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A Tour Through the C Implementation of Icon; Version 5.9 

Introduction 

This report describes the C implementation of Version 5.9 of the Icon programming language [1]. Most of 
the system is coded in C [2] and is designed to be run under UNIX*. In addition to the C portion of the sys
tem, there is some assembly language code. To date, the C implementation has been adapted to the PDP-11 , 
VAX-11, and Onyx C8002. This implementation is intended to be portable to other computers running under 
UNIX, but portability was not a primary design goal. Reference 3 describes the process of transporting this 
implementation and contains detailed descriptions of the assembly language routines for the VAX implemen
tation. 

The implementation of the Icon system consists of three parts: a translator, a linker, and an interpreter. 
The interpreter contains a run-time system that includes routines for the operations that are needed to execute 
an Icon program. The translator converts an Icon source program into an intermediate code, called ucode. 
The linker combines separately translated ucode files, binds inter-procedure references, and produces inter-
pretable binary output, called icode. 

The reference language for this report is Version 5.9 of Icon [4]. This report is intended to be used in con
junction with the source listings for Version 5.9, although a general overview of the system can be obtained 
from this document alone. 

1. The Translator 
The Icon translator is written entirely in C and consists of 12 files of source code and 10 header files. The 

translator builds a parse tree for each Icon procedure, then traverses the tree to generate code. Three of the 12 
source files contain only data initialization and are automatically generated from specification files. In addi
tion, the LALR(l) parser is automatically generated by the Yacc parser generator [5]. 

The ucode output from the translator consists of two files. One file, with the suffix .u1, contains inter
mediate code corresponding to the procedures in the program. The second file, with the suffix .u2, contains 
global symbol table information. Both files are printable. 

The following sections discuss the four parts of the translator: the lexical analyzer, the parser, the code 
generator, and the symbol table manager. 

1.1 The Lexical Analyzer 

The lexical analyzer reads the Icon source program, breaks it into tokens, and delivers the tokens to the 
parser as requested. A token is the basic syntactic unit of the Icon language; it may be an identifier, a literal, a 
reserved word, or an operator (operators include punctuation). 

The lexical analyzer consists of four source files: lex.c, char.c, optab.C, and toktab.C. The latter two of 
these files contain operator and token tables, respectively, and are automatically generated from operator and 
token specification files, described below. The file char.c contains character mapping tables and the file lex.c 
contains the lexical analyzer itself. 

The parser requests a token by calling yylex, which finds the next token in the source program and deter
mines its token type and value. The parser bases its moves on the token type: if the token is an operator or 
reserved word, the token type specifically identifies the operator or reserved word; otherwise, the token type 
indicates one of the six "primitive" types: identifier, integer literal, real literal, string literal, cset literal, or 
end-of-file. The token value is a leaf node of the parse tree, which, for the primitive types, contains the source 
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program representation of the token. The token value node also contains the source-program line and column 
numbers where the token starts. A pointer to this node is placed in the global variable yychar, and yylex 
returns the token type. 

The lexical analyzer finds the next token by skipping white space, including comments. The first character 
of the new token indicates which of the classes it belongs to. A letter or underscore begins an identifier or 
reserved word, a digit begins an integer or real literal, a double quote begins a string literal, a single quote 
begins a cset literal, and any other character is assumed to begin an operator. An identifier or reserved word is 
completed by gathering all subsequent letters, digits, and underscores. The reserved word table is consulted to 
determine if the token is an identifier or a reserved word. Numeric literals are recognized by a finite-state 
automaton, which distinguishes real from integer literals by the presence of a decimal point or the letter "e". A 
quoted literal is completed by reading until the opening delimiter is repeated, converting escapes in the process 
and continuing to new lines as necessary. A table-driven finite-state automaton, described below, recognizes 
operators. 

An important task of the lexical analyzer is semicolon insertion. The grammar requires that semicolons 
separate expressions in a compound expression or procedure body, so they must be inserted into the token 
stream where they are omitted in the source program. This process is table driven. Associated with each 
token type are two flags, BEGINNER and ENDER. The BEGINNER flag is true if a token may legally begin 
an expression (i.e., if it may follow a semicolon). Similarly, the ENDER flag is true if a token may legally end 
an expression (i.e., if it may precede a semicolon). When a newline appears between two tokens, the ENDER 
flag of the first is true, and the BEGINNER flag of the second is true, then a semicolon is inserted between the 
two tokens. 

The token table is initialized in the file toktab.C. The table is divided into three sections: primitive types, 
reserved words, and operators. The primitive types are fixed in the first six slots in the table, and must not be 
changed, since they are referenced directly from the code. The reserved words follow and must be in alphabet
ical order. The operators follow in no special order. The last entry merely marks the end of the table. 

Also in toktab.C is an index to reserved words. To speed up the search for reserved words, this table 
hashes the search using the first letter as the hash value. The reserved words that begin with that letter then 
are examined linearly. 

The operator table, in optab.c, describes a finite-state automaton that recognizes each operator in the 
language. Each state is represented by an array of structures. Each structure in the array corresponds to a 
transition on the input symbol. The structure contains three fields: an input symbol, an action, and a value 
used by the action. The recognizer starts in state 0; the current input symbol is the first character of the opera
tor. In a given state with a given input symbol, the recognizer searches the array associated with the current 
state for an entry that matches the current input symbol. Failing a match, the last entry of the array, with the 
input symbol field of 0, is used. The recognizer then performs one of the following actions, depending on the 
value of the action field: 

• goes to the new state indicated by the value field and gets the next input character 

• issues an error 

• returns the value field as a pointer to the token table entry for the operator 

• returns the value field, but pushes the current input character back onto the input. 

The difference between the last two actions is that some operators are recognized immediately (e.g., ";"), while 
others are not recognized until the character following the operator is read (e.g., "="). 

The token table and operator table are automatically constructed by the Icon program mktoktab.icn. 
This program reads the specification file tokens and builds the file toktab.C. The file tokens contains a list of 
all the tokens, their token types (given as defined constants), and any associated flags. This list is divided into 
the three sections detailed above. The program then reads the specification file optab and builds the file 
optab.c. The former is a skeleton for the operator table; it contains the state tables, but the program fills in 
the pointers to the token table entries. 



1.2 The Parser 

The parser, in the file parse.C, is automatically generated by Yacc. The grammar and semantic actions are 
contained in the file icon.g. From these specifications, Yacc generates parser tables for an LALR(l) parser. 

In addition to the grammar, icon.g contains a list of all the token types in the language and declarations 
necessary to the actions. Yacc assigns an integer value to each token type, and generates define statements, 
which are written to the file token.h. These defined constants are the token types returned by the lexical 
analyzer. 

The grammar is context-free, with actions associated with most of the rules. An action is invoked when 
the corresponding rule is reduced. The actions perform two duties: maintaining the symbol tables and con
structing the parse tree. The parse tree is built from the bottom up — the leaves are supplied by the lexical 
analyzer and the actions build trees from the leaves and from smaller trees with each reduction. 

The parser requests tokens from the lexical analyzer, building a parse tree until it reduces a procedure. At 
this point, it passes the root of the parse tree to the code generator. Once the intermediate code has been gen
erated, the parse tree is discarded, and a new tree is begun for the next procedure. 

Record and global declarations affect only the symbol table and do not generate parse trees. Files named 
in link directives produce link instructions in the ucode output. 

A complete parse tree is rooted at a proc node, which identifies the procedure and points to the subtrees 
for the initial clause (if any) and the body of the procedure. Each node in the parse tree represents a source 
program construction or some implicit semantic action. A node can contain up to six fields, the first of which 
is the node type. The second and third fields are always line and column numbers that are used for error mes
sages and tracing. Any additional fields contain information about the construction, and possibly pointers to 
subtrees. Appendix A contains a description of all the node types. 

The grammar, shown in Appendix B, has several ambiguities. The well-known "dangling else" problem 
exists not only in the if-then-else expression, but also in the while-do, until-do, every-do, and to-by 
expressions. In each of these expressions, the last clause is optional, so that when the parser sees an else, for 
example, it does not know whether to shift the token (associating it with the most recent if), or to reduce the 
preceding if-then expression (leaving the else "dangling"). The latter choice is obviously incorrect, since the 
else would never be shifted, and Yacc correctly resolves such conflicts in favor of the shift. Thus, each else is 
paired with the most recent unpaired if. All the control structures (except case) have an additional ambi
guity: they do not have a closed syntax, yet they may appear in an expression at the highest precedence level. 
For example, the expression 

x := y + if a = b then z else -z * 3 

could parse in either of two ways: 

x := y + (if a = b then z else (-z * 3)) 
x := y + (if a = b then z else -z) * 3 

This problem, too, is resolved in favor of the shift, such that the first parse is always used. Thus, in the 
absence of parentheses, the entire expression to the right of a control structure is part of the control structure. 

Little attention has been paid to error recovery. A few error productions have been placed in the grammar 
to enable Yacc to recover from syntax errors; the technique for doing so is described by Aho and Johnson [6]. 
The parser is slightly modified by the editor script pscript so that the parser state is passed to the routine 
yyerror. This routine prints an error message from the file synerr.h that is associated with the current parser 
state. This error table currently is constructed by hand from the y.OUtput file obtained by running Yacc with 
the -v option. 

1.3 The Code Generator 

The parser calls the code generator upon recognition of each Icon procedure, giving it the root of the parse 
tree. The code generator traverses the parse tree recursively, emitting ucode. Appendix C contains a descrip
tion of ucode. 

The file code.c contains both the tree node allocation and the code generation routines. The included 
header file code.h contains macros and definitions needed by the code generator, while tree.h defines the tree 
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nodes and the macros that allocate them. The macros in tree.h provide the interface between the parser and 
the code generator. 

The tree traversal routine, traverse, is a recursive procedure with one argument, a pointer to the root of a 
tree or subtree for which code is to be generated. The routine examines the type field of the root and, through 
a switch statement, generates a sequence of ucode instructions as determined by the type. If the node has sub
trees, traverse calls itself recursively at the appropriate point to generate code for the subtree. For example, 
the code generated for a binary operator first generates code for its two subexpressions, then emits the code 
that calls the appropriate run-time library routine. 

The returned value of the traversal routine is used for counting elements of expression lists. If the root of 
the tree being traversed is an elist (expression list) node, traverse returns the sum of the returned values of its 
two subtrees. Otherwise, it returns 1. This count is used when generating code for procedure calls and lists 
with explicit elements, which need to know the number of arguments to be pushed onto the stack. 

When generating code for loops, the code generator needs to save three pieces of information for each 
nested loop: the break label, the next label, and the expression nesting level. This information is kept on the 
loop stack. The break label is a label placed just past the end of the loop; it is the place where control is passed 
when the loop is finished. The next label is placed near the end of the loop, at a point where the next iteration 
of the loop can be started. The code for break and next expressions branches to these labels, but in either 
case, any incomplete expression frames (see Section 3.2) within the loop must first be popped from the stack. 
The expression nesting level counts the number of currently active expression frames within the current loop; 
an unmark instruction is generated for that many expression frames (less one for a next expression). 

The possibility of nested case expressions requires that certain information be kept on a case stack. For 
each case expression, the code generator allocates a label for the end of the expression and pushes it onto the 
case stack. When a default clause is encountered, its subtree is placed on the top of the case stack to delay 
code generation for it until the end of the case expression. 

1.4 The Symbol Table Manager 

The symbol table manager consists of the symbol table data structures and routines that operate upon 
these data structures. The source code for the symbol table manager is contained in two files. The file 
keyword.C contains only the keyword name table and is automatically constructed from a keyword specifica
tion file discussed below. The remainder of the symbol table manager is located in the file sym.c. 

The symbol table manager operates with two logical data structures, the symbol table proper and the 
string space. When the lexical analyzer identifies a token as either an identifier or a literal, the lexical analyzer 
requests the symbol table manager to enter the token into the string space. The symbol table manager returns 
a pointer into the string space for that string. The lexical analyzer then places this pointer in the token value 
node. To help keep the size of the string space small, all entries are hashed, and only one copy of any string is 
kept. This has the added benefit that two strings can be compared by checking only the pointers into the 
string space. 

The parser determines the context of the token and requests the symbol table manager to enter the token 
into the symbol table proper. It is the responsibility of the symbol table manager to verify that the use of the 
token is consistent with prior use. Appropriate diagnostics are issued if the use is inconsistent. 

The symbol table proper is physically divided into three separate structures: the global, local, and literal 
tables. Each of these tables is hashed, using the pointer into the string space as the key. Since this pointer is 
an offset into the string space, hashing is simply and effectively performed by taking the rightmost n bits of the 
offset (where 2" is the size of the hash vector for the table). 

The global table contains identifiers that have been declared as globals, procedures, or records. The local 
table holds all identifiers declared as locals, formal parameters for procedure declarations, field names for 
record declarations, and all other identifiers referenced in the procedure (including those declared as global 
elsewhere). The literal table contains entries for literal strings and csets, integers, and floating-point constants. 

Both the local and literal tables are associated with the current procedure being parsed and are written to 
the .u1 file when the procedure has been successfully parsed. If a record declaration has been parsed, then the 
local table, containing only the field name identifiers, is written to the .u2 file. After all procedure, record, 
and global declarations in a Icon source file have been parsed, the global table is written into the global 



declarations file. 

An entry into any of the three symbol table sections is a structure with three fields: a link, a name, and a 
flag. The link field holds the pointer to the next entry in the same hash bucket. The name is the pointer to the 
identifier or literal name in the string space. The flag field contains the type {formalparameter, static local, 
procedure name, etc.) of the entry. Global table entries have a fourth field, an integer providing the number of 
formal parameters for a procedure declaration, or the number of fields in a record declaration. 

Lookup in the local and global tables is merely the process of following a hash chain until an entry of the 
same name is found or until the hash chain is exhausted. If a previous entry is found, the flags of the existing 
and new entries are compared, and diagnostics are printed if the use of the new entry conflicts with the previ
ous usage. The new entry is ignored whenever such an inconsistency is found. 

The literal table uses the same lookup procedure, except the search down the hash chain stops when an 
entry is found with the same textual form and flag fields. Thus the string literal "123" and the integer literal 
123 have separate entries in the literal table, even though they have the same sttring representations. A conse
quence of this technique is that the integer literals 123 and 0123 have separate entries in the literal table, even 
though they have the same numeric value. Since most programmers use a reasonably consistent style when 
expressing literals, this technique usually does not produce many duplicate constants. 

A final task of the symbol table manager is the identification of keyword names. (Note that keywords are 
of the form &name.) The symbol table manager maintains a list of the legal keyword names and, upon 
request, returns a numeric identification for a keyword name to the parser. An automatic procedure exists for 
creating the keyword name table: the Icon program mkkeytab.icn reads the specification file keywords and 
produces the keyword name table in keyword.C. The file keywords is simply a list of the keyword names and 
a numeric identification for each. Since the number of keyword names is small, and only a few references to 
keywords are typical in an Icon program, lookup in the keyword name table is done using a linear search. 

The sizes of the respective portions of the symbol table may be altered with command line arguments to 
the Icon translator. 

2. Linker 

The Icon linker is written entirely in C. It consists of eight files of source code and three header files. The 
linker performs three tasks: combining the global symbol tables from one or more runs of the translator, 
resolving undeclared identifiers, and translating ucode to icode. The resulting combined global symbol table 
is used for determining the scope of undeclared identifiers during the second task. The second and third tasks 
are done during a single pass over each intermediate code file. A single file of assembly code is produced. 

The symbol table module, in the file Isym.c, is similar to the symbol table module of the translator, except 
that there is an additional table for storing field names of records. The input module, in the file llex.c, recog
nizes the instructions in both the global symbol table files and the intermediate code files. The global symbol 
tables are merged by the routine globals in glob.C, and the intermediate code files are produced by the rou
tines in Icode.C. Of the remaining source files, ilink.C and Imem.c contain the main program, miscellaneous 
support routines, and memory initialization. The files builtin.C and opcode.c contain table initializations for 
the list of built-in procedures (functions) and the ucode operations, respectively. 

The first phase of the linker reads the global symbol table file from each translator run, and entering all the 
global symbols into one combined table. The format of a global symbol table file is described in Appendix C. 
This phase also builds the record/field table that cross-references records and field names, and sets the trace 
flag for execution-time tracing if any of the files being linked were translated with the -t option. 

As records are entered into the global symbol table and the record/field table, they are numbered, starting 
from 1. These record numbers are used to index the record/field table at run-time when referencing a field. 

When the linker encounters a link instruction, the named file is added to the end of a linked list of files to 
be linked. The list initially consists of the files named as arguments. Names are not added to the list if they are 
already on it. 

The second phase reads each intermediate code file in sequence, emitting icode as each procedure is 
encountered. Appendix C describes the intermediate code. The intermediate code contains a prologue for 
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each procedure, beginning with a proc opcode, followed by a series of loc opcodes describing the local symbol 
table, a series of con opcodes describing the constant table, and a declend opcode terminating the prologue. 
The local symbol table contains not only local symbols, but all identifiers referenced in the procedure — glo
bal, local, or undeclared. When an undeclared identifier is entered into the local symbol table, its scope is 
resolved by the following steps: 

• if the identifier has been entered in the global symbol table, it is entered into the local symbol table 
as a global identifier 

• if the identifier matches the name of a function, it is entered into the local symbol table as a func
tion 

• otherwise it is entered as a local identifier and a warning is issued if the linker was run with the -u 
option 

The constant table contains an entry for each literal used in the procedure. 

The linker outputs icode in several regions. The first region contains constants, procedure blocks, and 
code for the Icon procedures. The next region contains the record/field table and procedure blocks for record 
constructors. The next four regions contain the global identifiers, the names of the global identifiers, the static 
identifiers, and the identifier table. The icode is a sequence of instructions, each with an opcode and, in some 
cases, operands. The sizes of opcodes and operands depend on the machine architecture and the 
implementor's judgement. On the VAX-11, opcodes are one byte long and operands are four bytes long. Most 
instructions correspond exactly to instructions in the ucode that is output by the translator. The opcode 
values are those used internally by the linker (defined in the file link/opcode.h). 

Fields are provided in the global symbol and literal tables for associating a location with each entry. As 
the prologue is being read, each cset, real, or long-integer literal entered into the literal table is output immedi
ately and its location is stored in the literal table. Thus, the locations of all constants are known before their 
reference. 

The same is true of references to procedures, since these references only occur in the initialization for glo
bal identifiers, which is not output until all procedures have been output. When the prologue for a procedure 
has been completely processed, the procedure data block is output, and its location is noted in the global sym
bol table. 

References to program labels require backpatching, since there often are forward references. Because pro
gram label references are always local to the current procedure, the linker buffers the output code for a pro
cedure. A table of values for all program labels is initialized to zero at the beginning of each procedure. When 
a label is referenced and its table entry is zero, the location of the reference is negated and stored in the table 
entry and a zero is output for the operand. If a label's table entry is negative, the location of the reference is 
negated and stored in the table entry as before, but the previous value of the table entry is output for the 
operand. This forms a linked list of references to the as-yet-undefined label. When a label is defined, each 
reference on the linked list is replaced with the correct value of the label. 

References to global and static identifiers are determined at run-time. The glob and static instructions 
have an integer operand referring to the identifier by position in the global or static identifier region. When 
one of these instructions is interpreted, the actual address is calculated from the position and the known 
address of the global or static identifier region. References to functions are also resolved at run-time. Each 
function is assigned an integer index (its position in the table of functions in builtin.c). When the global iden
tifier initialization for a function is output, the negated index is output instead of an address. The interpreter 
fills in the correct address during program initialization. 

Once the prologue has been processed, a procedure data block (see Section 3.1) is emitted. Opcodes fol
lowing the prologue represent execution-time operations, and cause code to be emitted. 

The record/field table is a two-dimensional matrix, first indexed by a field number assigned to each iden
tifier that is used as a field name, next by a record number assigned to each record type. The value at the 
selected position in the table is the index of the field in a record of the given type, or -1 if the given record type 
does not contain the given field. 

The initial value for global and static identifiers is the null value unless the global identifier is a procedure, 
function, or record constructor, in which case the initial value is a descriptor of type procedure pointing to the 



appropriate procedure data block. The values output use the data representations described in Section 3.1. 

The names of global and static identifiers are output as string qualifier descriptors (see Section 3.1) and are 
used by the function display. All string qualifiers contained in the generated procedure data blocks and glo
bal and static names point into the identifier table, which is just a static string space for that purpose. 

3. The Interpreter 

The interpreter consists of an interpretive loop and a collection of run-time routines that collectively pro
vide support for the execution of an Icon program. 

Three directories contain routines relating directly to source-language operations: functions, operators, 
and lib. The first two directories contain one routine per function or operator, respectively. The lib directory 
contains routines relating to Icon control structures. A fourth directory, rt, contains routines for performing 
common operations needed by many routines in the other three directories. In particular, rt contains routines 
that handle storage allocation and reclamation, type conversion, data comparison, integer arithmetic with 
overflow checking, generator suspension, and tracing. The directory iconx contains initialization and the 
interpreter proper. 

In each of the four run-time directories, all of the object files are archived in a Lib file which is randomized 
to speed loading. The Lib files are loaded together with a startup routine and the interpretive loop to produce 
the interpreter. 

Most of the run-time system is coded in C, but some of the routines are coded in assembly language. The 
interpretive loop and startup routines are written in assembly language, as is integer arithmetic with overflow 
checking (C does not provide this), as well as other routines concerned with stack management. 

The interpreter is loaded with the run-time libraries and the C library to form the program iconx, which 
interprets icode. 

Before the interpreter begins executing the Icon program, it reads in the icode file generated by the linker. 
The first eight words of this file contain header information indicating the total size of the rest of the file, the 
initial value of &trace, and the relative offsets from the beginning of the file to the various regions. These 
offsets are converted to actual addresses by adding the base address of the icode buffer. Several pointers in the 
icode must also be relocated. The interpreter sweeps through the global identifiers, looking for procedures, 
functions, and record constructors. For each function, it supplies the address of the appropriate procedure 
block. For each procedure, it relocates pointers from its procedure block to the procedure entry point, as well 
as to strings representing the procedure and local identifier names in the identifier table. For each record, it 
supplies the address of mkrec, the routine that constructs new records, as the entry point field in the pro
cedure block. 

The interpreter then begins execution by invoking the value of the first global identifier, which 
corresponds to the procedure main. If there is no main procedure, the first global identifier has the null value 
and a run-time error is reported. The routine invoke sets the interpreter program counter {ipc) to the entry 
point, and branches to interp, which is contained in iconx/interp.s. 

The routine interp is the main interpreter loop. It fetches the next opcode, and branches to the appropri
ate processing routine through a jump table. 

3.1 Data Representations 

Icon has two elementary forms of data objects — values and variables. Values often can be converted 
from one data type to another. When this is done automatically, it is called coercion. There are three kinds of 
variables, each discussed below: natural variables, created variables, and trapped variables. The process of 
obtaining the value referred to by a variable is called dereferencing. 

Every data object is represented by a two-word descriptor, which may, depending on the type of the object, 
contain a value or refer to some other area of memory for the actual value. The first word of the descriptor 
always indicates the data type, and the second word either contains the value or a pointer to it. There are six 
descriptor formats, shown in Appendix D: null, string qualifier, integer, value, variable, and trapped variable. 
These formats are distinguished from one another by the three high-order bits of the first word, except that a 



null descriptor is distinguished from a string qualifier only by the contents of the second word. Among 
integer, value, and trapped variable descriptors, the low-order six bits of the first word identify the type of 
object represented, while the remaining high-order bits in the first word are flags that classify the object (for 
example, whether the second word contains a pointer — historically, a "floating address" [7]). 

The null descriptor represents the null value. A string qualifier represents a string, and contains the length 
of the string and a pointer to the first character of the string. An integer descriptor represents an integer small 
enough to fit in the second word of the descriptor. This includes all integers on computers whose C ints are 
the same size as C longs (such as the VAX-11). All data types other than integer, string, and null are 
represented by value descriptors. A value descriptor contains a pointer to a data block of appropriate format 
for a value of the given type. On computers whose C longs are longer than C ints (such as the PDP-11), an 
integer that requires more bits than there are in an int is contained in a long integer data block. The data 
block formats for each data type are shown in Appendix D. 

A variable descriptor represents either a natural variable or a created variable. A natural variable contains 
a pointer to a descriptor at a fixed location (for a global identifier) or a location on the stack (for a local iden
tifier) where the value of the variable is stored. A created variable, formed by a table, list, or field reference, 
contains a pointer to a descriptor in the aggregate where the referenced element is located. Since such ele
ments are in the heap, created variables also contain an offset that indicates the distance (in words) from the 
beginning of the data block to the referenced descriptor. This offset is used during the marking phase of gar
bage collection, discussed in Section 3.3. 

A trapped variable [8] descriptor represents a variable for which special action is necessary upon dere
ferencing or assignment. Such variables include substrings, non-existent elements of tables, and certain key
words. Each type of trapped variable is distinguished by the first word of the descriptor. 

Substring trapped variables, created by a section or subscripting operation, contain a pointer to a data 
block that contains a variable descriptor identifying the value from which the substring was taken, an integer 
indicating the beginning position of the substring, and an integer showing the length of the substring. With 
this information, assignment to a substring of a variable can modify the contents of the variable properly. 
Substrings of non-variables do not produce substring trapped variables, since assignment to such substrings is 
meaningless and illegal; instead, forming the substring of a non-variable produces a string qualifier. 

Table element trapped variables, formed by referencing a non-existent element of a table, similarly contain 
a pointer to a data block that contains enough information for assignment to add the element to the refer
enced table or to supply the default table value. 

The keywords &pos, &random, and &trace are handled via trapped variables (&subject is handled dif
ferently). These trapped variables need no additional information. It is sufficient to know the type of trapped 
variable on dereferencing — the value of the keyword can be accessed and returned. On assignment, the new 
value is coerced to the appropriate type, checked for validity, and assigned to the keyword. 

Strings formed during program execution are placed in the string space; string qualifiers for these strings 
point into this region. Substrings of existing strings are not allocated again; instead, a string qualifier is 
formed that points into the existing string. When storage is exhausted in the string space, the garbage collec
tor (see Section 3.3) is invoked to reclaim unused space and compact the region; if enough space cannot be 
reclaimed, the region is expanded if possible. 

Data blocks formed during program execution are placed in the heap. Data blocks have a rigid format 
dictated by the garbage collection algorithm. The first word of the block always contains a type code which 
identifies the structure of the rest of the block. Descriptors follow all non-descriptor information in the block. 
If the size of the block is not determined by its type, the size (in bytes) is contained in the second word of the 
block. When storage is exhausted in the heap, the garbage collector is invoked to reclaim unused space and 
compact the heap; if enough space cannot be reclaimed, the heap is expanded if possible. 

Co-expression stack blocks are allocated in a separate region and are treated specially by the garbage col
lector. 



3.2 Stack Organization 

The stack is the focus of activity during the execution of an Icon program. All operators, functions, and 
procedures expect to find their arguments at the top of the stack, and replace the arguments with the result of 
their computation. Local variables for Icon procedures are also kept on the stack. The arguments, local vari
ables, and temporaries on the stack for an active Icon procedure are collectively called a procedure frame. 
This is one of several kinds of stack frames discussed in this section. Appendix E summarizes the layouts of 
the stack frames for the PDP-11 and VAX-11. See [3] for a detailed discussion of stack frames. Each co-
expression also has a stack. For uniformity, the main stack is treated as the stack for the co-expression 
&main. 

On the PDP-11 and VAX-11 stacks start in high memory and grow downward. On these computers, a 
push causes the stack pointer to decrease and a pop causes the stack pointer to increase. Thus "above" and 
"below" refer, respectively, to "older" and "newer" information on the stack. An exception to this is the phrase 
"top of the stack", which is used to refer to the lowest memory location. The description of relative stack loca
tions that follows is based on this kind of architecture and nomenclature. 

Before an Icon procedure calls another Icon procedure, the caller pushes the procedure to be called (a 
descriptor — procedures are data objects in Icon) onto the stack. The caller then pushes each argument (also 
a descriptor) onto the stack, leftmost argument first. The caller then pushes one word onto the stack indicat
ing the number of arguments supplied, which may be different from the number of arguments expected. The 
run-time library routine invoke is then called, which checks that the first descriptor pushed above actually 
does represent an integer, procedure, or a variable whose value is an integer or a procedure. An integer indi
cates the selection of one of the arguments resulting from mutual evaluation. A procedure, on the other hand, 
points to a procedure data block, which contains various information about the called procedure, including 
the number of arguments expected, the number of local variables used, and the procedure's entry point 
address. The routine invoke next adjusts the number of arguments supplied to match the number expected, 
deleting excess arguments or supplying the null value for missing ones. This adjustment is performed by mov
ing the portion of the stack below the arguments up or down, as appropriate. It then dereferences the argu
ments. A procedure marker is then pushed onto the stack, and the procedure frame pointer is set to point to 
the new procedure marker. The procedure marker contains, among other things, the return address in the cal
ling procedure and the previous value of the procedure frame pointer. Next, the null value is pushed onto the 
stack as the initial value for each local variable. The routine invoke then transfers control to the procedure's 
entry point, and execution of the Icon program resumes in the new procedure. 

When a procedure is ready to return to its caller, it pushes its return value (a descriptor) on the stack. It 
then transfers control to pret, which moves the return value to the location occupied by the descriptor that 
represented the called procedure. That is, the return value is stored in place of the first descriptor that was 
pushed at the beginning of the calling sequence described above. The return sequence then restores the state 
of the previous procedure from the current procedure marker (the procedure marker that the procedure frame 
pointer currently points to). This includes restoring the previous value of the procedure frame pointer, retriev
ing the return address, and popping the returning procedure's local variables, procedure marker, and argu
ments. Thus, when the calling procedure regains control, the arguments have been popped and the return 
value is now at the top of the stack. 

Functions and operators are written in C, and therefore obey the C calling sequence. By design, the Icon 
calling sequence described above is similar to the C calling sequence. When an Icon procedure calls a func
tion, a boundary on the stack is introduced, where the stack above the boundary is regimented by Icon stan
dards, and the stack below the boundary contains C information. This boundary is important during garbage 
collection: The garbage collector must ignore the area of the stack below the boundary, since the structure of 
this area is unknown, whereas the structure of the area above the boundary is well-defined. In particular, all 
data above the boundary is contained in descriptors or is defined by the structure of a frame, so that all 
pointers into the heap or string space may be located during a garbage collection. 

Functions and operators are written to "straddle" the boundary. From above, they are designed to resem
ble Icon procedures; from below, they are C procedures. An Icon procedure calls a function in the same way 
as it calls another Icon procedure; in fact, functions are procedure-typed data objects just as Icon procedures 
are. When invoke recognizes that a function is being called, it bypasses the argument adjustment if the field in 
the procedure data block that indicates the number of arguments expected contains - 1 , which indicates that 
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the function can take an arbitrary number of arguments. It also does not allocate stack space for local vari
ables, since any such variables are C variables and are allocated by the C function itself. C procedures have an 
entry sequence that creates a new procedure frame; since invoke has already done this, the entry point for 
functions must be set past any instructions that are involved in procedure frame creation. 

The first formal parameter of all functions is nargs, which corresponds to the word that contains the 
number of arguments supplied. For functions that expect a fixed number of arguments, they are also listed as 
arguments, in reverse order. For functions that can take an arbitrary number of arguments, there is a macro 
ARG(n) that uses the address and contents of nargs to calculate the location of the nth argument. Thus, 
ARG(1) accesses the first argument (as a descriptor), and ARG(nargs) accesses the last argument. Each 
function is responsible for supplying defaults for missing arguments and for dereferencing arguments that are 
variables. Because of the calling protocol, ARG(O) accesses the location where the return value should be 
stored. Every function must place its result there and then return through normal C conventions. Each func
tion must also supply a procedure data block that contains the number of arguments expected (or -1), its entry 
point, and a string qualifier representing its name. 

Operators are very similar to functions. The only difference is that operators are called directly (rather 
than being called through invoke) and must set the boundary themselves. 

When an operator or function fails to produce a result, it calls fail. This routine initiates backtracking as 
described below. 

Expressions are evaluated within an expression frame. When the evaluation of an expression is complete, 
whether it has produced a result or failed, the expression frame must be popped from the stack and the result 
of the expression must be pushed back onto the stack. The expression frame marks the stack height at the 
point that the expression began to be evaluated, so that the stack may be restored to its original state when the 
evaluation of the expression is complete. The stack normally would be restored to the original height (that is, 
the pops would match the pushes) except when an expression fails at some midpoint in its evaluation. The 
expression frame is also used to limit backtracking: backtracking is restricted in the language to the current 
expression instance only. 

When evaluation of an expression begins, an expression marker is pushed on the stack, the expression 
frame pointer is set to point to it, and the generator frame pointer, discussed below, is cleared. The marker 
contains the previous values of the expression and generator frame pointers and a failure label. When an 
expression produces a result, that result, on the top of the stack, is popped and saved. Then the stack is 
popped to the expression marker, and the previous values of the two frame pointers are restored. The marker 
is popped and the result of the expression is pushed back onto the stack, now a part of the previous expression 
frame. If an expression fails to produce a result, fail pops the stack to the expression marker, restores the pre
vious values of the two frame pointers, and branches to the failure label. In the special case that the failure 
label is zero, fail is effectively called again to indicate failure in the new expression frame. Thus the failure is 
propagated from one expression to an enclosing one. 

If an expression has any generators, then there is a generator frame within the current expression frame for 
each generator that is inactive (that is, that has produced a value but is not yet exhausted). A generator frame 
preserves the state of the stack at the point just before the generator (whether it be operator, function, or pro
cedure) suspended (became inactive). If fail is called and there are inactive generators, then instead of exiting 
the current expression frame, the most recently inactivated generator is reactivated by restoring the stack to 
the state saved in the most recent generator frame. 

A function or operator suspends itself by calling suspend. This routine preserves the state of the stack by 
duplicating the current expression frame, bounded on one end by the most recent generator frame (or, if there 
are no inactive generators, the current expression frame) and bounded on the other end by the beginning of 
the argument list of the suspending function or operator. A generator marker is pushed onto the stack, fol
lowed by the duplicate expression frame. The routine suspend then causes the suspending function or opera
tor to return to its caller, instead of itself returning. 

When reactivated by fail, the stack is restored to the generator marker, which is used to restore the various 
frame pointers. Then the marker is popped. The stack is then in the same state that it was in when suspend 
was called. The routine fail then returns to the generator as if the original call to suspend had returned. 
Thus the following schema is typical of operators and functions that generate a sequence of values. 
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initialize; 
while {not exhausted) { 

compute next value', 
store return value', 
suspendQ 
} 

fail(); 

The effect of resuming an expression containing generators is that suspend actually causes the generator to 
return. If alternatives are needed, backtracking occurs, and the apparent effect is that suspend has finally 
returned. The generator computes the next result, and suspends with it. When the generator is exhausted, it 
merely fails without suspending, which just passes the failure back to the next most recently inactivated gen
erator, if any. 

Just as functions and operators can return normally, suspend, or fail, so can Icon procedures. The 
mechanics are essentially the same, but the differences in stack layout require different primitives. When Icon 
procedures return normally, the return value is presumed to be at the top of the stack and pret is called. Simi
larly, Icon procedures call psusp to suspend. Both of these routines also dereference the return result if it is a 
local variable. The routine pfail causes an Icon procedure to return with no result. 

The same three primitives are also needed at the expression level: eret, esusp, and efail. Unlike unmark, 
eret is not a library routine, but is generated as in-line code. Both cause an exit from the current expression 
frame; but eret supplies a result to the enclosing expression, while unmark does not. The routine esusp 
creates a inactive generator before supplying a result to the enclosing expression; it is used by the alternation 
control structure. The routine efail simply causes backtracking within the current expression frame. In fact, 
fail and pfail merely exit their procedure frame before branching to efail. 

3.3 Storage Allocation and Reclamation 

During program execution, storage allocation is necessary when a data object is created. The three primi
tive routines allocate, alcstr, and alcestk allocate storage in the heap, string space, and co-expression stack 
space, respectively. All three routines return pointers to the beginning of newly allocated space. None of the 
routines is responsible for ensuring that enough space remains in the data regions. Ensuring that enough 
space remains in the data regions is the responsibility of a predictive need strategy described below. 

In the heap, allocate(n) returns a pointer to n contiguous bytes of storage. Because a wide variety of 
objects may reside in the heap, a number of support routines are provided to simplify the storing of various 
objects. There is a specific routine to allocate a block for each datatype in the heap. Where appropriate, these 
routines have the actual values to be stored as their arguments. All of the routines call allocate to obtain 
storage for the object. 

In the string space, alcstr(s, I) allocates room for a string of length I and copies the string pointed to by s 
into this space. Since some routines such as left, right, and center need room in the string space in which to 
construct a string, a call to alcstr with the defined constant NULL as the first argument results in the alloca
tion of storage without attempting to copy a string. 

In the co-expression stack region, alcestk() allocates a new co-expression stack. 

Source code for all of the allocation routines is contained in the file rt/alc.C. Almost all interaction with 
the storage management is made through these routines. Two exceptions occur in string concatenation 
(operators/cat.c) and reading a fixed number of bytes from a file (functions/reads.c). In these cases, it is 
simpler and more efficient to have these operations deal directly with storage management. 

As mentioned earlier, a predictive need strategy is employed to ensure that enough room remains for data 
storage. Simply put, predictive need states that it is the responsibility of any routine that calls an allocation 
routine both to ensure that enough room remains in the proper data region and to maintain the validity of any 
temporary pointers into the data regions, should a garbage collection be necessary to free storage space. 

Since the check for storage space only needs to occur before the allocation takes place, each routine may 
perform this check at its convenience. This approach permits the minimization of the number of temporary 
pointers that must be protected during garbage collection. As an aid, space for several descriptors is 
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automatically protected by the procedure invocation mechanism, and usually is used to hold information per
taining to the arguments of the procedure (see Section 3.4). 

Routines to ensure space are provided for each of the three storage regions. The routine sneed(n) ensures 
that at least n bytes of storage remain in the string space, and hneed(n) performs the same function in the 
heap. esneed() ensures that there is a co-expression stack available. If either routine finds that there is insuf
ficient storage remaining, it invokes the garbage collector in an attempt to obtain that storage. If that fails, 
then program execution is aborted with an appropriate diagnostic. 

Garbage collection, or storage reclamation, is a process that identifies all valid allocated data. In the string 
and heap regions, valid data is compacted in order to provide a contiguous area of unused storage. The algo
rithm used for identifying valid data is based upon the algorithm described by Hanson [7]. Only the more 
novel features are discussed here. 

Whenever a predictive need request discovers that insufficient storage remains in either the heap or string 
space, the garbage collector is invoked to reclaim unused space in all regions. This approach is more efficient 
in situations where all regions are heavily allocated and only slightly less efficient otherwise. 

The approach is to sweep through the permanent data regions and the stack, looking for descriptors that 
are either pointers into the heap or string qualifiers. When a string qualifier is found, a pointer to that qualif
ier is saved in a temporary data region at the end of the heap. If the descriptor is a pointer into the heap, then 
that heap data block contains valid information. The block is marked as valid, the descriptor is placed on a 
back chain headed in the block, and the marking process is called recursively on any descriptors within that 
block. Blocks that are already marked as valid are not processed a second time. To simplify the marking of 
heap blocks, all data blocks have been designed so that all descriptors within them exist as a contiguous sec
tion at the end of the block. Thus to sweep through the descriptors within a block, the marking algorithm 
need only know the size of the block and the location of the first descriptor. Information concerning a data 
block's size, as well as the offset for the first descriptor is in the file rt/dblocks.c. 

Valid co-expression stacks also may contain string qualifiers and pointers to other valid data; such stacks 
are included in the marking phase. 

After the marking phase is completed, the string region is compacted. The algorithm used is described by 
Hanson [9]. The pointers to the string qualifiers are sorted so that the order of all valid strings within the 
string space is identified. The string qualifiers are then processed in order, and modified as the valid strings 
are compacted. If this compaction does not free enough space within the string space to satisfy the request, 
the heap must be moved in order to provide more room in the string space. An attempt is also made to pro
vide some additional "breathing room" in the string space to permit future expansion. 

The heap cannot be moved until after the valid pointers into it are adjusted and the storage is compacted. 
The pointer adjustment and heap compaction phases are two linear passes through the heap which must be 
performed during standard heap garbage collection. The only difference when the heap is to be moved is that 
the adjusted pointers point to where that data will be after the heap has been moved. If not enough breathing 
room is freed in the heap, then more space is requested from the operating system. As a last step, if the string 
space needs more room, the heap is relocated. 

This method has proved to be quite satisfactory for most applications. A shortcoming of the implementa
tion is the absence of a process for decreasing the size of a data region, should it become too large. It is also 
possible that insufficient room would be available for storing the pointers to the string qualifiers, even though 
enough storage would become available if the heap were collected separately. In practice, this has not been a 
problem. The source code for the garbage collector is contained in the files rt/gcollect.s, rt/gc.C, and 
rt/sweep.c. 

3.4 Coding Conventions 

The calling conventions for functions and operators have been mentioned earlier. Several other aspects of 
the run-time system are explained here. 

All header files for the run-time system are in the directory h. The file h/rt.h (or, for assembly-language 
routines, h/defs.s) is included by almost every source file in the run-time system, and contains machine-
dependent defined constants, run-time data structure declarations, and defined constants and macros for 
flags, type codes, argument accessing, and bit manipulations. 



During the execution of an Icon program, many type conversions are done on temporary values, where 
data storage is not required beyond the bounds of the current operation. For this reason, the type conversion 
routines all operate with pointers passed to them that reference buffers in the calling procedure. Any routine 
calling for type conversion must determine if heap or string space storage is needed, and perform the alloca
tion. Most of the conversion routines return the type of the result or NULL if the conversion cannot be per
formed. One exception is cvstr which, in addition to NULL, returns 2 if the object was already a string, and 1 
if the object had to be converted to a string. This distinction makes it possible to avoid a large number of 
predictive-need checks. The second exception is cvnum, which returns either real numbers or integers and 
makes no attempt to distinguish between short and long integers. 

As mentioned in Section 3.3, there is space set aside to hold temporary descriptors and to protect the vali
dity of these descriptors during garbage collection. The garbage collector knows about this region, and tends 
it during storage reclamation. The region is defined in the file h/gc.h, and is bounded by the labels tended 
and etended. This area can be referenced from C by considering tended to be an array of descriptors. Since 
a garbage collection can occur only during a call to sneed or hneed, or between suspension and reactivation, 
the only places where C routines need to ensure that all pointers into the heap or string space are tended are 
just before calls to sneed, hneed, or suspend. 

All function names are preceded by the letter X, and their procedure blocks are preceded by the letter B. 
This prevents name collisions between Icon procedures and other routines, such as those for operators, type 
conversions, and storage management. Reference from the generated code to functions is made entirely 
through the procedure block; the entry point field of the procedure block references the function itself. 

4. Modifying the Implementation 

This section is intended to serve as a brief guide for those who wish to modify the Icon system. It is not 
comprehensive; it only points to various parts of the implementation that need to be considered when making 
various kinds of changes. 

Perhaps the most common kind of change that one might expect to make is to add new functions (built-in 
procedures). To add a function, first write it according to the conventions described in Section 3.4. (Use an 
existing function similar to the new one as a prototype. Appendix F contains several example functions.) Be 
especially careful to observe the rules concerning storage allocation and tended descriptors. 

Prepare to add the new function to the run-time library by moving the source code into the functions 
directory and adding its name to functions/Makefile (the name must be added in three places — there are 
many examples already in the Makefile). Then add the name to h/pdef.h in proper alphabetical order. Use 
other functions as a guide to the format of the entry. 

When all changes have been made to the source code, go to the Icon root directory and run 

make Icon 

This runs make in each of the system directories — tran, link, functions, operators, lib, rt, and iconx — 
and then copies the new versions into the bin directory [10]. 

Adding a new operator is more complicated. Again, the first step is to write the routine, place it in the 
operaators directory, and add the appropriate entry to the Makefile there. Next, the operator must be added 
to the translator, as follows: 

(1) Add the operator to the operator table in tran/optab; the structure of the table is described in Section 1.1. 

(2) Create a unique name for the new token and make a new token table entry in tran/tokens in the operators 
section of the table. Although the operators section of the table is in alphabetical order by token name as 
distributed, there is no need to preserve this order. 

(3) If a running Version 5 of Icon is not available, edit the files tran/optab.c and tran/toktab.c to 
correspond to the changes made in steps 1 and 2. This sometimes involves a renumbering of token table 
entries in both files (but nowhere else). If a running Version 5 of Icon is available, a make in tran executes 
mktoktab to produce the new token tables. 
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(4) Add the operator to the grammar in tran/icon.g. The token name must be added to the list of terminal 
symbols at the beginning of the grammar file, and the operator must be inserted into the syntax at the 
appropriate precedence level. If the precedence is the same as that of an existing operator, simply add the 
operator as an alternative to the existing production; otherwise, insert a new production, and change the 
production at the next lower precedence level to refer to the new one. The semantic action should create 
either a BIN OP or a UNOP node in the parse tree; use existing actions as a prototype. 

(5) The new operator must now be added to the code generator in tran/code.C. Insert a case in either of the 
routines binop or unop for the new token name that assigns a new intermediate code opcode to name, as 
for other operators — this causes the new opcode to be emitted into the ucode. The opcode should have 
the same name as the library routine that performs the operation. 

(6) The new intermediate code opcode must also be added to the linker. Add a defined constant to 
I ink/opcode, h; order here is not important. Then add the opcode name and the defined constant to 
link/opcode.C; alphabetical order must be preserved here, since a binary search is used. Then edit the 
code generator in link/lcode.c, adding a case in the routine gencode with either the binary or the unary 
operators. The standard processing here emits code that evaluates the operand(s), then calls a library rou
tine with the same name as the intermediate code opcode. 

(7) Add entries for the operator to h/pnames.h, using other operators as a guide. 

The system is then be ready to be made as described above. 

Adding a new control structure is similar in nature to adding a new operator. Most often, a new reserved 
word must be added to tran/tokens; this part of the token table must be kept in alphabetical order. The new 
token must be added to the grammar, and productions must be added, usually at the highest precedence level 
(the same as if, for example). The semantic action for the new production probably will involve creating a 
parse tree node of a new type. The new node type should be added to tran/tree.h and a new case in the rou
tine traverse (in tran/code.C) should be added to generate intermediate code. The intermediate code gen
erated can use any of the existing opcodes or can use new ones created specifically for the new control struc
ture. If new opcodes are created, they must be added to the linker as described above, and a new case in the 
routine gencode must generate code for it. The generated code can be either entirely in-line or can call a new 
library routine. If new code generation templates are needed, modify the code emission routines in 
link/lcode.c. If the code calls a new library routine, add it to the lib directory and the Makefile there. Then 
the system is ready to be made. 

Modifying the semantics of existing control structures, operators, or functions, often involves changing 
only the generated in-line code or a library routine. Modifying the syntax without disturbing any semantics 
usually requires only a change to the grammar. 

Adding a new datatype means making many of the above changes. A new datatype code must be added to 
h/rt.h and h/defs.S, and a new data block format must be defined in h/rt.h. The size and location of the first 
descriptor of the new data block must be entered in rt/dblocks.C so that the garbage collector knows how to 
treat the block. The routines in functions/image.c and rt/outimage.C must be extended so that images of 
the new datatype can be produced. The routines in functions/type.C and rt/equiv.c must also be modified to 
account for the new type. In addition, rt/anycmp.c must be extended so that objects of the new type can be 
sorted relative to other types. New functions and operators on the new type may be needed, and possibly new 
coercion routines must be added to rt. 

Adding a new keyword entails a change to tran/keywords (and, if a running Version 5 of Icon is not avail
able, to tran/keyword.h) and a new case in lib/key wo rd.c. A make in traan runs the program mkkeytab to 
produce both tran/keyword.h and tran/keyword.c. Many keywords require trapped variables, which 
requires changes to h/rt.h, operators/asgn.c, and rt/deref.c; the trapped variable for &random is a good 
model. 

As mentioned above, the examples in this section are intended to identify what parts of the system are 
affected by certain kinds of changes or extensions. A thorough understanding of the system is suggested, how
ever, for other than minor changes. 
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Appendix A — The Parse Tree 

The parse tree is a collection of nodes, described below, rooted at a proc node. Nodes have a common for
mat: the first field contains the node type, the second and third fields contain a line and column number relat
ing the node to the source program, and the next zero to four fields contain node-dependent information. The 
line and column numbers are uuusually those of the first token or the primary token of the construct; for exam
ple, in binop nodes, they are the location of the operator; in if nodes, they are the location of the if token. 

The following list of node types gives a brief description of the node and a list of the node-dependent fields 
and their uses. The fields are named val if they contain an integer value, str if they contain a pointer to a 
string, or tree if they contain a pointer to another node (a leaf or subtree). A digit between 0 and 3 is appended 
indicating its position in the node. 

Seven of the nodes — cset, id, int, op, real, res, and str — are leaf nodes. These nodes, allocated and 
returned by the lexical analyzer, represent source program tokens. The remaining nodes contain one or more 
pointers to other nodes, either leaves or subtrees. 

activat 

alt 

augop 

bar 

binop 

break 

case 

eels 

clist 

conj 

A transmission expression (el @ e2). 
treeO The operator (an op node). 
tree I el. 
tree! e2. 

An alternation expression (el \ e2). 
treeO el. 
treel e2. 

An augmented assignment expression (el 0 := el). 
treeO The operator. 
treel el. 
tree2 el. 

A repeated alternation expression (\e). 
treeO e. 

A binary operation (el O el). 
treeO The operator. 
treel el. 
tree2 e2. 

A break expression (break [>]). 
treeO e. 

A case expression (case e of {... }). 
treeO e. 
treel The list of case clauses. If there is only one case clause, this field points to the eels 

node; if there are more, it points to a clist node. 

A case clause (el : el). 
treeO el. For a default clause, this field points to a res node that contains the reserved word 

default. 
treel e2. 

A list of case clauses. The list is represented as a binary tree, with left branches pointing to case 
clauses and right branches pointing to a list of the remaining case clauses. The right branch of 
the last clist node points directly to a eels node. 

treeO A case clause (pointer to a eels node). 
treel Pointer to another clist node, or to the last eels node in the list. 

A conjunction expression (el & e2). 
treeO el. 
treel e2. 
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create A create expression (create e). 
treeO e. 

cset A leaf node representing a cset literal. 
strO The string equivalent of the literal. 
vail The length of the string. 

elist An expression list, as in a list construction or the argument list in a procedure call. An expres
sion list, like a list of case clauses, is represented as a binary tree. 

treeO An expression. 
treel Pointer to another elist node, or to the last expression in the list. 

empty This node is used as a placeholder for missing expressions in control structures and expression 
lists. 

field A field reference to a record (e . idem). 
treeO e. 
treel Pointer to an id node, containing the field name ident. 

id A leaf node representing an identifier. 
strO The name of the identifier. 

if An if expression (if el then e2 [else e3]). 
treeO el. 
treel e2. 
tree2 e3. 

int A leaf node representing an integer literal. 
strO The string representation of the literal. 

invok A procedure call or mutual evaluation expression (e ( args )). 
treeO e. 
treel The argument list args. If there is one argument, this field points to the expression; if 

there are more, it points to an elist node. 

key A keyword reference (&ident). 
valO The index of the keyword ident, defined in the file tran/keyword.h. 

limit A limitation expression (el \ e2). 
treeO el. 
treel e2. 

list A list ([el,e2,...]). 
treeO The list of elements. If there is one element, this field points to the expression; if there are 

more, it points to an elist node. 

loop A loop expression (loop el [do e2]). 
treeO The style of loop. This field points to a res node, which identifies the reserved word 

that introduced the loop. 
treel el. 
tree2 e2. 

next A next expression. 

not A not expression (not e). 
treeO e. 

op A leaf node representing an operator. 
valO The token type of the operator. 
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proc A procedure. This node is always at the root of the parse tree. 
treeO The procedure name. This field points to an id node containing the name. 
tree! The initial clause. 
tree2 The procedure body. If there is one expression in the procedure body, this field points 

to it; if there are more, it points to an elist node. 
tree3 A node containing the end token. This field is used to supply a line number for the 

implicit return at the end of a procedure. 

real A leaf node representing a real number literal. 
strO The string representation of the literal. 

res A leaf node representing a reserved word. 
valO The token type of the reserved word. 

ret A return or fail expression. 
treeO The type of return. This field points to a res node, which contains the reserved word 

return or fail. 
treel The expression following return, or a pointer to an empty node. 

scan A scanning expression (el ? e2). 
treeO The operator. 
treel el. 
treel e2. 

sect A section expression (el [e2 : e3]). 
treeO el. 
treel e2. 
tree2 e3. 

slist A list of expressions separated by semicolons, as in a procedure body (a statement list). This list, 
like expression lists and case lists, is represented as a binary tree. 

treeO An expression in the list. 
treel A pointer to another slist node, or to the last expression in the list. 

str A leaf node representing a string literal. 
strO The string value of the literal. 
vail The length of the string, necessary because the string may contain the ASCII null charac

ter, which would otherwise terminate the string. 

susp A suspend expression (suspend [e]). 
treeO e. 

toby A to-by expression (el to e2 by e3). 
treeO el. 
treel e2. 
tree2 e3. 

to A to expression (el to el). 
treeO el. 
treel e2. 

unop A unary operation (O e). 
treeO The operator. 
treel e. 
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Appendix B — Icon Grammar 

The following grammar describes the Icon language. Reserved words and operators are shown in a sans-
serif type face; nonterminals are in italics. The nonterminals ident, literal, strliteral, and empty are left unde
fined in the syntax. 

program 

decls 

— decls 

dec! — 

link 

Inklist 

empty 
decls decl 

record 
— proc 
— global 
— link 

— link Inklist 

Inkfile 
— Inklist , Inkfile 

Inkfile — ident 

— strliteral 

global — global idlist 

record — record ident ( arglist ) 

proc —• prochead ; locals initial procbody end 

prochead — procedure ident ( arglist ) 

arglist —• empty 
— idlist 

idlist — ident 
—• idlist , ident 

locals — empty 
— locals retention idlist ; 

retention — local 
— static 
— dynamic 

initial — empty 
— initial expr ; 

procbody — empty 
— nexpr ; procbody 

nexpr — empty 
— expr 

expr — expr la 
— expr & expr la 

exprla — expr/ 
— exprla ? ex/?r7 

- 19 



exprl — expr2 
— expr2 opl exprl 
— expr2 opla exprl 
— expr2 ?:= exp/7 
— expr2 &:= expr7 
— expr2 @:= exp/7 

op7 - := | :=: | < - | <-> 

opla - +:= I -:= I *:= | /:= | %:= | A:= | ++: 

— « : = I «= := I ==:= I »= := I » := I 

expr2 — expr3 
— expr2 to exprS 
— expr2 to expr3 by fjepri 

ejrpri — expr4 
— expr4 I expri 

expr4 —• expr5 

op4 — < | <= | = | >= | > | ~= 
— « I « = I = I » = I » 

expr5 — expr6 

—• expr5 op5 expr6 

op5 - II | III 

expr6 — exprl 

— expr6 op6 exprl 

op6 - + | - | ++ | — 

exprl — expr8 

— exprl opl expr8 

opl — * | / | % | ** 

exprS — exprP 
— ex/?r9 A exprS 

expr9 — exprlO 
— expr9 \ exprlO 
— expr9 @ exprlO 

exprlO — exprl 1 
—• not exprlO 
— @ exprlO 
— I exprlO 
— op/0 exprlO 

oplO - . | ! | + | - | ~ | = | * | / | \ | ? I 
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exprll 

while 

until 

every 

repeat 

if 

case 

caselist 

cclause 

return 

section 

sectop 

exprlist 

npound 

— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
— 
-~ 
— 
— 
— 
— 
— 
— 

— 
— 

— 
— 

— 
— 

-

— 
— 

— 

— 
— 

-
— 

— 
— 
— 

— 

-

— 
-» 

— 
— 

Wen/ 
literal 
& tt/e/tt 
exprll . iVfen/ 
exprll [ nexpr ] 
exprll ( exprlist ) 
exprll { exprlist } 
[ exprlist ] 
( exprlist ) 
{ compound } 
w/i/7e 
until 
every 
repeat 
next 
break nexpr 
create ex^r 
if 
case 
return 
section 

while expr 
while expr do expr 

until expr 
until expr do expr 

every expr 
every expr do expr 

repeat expr 

if expr then expr 
if expr then expr else expr 

case expr of { caselist } 

cclause 
caselist ; cclause 

default : expr 
expr : expr 

fail 
return nexpr 
suspend nexpr 

exprll [ expr sectop expr ] 

: 1 +: 1 -: 
nexpr 
exprlist , nexpr 

nexpr 
nexpr ; compound 
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Appendix C — Ucode 

The intermediate ucode generated by the Icon translator resembles a stack-oriented assembly language. A 
ucode program is a sequence of labels and instructions. A label marks a location in the program to which 
other instructions may transfer control. Labels are of the form "lab L«", where n is a decimal number. A 
ucode instruction either describes an imperative operation or communicates information to the Icon linker. 
Instructions consist of an opcode followed by zero or more arguments. Arguments can be decimal or octal 
integers, names, or label references. 

The intermediate language operates exclusively on the stack. There are several kinds of objects that can 
appear on the stack: descriptors, which represent Icon values and variables; procedure frame markers, which 
mark the beginning of a new procedure frame; expression frame markers, which delimit expression instances; 
and generator frame markers, which mark inactive generators. For more details about the stack, refer to Sec
tion 3.2. 

The opcodes and their arguments are described in three groups below. The global symbol table file has a 
similar format. The opcodes used there are described in the fourth group. 

Imperative Instructions 

The instructions below, together with the operators described in the next section, represent run-time 
actions for which code is executed. 

bscan 
Save the values of &subject and &pos on the stack and establish values for them. This operation 
is reversible. 

cease 
Duplicate the value on the stack just below the current expression frame. Used in case expres
sions. 

chfail lab 
Change the failure label for the current expression frame to lab. Used for repeated evaluation. 

coact 
Switch co-expression evaluation. Create a procedure frame on the current co-expression stack. 
Transfer the result from old stack to new stack, dereferencing if necessary. Set the activator field in 
new stack block to point to old co-expression stack block. Return from procedure frame on new 
co-expression stack. 

cofail 
Fail from current co-expression to activating co-expression. Create a procedure frame on current 
co-expression stack. Fail from procedure frame on activator's co-expression stack. 

coret 
Switch evaluation to activating co-expression. Create a procedure frame on current co-expression 
stack. Transfer the result from old stack to activator's stack, dereferencing it if the result is on the 
old stack. Return from the procedure frame on new co-expression stack. 

create 
Create a co-expression. Allocate co-expression stack and heap blocks. Copy the arguments and lo
cals variables from the current procedure frame into the heap block. Create a procedure frame in 
the new co-expression stack using the arguments and other locals from current procedure frame. 
Create a procedure frame for dummy call to coact on the new co-expression stack. Push a 
descriptor representing the new co-expression onto current co-expression stack. 

cset n 
Push a descriptor representing the cset literal at constant table location n onto the stack. 
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dup 
Push a descriptor representing the null value onto the stack, and then duplicate the value that was 
the previous top of the stack. Used in most augmented assignments. 

efail 
Signal failure in the current expression. If there are any inactive generators, reactivate the most re
cent one. If there are none, branch to the failure label for the current expression frame. If the 
failure label is null, exit the current expression frame, and signal failure in the enclosing one. 

eret 
Return a value from an expression. Save the value on top of the stack, exit the current expression 
frame, and push the value onto the stack as part of the enclosing expression frame. 

escan 
Restore &subject and &pos from the stack. This operation is reversible. 

esusp 
Suspend a value from an expression. The value on the top of the stack is saved, and a generator 
frame hiding the current expression frame is created. The surrounding expression frame is dupli
cated, and the value is pushed onto the stack as part of that expression frame. When reactivated, 
esusp in turn reactivates any inactive generators in the suspended expression. 

field name 
Access the field name of the record on the top of the stack. 

file name 
Set the file name to name for use in error messages and tracing. Used at the beginning of each 
procedure. 

goto lab 
Transfer control to the instruction following label lab. 

incres 
Increment result count field in current co-expression stack block. 

init? lab 
If the initialization statement for the current procedure has already been executed once, go to lab. 

int n 
Push a descriptor representing the integer literal at constant table location n onto the stack. 

invoke n 
Invoke a procedure or create a record. The number of arguments or fields on the stack is given by 
n. The procedure (which may be a record constructor) is on the stack, just beyond the arguments. 
After invocation, the arguments are popped from the stack, and the returned value is pushed (see 
pret). 

keywd n 
Push a descriptor representing a value or trapped variable representing keyword n onto the stack. 
(See tran/keyword.h for keyword numbers.) 

limit 
Check the value on the top of the stack for a legal limitation value. If the value is zero, failure is 
signalled in the current expression (see efail). 

line n 
Set the line number to n for use in error messages and tracing. 

Hist n 
Create a list of n values. The values are popped from the stack and the created list is pushed back 
onto the stack. 
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lsusp 
Decrement the limitation counter for the current expression frame. If the counter becomes zero, 
then return a value from the current expression frame (see eret); otherwise, suspend a value from 
the current expression frame (see esusp). 

mark lab 
Save the current expression and generator frame pointers on the stack, then create a new expres
sion frame, with failure label lab. Control is transferred to lab if failure occurs in the expression 
frame and there are no suspended generators to reactivate (see efail). The failure label LO indicates 
that control is to be transferred to the failure label in the enclosing expression. 

pfail 
Return from the current procedure, and signal failure (see efail). 

pnull 

Push a descriptor representing the null value onto the stack. 

pop 
Pop the top element off of the stack. 

pret 
Return from the current procedure with the result that is on top of the stack. 

psusp 
Suspend from the current procedure with the result that is on top of the stack. 

pushl 
Push a descriptor representing the integer 1 onto the stack. 

pushnl 
Push a descriptor representing the integer -1 onto the stack. This is used as default in mutual 
goal-directed evaluation. 

real n 
Push a descriptor representing the real literal at constant table location n onto the stack. 

refresh 
Allocate space for a new co-expression stack. Create a procedure frame in new co-expression stack 
using arguments and other locals from entry block for co-expression operand. Create a procedure 
frame for dummy call to coact on new co-expression stack. Push a descriptor representing the 
new co-expression onto current co-expression stack. 

sdup 
Duplicate the descriptor on the top of the stack. Used in assignment augmented with string scan
ning. 

str n 
Push a descriptor representing the string literal at constant table location n onto the stack. 

unmark n 
Exit from n expression frames. No value is pushed onto the stack in their place. 

var n 
Push the descriptor for the variable at location n in the local symbol table onto the stack. 

Operators 

The instructions below perform the functions corresponding to the indicated Icon operator. The operands 
are evaluated and pushed onto the stack from left to right, so that the topmost element of the stack is the right
most operand. The operands are popped before the result of the operation is pushed onto the stack. All 
operations dereference their operands as necessary, but only after all operands have been evaluated and 
pushed onto the stack. All operations attempt to convert their operands to an appropriate type. If this impli
cit conversion fails, an error is issued. Relational tests fail if the specified condition is not met; the result of a 
successful comparison is the value of the right-hand operand. Arithmetic operations cause an error to be 
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issued if the result overflows or underflows. If an operation cannot be performed for some other reason, it 
fails. 

asgn 
bang 
cat 
compl 
diff 
div 
eqv 
inter 
Iconcat 
lexeq 
lexge 
lexgt 
lexle 
lexlt 
lexne 
minus 
mod 
mult 
neg 
neqv 
nonnull 

x := y 
!x 
x II y 
~x 
x — y 
x / y 
x - - - y 
x ** y 
x III y 
x = y 
x » = y 
x » y 
x « = y 
x « y 
x ~ = y 
x - y 
x % y 
x * y 
-x 
x ~ = = 
\ x 

null 
number 
numeq 
numge 
numgt 
numle 
numlt 
numne 
plus 
power 
random 
rasgn 
rswap 
sect 
size 
subsc 
swap 
tabmat 
toby 
unioncs 
value 

/x 
+x 
x = y 
x >= y 
x > y 
x <= y 
x < y 
x ~= y 
x 4- y 
x A y 
?x 
x < - y 
x <-> y 
x[y:z] 
*x 
x[y] 
x :=: y 
=x 
x to y by z 
x ++ y 
.X 

Non-Imperative Instructions 

The following instructions generate no executable code. Instead, they communicate various information 
to the linker each procedure and its symbol table. An Icon procedure is translated into a sequence of ucode 
instructions beginning with a proc instruction, followed by a sequence of local instructions, a sequence of con 
instructions, a declend instruction, then the imperative instructions describing the procedure body. An end 
instruction terminates the procedure. 

proc name 
Begin a new procedure with the indicated name. The local and constant tables are initialized. The 
procedure block is not generated at this time, since the local identifiers have not yet been declared. 

local n.flags.name 
Enter name into the current procedure's local symbol table at location n. The symbol's flags indi
cate information about the symbol, its scope, and its retention. All identifiers referred to in a pro
cedure appear in the local symbol table. If an identifier is undeclared, its scope is determined by 
consulting the global symbol table and a list of functions. 

con n.flags, value 
Enter value into the current procedure's constant table at location n in the table. The type of the 
constant (integer, real, or string) is indicated by flags. For integer and real literals, value is an 11-
digit octal number; for string and cset literals, it is a comma-separated list of 3-digit octal numbers, 
each representing one byte in the string. 

declend 
Signal the end of the procedure prologue. The procedure block is generated at this point. 

end 
Signal the end of a procedure. 
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Global Symbol Table Instructions 

A single global symbol table file is output during each translation. Record declarations appear first in the 
file; they are output as they are encountered in the Icon source program. The first instruction following the 
record declarations is impl, which may be followed by a trace instruction, then by the global declarations. The 
global declarations are output at the end of translation. 

record name.n 
Declare a record with the indicated name and n fields. One line for each field follows this line, 
each containing the field number and name. 

impl scope 
Declare the implicit scope as indicated. Scope can be either local or error. If the implicit scope is 
error, undeclared identifiers are flagged as warnings during linking; otherwise, they are made local 
variables. The implicit scope is error if the -u option was given on the translator command line, 
otherwise it is local. 

trace 
Enable run-time tracing. This instruction is present if the -t option was given on the translator 
command line, and causes the keyword &trace to be initialized to - 1 . 

global n 
Begin the global symbol table. There are n global declarations following, one per line. Each glo
bal declaration contains a sequence number, the flags, the identifier name, and the number of for
mal parameters (for procedures) or fields (for records). 

link name 
Search each directory named in the 1PATH environment variable for a file named name.ul. If the 
file is located, it is added to the list of files to link. 
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Appendix D — Data Representations 

Descriptor Formats 

The figures below depict each of the six descriptor types mentioned in Section 3.1. Each descriptor is two 
words long; the first word is shown on top of the second. 

Null 0 

String Qualifier length 
address of string 

Integer 1 0 flags type = 1 

integer 

Value flags type > 2 
address of data block 

Variable 1 1 0 offset 
address of descriptor 

Trapped Variable 1 1 1 flags type 
address of data block 

Notes: The offset in a variable descriptor is the number of words from the top of the block in which the 
descriptor that is pointed to occurs. The second word in the descriptors for the trapped variables for &pOS, 
&random, and &trace contain addresses of locations in statically allocated data. 
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Data Block Formats 

The data blocks used by the Icon system are pictured below. The data type code, shown as both a 
mnemonic and an integer, is always the first word of the block and has the same value as the type code in the 
value or trapped variable descriptor that refers to it. All name fields in the data blocks are string qualifier 
descriptors, and all pointers in the data blocks are variable descriptors. 

Long Integer Block T_LONGINT = 2 

32-bit integer 

Note: Long integers apply only when sizeof(int) != sizeof(long) 

Real Block T_REAL = 3 

double-precision real 

Cset Block T_CSET = 4 

256-bit character set 

File Block T_FILE = 5 

UNIX file descriptor 

file status 

file name 
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Procedure Block T_PROCEDURE = 6 

size of this data block 

entry point address 

number of arguments 
number of dynamic locals 

number of static locals 
index of first static local 

— procedure name — 

— name of first identifier — 

— name of last identifier — 

Notes: Identifiers include arguments and locals. Similar blocks are used for built-in functions; in this case 
the word for the number of dynamic locals contains - 1 . For functions, there are no argument names. 
Functions like write, which have an arbitrary number of argument, are indicated by the value -1 in place 
of the number of arguments. Record constructors are distinguished from other functions by the value -2 
in place of the number of dynamic locals. Each record declaration is distinguished by a unique record 
identification number, which appears in place of the number of static locals. 

List Header Block T_LIST = 7 

current size of list 

— pointer to first list block — 

— pointer to last list block — 
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List Element Block T_LELEM = 1 

size of this data block 

number of slots in this block 

index of first slot used 
number of slots used 

— pointer to previous list block — 

pointer to next list block — 

first slot 

last slot 

Table Header Block T_TABLE=8 

current table size 

default value 

— first hash bucket 

last hash bucket 

Table Element Block 

— pointer to next element — 

T_TELEM = 10 
hash number 

entry value 

assigned value 
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Set Header Block T_SET = 20 

current set size 

— first hash bucket 

last hash bucket 

Set Element Block T_SELEM = 21 

hash number 

member value 

pointer to next member — 

Record Block T_RECORD = 9 

size of this data block 

pointer to record constructor 

first field of record — 

— last field of record 

Co-Expression Stack Block T_ESTACK = 18 

most recent activator 

stack base 

stack pointer 

address pointer 

Icon J C boundary 

number of results produced 

— pointer to refresh block — 
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Co-Expression Heap Block 

Note: Identifiers include arguments and locals. 

T_EBLOCK = 19 

size of this data block 
entry point address 

number of arguments 

number of locals 

procedure 

— value of first identifier — 

— value of last identifier — 

Substring Trapped Variable T.TVSUBS = 12 
length of substring 

relative position of substring 

— variable containing substring — 

Table Element Trapped Variable TJTVTBL = 14 

hash number 

pointer to table 

entry value 

Note: The last descriptor in a table element trapped variable is not used until the element is inserted in the 
table, at which time the table element trapped variables is converted into a table element block. 
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Appendix E — Stack Frame Formats 

Stack frame formats depend on computer architecture and the C compiler that is used. Consequently, 
stack frame formats are specific to a particular implementation. This appendix gives the UNIX PDP-11 and 
VAX-11 stack frame formats. See [3] for a detailed description of the design of stack frame formats. 

On the PDP-11 and VAX-11 stacks start in high memory and grow downward. On these computers, a 
push causes the stack pointer to decrease and a pop causes the stack pointer to increase, while "top of the 
stack" refers to the lowest memory location that is logically contained in the stack. The diagrams that follow 
are arranged accordingly. 

There are three kinds of stack frames: procedure frames, expression frames, and generator frames. For 
each kind of frame, a frame pointer points to the most recent frame marker, which marks one end of the 
frame. These frame pointers are referred to as pfp, efp, and gfp, respectively. Each frame marker contains a 
pointer to the next most recent marker of the same kind. 

PDP-11 Stack Frame Formats 

On the PDP-11, pfp, efp, and gfp are in registers r5, r4, and r3, respectively, whenever an Icon procedure is 
active. In the interpreter implementation, r2 contains the interpreter's program counter (ipc), which points to 
the next icode operation to be done. When a C procedure is active, only the procedure frame pointer is kept in 
a register: registers r2-r4 are used for local variables by C procedures. 

Procedure Frames on the PDP-11 

Icon procedure frames are augmented C procedure frames. A procedure frame contains a procedure's 
arguments, local variables, and temporary storage for incomplete computations. When an active procedure 
invokes another procedure, a new procedure frame is created for the new procedure, which then becomes 
active. AAA such, the new procedure represents an incomplete computation in the calling procedure, so the new 
procedure frame is within the old one. The procedure marker is placed on the stack between the arguments 
and local variables. The format of the procedure frame is shown below. The locations are relative to pfp. 

arguments 
4 number of arguments 
2 return address 

pfp — 0 previous pfp 
-2 previous efp 
-4 previous gfp 
-6 previous ipc 
-8 previous source program line number 

-10 previous source program file name 

Expression and generator frames are always contained wholly within a procedure frame, and their respective 
frame pointers are cleared to zero after being saved in the procedure marker. 

The first argument to a procedure is located at 6{pfp), the second at I0(pfp), and so on. The first local vari
able is located at -\4(pfp), the second at -\%(pfp), and so on. 

Procedure markers created for functions and operators do not contain the source program line number or 
file name, since functions and operators do not change it. Because they are C procedures, their local variables 
are not descriptors and are subject to C language conventions, but everything above the marker (higher 
addresses) is subject to Icon language conventions. The location of the procedure marker for functions and 
operators is considered the boundary, mentioned in Section 3.2. 
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Expression Frames on the PDP-11 

An expression frame limits the scope of backtracking. No inactive generator outside the current expres
sion frame may be reactivated until evaluation of the current expression is complete. The format of an expres
sion marker is shown below; locations are relative to efp. 

efP ~* 0 previous efp 
-2 previous gfp 
-4 failure label for expression frame 

When an expression frame is created, the generator frame pointer is cleared after being saved in the expression 
marker, to indicate that there are no inactive generators that may be reactivated while the new expression 
frame is current. An expression frame extends from its expression marker to the top of the stack. Expression 
frames are not disjoint; new frames are always nested within older ones. 

When failure occurs within an expression and there are no inactive generators to reactivate, the expression 
frame is exited, and control is transferred to the failure label. If the failure label is null, however, another 
failure occurs within the new expression frame, and the logic is the same. 

For limited expressions, the limitation counter is contained in an Icon integer just above the expression 
marker at 2{efp). This counter is decremented each time the expression suspends a result. 

Generator Frames on the PDP-11 

Generator frames are augmented procedure frames. A generator frame preserves the state of execution of 
a inactive generator. When a suspending procedure calls psusp, a generator marker is placed on the stack to 
mark the point of suspension, and the most recent expression frame outside the suspending procedure frame 
(the expression frame that was current just prior to invocation of the suspending procedure) is then duplicated 
and pushed onto the stack. The suspending procedure then returns, so that the expression frame that was 
duplicated is current. Thus, the generator frame is contained within the expression frame, and the inactive 
generator. The format of the generator marker is shown in the following table; locations are shown relative to 
gfP-

10 reactivation address 
8 previous pfp 
6 previous efp 
4 previous gfp 
2 previous ipc 

gfp — 0 previous boundary address 
-2 previous value of &level 
-4 previous source program line number 
-6 previous source program file name 

The last five words of the generator marker are actually part of a procedure marker, created by the call to 
psusp. Thus, the reactivation address is just the return address for psusp. 

When a function or operator suspends, there is a boundary that becomes hidden. This boundary address 
needs to be restored upon reactivation. It is also important to the garbage collector, since the portion of a gen
erator frame between the hidden boundary and the generator marker does not have the well-defined structure 
that is required. 

VAX-11 Stack Frame Formats 

The C frames on the VAX are variable in size and ap is used to facilitate access to the arguments. 
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Procedure Frames on the VAX-11 
On the VAX-11, there is a program counter {pc), a stack pointer (sp), a frame pointer (fp), and an argu

ment pointer (ap). These pointers are registers rl5, rl4, rl3, and rl2, respectively. Icon uses fp for pfp, rll for 
efp, and rlO for gfp. 

The procedure frame for the VAX-11 is: 

arguments 
4 number of arguments 

ap — 0 number of words in the argument list 
-4 previous efp 
-8 previous gfp 

16 previous pc 
12 previous fp 
8 previous ap 
4 program status word and register mask 

fp — 0 0 (condition handler status) 
-4 previous source program line number 
-8 previous source program file name 

local variables 

The first argument is at %(ap), the second argument is at \6(ap), and so on. The first local variable is at -16(/p). 
the second local variable is at -24(fp), and so on. 

Expression Frames on the VAX-11 

The expression frame marker for the VAX-11 is: 

efp — 0 previous efp 
-4 previous gfp 
-8 failure label for expression frame 

Generator Frames on the VAX-11 

The generator frame marker for the VAX-11 is: 

previous efp 
previous gfp 

last saved register 
20 reactivation address 
16 previous fp 
12 previous ap 
8 program status word and register mask 
4 0 (condition handler address) 

gfp —• 0 previous boundary address 
-4 previous value of &level 
-8 previous source program line number 

-12 previous source program file name 
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Appendix F — Sample Functions 

The following routines are examples of the source code for Icon functions. As indicated in the report, each 
routine consists of a C procedure that performs the indicated function and a procedure block linking the C 
procedure with the Icon procedure invocation mechanism. 

The first example is the code for the routine write, as supplied with the Icon distribution, and is included 
to show how a routine is written to handle a variable number of arguments. 

#include ". . /h/r t .h" 

/* 
* write(a, b,...) - write arguments. 

7 
Xwrite(nargs) 
int nargs; 

{ 
register int n; 
char sbuf[MAXSTRING]; 
struct descrip arg; 
FILE *f; 

f = stdout; 
arg = nullstr; 

for (n = 1; n <= nargs; n++) { 
arg = ARG(n); 
DeRef(arg); / * dereference arguments */ 

if (IQUAL(arg) && TYPE(arg) == T_FILE) { 
if (n > 1) { 

putc( ' \n' , f); 
fflush(f); 
} 

if ((BLKLOC(arg)->file.status & FS-WRITE) == 0) 
runerr(213, &arg); 

f = BLKLOC(arg)->file.fd; 
arg = nullstr; 
} 

else { 
if (n = 1 && (k_output.status & FS.WRITE) = 0) 

runerr(213, NULL); 
defany(&arg, &nullstr); 
if (cvstr(&arg, sbuf) = NULL) 

runerr(109, &arg); 
putstr(f, STRLOC(arg), STRLEN(arg)); 
} 
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putc( ' \n \ f); 
fflush(f); 
if (STRLOC(arg) >= sbuf && STRLOC(arg) < sbuf + MAXSTRING) { 

sneed(STRLEN(arg)); 
STRLOC(arg) = alcstr(STRLOC(arg), STRLEN(arg)); 
} 

ARG(O) = arg; 
} 

Procblock(write, -1) 

The -1 in the Procblock macro indicates that write takes an arbitrary number of arguments. 
The following two routines are examples of typical functions that could be added to the run-time system 

using the technique described in Section 4. 

The first of these routines, seek, interfaces to the C library routine fseek. 

#include "../h/rt.h" 

* seek(file, offset, start) - seek to offset byte from start in file. 
7 

Xseek(nargs, arg3, arg2, arg l , argO) 
int nargs; 
struct descrip arg3, arg2, arg l , argO; 

{ 
long 11, 12; 
int status; 
FILE *fd; 
long ftell(); 

DeRef(argl); 
if (argl.type != D_FILE) 

runerr(106); 

defint(&arg2, &I1, 0); 
defshort(&arg3, 0); 

fd = BLKLOC(arg1)->file.fd; 

if ((BLKLOC(arg1)->file.status = = 0 ) || 
(fseek(fd, 11, arg3.value.integer) = -1)) 

fail(); 
mkint(ftell(fd), &arg0); 

Procblock(seek, 3) 

The argument 3 in the Procblock macro indicates that seek takes three arguments. 
The routine getenv provides access to shell environment variables through the C library procedure 

getenv. 
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#include ". . /n/r t .h" 

/* 
* getenv(s) - return contents of environment variable s 

7 

Xgetenv(nargs, arg l , argO) 
int nargs; 
struct descrip argl , argO; 

{ 
register char *p; 
register int len; 
char sbuf[MAXSTRING]; 

DeRef(&arg1); 

if (!QUAL(arg1)) /* check legality of argument */ 
runerr(103, &arg1); 

if (STRLEN(argl) <= 0 || STRLEN(argl) >= MAXSTRING) 
runerr(401, &arg1); 

qtos(&arg1, sbuf); /* convert argument to C-style string */ 

if ((p = getenv(sbuf)) != NULL) { / * get environment variable 7 
len = strlen(p); 
sneed(len); 
STRLEN(argO) = len; 
STRLOC(argO) = alcstr(p, len); 
} 

else / * fail if variable not in environment 7 
fail(); 

} 

Procblock(getenv, -1) 
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