
The Icon Program Library for DOS; Version 5.9*

Ralph E. Griswold

TR 86-3

January 31,1986

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-840183I.

The Icon Program Library for DOS; Version 5.9

Introduction
This version of the Icon program library is intended for use with Version 5.9 of Icon for DOS systems [1].

Basic documentation for Version 5 of Icon is contained in the Icon book [2]. See [3] for information on addi-
tional features that are contained in Version 5.9.

The library contains both complete programs and collections of procedures. The programs range from
demonstrations and games to text-processing utilities. The procedures range from straightforward extensions
to Icon's function repertoire to such relatively esoteric subjects as programmer-defined control operations.
This manual is divided into two main parts according to the composition of the library: complete programs
and collections of procedures.

While the library provides some useful application programs and components that may be helpful in build-
ing other programs, it also provides examples of Icon programming techniques. In particular, persons who are
new to Icon may find it helpful to read the source code for the library to see how experienced persons program
in Icon. While not all of the code is the best possible — far from it — it illustrates useful idioms and a variety
programming techniques.

In the descriptions that follow, there are pointers to interesting programming techniques as well as several
suggestions for extensions and improvements to programs. Such extensions are good exercises persons who
are just starting in Icon. Some of these extensions, however, will challenge the most experienced Icon pro-
grammer.

Distribution Format
The Icon program library is distributed on a DOS-format diskette. The root directory of the library is ipl

("Icon program library"). There are three subdirectories: progs, procs, and data. Information on installing
the programs and procedures is given in the corresponding part of the manual. The subdirectory data con-
tains sample input for programs in progs. The names of programs and data files generally coincide, with the
extensions of data files providing some differentiating identification. For example, the data file csgen.abcis
input to the program csgen. There are also several files with the extension .txtthat contain English-language
text that is suitable as input to any of the programs that process text files.

Disclaimer
The material contained in the Icon program library is provided on an as-is basis. No claim is made that the

programs are free of error or that they will function properly. The responsibility for the use of library material
resides entirely with the user.

Notes of errors will be appreciated and corrections will be incorporated in future releases of the library.

New Material
Additions are made to the Icon program library from time to time. New material is welcome. Such

material should be sent on 5-!4"2S/DD diskettes to:

Icon Project
Department of Computer Science
The University of Arizona
Tucson, AZ 87521

Documentation similar in form to that provided in this manual must be included and test data should be pro-
vided where appropriate. The final decision on inclusion of material in the library resides with the Icon Pro-
ject.

Acknowledgements
Several persons have contributed programs and procedures to the Icon program library. In addition to the

author of this manual, these persons include Allan Anderson, Ward Cunningham, Tom Hicks, William Mai-
loy, Bill Mitchell, Mike Novak, Randal Schwartz, Gregg Townsend, and Steve Wampler. See the source files
for specific attributions.

- 2 -

Programs

Introduction
Programs are in the subdirectory progs. Each pro-

gram is in a separate file with the usual .icn extension.
The batch file make.bat in progs compiles the pro-
grams to make them are ready to use.

A compiled Icon program is run by iconx, as in

iconx deal
which runs the program deal obtained by compiling
deal.icn. See [1,4] for more information on compiling
and running Icon programs.

Most programs take input from standard input and
write output to standard output. Input and output can
be redirected and piped in the usual fashion. For exam-
ple,

iconx csgen <..\data\csgen.abc | more
runs the program csgen on the data file csgen.abc in
the parallel subdirectory and pipes the output through
more.

Many programs take command line arguments,
which may be the names of files to process or options
that select specific processing functions. An option is
prefixed by a dash, sometimes followed by an argument.
For example,

iconx deal -h 5
runs the program deal with the option -h and the argu-
ment 5.

If a program is not called with the proper options or
arguments, it generally terminates with an error message
such as

usage: [-h n] [-s n]
which indicates the proper usage. Some programs pro-
vide more specific errors messages. Error messages are
written to standard error output. Standard error output
is always written to the console and cannot be redirected
Consult the descriptions of the programs that follow for
details.

The programs that follow are divided into categories
by their function.

1. Demonstrations and Games

1.1 Non-Attacking Queens: queens
This program displays the solutions to the non-

attacking «-queens problem: the ways in which n queens
can be placed on an n-by-n chessboard so that no queen
can attack another. A positive integer can be given as a
command line argument to specify the number of
queens. For example,

iconx queens 8

displays the solutions for 8 queens on an 8-by-8 chess-
board. The default value in the absence of an argument

is 6. One solution for six queens is

I I Q I I I

i I I I Q I

Q

Q

Q

Comments: There are many approaches to program-
ming solutions to the n-queens problem. This library
program is worth reading for its programming tech-
niques. Other solutions may be found in [2] and [5].

1.2 Word Intersections: cross
This program takes a list of words and tries to

arrange them in cross-word format so that they intersect.
Uppercase letters are mapped into lowercase letters on
input. For example, the input

and
eggplants
elephants
purple

produces the output
+ +
I P
I u e
I r g
I P g
I elephants
I e I
I and
I n
I t
I s

Diagnostics: The program objects if the input contains a
nonalphabetic character.

Comments: This program produces only one possible
intersection and it does not attempt to produce the most
compact result. The program is not very fast, either.
There is a lot of room for improvement here. In particu-
lar, it is natural for Icon to generate a sequence of solu-
tions.

1.3 Bridge Hands: deal

This program shuffles, deals, and displays hands in

~3~

Programs

the game of bridge. An example of the output of deal is

S:
H:
D:
C:

3
T7

s:
H:
D:
C:

AKQ762
QJ94

S:
H:
D:
C:

KQ987
52
T94
T82

A652
AKQ4
3
A653

S:
H:
D:
C:

JT4
J9863
J85
K7

Options: The following options are available:
-h n Produce n hands. The default is 1.
- s n Set the seed for random generation to n.

Different seeds give different hands. The
default seed is 0.

1.4 Farberisms: farb
Dave Farber, co-author of the original SNOBOL

programming language, is noted for his creative use of
the English language. Hence the terms "farberisms" and
"to farberate". This program produces a randomly
selected farberism.
Notes: Not all of the farberisms contained in this pro-
gram were uttered by the master himself; others have
learned to emulate him. A few of the farberisms may be
objectionable to some persons. "I wouldn't marry her
with a twenty-foot pole."

2. Random Strings
The programs in this section involve the random

generation of strings according to various criteria. These
programs are only loosely related to each other.

2.1 Random Sentence Generation: rsg
This program generates randomly selected strings

("sentences") from a grammar specified by the user.
Grammars are basically context-free and resemble BNF
in form, although there are a number of extensions.

The program works interactively, allowing the user
to build, test, modify, and save grammars. Input to rsg
consists of various kinds of specifications, which can be
intermixed:

Productions define nonterminal symbols in a syntax
similar to the rewriting rules of BNF with various alter-
natives consisting of the concatenation of nonterminal
and terminal symbols. Generation specifications cause
the generation of a specified number of sentences from

the language defined by a given nonterminal symbol.
Grammar output specifications cause the definition of a
specified nonterminal or the entire current grammar to
be written to a given file. Source specifications cause
subsequent input to be read from a specified file.

In addition, any line beginning with # is considered
to be a comment, while any line beginning with = causes
the rest of that line to be used subsequently as a prompt
to the user whenever rsg is ready for input (there nor-
mally is no prompt). A line consisting of a single = stops
prompting.
Productions: Examples of productions are:

<expr>::=<term>|<term>+<expr>
<term>::=<elem>|<elem>*<term>
<elem>::=x|y|z|(<expr>)

Productions may occur in any order. The definition for a
nonterminal symbol can be changed by specifying a new
production for it.

There are a number of special devices to facilitate the
definition of grammars, including eight predefined,
built-in nonterminal symbols:

symbol
<lb>
<rb>
<vb>
<nl>
<>
<&lcase>
<&ucase>
<&digit>

definition
<
>
|
newline
empty string
any single lowercase letter
any single uppercase letter
any^single digit

In addition, if the string between a < and a > begins and
ends with a single quotation mark, it stands for any sin-
gle character between the quotation marks. For exam-
ple,

<'xyz'>

is equivalent to

x|y|z
Finally, if the name of a nonterminal symbol between the
< and > begins with ?, the user is queried during genera-
tion to supply a string for that nonterminal symbol. For
example, in

<expr>::=<?term>|<term>+<expr>

if the first alternative is encountered during generation,
the user is asked to provide a string for <term>. Note
that this is a strongly context-sensitive feature.
Generation Specifications: A generation specification
consists of a nonterminal symbol followed by a nonnega-
tive integer. An example is

<expr>10

which specifies the generation of 10 <expr>s. If the
integer is omitted, it is assumed to be 1. Generated sen-

Programs

tences are written to standard output.
Grammar Output Specifications: A grammar output
specification consists of a nonterminal symbol, followed
by ->, followed by a file name. Such a specification
causes the current definition of the nonterminal symbol
to be written to the given file. If the file is omitted, stan-
dard output is assumed. If the nonterminal symbol is
omitted, the entire grammar is written out. Thus,

->

causes the entire grammar to be written to standard out-
put.
Source Specifications: A source specification consists of
@ followed by a file name. Subsequent input is read
from that file. When an end of file is encountered, input
reverts to the previous file. Input files can be nested.
Options: The following options are available:

-S n Set the seed for random generation to n.
The default seed is 0.

-In Terminate generation if the number of sym-
bols remaining to be processed exceeds n.
There is no default limit.

-t Trace the generation of sentences. Trace
output goes to standard error output.

Diagnostics: Syntactically erroneous input lines are
noted but are otherwise ignored. Specifications for a file
that cannot be opened are noted and treated as errone-
ous.

If an undefined nonterminal symbol is encountered
during generation, an error message that identifies the
undefined symbol is produced, followed by the partial
sentence generated to that point. Exceeding the limit of
symbols remaining to be generated as specified by the -I
option is handled similarly.
Caveats: Generation may fail to terminate because of a
loop in the rewriting rules or, more seriously, because of
the progressive accumulation of nonterminal symbols.
The latter problem can be identified by using the -t
option and controlled by using the -I option. The prob-
lem often can be circumvented by duplicating alterna-
tives that lead to fewer rather than more nonterminal
symbols. For example, changing

to

<term> ::=<elem> I <elem>*<term>

<term>::=<elem>|<elem>|<elem>*<term>
increases the probability of selecting <elem> from 1/2
to 2/ 3. See [6] for a discussion of the general problem.
Comments: This program is an extension and elabora-
tion of a program described in some detail in [2]. It illus-
trates many features of Icon, including a combination of
string and list processing as well as extensive use of gen-
erators. The source code is worth studying.

There are many possible extensions to the program.
One of the most useful would be a way to specify the pro-

bability of selecting an alternative.

2.2 Context-Sensitive Generation: csgen
This program accepts a context-sensitive production

grammar and generates randomly selected sentences
from the corresponding language. See [7] for a discus-
sion of such grammars.

Uppercase letters stand for nonterminal symbols and
-> indicates the lefthand side can be rewritten by the
righthand side. Other characters are considered to be ter-
minal symbols. Lines beginning with # are considered to
be comments and are ignored. A line consisting of a
nonterminal symbol followed by a colon and a nonnega-
tive integer i is a generation specification for i instances
of sentences for the language defined by the nonterminal
(goal) symbol. An example of input to csgen is:

a(n)b(n)c(n)
Salomaa, p. 11.
Attributed to M. Soittola.

X->abc
X->aYbc
Yb->bY
Yc->Zbcc
bZ->Zb
aZ->aaY
aZ->aa
XMO

The output of csgen for this example is

aaabbbccc
aaaaaaaaabbbbbbbbbccccccccc
abc
aabbcc
aabbcc
aaabbbccc
aabbcc
abc
aaaabbbbcccc
aaabbbccc

A positive integer followed by a colon can be pre-
fixed to a production to replicate that production, mak-
ing its selection more likely. For example,

3:X->abc

is equivalent to

X->abc
X->abc
X->abc

Option: The -t option writes a trace of the derivations to
standard error output.
Limitations: Nonterminal symbols can only be
represented by single uppercase letters, and there is no
way to represent uppercase letters as terminal symbols.

There can be only one generation specification and it

Programs

must appear as the last line of input.
Comments: Generation of context-sensitive strings is a
slow process. It may not terminate, either because of a
loop in the rewriting rules or because of the progressive
accumulation of nonterminal symbols. The program
avoids deadlock, in which there are no possible rewrites
for a string in the derivation.

This program would be improved if the specification
of nonterminal symbols were more general, as in rsg.

2.3 Parenthesis-Balanced Strings: parens
This program produces parenthesis-balanced strings

in which the parentheses are randomly distributed.
Options: The following options are available:

-b n Bound the length of the strings to n left and
right parentheses each. The default is 10.

-n n Produce n strings. The default is 10.
-I s Use the string s for the left parenthesis. The

default is (.
-r s Use the string s for the right parenthesis.

The default is) .
-v Randomly vary the length of the strings

between 0 and the bound. In the absence of
this option, all strings are the exactly as
long as the specified bound.

For example, the output for

parens -v -b 4 -I "begin " -r "end "

begin end
begin end begin end
begin begin end end begin end
begin end begin begin end end
begin end
begin begin end end
begin begin begin end end end
begin end begin begin end end
begin end begin end
begin begin end begin end begin end end

Comments: This program was motivated by the need for
test data for error repair schemes for block-structured
programming langauges. See [8]. A useful extension to
this program would be some way of generating other text
among the parentheses. In addition to the intended use
of the program, it can produce a variety of interesting
patterns, depending on the strings specified by -I and -r.

2.4 Shuffled Files: shuffile
This program writes a version of the input file with

the lines shuffled. For example, the result of shuffling

On the Future!-how it tells
Of the rapture that impells

To the swinging and the ringing
Of the bells, bells, bells-

Of the bells, bells, bells, bells,
Bells, bells, bells-

To the rhyming and the chiming of the bells!

To the rhyming and the chiming of the bells!
To the swinging and the ringing

Bells, bells, bells-
Of the bells, bells, bells-
On the Future!-how it tells

Of the bells, bells, bells, bells,
Of the rapture that impells

Option: The option -s n sets the seed for random gen-
eration to n. The default seed is 0.
Limitation: This program stores the input file in
memory and shuffles pointers to the lines; there must be
enough memory available to store the entire file.

3. Text Tabulation

3.1 Character Tabulation: tabic
This program tabulates characters and lists each

character and the number of times it occurs. Characters
are written using Icon's escape conventions. Line termi-
nation characters and other control characters are
included in the tabulation.
Options: The following options are available:

Write the summary in alphabetical order of -a

-n

-u

the characters. This is the default.
Write the summary in numerical order of
the counts.
Write only the characters that occur just
once.

3.2 Word Tabulation: tablw
This program tabulates words and lists number of

times each word occurs. A word is defined to be a string
of consecutive upper- and lowercase letters with at most
one interior occurrence of a dash or apostrophe.
Options: The following options are available:

-a Write the summary in alphabetical order of
the words. This is the default.

-i Ignore case distinctions among letters;
uppercase letters are mapped into to
corresponding lowercase letters on input.
The default is to maintain case distinctions.

-n Write the summary in numerical order of
the counts.

- 6

Programs

Tabulate only words longer than n charac-
ters. The default is to tabulate all words.
Write only the words that occur just once.

4. Mailing Labels

4.1 Produce Mailing Labels: labels
This program produces labels using coded informa-

tion taken from the input file. In the input file, a line
beginning with # is a label header. Subsequent lines up
to the next header or end-of-file are accumulated and
output so as to be centered horizontally and vertically on
label forms. Lines beginning with * are treated as com-
ments and are ignored.
Options: The following options are available:

-C n Print n copies of each label.
- s s Select only those labels whose headers con-

tain a character in s.
-t Format for curved tape labels (the default

is to format for rectangular mailing labels).
- W H Limit line width to n characters. The

default width is 40.
-I n Limit the number of printed lines per label

to n. The default is 8.
-d n Limit the depth of the label to n. The

default is 9 for rectangular labels and 12 for
tape labels (-t).

-f Print the first line of each selected entry
instead of labels.

Options are processed from left to right. If the
number of printed lines is set to a value that exceeds the
depth of the label, the depth is set to the number of lines.
If the depth is set to a value that is less than the number
of printed lines, the number of printed lines is set to the
depth. Note that the order in which these options are
specified may affect the results.
Printing Labels: Label forms should be used with a pin-
feed platen. For mailing labels, the carriage should be
adjusted so that the first character is printed at the left-
most position on the label and so that the first line of the
output is printed on the topmost line of the label. For
curved tape labels, some experimentatio"ri',,friay be
required to get the text positioned properly.
Diagnostics: If the limits on line width or the number of
lines per label are exceeded, a label with an error mes-
sage is written to standard error output.

4.2 Zip Code Sorting: zipsort
This program sorts labels produced by labels in

ascending order of their postal zip codes.
Option: The option -d n sets the number of lines per
label to n. The default is 9. This value must agree with
the value used to format the labels.

Zip Codes: The zip code must be the last nonblank
string at the end of the label. It must consist of digits but
may have an embedded dash for extended zip codes. If a
label does not end with a legal zip code, it is placed after
all labels with legal zip codes. In such a case, an error
messages also is written to standard error output.

5. Laminated Files

5.1 Laminating Files: lam
This program laminates files named on the com-

mand line onto the standard output, producing a con-
catenation of corresponding lines from each file named.
If the files are different lengths, empty lines are substi-
tuted for missing lines in the shorter files. A command
line argument of the form - s causes the string s to be
inserted between the concatenated file lines.

Each command line argument is placed in the output
line at the point that it appears in the argument list. For
example, lines from filel and file2 can be laminated with
a colon between each line from filel and the correspond-
ing line from file2 by the command

lam fi lel - : file2

File names and strings may appear in any order in
the argument list. If - is given for a file name, standard
input is read at that point. If a file is named more than
once, each of its lines will be duplicated on the output
line, except that if standard input is named more than
once, its lines will be read alternately. For example, each
pair of lines from standard input can be joined onto one
line with a space between them by the command

lam - " - " -

while the command

lam filel "- " filel

replicates each line from filel.

5.2 Delaminating Files: delam
This program delaminates standard input into

several output files according to the specified fields. It
writes the fields in each line to the corresponding output
files as individual lines. If no data occurs in the specified
position for a given input line an empty output line is
written. This insures that all output files contain the
same number of lines as the input file.

If - is used for the input file, the standard input is
read. If - is used as an output file name, the correspond-
ing field is written to the standard output.

The fields are defined by a list of field specifications,
separated by commas, colons, or semicolons, of the fol-
lowing form:

- 7

Programs

n the character in column n
n-m the characters in columns n through m
n+m m characters beginning at column n

where the columns in a line are numbered from 1 to the
length of the line.

The use of delam is illustrated by the following
examples. The command

delam 1-10,5 x.txt y.txt
reads standard input and writes characters 1 through 10
to file x.txt and character 5 to file y.txt. The command

delam 10+5:1-10:1-10:80 mid x1 x2 end

writes characters 10 through 14 to mid, 1 through 10 to
x1 and x2, and character 80 to end. The command

delam 1-80;1-80 - -

copies standard input to standard output, replicating the
first eighty columns of each line twice.

5.3 Delaminating Files by Separators: delamc
This program delaminates standard input into

several output files according to the separator characters
specified by the string following the -t option. It writes
the fields in each line to the corresponding output files as
individual lines. If no data occurs in the specified posi-
tion for a given input line an empty output line is written.
This insures that all output files contain the same
number of lines as the input file.

If - is used as an output file name, the corresponding
field is written to the standard output. If the -t option is
not used, an ascii horizontal tab character is assumed as
the default field separator.

The use of delamc is illustrated by the following
examples. The command

delamc labels opcodes operands

writes the fields of standard input, each of which is
separated by a tab character, to the output files labels,
opcodes, and operands. The command

delamc - t : scores names matric ps1 ps2 ps3

writes the fields of standard input, each of which are
separated by a colon, to the indicated output files. The
command

delamc -t,: oldata f1 f2

separates the fields using either a comma or a colon.

6. Icon Program Utilities

6.1 Icon Program Cross Reference: ipxref
This program cross-references Icon programs. It lists

the occurrences of each variable by line number. Vari-
ables are listed by procedure or separately as globals.
The options specify the formatting of the output and

whether or not to cross-reference quoted strings and
non-alphanumerics. Variables that are followed by a left
parenthesis are listed with an asterisk following the
name. If a file is not specified, then standard input is
cross-referenced.
Options: The following options change the format
defaults:

-C n The column width per line number. The
default is 4 columns wide.

-I n The starting column (i.e. left margin) of the
line numbers. The default is column 40.

-w n The column width of the whole output line.
The default is 80 columns wide.

Normally only alphanumerics are cross-referenced.
These options expand what is considered:

-q Include quoted strings.
-x Include all non-alphanumerics.

Note: This program assumes the subject file is a valid
Icon program. For example, quotes are expected to be
matched.

6.2 Sort Icon Declarations: ipsort
This program reads an Icon program and writes an

equivalent program with the procedures sorted alphabet-
ically. Global, link, and record declarations come first in
the order they appear in the original program. The main
procedure comes next followed by the remaining pro-
cedures in alphabetical order.

Comments and white space between declarations are
attached to the next following declaration.
Limitations: This program only recognizes declarations
that start at the beginning of a line.

Comments and interline white space between
declarations may not come out as intended.

6.3 Icon Program Splitting: ipsplit
This progam reads an Icon program and writes each

procedure to a separate file. The output file names con-
sist of the procedure name with .icn appended. If the -g
option is specified, any global, link, and record declara-
tions are written to that file. Otherwise they are written
in the file for the procedure that immediately follows
them.

Comments and white space between declarations are
attached to the next following declaration.
Notes: The program only recognizes declarations that
start at the beginning of lines. Comments and interline
white space between declarations may not come out as
intended.

If the -g option is not specified, any global, link, or
record declarations that follow the last procedure are
discarded.

Programs

7. Miscellaneous Utilities

7.1 Line Lengths: II
This program prints the lengths of the shortest and

longest lines in files named on the command line. If
there is no command line argument, the standard input is
used. The argument - may be used to explicitly specify
the standard input.

7.2 Trimming Lines: trim
This program copies lines from standard input to

standard output, truncating the lines at n characters and
removing any trailing blanks. The default value for n is
80. For example,

trim 70 <grade.txt >grade.fix

copies grade.txt to grade.fix, with lines longer than 70
characters truncated to 70 characters and the trailing
blanks removed from all lines.

The -f option causes all lines to be n characters long
by adding blanks to short lines; otherwise, short lines are
left as is.

gle line of "cats". Another example is

grpsort -o <bibliography >bibkeys

which sorts the file bibliography and produces a sorted
list of the keys and the extents of the associated records
in bibkeys. Each output key line is of the form:

[s-e] key

where

S is the line number of the key line
e is the line number of the last line
key is the actual key of the record

7.3 Sorting Groups of Lines: grpsort
This program sorts input containing "records"

defined to be groups of consecutive lines. Output is writ-
ten to standard output. Each input record is separated
by one or more repetitions of a demarcation line (a line
beginning with the separator string). The first line of
each record is used as the key.

If no separator string is specified on the command
line, the default is the empty string. Because all input
lines are trimmed of whitespace (blanks and tabs), empty
lines are default demarcation lines. The separator string
specified can be an initial substring of the string used to
demarcate lines, in which case the resulting partition of
the input file may be different from a partition created
using the entire demarcation string.

The -O option sorts the input file but does not pro-
duce the sorted records. Instead it lists the keys (in
sorted order) and line numbers defining the extent of the
record associated with each key.

The use of grpsort is illustrated by the following
examples. The command

grpsort "catscats" <x >y

sorts the file x, whose records are separated by lines con-
taining the string "catscats", into the file y placing a
single line of "catscats" between each output record.
Similarly, the command

grpsort "cats" <x >y

sorts the file x as before but assumes that any line begin-
ning with the string "cats" delimits a new record. This
may or may not divide the lines of the input file into a
number of records different from the previous example.
In any case, the output records will be separated by a sin-

Procedures

Introduction
Collections of procedures are in the distribution

directory procs. Each collection of procedures is in a
file with the usual .icn extension. The batch file
make.bat in procs translates the procedures and leaves
intermediate code files that can be linked into other pro-
grams.

For example, to include the procedures in gener.icn
in an Icon program, the following link declaration can be
used:

link "/ipl/procs/gener"
Backslashes can be used in place of slashes in such link
declarations, but they must be escaped, as in

link "WiplWprocsWgener"

1. Bit Operations: bitops
The following procedures perform operations on

characters strings of zeros and ones ("bit strings").
and(b1, b2) logical "and" of b1 and b2
bitstring(i) convert integer i to bit string
bsum(b1,b2) arithmetic sum of b1 and b2

(used by other procedures)
decimal (b) convert b to integer
exor(b1, b2) "exclusive-or" of b1 and b2
neg(b) negation of b
or(b1, b2) logical "or" of b1 and b2

Note: If i in bitstring(i) is negative, the value produced
is the corresponding unsigned 32-bit bit string.
Bugs: Integer values that exceed those allowable in Icon
may produce bogus results or spurious diagnostics.

2. Radix Conversions: radcon
The following procedures convert numbers from one

radix to another. The letters from a to z are used for
"digits" greater than 9. All the conversion procedures fail
if the conversion cannot be made.

exbase10(i, j) convert base-10 integer i to base j
inbase10(s, i) convert base-i integer s to base 10.
radcon (s, i, j) convert base-i integer s to base j.

Limitation: The maximum base allowed is 36.

3. Complex Arithmetic: complex
The following procedures perform operations on

complex numbers.
Complex(r, i) create complex number with real

part r and imaginary part i

cpxadd (x1, x2) add complex numbers x1 and x2
cpxdiv(x1,x2) divide complex number x1 by

complex number x2
cpxmul(x1, x2) multiply complex number x1 by

complex number x2
Cpxsub(x1,x2) subtract complex number x2

from complex number x1
cpxstr(x) convert complex number x to

string representation
Strcpx(s) convert string representation s of

complex number to complex
number

4. Collated Strings: collate
These procedures collate (interleave) respective char-

acters of two strings and decollate such strings by select-
ing every other character of a string, produce a string
consisting of interleaved characters of s1 and s2.

collate(s1, s2) collate the characters of s1 and
s2. For example,

collate("abc", "def")
produces "adbeef".

decollated, i) produce a string consisting of
every other character of S. If i is
odd, the odd-numbered charac-
ters are selected, while if i is even,
the even-numbered characters are
selected.

Diagnostics: Run-time error 208 occurs if the arguments
to col late are not of the same size.

5. Emphasized Text: bold
These procedures produce text with interspersed

characters suitable for printing to produce the effect of
boldface (by overstriking) and underscoring (using back-
spaces).

bold(s) bold version of s
uscore(s) underscored version of S

6. Shuffling: shuffle
The procedure shuffle(x) shuffles a string or list. In

the case that x is a string, a corresponding string with the
characters randomly rearranged is produced. In the case
that x is a list, the values in the list are randomly rear-
ranged.

7. Segmented Strings: segment
The procedure segment(s, c) generates consecutive

substrings of s consisting of characters that respectively
do/do not occur in c. For example,

10

Procedures

segmentf'Not a sentence.", &lcase ++ &ucase)

generates

"Not"

"a"
it it

"sentence"
it tt

8. String Utilities: strutil
These procedures perform simple operations on

strings.
COmpress(s, C) compress consecutive occurrences

of characters in c that occur in s.
delete(s, c) delete all occurrences of charac-

ters in C that occur in s
rotate(S, i) rotate S i characters to the left

(negative i produces rotation to
the right); the default value of i is
1.

consists of a letter identifying the type followed by an
integer. The tag letters are L for lists, R for records, S for
sets, and T for tables. The first time a structure is
encountered, it is imaged as the tag followed by a colon,
followed by a representation of the structure. If the same
structure is encountered again, only the tag is given.

An example is

a := ["x"]
push (a, a)
t := table()
push(a, t)
t[a] := t
t ["x"] := []
t[t] := a
write(lmage(t))

which produces

T1:["x"->L1:[], L2:[T1, L2, "x"]->T1,T1->L2]

Note that a table is represented as a list of entry and
assigned values separated by ->.

9. Structure Utilities: structs
These procedures manipulate trees and acyclic

graphs (dags). The structures are represented with lists.
See [2].

depth (t) compute maximum depth of tree t
eq(x, y) compare list structures x and y
Idag (s) construct a dag from the string S
Itree(s) construct a tree from the string s
stree(t) construct a string from the tree t
tcopy(t) copy tree t
teq (t1, t2) compare trees t1 and t2
visit(t) visit, in preorder, the nodes of the

tree t
Note: The procedure Idag has a second argument that is
used on internal recursive calls; a second argument must
not be supplied by the user.

10. Icon Literal Escapes: escape
The procedure escape(s) produces a string in which

Icon quoted literal escape conventions in s are replaced
by the corresponding characters. For example,
escape(" \ \143 \ \141 \ \164") produces the string
"cat".

11. Images of Icon Values: image
The procedure Image(x) produces a string image of

the value x. The value produced is a generalization of the
value produced by the Icon function image(x), provid-
ing detailed information about structures.

Tags are used to uniquely identify structures. A tag

12. List Mapping: I map
The procedure Imap(a1,a2, a3) maps elements of

a1 according to a2 and a3. This procedure is the analog
for lists of the built-in string-mapping function
map(s1, s2, S3). Elements in a1 that are the same as ele-
ments in a2 are mapped into the corresponding elements
of a3. For example, given the lists

a1 := [1,2,3,4]
a2 := [4,3, 2,1]
a3 := ["a", "b" , "c", "d"]

then

Imap(a1,a2, a3)

changes a1 to

["d", "c", "b", "a"]

Note that the value of a1 is modified.
Lists that are mapped can have any kinds of ele-

ments. The operation

x = = = y

is used to determine if elements xand y are equivalent.
All cases in I map are handled as they are in map,

except that no defaults are provided for omitted argu-
ments. As with map, I map can be used for transposition
as well as substitution.
Warning: If Imap is called with the same lists a2 and a3
as in the immediately preceding call, the same mapping is
performed, even if the values in a2 and a3 have been
changed. This improves performance, but it may cause
unexpected effects.
Comments: It is easy to change Imap to produce a new
list instead of modifying a1; this is a good exercise for

11 -

.-«M*M

Procedures

beginning Icon programmers. The "caching" of the map-
ping table based on a2and a3also can be removed easily
to avoid the potential problem mentioned in the warning
above. / »

13. Snapshots of Scanning: snapshot
The procedure snapshot() writes a snapshot of the

state of string scanning, showing the value of &subject
and &pos. For example,

"((a+b)-delta)/(c*d))'
tab(bal('+-/*'))
snapshot()
}

? {

produces

| &subject = " ((a + b) - d e l t a) / (c * d)) " |

Note that the bar showing the &pos is positioned under
the &posth character (actual positions are between char-
acters). If &pos is at the end of &subject, the bar is
positioned under the quotation mark delimiting the sub-
ject. For example,

"abcdefgh" ? (tab(O) & snapshotQ)

produces

&subject = "abcdefgh"

Escape sequences are handled properly. For example,

"abc\tdef\nghi" ? (tab(upto('\n')) & snapshots

produces

I &subject = "abc \ tde f \ngh i " |

14. Miscellaneous Generators: gener
These procedures generate sequences of results.

sequence of hexadecimal codes
for numbers from 0 to 255
sequence of labels with prefix s
starting at i

for

hex()

label(s, i)

octal()

star(s)

sequence of octal codes
numbers from 0 to 255
sequence consisting of the closure
of s starting with the empty string
and continuing in lexical order as
given in s

15. Result Sequences: seqimage
The procedure Seqimage{e, i, j} produces a string

image of the result sequence for the expression e. The
first i results are printed. If i is omitted, there is no limit.
If there are more than i results for e, ellipses are provided
in the image after the first i. If j is specified, at most j
results from the end of the sequence are printed after the
ellipses. If j is omitted, only the first i results are pro-
duced.

For example, the expressions

Seqimage{1 to 12}
Seqimage{1 to 12,10}
Seqimage {1 to 12,6,3}

produce, respectively,

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}
{1, 2, 3, 4, 5, 6, 10, 11, 12}

Warning: If j is not omitted and e has a infinite result
sequence, Seqimage does not terminate.

16. SNOBOL4 Pattern Matching: patterns
These procedures provide procedural equivalents for

most SNOBOL4 patterns and some extensions. See [9-
11]. Procedures and their pattern equivalents are:

Any(s)
Arb()
Arbno(p)
Arbx(i)
Bal()
Break(s)
Breakx(s)
Cat(p1,p2)
Discard(p)
Exog(s)
Find(s)
Len(i)
Limit(p, i)
Locate(p)
Marb()
Notany(s)
Pos(i)
Replace(p, s)
Rpos(i)
Rtab(i)
Span(s)

ANY(S)
ARB
ARBNO(P)
ARB(I)
BAL
BREAK(S)
BREAKX(S)
P1 P2
/P
\ S
FIND(S)
LEN(I)
P \ i
LOCATE(P)
longest-first ARB

NOTANY(S)
POS(I)
P = S
RPOS(I)
RTAB(I)
SPAN(S)

- 12

Procedures

'*•$*-

String (s) S
Succeed() SUCCEED
Tab(i) TAB(I)
Xform(f, p) F(P)
The following procedures relate to the application

and control of pattern matching:
Apply(s, p) S ? P
Mode() anchored or unanchored match-

ing (see Anchor and Float)
Anchor() &ANCHOR = 1 if Mode :=

Anchor
Float() &ANCHOR = 0 if Mode :=

Float
In addition to the procedures above, the following
expressions can be used:

p1()|p2() P1|P2
v <- p() P . V (approximate)
v := p() P $ V (approximate)
fail FAIL
=s S (in place of String (s))
p1 () 11 p2() P1 P2 (in place of Cat(p1, p2))

Using this system, most SNOBOL4 patterns can be satis-
factorily transliterated into Icon procedures and expres-
sions. For example, the pattern

SPAN("0123456789") $ N " H " LEN(*N) $ LIT

can be transliterated into . >

(n <- Span('0123456789')) || ="H" ||
(lit <- Len(n))

Concatenation of components is necessary to preserve
the pattern-matching properties of SNOBOL4. See the
documents referenced above for details and limitations.
Caveats: Simulating SNOBOL4 pattern matching using
the procedures above is inefficient.

17. Defined Control Operations: pdco
These procedures use co-expressions to used to

model the built-in control structures of Icon and also
provide new ones. See [12].

Alt{e1,e2} models e1 | e2
Colseq{e1,e2,. . .} produces results of e1, e2, ...

alternately
Comseq {e1, e2} compares result sequences of

e1and e2
Cond{e1, e2, . . .} models the generalized Lisp

conditional

Galt{e1,e2,...}

Lcond{e1,e2,...
Limit fe1,e2}
Ranseq{e1,e2,.

models generalized alterna-
tion: e1 | e2 |
models the Lisp conditional
models e1 \ e2
produces results of e1, e2, ...
at random

Repaltfe} models |e
Resume {e1, e2, e3} models every e1 \ e2 do e3
Select{e1, e2} produces results from e1 by

position according to e2
Comments: Because of the handling of the scope of local
identifiers in co-expressions, expressions in
programmer-defined control operations cannot com-
municate through local identifiers. Some constructions,
such as break and return, cannot be used in arguments
to programmer-defined control operations.

18. Defined Control Regimes: pdae
These procedures use co-expressions to model the

built-in argument evaluation regime of Icon and also
provide new ones. See [13].

Allpar{e1,e2,...} parallel evaluation with last
result used for short sequences

Extract{e1,e2,...} extract results of even-
numbered arguments accord-
ing to odd-numbered values

Lifo{e1,e2,...} models standard Icon "lifo"
evaluation

Parallel{e1, e2, . . .} parallel evaluation terminat-
ing on shortest sequence

Reverse{e1,e2, . . .} left-to-right reversal of lifo
evaluation

Rotate {e1,e2, . . .} parallel evaluation with
shorter sequences re-evaluated

Simple{e1, e2, . . .} simple evaluation with only
success or failure

Comments: Because of the handling of the scope of
local identifiers in co-expressions, expressions in
programmer-defined argument evaluation regimes
cannot communicate through local identifiers. Some
constructions, such as break and return, cannot be
used in arguments to programmer-defined argument
evaluation regimes.

At most 10 arguments can be used in the invoca-
tion of a programmer-defined argument evaluation
regime. This limit can be increased by modifying
Call, a utility procedure that is included.

Every{e1,e2} models every e1 do e2

13

References

I. R. E. Griswold, Version 5.9 of Icon for MS-
DOS, The Univ. of Arizona Tech. Rep., Dec.
1985.

2. R. E. Griswold and M. T. Griswold, The leon
Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1983.

3. R. E. Griswold, Extensions to Version 5 of the
leon Programming Language, The Univ. of
Arizona Tech. Rep., Dec. 1985.

4. R. E. Griswold, The. Translation and
Execution of leon Programs under MS-DOS,
The Univ. of Arizona Tech. Rep., Dec. 1985.

5. R. E. Griswold, Programming in leon;
Problems and Solutions from the Icon
Newsletter, The Univ. of Arizona Tech. Rep.
86-2, Jan. 1986.

6. C. S. Wetherwell, "Probablistic Languages: A
Review and Some Open Questions",
Computing Surveys 12,4 (1980),362-379.

7. A. Salomaa, Formal Languages, Academic
Press, 1973.

8. D. B. Anderson and M. R. Sleep, "Uniform
Random Generation of Balanced Parenthesis
Strings", ACM Trans. Prog. Lang. and
Systems 2, I (1980), 122-128.

9. R. E. Griswold, Pattern Matching in leon, The
Univ. of Arizona Tech. Rep. 80-25.

10. R. E. Griswold, Models of String Pattern
Matching, The Univ. of Arizona, Tech. Rep.
81-6, May 1981.

II. A. C. Fleck, "Formal Models for String
Patterns", in Current Trends in Programming
Methodology; Data Structuring, vol. IV,
Prentice-Hall, Inc., Englewood Cliffs, NJ,
1978,216-240.

12. R. E. Griswold and M. Novak, "Programmer-
Defined Control Operations", Computer J. 26,
2 (May 1983), 175-183.

13. M. Novak and R. E. Griswold, Programmer-
Defined Argument Evaluation Regimes, The
Univ. of Arizona Tech. Rep. 82-16, Dec. 1982.

