
Programming in Icon; Part II — Programming with 
Co-Expressions* 

Ralph E. Griswold 

TR87-6 

June 4,1987 

Department of Computer Science 

The University of Arizona 

Tucson, Arizona 85721 

*This work was supported by the National Science Foundation under Grant DCR-8401831. 





Programming in Icon; Part II — Programming with 
Co-Expressions 

1. Introduction 
This report is the second in a series that deals with various aspects of programming in Icon. The first report [1] 

dealt with generators. Co-expressions are the topic of this second report for two reasons: (1) they derive their util
ity from generators, and (2) they seem to present more problems to programmers than other features of Icon. 

The first two parts of this report treat the basic aspects of co-expressions and their common uses. The third part 
describes the use of co-expressions to provide programmer-defined control operations. More advanced uses of co-
expressions are covered in the final part. Appendices contain examples illustrating programming techniques and 
exercises for interested readers. 

This report assumes a familiarity with Version 6 of Icon [2], although co-expressions themselves are described 
in detail here. A good understanding of generators [1] is a prerequisite for the material that follows. 

Some features of co-expressions that are described in this report were added in Version 6.4 of Icon. Such 
features are noted. 

2. Basic Features of Co-Expressions 

2.1 Motivation 

Generators are a central feature of Icon. They contribute more to its distinctive character than any other feature 
of the language. The results that a generator produces are determined by control structures. For example, 

every write(find(s1,s2)) 

causes the generator find to produce all of its results. Goal-directed evaluation has no visible representation in the 
syntax of Icon and is implicit in all expression evaluation, but it also is a control structure. For example, 

if i = find(s1,s2) then write(i) 

causes find to produce its results only until one of them is equal to i. If none of the results is equal to i, all results 
are produced in the process of attempting to satisfy the comparison. In both cases, the situation can be understood 
in terms of the suspension of a generator when it produces a result and its resumption by the control structure to pro
duce another result. 

The use of control structures to cause generators to produce results allows concise and natural programming 
styles in many situations. A generator can produce its results only at the site of its evaluation, however. Further
more, its results can be produced only in the order determined by control structures. Nested generators are resumed 
in a lifo fashion, producing a 'cross-product' form of evaluation. This order of evaluation corresponds to a depth-
first production of results, which is natural and useful in problems that involve searching a solution space. However, 
there is no way of producing the results of generators in parallel using the control structures provided by Icon. For 
example, 

every write((4 to 6) + (0 to 2)) 

writes 4, 5,6, 5,6,7,6,7,8, not 4,6,8. 
Co-expressions are motivated by the need to free generators from the sites where they appear and to obtain their 

results as needed. 

- 1 



2.2 Co-Expression Creation 

A co-expression is a data object that contains a reference to an expression and an environment for the evaluation 
of that expression. A co-expression is created by the control structure 

create expr 

The create expression does not evaluate expr. Instead, it produces a value of type co-expression that references 
expr. This value can be assigned to a variable, passed to a procedure, returned from a procedure, and in general 
handled like any other value. A co-expression contains not only a reference to its argument expression, but also a 
copy of the dynamic local variables for the procedure in which the create appears. These copied variables have the 
same values as the corresponding dynamic local variables at the time the create expression is evaluated. This 
effectively frees expr from the place in the program where it appears and provides it with an environment of its 
own. 

An example is 

procedure writepos(s1 ,s2,s) 
locsl := create find(s1,s) 
locs2 := create find(s2,s) 

end 

Here locsl and IOCS2 are assigned co-expressions corresponding to the expressions find(s1 ,s) and find(s2,s), 
respectively. 

The reserved word create has lower precedence than any operator symbol. For example, 

articles := create "a" | "an" | "the" 

groups as 

articles := create ("a" | "an" | "the") 

Parentheses are used in this report for clarity in most examples, although they usually are unnecessary. 

2.3 Activation of Co-Expressions 
Control is transferred to a co-expression by activating it with the operation @e. At this point, execution contin

ues in the expression referenced by e. When this expression produces a result, control is returned to the activating 
expression and the result that is returned becomes the result of the activating expression. For example, 

write(@articles) 

transfers control to the expression 

"a" | "an" | "the" 

which produces the result "a" and returns to the activating expression, where that result is written out. 

If the co-expression is activated again, control is transferred to the place in its expression where it last produced 
a result, and execution continues there. Thus, subsequent to the activation above, 

second := ©articles 

assigns "an" to second and 

third := ©articles 

assigns "the" to third. If article is activated again, the activation fails because there are no more results for the 
expression that is resumed. In general, the activation operation produces at most one result and fails when all results 
of the co-expression have been produced. Consequently, 

while write(@locs1) 

writes out all the positions at which s1 occurs in S and the loop terminates when find(s1 ,S) has no more results and 
@locsl fails. Note that this expression produces the same results as 

- 2 -



every write(find(s1 ,s)) 

In general, in the absence of side effects 

|@e 
has the same result sequence as the expression referenced by e. Activation may occur at any time and place, how
ever, while producing results by iteration is confined to the site at which the expression occurs. 

An important aspect of activation is that it produces at most one result. Therefore, the results of a generator can 
be produced one at a time, where and when they are needed. For example, the results of generators can be intermin
gled, as in 

while write(@locs1," ",@locs2) 

which writes the locations of S1 and S2 in s, side-by-side in columns. Since activation fails when there are no more 
results, the loop terminates when either of the generators runs out of results. 

The result produced by a co-expression is dereferenced according to the same rules that apply to procedures 
[2] . Specifically, if the result is a dynamic local variable, it is dereferenced. 

2.4 Refreshing Co-Expressions 
Since activation produces the next result for a co-expression, it has the side effect of changing the 'state' of the 

co-expression, and effectively consumes a result, much in the way the reading the line of a file consumes that line. 
Sometimes it is useful to 'start a co-expression over'. Although there is no way to reset the state of a co-expression 
to its initial value at the time of its creation, the operation *e produces a 'refreshed' copy of a co-expression e. The 
term 'refresh' is somewhat of a misnomer, since it sounds like e is refreshed; in fact, it does not change e, but 
instead produces a new co-expression. Typical usage is 

e := "e 

It is worth noting that copy(e) simply returns e; it does not produce a physically distinct copy of e. There is no 
way to make a physically distinct copy of a co-expression in its current state. 

2.5 Number of Values Produced 

The 'size' of a co-expression, given by *e, is the number of results it has produced. Each successful activation 
of a co-expression increments its size (which starts at 0). For example, 

if *e = 0 then write(@e) 

writes a result for e, provided it has not yet produced a result. Of course, @e fails if there are no results at all. 
Similarly, 

while @e 
write(*e) 

writes the number of results in the result sequence for the expression referenced by e. Such usage obviously is risky, 
since an expression may have an infinite result sequence. 

2.6 Co-Expression Environments 
As mentioned earlier, a co-expression is created with copies of the dynamic local variables for the procedure in 

which the create expression occurs. These copies have the values of the corresponding local variables at the time 
the create expression is evaluated. This aspect of co-expression creation has several implications. 

Since every co-expression has its own copies of dynamic local variables, two co-expressions can share a vari
able only if it is global or static. Copies of local variables may lead to programming mistakes, since the names of the 
variables in co-expressions are the same, making the variables appear to be the same. 

Page 133 of this book states that all results produced by co-expressions are dereferenced. That is incorrect. 

- 3 -



When a new co-expression is created by "e, copies of the dynamic local variables are made again, but with the 
values they had at the time that e was created. Consider, for example, 

local i 
i := 1 
seql := create |(i *:= 2) 
i := 3 
seq2 := create |(i *:= 2) 

The results produced by successive activations of seql are 2, 4, 8, 16,... , while the results produced by seq2 are 
3,6,12,24,.... Then, for 

seq3 := "seql 

the results produced by seq3 are 2,4,8, 16, ..., since the initial value of i in seql is 1 and it is not effected by the 
subsequent assignment of 3 to i — the two variables are distinct. 

2.7 String Images of Co-Expressions 

The function image(e) produces a string image of the co-expression e with an identifying number and its 'size'. 
For example, if e is the fifth co-expression created during program execution and it has produced 10 results, then 
image(e) is 

co-expression #5 (10) 

Note: The identifying number was added in Version 6.4 of Icon; prior to that, only the size was given. 

3. Using Co-Expressions 

As mentioned earlier, co-expressions are useful in situations in which the production of the results of a generator 
needs to be controlled, instead of occurring automatically as the result of goal-directed evaluation or iteration. Since 
most of the utility of co-expressions comes from generators, most co-expression applications depend on the use of 
generators. 

3.1 Labels and Tags 

In some situations a sequence of labels or tags is needed. For example, an assembler may need a source of 
unique labels for referencing the code it produces, while a procedure that traverses a graph may need tags to name 
nodes. 

A generator, such as 

"L" || (1 to limit) 

is a convenient way of formulating a sequence of labels. However, in an assembler, the need for a new label occurs 
at different times and places in the program and a single generator such as the one above cannot be used. One solu
tion to this problem is to avoid generators and use a procedure such as 

procedure label(limit) 
static i 
initial i := 0 
if i = limit then fail 
else return "L" || (i +:= 1) 

end 

Thus, label() produces the next label. 
The use of such a procedure gives up the power of expression evaluation in Icon, since it encodes, at the source 

level, the computation that a generator does internally and automatically. To use a generator, a co-expression such 
as 



label := create ("L" || (1 to limit)) 

suffices. Here, @label produces the next label. 

3.2 Parallel Evaluation 

One of the common paradigms that motivates co-expression usage is the generation of results from generators in 
parallel. Consider, for example, producing a tabulation showing the decimal, hexadecimal, and octal values for all 
the characters in &cset, along with the images of the corresponding characters. The values for each column are 
easily produced by generators: 

0 to 255 

!"0123456789ABCDEF" || !"0123456789ABCDEF" 

(0 to 3) || (0 to 7) || (0 to 7) 

image(!&cset) 

However, in order to produce a tabulation, the results of these generators are needed in parallel. This cannot be done 
by simple expression evaluation. The solution is to create a co-expression for each generator and to activate them in 
parallel: 

decimal := create (0 to 255) 
hexadecimal := create (!"0123456789ABCDEFH || !"0123456789ABCDEF") 
octal := create ((0 to 3) || (0 to 7) || (0 to 7)) 
character := create image(!&cset) 

Then an expression such as 

while write(right(@decimal,3)," ".©hexadecimal," ",@octal," ".(©character) 

can be used to produce the tabulation: 

0 00 
1 01 
2 02 
3 03 
4 04 

98 61 
99 62 
100 63 
101 64 

251 FB 
252 FC 
253 FD 
254 FE 
255 FF 

Another example of parallel evaluation occurs when the results produced by a generator are to be assigned to a 
sequence of variables. Suppose, for example, that the first three results for f ind(s1 ,s2) are to be assigned to x, y, and 
z, respectively. This can be done as follows: 

loc := create find(s1,s2) 
every (x | y | z) := @loc 

Of course, if find(s1 ,s2) has fewer than three results, not all of the assignments are made. 

- 5 -

II 

1 

000 
001 
002 
003 
004 

141 
142 
143 
144 

373 
374 
375 
376 
377 

©hexadecimal," 

"\000" 
"\001" 
"\002" 
"\003" 
"\004" 

"a" 
"b" 
"c" 
"d" 

"\373" 
"\374" 
"\375" 
"\376" 
"\377" 



3.3 Result Sequences 

Result sequences [1] describe the capability that expressions have to produce results. For example, the expres
sion 1 to 5 is capable of producing 1,2,3,4, and 5 and has the result sequence {1,2, 3,4,5}. This is written 

5(1 to 5)= {1,2,3,4,5} 

Of course, the results that 1 to 5 actually produces depends on the context in which it is evaluated. A result 
sequence is just an abstraction for the potential results of an expression. 

As an abstraction, result sequences provide a useful tool for program formulation. For example, it may be useful 
to think in terms of an expression that produces the positive integers or one that produces all the five-letter words in 
a file. Given this approach to conceptualizing a program, the problem becomes one of producing desired sequences. 

Several paradigms and numerous examples of expressions that produce various kinds of sequences are given in 
[1], Co-expressions provide many ways for producing expressions that have result sequences that cannot be formu
lated on the basis of generators alone, or that can be formulated using generators only with great difficulty. 

The basic relationship between the results produced by an expression expr and the co-expression 

e := create expr 

is given by 

Siexpr) = 5(|@e) 

In order for this relation to hold, expr must be invariant. That is, its result sequence must be self-contained and 
time-independent [1] — it must not depend on any factors outside of expr, and it must produce the same result 
sequence whenever it is evaluated. This does not mean that expr cannot have side effects, but it does mean its result 
sequence cannot depend on side-effects. For example, 

{i := 0; 1 to i} 

is invariant, but 

{1 to i} 

is not, in general. The formulations that follow assume that all expressions are invariant. 

The flexibility that co-expressions provide in the formulation of result sequences is illustrated by one that pro
duces only the even-numbered results in the result sequence for expr. 

|(@e,@e) 

where 

e := create expr 

Similarly, the result sequences for exprj and expn can be interleaved by 

|(@e1 | @e2) 

where 

e1 := create expri 
e2 := create expn 

Note that such formulations depend on the fact that the activation of a co-expression produces at most one result. 

4. Programmer-Defined Control Operations 
Control structures are provided so that the flow of control during program execution can be modified depending 

on the results produced by expressions. In Icon, most control structures depend on result sequences. For example, 
the result sequence for 

if expn then expri else expn 

depends on whether or not the result sequence for expn is empty. 



Icon's built-in control structures are designed to handle the situations that arise most often in programming. 
There are many possible control structures in addition to the ones that Icon provides (parallel evaluation is perhaps 
the most obvious). 

Co-expressions make it possible to extend Icon's built-in repertoire of control structures. Consider a simple 
example of parallel evaluation: 

procedure parallel(e1, e2) 
local x 
repeat { 

if x := @e1 then suspend x else fail 
if x := @e2 then suspend x else fail 
} 

end 

where e1 and e2 are co-expressions. For example, the result sequence for 

parallel(create !&lcase, create !&ucase) 

is {"a", "A", "b", "B",... "z", "Z"}. In this case, both co-expressions have the same number of results. In general, the 
result sequence for parallel(e1 ,e2) terminates when either e1 or e2 runs out of results. 

This formulation of parallel evaluation is cumbersome, since the user must explicitly create co-expressions for 
each invocation of parallel. Icon provides a form of procedure invocation in which the arguments are passed as a 
list of co-expressions. This form of invocation is denoted by braces instead of parentheses, so that 

p{exprlt expn exprH) 

is equivalent to 

p([create expn, create exprz create exprn]) 

Thus, p is called with a single argument, so that of an arbitrary number of co-expressions can be given. 

Using this facility, parallel evaluation can be formulated in as follows: 

procedure Parallel(a) # called as Parallel {expr1,expr2} 
local x 
repeat { 

if x := @a[1] then suspend x else fail 
if x := @a[2] then suspend x else fail 
} 

end 

For example, the result sequence for Parallel{!&lcase, !&ucase} is {"a", "A", "b", "B",... "z", "Z"}. 

It is easy to extend parallel evaluation to an arbitrary number of arguments: 

procedure Parallel(a) # called as Parallel{expr1,expr2, ....exprn} 
local x, e 
repeat 

every e := !a do 
if x := <3>e then suspend x else fail 

end 

Another example of the use of programmer-defined control operations is a procedure the generalizes alternation 
to an arbitrary number of expressions: 

procedure Alt(a) # called as Alt{expr1,expr2 exprn} 
local x 
every x := !a do suspend |@x 

end 

- 7 -



Some operations on sequences are more useful if applied in parallel, rather than on the cross product of results. 
An example is 

procedure Add(a) # called as Add{expM,expr2} 
suspend |(@a[1] + @a[2]) 

end 

String invocation [3] often can be used to advantage in programmer-defined control operations. An example is a 
procedure that 'reduces' a sequence by applying a binary operation to successive results: 

procedure Reduce(a) # called as Reduce {op, expr} 
local op, opnds, result 
op := @a[1] | fail # get the operator 
opnds := a[2] # get the co-expression for the operands 
result := op(@opnds, @opnds) | fail 
while result := op(result, @opnds) 
return result 

end 

For example, the result of Reduce{"+",1 to 10} is 55. 
Another application for programmer-defined control operations is in production of a string representation of a 

result sequence: 

procedure Seqimage(a) # called as Seqimage{expr, i} 
local seq, result, i 
seq := "" 
i := @a[2] | 10 # limit on number of results 
while result := image(@a[1]) do { 

if *a[1] > i then { 
seq ||:= ", ..." 
break 
} 

else seq ||:= ", " || result 
} 

return "{" || seq[3:0] || "}" | "{}" 
end 

For example, the result produced by Seqimage{!&lcase} is {"a", "b", "c", "d", "e", T , "g", "h", "i", "j",...}. 

There are many other applications of programmer-defined control operations. See [4,5]. 

5. Advanced Uses of Co-Expressions 

Although co-expressions are motivated by the need to control the results produced by generators, they also can 
be used as coroutines. A general description of coroutine programming is beyond the scope of this report; see [6-8], 

Note: In Versions 6.0 through 6.3 of Icon, the activation of an active co-expression was prohibited because of a 
problem in the implementation. That restriction was lifted in Version 6.4. Most of the material in the following sec
tions depends on the ability to activate an active co-expression. 

5.1 Transfer of Control Among Co-Expressions 
As illustrated earlier, a co-expression can transfer control to another co-expression by two means: 

• Activating it explicitly, as in @e. 

• Returning to it implicitly by producing a result. 
Despite the appearance of dissimilarity between these two means for transferring control, they really are symmetric. 

It is important to understand that transferring control from one co-expression to another by either means changes 
the place in the program where execution is taking place and changes the environment in which expressions are 



evaluated. Unlike procedure calls, however, transfer of control among co-expressions is not hierarchical. 

This is illustrated by the use of co-expressions as coroutines. Consider, for example, the following program: 

global E1, E2 

procedure main() 

E1 := create note(E2, "co-expression E2") 
E2 := create note(E1, "co-expression E1") 

@E1 

end 

procedure note(e,tag) 
local i 

i := 0 

repeat { 
writefactivation ",i +:= 1," of ",tag) 
@e 
} 

end 

When E1 is activated, the procedure note is called with two arguments: the co-expression E2 and a string used for 
identification. Execution continues in note. A line of output is produced, and E2 is activated. As a result, there is 
another invocation of note. It writes a line of output and activates E1. At this point, control is transferred to the first 
call of note at the point it activated E2. Control then transfers back and forth between the two procedure calls, and 
the output produced is 

activation 1 of co-expression E2 
activation 1 of co-expression E1 
activation 2 of co-expression E2 
activation 2 of co-expression E1 
activation 3 of co-expression E2 
activation 3 of co-expression E1 
activation 4 of co-expression E2 
activation 4 of co-expression E1 
activation 5 of co-expression E2 
activation 5 of co-expression E1 
activation 6 of co-expression E2 
activation 6 of co-expression E1 

This continues endlessly and neither procedure call ever returns. 

5.2 Built-in Co-Expressions 

There are three built-in co-expressions that facilitate transfer of control among co-expressions: &source, 
&current,and&main. 

The value of &source is the co-expression that activated the currently active co-expression. Thus, 

@&source 

'returns' to the activating co-expression. 
The value of &current is the co-expression in which execution is currently taking place. For example, 

- 9 -



process(&current) 

passes the current co-expression to the procedure process. This could be used to assure return of control to the co-
expression that was current when process was called. 

The value of &main is the co-expression of the main procedure. This corresponds to the invocation of the main 
procedure to initiate program execution, which can be viewed as 

@(create main(a)) 

The co-expression &main is the first co-expression that is created in every program and has the identifying number 
1. 

If program execution is taking place in any co-expression, 

@&main 

returns control to the co-expression for the procedure main at the point a co-expression was activated. Note that this 
location need not be in the procedure main itself, since main may have called another procedure from which the 
activation of a co-expression took place. 

Note: &current was added in Version 6.4 of Icon. 

Transmission 

A results can be transmitted to a co-expression when it is activated. Transmission is done by the operation 

expr @ e 

where e is activated and the result of expr is transmitted to it. In fact, @e is just an abbreviation for 

&null @ e 

so that every activation actually transmits a result to the co-expression that is being activated. 
On the first activation of a co-expression, the transmitted result is discarded, since there is nothing to receive it. 

On subsequent activations, the transmitted result becomes the result of the expression that activated the current co-
expression. 

The use of transmission is illustrated by the following program, which reads in lines from standard input, breaks 
them up into 'words', and writes out the words on separate lines. Co-expressions are used to isolate the tasks: read
ing lines, producing the words from the lines, and writing out the words. 

global words, lines, writer 

procedure main() 

words := create word() 
lines := create reader() 
writer := create output() 
@writer 

end 

procedure word() 
static letters 

initial letters := &lcase || Sucase 

while line := @lines do 
line ? while tab(upto(letters)) do 

tab(many(&lcase)) @ writer 

end 

- 1 0 -



procedure reader() 

while read() @ words 

end 

procedure output() 

while write(@words) 
@&main 

end 

Note that output activates main to terminate program execution. 

Note: This example is designed to illustrate transmission, not a recommended programming technique. The 
problem above can be solved more simply by using generators and procedure calls, since there is nothing in the 
problem that requires either the liberation of a generator from its lexical site or coroutine control flow. Coroutine 
programming generally is appropriate only in large programs that benefit from the organization that coroutines 
allow. Knuth [6] says 'It is rather difficult to find short, simple examples of coroutines which illustrate the impor
tance of the idea; the most useful coroutine applications generally are quite lengthy', and Marlin [7] remarks ' ... the 
choice of an example program is ... difficult.... The programming methodology is intended for programming-in-
the-large'. 

5.3 Tracing Co-Expressions 
Beginning with Version 6.4 of Icon, co-expression activation and return is traced if the value of &trace is non

zero. As for function calls and returns, the value of &trace is decremented for each trace message. The form of co-
expression tracing is illustrated by the following program: 

procedure main() 
local lower, upper 
&trace := -1 
lower := create !&lcase 
upper := create !&ucase 
while write(@lower," ",@upper) 

end 

If this program is in the file trace.icn, the trace output is: 

trace, icn: 
trace, icn: 
trace, icn: 
trace, icn: 
trace, icn: 
trace, icn: 
trace, icn: 
trace, icn: 
trace.icn: 
trace.icn: 
trace.icn: 

trace.icn: 
trace.icn: 
trace.icn: 
trace.icn: 
trace.icn: 
trace.icn: 

6 
4 
6 
5 
6 
4 
6 
5 
6 
4 
6 

4 
6 
5 
6 
4 
7 

main 
main 
main 
main 
main 
main 
main 
main 
main 
main 
main 

main 
main 
main 
main 
main 

main f 

#1 : &null @ #2 
#2 returned "a" to #1 
#1 : &null @ #3 
#3 returned "A" to #1 
#1 : &null @ #2 
#2 returned "b" to #1 
#1 : &null @ #3 
#3 returned "B" to #1 
#1 : &null @ #2 
#2 returned "c" to #1 
#1 : &null @ #3 

#2 returned "z" to #1 
#1 : &null @ #3 

; #3 returned "Z" to #1 
• #1 : Snull @ #2 
; #2 failed to #1 
ailed 

Note that activation really is transmission of the null value. 

- 1 1 -



Acknowledgements 
Steve Wampler designed and implemented the original co-expression facility for Icon. Steve Wampler and Ken 

Walker provided several of the examples of co-expression usage given in this paper. Steve, Ken, Janalee O'Bagy, 
Dave Gudeman, and Kelvin Nilsen all provided helpful suggestions on various aspects of co-expressions. In addi
tion, Janalee and Ken read drafts of this report and made several suggestions on improving the presentation. 

References 

1. R. E. Griswold, Programming in Icon; Parti — Programming with Generators, The Univ. of Arizona Tech. 
Rep. 85-25,1985. 

2. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs, 
NJ, 1983. 

3. R. E. Griswold, W. H. Mitchell and J. O'Bagy, Version 6 of Icon, The Univ. of Arizona Tech. Rep. 86-10b, 
1986. 

4. R. E. Griswold and M. Novak, "Programmer-Defined Control Operations", Computer J. 26, 2 (May 1983), 
175-183. 

5. M. Novak and R. E. Griswold, Programmer-Defined Argument Evaluation Regimes, The Univ. of Arizona 
Tech. Rep. 82-16,1982. 

6. D. E. Knuth, The Art of Computer Programming, Volume I, Addison-Wesley, 1968, p. 191. 
7. C. D. Marlin, Coroutines; A Programming Methodology, A Language Design and Implementation, Springer 

Verlag, 1980. 
8. O. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured Programming, Academic Press, 1972, pp. 184-193.. 

- 1 2 -



Appendix A — A Co-Expression Formulation of the N-Queens Problem 

The following program, adapted from one written by Steve Wampler, illustrates the use of co-expressions to 
solve the problem of n non-attacking queens on an n-by-n chessboard. See [2] for a description of the problem and a 
solution that does not involve co-expressions. 

In this program, the list driver contains n+2 co-expressions. Co-expressions 2 through n+1 correspond to 
columns on the chessboard and place the queens. Co-expression n+2 displays the chessboard when all n queens 
have been placed. The first co-expression, &main, returns control to the main procedure when there are no more 
solutions. 

global queens, driver, solution 

procedure main(args) 
local i 

queens := args[1] | 8 
driver := list(queens + 2) 
solution := list(queens) 

driver[1] := &main 
every i := 1 to queens do 

driver[i+1] := create q(i) 
driver[queens + 2] := create show() 

write(queens, "-Queens:") 
@driver[2] 

end 

# q(c) - place a queen in column c. 

procedure q(c) 
local r 
static up, down, rows 

initial { 
up := list(2 * queens - 1,0) 
down := list(2 * queens -1,0) 
rows := list(queens, 0) 
} 

repeat { 
every (0 = rows[r := 1 to queens] = 

rows[r] <- up[queens + r - c] <-
solution[c] := r 
@driver[c + 2] 
} 

@driver[c] 
} 

end 

# Show the solution on a chess board. 

procedure show() 
static count, line, border 

# Default is 8 queens 
# List of queen placement routines 
# ... and a list of column solutions 

# 1st co-expression is &main 
# 2 to queens + 1 are queen placement 
# co-expressions, one per column. 
# queens + 2nd co-expression display the board 

# Start by placing queen in first column 

up[queens + r - c] = down[r + c - 1] & 
down[r + c - 1] <- 1) do { 

# Record placement 
# Try to place next queen 

# Tell previous queen placer "try again" 

- 1 3 -



initial { 
count := 0 
line := repl("| ".queens) || "|" 
border := repl(" ".queens) || "-" 
} 

repeat { 
writeC'solution: ", count +:= 1) 

write(" ". border) 
every line[4 * (Isolution - 1) + 3] <- "Q" do { 

write(" ", line) 
write(" ", border) 
} 

write() 
@driver[queens + 1] # Tell last queen placer to try again 
} 

end 

- 1 4 -



Appendix B — A Lexical Analyzer and Parser 

This program, which was written by Ken Walker, converts expressions in infix form to prefix form. The 
grammar for the infix form is: 

<prog> 
<stmt> 
<expr> 
<term> 
<factor> 

<stmt> | <prog> ; <stmt> 
<id> := <expr> 
<term> | <expr> <add_op> <term> 
<factor> | <term> <mult_op> <factor> 
<id> | <integer> | ( <expr> ) 

There is a procedure that implements each of the productions above. For example, <prog> is handled by prog(). 
The classes <id>, <integer>, <add_op>, and <mult_op> are recognized by the lexical analyzer. Tabs and blanks 
are treated as white space. Comments start with # and continue to the next newline. 

The results of the co-expression lex come from two result sequences joined by alternation. The first is the 
sequence of tokens from the input. The second is an endless sequence of end-of-file tokens. The tokens from the 
input are produced by a scanning expression. The subject of the scanning expression is the sequence of input lines. 
For each input line, get_tok() generates the tokens from the line. On an end-of-line, get_tok() fails and the next 
input line is generated for the subject. 

global lex # co-expression for lexical analyzer 

global nextjok # next token from input 

record token(type, string) 

procedure main() 
lex := create ((!&input ? get_tok()) | |token("eof", "eof")) 
prog() 

end 
# 
# getjok is the main body of lexical analyzer 
# 
procedure get_tok() 

local tok 
static letters, digits 

initial { 
letters := &ucase ++ &lcase 
digits := '0123456789' 
} 

repeat { # skip white space and comments 
tab(many(' \t')) 
if ="#" | pos(0) then fail 

15-



end 

if any(letters) then # determine token type 
tok := token("id", tab(many(letters ++ '_'))) 

else if any(digits) then 
tok := token("integer", tab(many(digits))) 

else case move(1) of { 
";": tok := token("semi", ";") 
"(": tok := token("lparen", "(") 
")": tok := token("rparen", ")") 
":": if ="=" then 

tok := tokenfassign", ":=") 
else 

tok := tokenfcolon", ":") 
"+": tok := token("add_op", "+") 
"-": tok := token("add_op", "-") 
"*": tok := token("mult_op", "*") 
7": tok := token("mult_op", 7") 
default: errfinvalid character in input") 
} 

suspend tok 
} 

# 
# The procedures that follow make up the parser 
# 

procedure prog() 
nextjok := @lex 
stmt() 
while nextjok.type == "semi" do { 

nextjok := @lex 
stmt() 
} 

if nextjok.type "== "eof" then 
err("eof expected") 

end 

procedure stmt() 
if nextjok.type "== "id" then 

err("id expected") 
write(nextjok.string) 
if (@lex).type "== "assign" then 

err(":= expected") 
nextjok := @lex 
expr() 
write (":=") 

end 

procedure expr() 
local op 

- 1 6 -



term() 
while nextjok.type == "add_op" do { 

op := nextjok.string 
nextjok := @lex 
term() 
write(op) 
} 

end 

procedure term() 
local op 

factor() 
while nextjok.type == "mult_op" do { 

op := nextjok.string 
nextjok := @lex 
factor() 
write(op) 
} 

end 

procedure factor() 
case nextjok.type of { 

"id" | "integer: { 
write(nextjok.string) 
nextjok := @lex 
} 

"Iparen": { 
nextjok := @lex 
expr() 
if nextjok.type "== "rparen" then 

err(") expected") 
else 

nextjok := @lex 
} 

default: 
err("id or integer expected") 

} 
end 

procedure err(s) 
stop(" ** error ** ", s) 

end 

1 7 -



Appendix C — Exercises 

1. Write a procedure that generates a sequence of label generators, each with a different letter prefix. Show how this 
procedure in turn might be used in a co-expression. 

2. Discuss the following proposed alternative to the method given at the end of Section 3.2 for assigning the results 
of an expression to a sequence of variables: 

loc := create find(s1,s2) 
var := create (x | y | z) 
while @var := @loc 

3. Re-write the programmer-defined control operation for parallel evaluation, using repeated alternation in place of 
the if-then-else control structure. 

4. Write a programmer-defined control operation that 'sections' a result sequence, producing only results i through j . 

5. Write a programmer-defined control operation for the Lisp cons control structure. 

6. Write a programmer-defined control operation that omits the initial i results of a result sequence. 

7. Extend Seqimage in Section 4 so that a third argument can be used to specify the inclusion of a specified number 
of trailing results if the number of results exceeds the limit specified by the second argument. 

8. Given an expression expr that is invariant, use co-expressions to produce expressions that have the following 
result sequences: 

(a) The odd-numbered results in the result sequence for expr. 

(b) Every third result in the result sequence for expr. 

(c) The running sum of the results for expr. 

18-


