the function size(s) in Version 2.

Pages 29-31 : Version 2 does not have range specifications for substrings. Instead it has functions that pro-
duce substrings. The equivalents are:

Version 2

section(s, i, j)
substr(s, i, j)
substr(s, i, - j)

In these functions, an omitted position is equivalent to 0. Thus section(s, i) is equivalent to S[i:0].

Page 31: Version 2 has a function pos(i, s) that returns the positive equivalent of position i in s, but fails if i
does not correspond to a position in S.

Page 32: The operation ?s is not available in Version 2.

Page 33: The Version 5 lexical comparison operations, except for lexical equality and inequality, are
represented in Version 2 by functions as follows:

Version 5 Version 2

s1 « s2 Ilt(s1,s2)
s1 « = s2 Ile(s1,s2)
s2 » s2 Igt(s1,s2)
s2 » = s2 Ige(s1,s2)

Version

s[i:j]
s[i+:j]
s[i~:j]

5

-3

Pages 42-43: The function bal (d , c2, c3, s) must match at least one character in Version 2.

Chapter 5 — Structures

Page 48 : The syntax for list construction in Version 2 uses angular brackets instead of square brackets, as in

<exprt, expr2, ..., exprf>

Page 49 : The Version 5 function list(i, x) is represented in Version 2 in the form

list(i) initial x
and list is a reserved word in Version 2. Both lower and upper bounds can be specified for lists in Version 2.
The syntax is

list(i:j)

where i is the lower bound and j is the upper bound.

Page 49 : In Version 2, <> is a list consisting of one null value, not the empty list.

Page 50: Nonpositive specifications cannot be used for list referencing in Version 2.

Page 52: The operation ?a is not available in Version 2.

Page 52: Version 2 does not have list concatenation.

Page 53: Version 2 does not have list sections.

Pages 53-54 : Version 2 does not have stack and queue access functions for lists. There is, however, a stack
data type in Version 2 that supports push(k.x) and pop(k) in a fashion similar to the stack access functions
for lists in Version 2. In Version 2, a stack is created by

stack(i)

where i is a limit on the size of the stack. A size specification of 0 creates a stack with unlimited size, stack is a
reserved word in Version 2. The function top(k) references the top element of k. Stacks can be referenced by
position like lists.

Lists also can be opened for expansion in Version 2, so that elements can be added at the right end. The
function

open (a)

opens a for expansion and also returns a. The function

close(a)
closes a so that it cannot be expanded and also returns a. Empty lists are open when they are created; all other
lists are closed when they are created. An element is added to the right end of an open list by specifying an
index that is one greater than the current size of the list.

Page 56 : A table is created in Version 2 by an expression of the form

table(i)
where i specifies the maximum size of the table (0 indicates a table of unlimited size), table is a reserved word
in Version 2. The initial assigned value for entry values that are not in a table is always the null value in Ver-
sion 2. In Version 2, tables can be opened and closed in the fashion of lists. Tables are always open when they
are created. Reference to a nonexistent entry value in a closed table fails.

Page 57: The operation ?t is not available in Version 2.

Page 58: The syntax for record declaration in Version 2 is

record name field'-., field\ field end

Unlike Version 5, records in Version 2 must have at least one field. Record names are reserved words in Ver-
sion 2.

Page 60: The operation ?x is not available in Version 2.

Chapter 6 — Data Types

Page 61: There is no co-expression data type in Version 2.

Page 61: Type names are reserved words in Version 2.

Page 63 : The empty string is convertible to 0 in Version 2.

Page 64: In addition to the type conversion functions of Version 5, null(x) is a type conversion function in
Version 2. The values that that are convertible to the null value are the integer 0, the real number 0.0, the
empty string, and the null value itself.

Page 65 : The null value is legal in computations in Version 2 and is converted to 0, 0.0, or the empty string
depending on context. Thus it is often unnecessary to initialize identifiers in Version 2.

Page 66 : The operations /x and \ x are not available in Version 2.

Chapter 7 — Procedures

Page 68: The parentheses in procedure declarations are unnecessary in Version 2 for procedures with no
parameters.

Page 69: Version 2 also has the declarations local static and local dynamic with obvious meanings.

Page 70: Version 2 has the declarations implicit local and implicit error that govern the interpretation of
undeclared identifiers, implicit local, which is the default, corresponds to the treatment of undeclared identif-
iers in Version 5. implicit error causes undeclared identifiers to be treated as erroneous.

Page 73: Version 2 has a return expression

succeed expr

that returns the null value if expr fails. An omitted expr defaults to the null value.

Page 73 : An implicit fail is not provided at the end of procedure bodies in Version 2. Instead, flowing off the
end of a procedure in Version 2 causes the return of the null value.

Page 74: In Version 2, functions, unlike procedures, are not values.

Chapter 8 — Expression Evaluation

Page 80: Version 2 does not have the keyword &fail.

Page 80: In Version 2, braces that enclose an expression or sequence of expressions limit the last expression in
braces to at most one result.

- 5 -

Page 81: In Version 2, it'expr, fails in

if e.xpf] then expr2

the expression returns the null value instead of failing as in Version 5.

Page 81*: In Version 2, looping control structures return the null value instead of no result, as in Version 5.

Page 81: In Version 2, the break expression does not take an argument.

Page 84: In Version 2, if the argument of a suspend expression is a local identifier, it is not dereferenced, while
in Version 5, it is.

Page 84*: In Version 2, arguments are dereferenced as they are evaluated, rather than after all of them are
evaluated. Version 2 does not have an explicit dereferencing operation.

Pages 86-87 : Version 2 does not have the mutual evaluation expression.

Chapter 9 — Input and Output

Page 88: Version 2 does not have the keyword &errout or the concept of a standard error output file.

Page 92: Files cannot be changed in midstream in the write and writes functions in Version 2. An argument
that is not convertible to a string in Version 2 is converted to its string image, instead of being an error as in
Version 5.

Page 93: In Version 2, write and writes return the null value rather than their last argument.

Chapter 10 — Miscellaneous Operations

Page 96: In Version 2, the exchange operation returns its right argument instead of its left argument, as in Ver-
sion 5.

Pages 98-99: String images are somewhat different in Version 2 than they are in Version 5. The image of a cset
C is given as cset(c), rather than with single quotes. Files are given in single quotes. Records are given
without the designation record, and so on.

Page 99: Trace output goes to the standard output file in Version 2. The format of trace messages is different
in Versions 2 and 5.

Page 100: In Version 2, the function display does not have a second argument and display output goes to the
standard output file. The format of the display is somewhat different in Versions 2 and 5.

Pages 101-102: In Version 2, the format of the value of &date is mm/dd/yy. The keywords &dateline,
&host, and Aversion do not exist in Version 2.

Chapter 11 — Generators

Page 105: In Version 2, the every-do control structure produces the null value when it terminates, as opposed
to producing no value as in Version 5.

Page 111 : Version 2 does not have the limitation control structure.

Page 112 : Version 2 does not have the repeated alternation control structure.

Pages 113-114: In Version 2, if a is an open list, !a generates one element beyond the current size of the list.

Page 117: In Version 2, the suspend expression produces the null value when it terminates, as opposed to pro-
ducing no value as in Version 5.

Page 119: In Version 2, control backtracking is prevented in the control expressions of case control structures
as well as in if-then-else control structures.

Page 120: In Version 2, the reversible exchange operation returns its right argument instead of its left argu-
ment as in Version 5.

Chapter 12 — String Scanning

Page 123 : The scanning control structure in Version 2 is represented by the reserved wors syntax
scan s using expr

instead of

S ? expr

as in Version 5.

Page 124 : In Version 2, the result of

scan s using expr

is the value of &subject, rather than the result of expr as in Version 5. In Version 2, S is limited to one result.

Page 127*: In Version 2, pos(i) returns the positive equivalent of i with respect to &subject, while in Version
5, pos(i) compares the positive equivalent of i with respect to &subject to &pos as well.

Chapter 13 — Co-Expressions

Version 2 does not have co-expressions.

Appendix A — Icon Syntax

Page 221: Version 2 has an include declaration that causes a named file to be included in the program.

Page 221: Version 2 has an implicit declaration that governs the interpretation of undeclared identifiers. See
the note regarding page 70.

Page 222: Version 2 does not have an external declaration.

Page 222: The syntax of record declarations is different in Versions 2 and 5. See the note regarding page 58.

Page 222: In Version 2, parentheses are not required in procedure headers if there are no parameters.

Page 222: Version 2 has additional local declaration forms. See the note regarding page 69.

Page 223: Version 2 does not have limitation, transmission, or create expressions. Version 2 has reserved-
word syntax for creating structures. See the notes regarding pages 49, 53-54, and 56.

Page 224: The syntax for list expressions is different in Versions 2 and 5. See the note regarding page 49.

Page 224: Version 2 does not have range specifications.

Page 225: In Version 2, the expression at the beginning of an invocation expression is not optional.

Page 225: Version 2 does not have the prefix not expression. However, Version 2 has the suffix expressions

expression fails
expression +
expression —

Page 226: Version 2 does not have the infix operators % or 111.

Pages 227-228: Version 2 does not have augmented assignment operations.

Page 228: The scanning operation has a reserved-word syntax in Version 2. See the note regarding page 123.

Page 228: Version 2 has the additional succeed expression. See the note regarding page 73.

Page 228: The break expression in Version 2 does not take an argument.

Page 229: Case clauses in Version 2 are different from case clauses in Version 5. See the note regarding page
16.

Page 229: The do clauses in the while and until control structures are not optional in Version 2.

Page 229: Upper- and lowercase letters are equivalent in Version 2.

Page 230: Version 2 lacks the reserved words create, external, and not, but has the reserved words cset,
error, fails, fail, implicit, include, integer, list, real, scan, stack, string, succeed, and table.

Page 231: Version 2 does not have cset literals.

Page 232: Version 2 does not have the escape sequence \ n nor the control code escape sequences, but Version
2 has the following escape sequences that are not in Version 5:

\ <
\ >
M
\)

{
)
[
1

In Version 2, the hexadecimal control sequence must contain two digits.

Page 234: Version 2 is designed to run on computers that do not use the ASCII character set. The following
syntactic equivalences exist in Version 2 programs:

lowercase and corresponding uppercase letters
blank and tab (as in Version 5)
A and ~
[, {, and $(
], }, and $)
|, \ , and !

In quoted literals, only the last equivalences apply, other characters being distinct.

Appendix B — Machine Dependencies and Limits

Pages 238-239: Most of the material in this appendix is not relevant to Version 2, but depends on the com-
puter on which Version 2 is implemented. See the appropriate Version 2 user's guide.

Appendix C — Running an Icon Program

Pages 240-242: The organization of the Version 2 implementation is different from that of Version 5 and most
of the material here is not relevant to Version 2. See the appropriate Version 2 user's guide. Version 2 does not
support separate compilation.

Pages 242-243: Version 2 does not have external procedures.

Page 243: The options do not apply to Version 2.

Page 244: Environment variables do not apply to Version 2.

Page 244-245: Version 2 does not have an interpreter.

Page 245: Version 2 does not support command-line arguments as the value of an argument to the main pro-
cedure.

Page 245: Version 2 does not have the system function.

Page 245: In Version 2, the exit function does not have an argument and there is no concept of exit status. In
some implementations of Version 2, exit() produces an executable core image of the program.

Appendix D — Errors

Pages 246-250: The causes of errors and the error messages are somewhat different in Versions 2 and 5. The
error messages for Version 2 follow:

Errors During Translation
assignment to nonvariable
cannot open include file
duplicate declaration for local identifier
duplicate field name
extraneous closing brace
extraneous end
global name previously declared
identifier too long
integer character larger than base
invalid character
invalid construction
invalid context for break
invalid context for next
invalid declaration
invalid escape specification
invalid field name
invalid function call
invalid global declaration

-9

invalid implicitdeclaration
invalid integer base
invalid integer literal
invalid keyword
invalid keyword construction
invalid operator
invalid real literal
invalid reference
invalid use of field name
misplaced declaration
missing argument
missing closing brace in case expression
missing closing parenthesis
missing colon in case expression
missing declaration
missing do in while or until expression
missing literal in case expression
missing main procedure
missing of in case expression
missing open brace in case expression
missing opening parenthesis
missing procedure end
missing procedure name
missing quote
missing record end
missing record field
missing record name
missing semicolon or operator
missing then in if-then expression
missing using in scan expression
multiple defaults in case expression
multiple implicit declarations
numeric literal too long
procedure name previously declared
string literal too long
unclosed list
unexpected end-of-file

Overflow Conditions
overflow in character table
overflow in global identifier table
overflow in integer literal table
overflow in local identifier table
overflow in nested include files
overflow in parse tree
overflow in procedure block table
overflow in procedure labels
overflow in real literal table
overflow in record table
overflow in string literal table
overflow in translator stack

10

Program Error Messages

Category 1: Invalid Type or Form
101 integer expected
102 real expected
103 numeric expected
104 string expected
105 cset expected
106 file expected
107 procedure expected
108 record expected
109 stack expected
111 invalid type to size
112 invalid type to close
121 variable expected

Category 2: Invalid Argument or Computation
201 division by zero
202 zero second argument to mod
203 integer overflow
204 real overflow
205 real underflow
206 negative first argument in real exponentiation
207 invalid value to random or &random
210 invalid field name
211 negative second argument to repl
212 negative second argument to left
213 negative second argument to right
214 negative second argument to center
215 second and third arguments to map of unequal length
216 erroneous list bounds
217 negative stack size
218 negative table size
219 invalid first argument to sort
220 invalid second argument to sort
221 invalid second argument to open
222 invalid second argument to reads
230 case expression failure

Category 3: Invalid Structure Operation
301 table size exceeded
302 stack size exceeded

Category 4: Input/Output Errors
401 cannot close file
402 attempt to read file not open for reading
403 attempt to write file not open for writing
411 input string too long

Category 5: Capacity Exceeded
501 insufficient storage
502 control stack overflow

Appendix E — Summary of Built-in Operations

No attempt is made here to recapitulate the differences between the built-in operations of Version 2 and Ver-
sion 5. One point that is not mentioned elsewhere in the book deserves note, however.

Page 255: In Version 2, there are no defaults for the second and third arguments of map.

References
1. Griswold, Ralph E. and David R. Hanson. Refeience Manual for the Icon Programming Language; Ver-
sion 2. Technical Report TR 79-la, Department of Computer Science, The University of Arizona. 1980.
2. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey. 1983.

- 12

Appendix — Icon Book Procedures for Version 2

Procedures from the book that work properly in Version 2 without modification are omitted here without
comment. Procedures that cannot be converted to Version 2 are also omitted, but noted. All the procedures
that follow have been tested under Version 2. They are available from the author in machine-readable form
upon request.

Chapter 2

Page 14:

procedure main()
repeat { # exit repeat if eof

if (headline := readQ) fails then break
count :— 1
while line := read() do { # exit while if "end"

count := count + 1
if match("end", line) then break

write(headline, " : ", count)

end

Chapter 4
Page 27: The second procedure on this page cannot be converted, since Version 2 does not have augmented
assignment operations.

Page 29:

procedure wordlistQ
wlist := "" # initialize wlist
while word := read() do

wlist := wlist 11 word 11 '
return wlist

end

Page 30:

procedure main()
while line := readQ do {

line := section(line, 1, 61) # truncate
write(line)

end

13-

Page 34:

procedure main()
min := max := readQ # initial min and max
while line := readQ do

if lgt(line, max) then max := line
else if llt(line, min) then min := line

write("lexically largest line is: ",max)
write("lexically smallest line is: ", min)

end

Page 34: The second procedure on this page cannot be converted, since Version 2 does not have augmented
assignment operations.

Page 35:

procedure main()
i := 0
while i < 10 do {

i+
write(right(i,5), right(i A 2, 8),right(i A 3,8),

right(i A 4,8))
}

end

Page 38:

procedure mainQ
s2 := &cset || "AEIOUaeiou"
s3 := repl(" ", size(&cset)) || repl("\ |" , 10)
while line := read() do {

write(line)
write(map(line, s2, s3))
}

end
Note the necessity of the escape sequence for the vertical bar.

Page 39:

procedure Imark(s)
while line := read() do {

write(line)
write(repl(" ",find(s, line) - 1) , " \ | ")
}

return
end

- 14-

Page 41:

procedure main()
wchar := &lcase ++ &ucase
pchar := '.,:;?! '
while line := read() do

get to first letter
if line := section(line, upto(wchar, line))
then write(section(line, 1, upto(pchar, line)))

end

Page 42:

procedure main()
wchar := &lcase ++ &ucase
while line := readQ do

if line := section(line, upto(wchar, line))
then write(section(line, 1, many(wchar, line)))

end

Page 43:

procedure main()
while line := read() do {

write(line)
write(repl(" ", bal('+-*/ ' , „ line) - 1) , " \ | ")

end

Page 45:

procedure main()
wchar := &lcase ++ &ucase ++ '\'-'
while line := readQ do {

i := 1
while j := upto(wchar, line, i) do

i := many(wchar, line, j)
write(section(line, i, j))

end

- 15

Chapter 5

Page 51:
procedure main()

wchar := &lcase ++ &ucase ++ ' Y - '
wordlength := llst(IO) initial 0 # initial zero counts
while line := readQ do {

i := 1
while j := upto(wchar, line, i) do {

i := many(wchar, line, j)
wordlength[size(section(line, i, j))]+

write("word length count:\n")
i := 0
while i < size(wordlength) do {

i+
write(left(i || ":", 12), right(wordlength[i], 3))

end

Page 52:
procedure array(i,j,x)

a := list(i) initial 0
k := 0
repeat a[k+] := list(j) initial x
return a

end

Page 53:

procedure words()
wchar := &lcase ++ &ucase ++ ' Y - '
wordlist := list(O)
index := 0
while line := read() do {

i := 1
while j : - upto(wchar, line, i) do {

i := many(wchar, line, j)
wordlist[index+] := section(line, i, j) # add to list

return close(wordlist)
end

Page 54: The procedure on this page cannot be converted, since Version 2 does not have queue access func-
tions for lists. If the procedure on the previous page is rewritten using stacks, then this procedure works as it
stands in the book.

- I6

Pages 57-58:

procedure tabwordsQ
wchar := &lcase ++ &ucase ++ ' Y - '
words := table(O)
while line := read() do {

i := 1
while j := upto(wchar, line, i) do {

i := many(wchar, line, j)
words[section(line, i, j)]+ # increment count
}

}
return words

end

procedure main()
wlist := sort(tabwords()) # get sorted list
i := 0
while pair := wlist[i+] do

write(left(pair[1], 12), right(pair[2], 3))
end

Chapter 7

Page 69:

procedure exor(s1,s2)
local count, line
count := 0
while line := read() do

if find(s1, line) then {
if find(s2, line) fails then count+
}

else if find(s2, line) then count+
return count

end

Page 71:

procedure main()
repeat write(fword())

end

procedure fword()
local wchar, line
wchar := &lcase ++ &ucase ++ ' \ ' - '
while line := read() do

if line := section(line, upto(wchar, line), 0)
then return section(line, 1, many(wchar, line))

fail
end

17

Page 71:

procedure fwordQ
static wchar
local wchar, line
initial wchar := &lcase ++ &ucase ++ '\'-'
while line := read() do

if line := section(line, upto(wchar, line), 0)
then return section(line, 1, many(wchar, line))

fail
end

Page 72:
procedure nword()

static wchar, line, i, j
initial {

wchar := &lcase ++ &ucase ++ '\'—'
if line := read() then i := 1 else fail
}

repeat {
while j := upto(wchar, line, i) do {

i := many(wchar, line, j)
return section(line, i, j)
}

if line := read() then i := 1 else fail
}

end

Page 75:

procedure fib(i)
static fibmem
local j
initial {

fibmem := table()
fibmem[1] := fibmem[2] := 1
}

if n u 11 (j := fibmem[i]) fails then return j
else return fibmemfi] := fib(i - 1) + fib(i - 2)

end

Page 77:

procedure expression()
return case random(2) of {

1 : term()
2 : term() II "+" 11 expression()
}

end

- 18

procedure term()
return case random(2) of {

1 : element()
2 : elementQ || "*" || term()
}

end

procedure element()
return case random(4) of {

" (" || expression() || ") '

end

Page 78:

procedure expressionQ
return case random(3) of {

term()
term()
term() expression()

end

Chapter 8

Page 82: The procedure on this page cannot be converted, since in Version 2, the break expression does not
take an argument.

Page 84:

procedure maxel(a)
local i, j , max
j := i := 1
max := a[1]
while i < size(a) do {

i+
if max < a[i] then {max := a[i]; j := i}

return a[j]
end

19-

Chapter 9

Page 90:

procedure main()
if (intext := open("shaw.txt")) fails
then stopC'cannot open input file")
repeat write(read(intext))

end

Page 92:

procedure main()
if (intext := open("shaw.txt")) fails
then stopC'cannot open input file")
if (outtext := open("shaw.cpy", "w")) fails
then stopC'cannot open output file")
while line := read(intext) do {

write(line)
write (outtext, line)
}

end

Pages 92-93:

procedure main()
writes("specify input file: ")
repeat {

if intext := open(readQ) then break
writes("cannot open input file, respecify: ")
}

writes("specify output file: ")
repeat {

if outtext := open(read(), "w") then break
writesC'cannot open output file, respecify: ")
}

repeat write(outtext, read(intext))
end

Chapter 10

Page 97:

procedure shuffle(s)
local i
i := size(s)
while i >= 2 do {

s[random(i)] :=: s[i]
i -
}

return s
end

20-

Page 101:

procedure main()
local intext
if (intext := open("shaw.txt")) fails
then stop("cannot open input file")
write(linecount (intext))

end

procedure linecount(file)
local count, line
count := 0
while line := read(file) do

if find("stop", line) then break
else count+

display()
return count

end

Chapter 11

Page 105:

procedure mark(s)
local line, marker, i
while line := readQ do {

marker := " " # initialize marker
every i := find(s, line) do

marker := left(marker, i - 1) || " \ | "
write(line, " \ n " , marker) # write line and marker
}

return
end

Page 115:

procedure main()
while line

marker
every i

readQ do

bal('+-/* ' , , , line) do
marker := left(marker, i - 1) || line[i]

write(line, " \ n " , marker) # write line and marker

end

-21

Page 116:

procedure To (i, j)
while i <= j do {

suspend i
i+
}

fail
end

Note the insertion of the fail expression to prevent an unwanted null value from being returned by flow off the
procedure body.

Page 117:

procedure genword()
static wchar
local line, i, j
initial wchar := &lcase ++ &ucase ++ 'Y '
while line := read() do {

i := 1
while j := upto(wchar, line, i) do {

i := many(wchar, line, j)
suspend section(line, i, j) # produce word
}

}
fail

end

Page 117:

procedure rtl(s)
suspend s[size(s) to 1 by -1]
fail

end

Page 123:

procedure tabwords()
static wchar
local words, line
initial wchar := &lcase ++ &ucase ++ ' Y - '
words := table(O)
while line := read() do

scan line using while tab(upto(wchar)) do
words[tab(many (wchar))]+

return words
end

22

Chapter 12

Page 129:

procedure wordsQ
local wchar, line, word
wchar := &lcase ++ &ucase ++ ' \ ' - '
while line := read() do

scan line using while tab(upto(wchar)) do
word := tab(many(wchar))
suspend word
}

fail
end

Chapter 13

The procedures in Chapter 13 cannot be converted to Version 2.

Chapter 14

Page 144: The procedure on this page cannot be converted, since Version 2 does not have the limitation con-
trol structure.

Page 145:

procedure posint()
local i
i := 0
repeat suspend i+

end

Page 146: The procedures on this page cannot be converted, since Version 2 does not have the limitation con-
trol structure or co-expressions.

Page 147:

procedure cross(word1, word2)
local i, j
if i := upto(word2, wordl)
then {

j := upto(word1[i], word2)
every write(right(word2[1 to j - 1], i))
write(wordl)
every write(right(word2[j + 1 to size(word2)], i))
write()
}

return
end

23

Page 148:

procedure cross(word1, word2)
local i, j
every i := upto(word2, wordl) do

every j := upto(word1[i], word2) do {
every write(right(word2[1 to j - 1], i))
write(wordl)
every write(right(word2[j + 1 to size(word2)], i))
write()
}

return
end

Page 153:

procedure main()
write(q(1), q(2), q(3), q(4), q(5), q(6), q(7), q(8))

end

procedure q(c)
suspend place(1 to 8, c) # look for a row
fail

end

procedure place(r, c)
static up, down, row
initial {

up := list(—7:7) initial 0
down := list(2:16) initial 0
row := list(8) initial 0
}

if row[r] = down[r + c] = up[r - c] = 0
then suspend row[r] < - down[r + c] < -

up[r - c] < - r # place if free
fail

end

Chapter 15

Page 160:

procedure tab(i)
suspend section(&subject, &pos, &pos < - i)
fail

end

24

Page 160:

procedure arb()
suspend section(&subject, &pos, &pos < - &pos to size(&subject) + "T
fail

end

Page 160:

procedure rarb()
suspend section(&subject, &pos,

&pos < - ((size(&subject) + 1) to &pos by -1))
fail

end

Page 161:

procedure Imatch(slist)
suspend =!slist
fail

end

Page 161:

procedure arbno(p)
suspend "" j (p() || arbno(p))
fail

end

Page 161:

procedure shadesQ
suspend arb() || lmatch(<"black", "white", "gray">)
fail

end

Pages 163-164:

procedure main()
while writes(line : - read()) do

if scan line using (X() & (pos(0) = &pos)) then write(" accepted'
else write(" rejected")

end

procedure X()
suspend T() | (T() || ="+" || XQ)
fail

end

procedure T()
suspend E() | (E() || ="*" || T())
fail

end

25-

procedure E()
suspend ="x" I ="y" I ="z" I (="(" 11 X() || =")")
fail

end

Page 165:

procedure main()
while writes(line := read()) do

if scan line using (ABC("") & (pos(O) = &pos)) then write(" accepted"
else write(" rejected")

end

procedure ABC(X)
suspend =X | (="a" 11 ABC("b" || X) || ="c")
fail

end

Pages 167-168:

procedure main()
while writes(line := read()) do

if scan line using ((a := X()) & (pos(O) = &pos)) then {
write(" accepted")
write(image(a))
}

else write(" rejected")
end

procedure T()
suspend <"T", E()> | <"T", E(), ="*", T()>
fail

end

procedure E()
suspend <"E", =("x" | "y" | "z")> | <"E", ="(", X(), - ') " >
fail

end

procedure X()
suspend <"X", T()> | <"X", T(), ="+", X()>
fail

end

-26-

Chapter 16

Page 172:

procedure Itree(stree)
local a, i
scan stree using

if a := <tab(upto('('))> then {
move(1)
open(a)
i := 1

while a[i+] := ltree(tab(balf,)'))) do
move(1)

start with value

add subtrees

else a := <tab(0)>
return close(a)

leaf

end

start with leaf
append value
append stree

Page 173:

procedure stree(ltree)
local s, s1
if size(ltree) = 1 then return ltree[1]
s := ltree[1] || " ("

every s1 := stree(ltree[2 to size(ltree)]) do
s := s 11 s1 11 " , "

return section(s, 1,-1) || ") "
end

This procedure deserves special note. It might appear that the Version 5 code segment

every s ||:= stree(ltree[2 to *ltree]) || ","
could be rewritten in Version 2 as

every s stree(ltree[2 to *ltree])
However, since arguments in Version 2 are dereferenced as they are evaluated (see note regarding page 84), the
value of S as the first argument of the concatenation remains the same throughout the computation — the
assignments to S do not change it. Hence the result of the proposed rewriting above is not what is desired. In
Version 2, it is good policy not to perform computations with side effects in every clauses.

Page 173:

procedure visit(ltree)
suspend Itree | visit(ltree[2 to size(ltree)])
fail

end

-27

Page 174:

procedure teq(a1,a2)
local i
if size(a1) ~= size(a2) then fail
if a1[1] ~ = a2[1] then fail
every i := 2 to size(a1) do

if teq(a1[i],a2[i]) fails then fail
return a2

end

check sizes
check values
check subtrees

Page 174:

procedure eq(x, y)
local i
if x === y then return y
if type(x) == type(y) == "list" then

if size(x) ~= size(y) then fail
every i := 1 to size(x) do

if eq(x[i], y[i]) fails then fail
return y

}
end

succeed if identical

check sizes
check subtrees

Page 176:

procedure ldag(stree, done)
local a, i
if null(done) then done := table()

if null(a := done[stree]) fails then return a
scan stree using

if a := <tab(upto('('))> then {
move(1)
i := 1
open(a)
while a[i+] := ldag(tab(bal(\)')), done) do

move(1)
}

else a := <tab(0)>
return done[stree] := close(a)

end

return list if done

put in table

-28

Page 179:

procedure Igraph(sgraph)
local nodes, ndescr, nlist, a, name, i
nodes := table()
scan sgraph using

while ndescr := tab(many(~';')) do {
move(1)
scan ndescr using {

a := list(O)
nodes[tab(upto(':'))] := a
move(1)
i := 0

while a[i+] := tab(many(~',')) do
move(1)

}
}

every name := Inodes do
every i := 2 to size(name) do

name[i] := nodes[name[i]]
return nodes

end

Chapter 17

Page 183:

table of nodes

process one node
new list goes in table

add value and names

change names to lists

procedure reverse(s)
static labels, trans, max
initial {

labels := "abcdefghijklmnopqrstuvwxyz"
trans := "zyxwvutsrqponmlkjihgfedcba"
max := size(labels)
}

if size(s) <= max then
return map(right(trans, size(s)), left(labels, size(s)), s)

else return reverse(right(s, size(s) - max)) ||
map(trans, labels, left(s, max))

end

-29-

Page 185:

procedure swap(s)
static labels, trans, max
initial {

labels := "12"
trans := " 2 1 "
max := size(labels)
trans := swap(string(&cset))
labels := string(&cset)
max := size(labels)
}

if size(s) <= max then
return map(left(trans, size(s)), left(labels, size(s)), s)

else return swap(left(s, size(s) - max)) ||
map(trans, labels, right(s, max))

end

Page 187:

procedure shuffle(deck)
every Ideck :=: deck[random(size(deck))]
return deck

end

Page 188:

procedure disp(deck)
static fresh, suits, denoms
initial {

fresh := &ucase 11 &lcase
suits := repl("C",13) || repl("D", 13) || repl("H", 13) ||

repl("S", 13)
denoms := repl("A23456789TJQK", 4)
1

write(map(deck, fresh, suits)) # suits
write(map(deck, fresh, denoms)) # denominations

end

Page 190:

procedure successors(graph, nodes)
local snodes
snodes := " # start with none
scan graph using repeat {

if tab(any(nodes)) then snodes := snodes ++ move(1)
else move(2) | break # exit at end of string
}

return snodes
end

30

procedure closure(graph, nodes)
local snodes
snodes := nodes # start with given nodes
while snodes ~ = =

(nodes := nodes ++ successors(graph, nodes)) do
snodes := nodes # update if change

return nodes
end

Chapter 18

Page 195:

global base, segsize

procedure add(s1, s2, carry)
local siz, sum
if size(s1) > size(s2) then s1 :=: s2
siz := size(s2)
if siz <= segsize then return s1 + s2 + carry
s1 := right(s1, siz, "0")
sum := right(s1, segsize) + right(s2, segsize) + carry
return add(left(s1, siz - segsize),

Ieft(s2, siz - segsize), sum / base) ||
right(mod(sum, base), segsize, "0")

end

Pages 196-197:

global base, segsize

procedure large(s)
local a, i
a := list(0)
scan s using {

&pos := 0 # start at right end
i := 0
repeat a[i+] := integer(move(-segsize))

if &pos ~= 1 then a[i] := integer(tab(1))
add remaining digits

return a
end

31

procedure add(a1,a2)
local carry, d, i, a3
carry := 0
if size(a1) < size(a2) then a1 :=: a2
i := size(a2)
while size(a2) < size(a1) do a2[i+] := 0
a3 := Iist(size(a1)) initial 0
open(a3)
every i := 1 to size(a1) do {

d := a1[i] + a2[i] + carry
carry := d / base
a3[i] := mod(d, base)
}

if carry > 0 then a3[i+] := carry
return a3

end

procedure Istring(a)
local s
s := ""
every s := right(!a, segsize, "0") || s
scan s using (tab(upto(~'0') | -1) & (s := tab(0)))
return s

end
The procedure add given above is not really a conversion of the procedure given in the book, which uses
operations on lists that are not in Version 2. Instead, it is a more conventional approach to manipulating large
integers using lists. The procedure in the book can be converted to Version 2 by using stacks instead of lists.

Page 198:

record largint coeff, link end
global base, segsize

procedure add(g1, g2, carry)
local sum
if null(carry) then carry := largint(O)
if null(g1) & null(g2) then return if carry.coeff ~= 0 then carry
else &null
if null(g1) then return add(carry, g2)
if null(g2) then return add(g1, carry)
sum := g1.coeff + g2.coeff + carry.coeff
carry := iargint(sum / base)
return largint(mod(sum, base), add(g1.link, g2.link, carry))

end

procedure large(s)
if size(s) <= segsize then return largint(integer(s))
else return largint(right(s, segsize),

large(left(s, size(s) - segsize)))
end

32

procedure Istring(g)
local s
if null(g.link) then s := g.coeff
else s := Istring(g.link) || right(g.coeff, segsize, "0")
scan s using (tab(upto(~'0') | -1) & (s := tab(O)))
return s

end

Page 199:

procedure mpy(g1,g2)
local prod
if null(g1 | g2) then return &null # zero product
prod := gl.coeff * g2.coeff
return largint(mod(prod, base),

add(mpy(largint(g1.coeff), g2.link), mpy(g1.link, g2),
largint(prod / base)))

end

Chapter 19

Page 205:

procedure main()
repeat write(fix(read()))

end

procedure fix(exp)
repeat scan exp using (

="(" & (exp := tab(bal(')'))) & (pos(-1) = &pos)
)

return lassoc(exp,'+-' | '*/') | rassoc(exp, 'A ') | exp
end

procedure lassoc(exp, op)
local j
scan exp using {

every j := bal(op)
if null (j) fails then exp := form(tab(j), move(1), tab(0))
}

if null(j) then fail else return exp
end

procedure rassoc(exp, op)
if scan exp using (exp := form(tab(bal(op)), move(1), tab(0)))
then return exp else fail

end

procedure form(arg1, op, arg2)
return op || " (" || fix(argl) || ", " || fix(arg2) || ") "

end

33-

Page 206:

procedure form(arg1, op, arg2)
return <op, fix(argl), fix(arg2)>

end

Page 206:

procedure 1 form(arg1, op, arg2)
argl := fix(argl)
arg2 := fix(arg2)
return case op of {

"+"
it ti

"*"
7"
" A "

add(arg1, arg2)
sub(arg1, arg2)
mpy(arg1,arg2)
div(arg1, arg2)
rse(arg1, arg2)

end

Page 207:

procedure add(arg1, arg2)
local i
return {

if i := integer(argl) + integer(arg2) then i
else if argl == "0" then arg2
else if arg2 == "0" then argl
else if argl == arg2 then symop("2", "*", arg2)
else symop(arg1,"+", arg2)

end

-34

Page 209:

procedure drv(exp, var)
local argl , op, arg2
if scan exp using {

op := tab(upto('(')) &
move(1) &
argl := tab(bal(',')) &
move(1) &
arg2 := tab(bal(')'))
}

then return case op of {
add(drv(arg1, var), drv(arg2, var))
sub(drv(arg1, var), drv(arg2, var))
add(mpy(arg1, drv(arg2, var)),
mpy(arg2, drv(arg1, var)))

" / " : div(sub(mpy(arg2, drv(arg1, var)),
mpy(arg1, drv(arg2, var))), rse(arg2, "2"))

" A " : mpy(mpy(arg2, rse(arg1, sub(arg2, "1"))),
drv(arg1, var))

}
else return if exp == var then " 1 " else "0"

end

Chapter 20

Pages 217-218:

global defs

record nonterm name end

procedure main()
local line
defs := table()
while line := read() do

(define | generate)(line)
end

procedure define(line)
return scan line using

defs[(="<" & tab(find(">::=")))] := (move(4) & alts(tab(0)))
end

procedure alts(defn)
local alist
alist := stack()
scan defn using while push(alist, syms(tab(many(~'\|')))) do move(1)
return alist

end

35

procedure syms(alt)
local slist
slist := stack()
scan alt using repeat push(slist, tab(many(~'<')) |

puterm(="<", tab(upto('>')), move(1)))
return slist

end

procedure puterm(x, y, z)
return nonterm(y)

end

procedure generate(line)
local goal, count, i
scan line using {

="<" &
goal := tab(upto('>')) &
move(1) &
count := tab(O)
}

i := 0
every write(gener(goal)) do {

i+
if i > count then break
}

return
end

procedure gener(goal)
local pending, genstr, symbol
pending := stack()
repeat {

push(pending, nonterm(goal))
genstr := ""
while symbol := pop(pending) do

if type(symbol) == "string" then genstr := genstr || symbol
else {

x := defs[symbol.name]
y := x[random(size(x))]
every push(pending, !y)
}

suspend genstr
}

end

36

Appendix F

Page 282:

procedure exor(s1,s2)
count := 0
while line := read() do

if find(s1, line) then {
if find(s2, line) fails then count := count + 1
1

else if find(s2, line) then count := count + 1
return count

end

Page 283:

procedure main()
sum := 0.0
count := 0
while sum := sum + read() do

count+
write(sum / count)

end

Page 283:

procedure fact(i)
j := 1
while i > 0 do {

j := J * i
i -
}

return j
end

Page 284:

procedure delete(s,c)
repeat s[upto(c, s)] := "
return s

end

Page 284:

procedure delete(s, c)
while i := upto(c, s) do

section(s, i, many(c, s, i))
return s

end

37

Page 284:

procedure main()
wchar := &lcase ++ &ucase ++ ' \ ' '
while line := read() do {

i := 1
dashes := repl(" ", size(line))
while j := upto(wchar, line, i) do }

i := many(wchar, line, j)
section(dashes, i, j) := repl("-" , i - j)
}

write(line)
write(dashes)

end

Page 284:

procedure main()
local i
lines := list(O)
repeat lines[i+] := read()
repeat write(lines[i-])

end

Pages 285-286:

record complex rpart, ipart end

procedure strcpx(s)
i := upto('+-', s, 2)
return complex(section(s, 1, i), section(s, i, -1))

end

procedure cpxstr(x)
if x.ipart < 0 then return x.rpart || x.ipart || " i "
else return x.rpart || "+" || x.ipart || " i "

end

procedure cpxadd(x1, x2)
return complex(x1.rpart + x2.rpart, xl.ipart + x2.ipart)

end

procedure cpxsub(x1, x2)
return complex(x1.rpart - x2.rpart, xl.ipart - x2.ipart)

end

procedure cpxmul(x1, x2)
return complex(x1.rpart * x2.rpart - xl.ipart * x2.ipart,

x1.rpart * x2.ipart + xl.ipart * x2.rpart)
end

-38

procedure cpxdiv(x1, x2)
denom := x2.rpart A 2 + x2.ipart A 2
return complex((x1.rpart * x2.rpart + x1.ipart * x2.ipart) /

denom, (x1.ipart * x2.rpart - x1.rpart * x2.ipart) /
denom)

end

Page 287:

procedure acker(i, j)
local args, k
static ackermem
initial ackermem := table()
args := i II ", " 11 j
if null(k := ackermem[args]) fails then return k
if i = 0 then return ackermem [args] := j + 1
if j = 0 then return ackermem[args] := acker(i - 1,1)
return ackermem[args] := acker(i - 1,acker(i,j - 1))

end

Page 287: Exercise 8.3 cannot be solved in Version 2, since Version 2 does not have the mutual evaluation con-
trol structure.

Page 287:

procedure main()
repeat writes(reads(, 100))

end

Page 288:

procedure main()
local chars, charlist, i, pair
chars := table(O)
repeat chars[reads()]+
charlist := sort(chars)
i := 0
while pair := charlist[i+] do

write(left(image(pair[1]), 6), right(pair[2], 6))
end

39

Page 288:

procedure ackertrace(i, j)
static level
local result
initial level := 0
write(repl("x", level+))
if i = 0 then result := j + 1
else if j = 0 then result := ackertrace(i - 1 , 1)
else result := ackertrace(i - 1, ackertrace(i, j - 1))
level-
return result

end

Page 289:

procedure genpos(a, x)
local i
every i := 1 to size(a) do

if a[i] === x then suspend i
fail

end

Page 290:

procedure allbal(c, s)
local i
every i := 1 to (size(s) - 1) do

suspend section(s, i, bal(c,,, s, i))
fail

end

Page 290:

procedure enrepl(s)
local c, s1
s1 := ""
scan s using while c := move(1) do {

i := 1 + (size(tab(many(c))) | 0)
if i > 4 then s1 := s1 11 c 11 " (" ||
else s1 := s1 11 repl(c, i)
}

return s1
end

40

procedure derepl(s)
local c, s1
s1 := ""
scan s using {

while s1 := s1 || tab(upto('(') - 1) do {
c := move(1)
move(1)
s1 := s1 || repl(c,tab(upto(')')))
move(1)
}

s1 := s1 || tab(O)
}

return s1
end

Page 291:

procedure allbal(c, s)
scan s using repeat {

suspend tab(bal(c))
move(1) | break
}

fail
end

Pages 291-293: The exercises from Chapter 13 cannot be done in Version 2.

Page 293:

procedure main()
every print(<q(1), q(2), q(3), q(4), q(5), q(6), q(7), q(8)>)

end

procedure q(r)
suspend place(1 to 8, r)
fail

end

procedure place(c, r)
static up, down, col
initial {

up := list(—7:7) initial 0
down := list(2:16) initial 0
col := list(8) initial 0
}

if col[c] = up[r - c] = down[r + c] = 0
then suspend col[c] < - up[r - c] < -

down[r + c] < - c
fail

end

41

procedure print(a)
static line, bar
initial {

line := repl("+-",8) || "+"
bar := repl(" \ | ", 8) || " \ |
}

every bar[!a*2] < - "Q" do {
write(line)
write(bar)
}
write(line, " \ n \n ")

return
end

Page 294:

procedure allbal(c, s)
scan s using suspend arb() & tab(bal(c))
fail

end

Page 295:

procedure main()
while writes(line := read()) do

if scan line using (ABCDf", "", "", "") & (pos(O) = &pos))
then write(" accepted")
else write(" rejected")

end

procedure ABCD(A, B, C, D)
suspend (=A || =B || =C || =D) |

(-"a" || ABCD(A, "b" || B, C || "c", D) || ="d")
fail

end

Page 295:

procedure depth(ltree)
local count, i
count := 0
every i := 1 + depth(ltree[2 to size(ltree)]) do

if count < i then count := i
return count

end

42-

Page 296:

record bnode value, left, right end

procedure btree(stree)
local x
scan stree using if x := bnode(tab(upto('('))) then {

move(1)
x.left := btree(tab(bal(\')))
move(1)
x.right := btree(tab(bal(')')))
}
else x := bnode(tab(0))

return x
end

procedure stree(btree)
local s
if null(btree.left) then return btree.value
s := btree.value || " (" ||

stree(btree.left) || ", " || stree(btree.right) || ") "
return s

end

Page 297:

procedure boldface(s)
local c
static labels, trans, max
initial {

labels := " 1 "
trans := "1 \b1 \b1 \b1 \b1 "
max := size(labels)
trans := boldface(string(&cset — '\b'))
labels := string(&cset — '\b')
max := size(labels)
}

if size(s) <= max then
return map(left(trans, 9 * size(s)), left(labels, size(s)), s)

else return boldface(left(s, size(s) - max)) ||
map(trans, labels, right(s, max))

end

-43

Page 298:

procedure cdigit(s)
local s1
s1 := ""
scan s using {

&pos := 0
repeat s1 := "," II move(-3) II s1
if pos(1) = &pos then s1 := section(s1,2)
else s1 := tab(1) II s1
}

return s1
end

Page 300:

procedure fix(exp)
repeat scan exp using (

="(" & (exp := tab(bal(')'))) & (pos(-1) = &pos)
)

return lassoc(exp, '+-' I '*1') I rassoc(exp,' /\') I
func(exp) I exp

end

procedure func(exp)
scan exp using exp := (tab(upto('(') + 1) II fix(tab(-1)) II tab(O))
return exp

end

Page 301:

procedure generate(line)
local goal, count, i
if scan line using {

="<" &
goal := tab(upto('>')) &
move(1) &
count := (0 <= integer(tab(O)))
}

then {
i := 0
every write(gener(goal)) do {

i+
if i > count then break
}

return
}

else fail
end

- 44-

