
X-Icon: An Icon Window Interface 1

Clinton L. Jeffery

TR 91-1d

Abstract

This document describes the calling interface and usage conventions of X-Icon, an X Window
System interface for the Icon programming language that supports high-level graphical user
interface programming. It presently runs on UNIX systems under Version 11 of the X Window
System.

January 24, 1991; Last revised July 24, 1992

Department of Computer Science
The University of Arizona

Tucson, AZ 85721

1This work was supported in part by the National Science Foundation under Grant CCR-8713690 and a grant from
the AT&T Research Foundation.

Introduction

This document is intended for programmers writing window programs using X-Icon, an X Window System
interface for the Icon programming language. This document corresponds to Version 8.7 of Icon. The
document consists of two parts, a user’s guide followed by a reference section. The user’s guide describes
the interface and presents several examples of its use; the reference section includes a complete description
of all functions in the interface. Lest there be any confusion later on, the term “Icon” in this document
denotes the Icon programming language [Gris90]. We use lowercase letters to denote those little pictures on
the computer screen, e.g. “icon”.

X-Icon adds an interface to the raster graphics, text fonts, colors, and mouse input facilities provided by
the X Window System1 [Sche86]. Because different hardware and different window system software have
different capabilities, there is a trade-off between simplicity, portability, and full access to the underlying
machine. Most window system interfaces are complex mazes that require vast amounts of training and
experience in order to program effectively. Unlike other languages’ X Window interfaces, X-Icon leans
towards simplicity and ease of programming rather than full low-level access. Nevertheless, a basic
knowledge of X Window concepts will be useful in understanding what follows.

X Basics

The X Window System separates all graphics programs into two portions: the client and the server. The
client is the actual application program, which computes values and makes various input and output requests
for screen, keyboard, and mouse resources. X Window input and output requests are transmitted from the
client across a network to the main X program called the server. The server manages one collection of input
and output devices (typically one or more screens, a keyboard, and a mouse) and arranges to share these
resources among some number of client programs.

The separation of client and server has a number of implications. Because X is defined in terms of a
network communication protocol, any operating system supporting that protocol can support X. In practice,
client programs can be run on the fastest computer(s) available on the network, while the server’s processor
need only be powerful enough tomanage the screen and input devices. This encourages resource sharing. On
the other hand, the interprocess communication of the network protocol incurs a significant performance cost
that is unnecessary in window systems that manage only locally-run programs. In addition, the client-server
model creates an added level of complexity that makes X applications harder to write than those of many
other graphics environments.

Another central aspect of X is its event-driven input model. Although the X server is responsible for
managing the screen contents, the responsibility for remembering those contents and reproducing themwhen
needed is left to the client application program. Clients must be prepared to redraw the screen at all times,
and for this reason a loop reading X events is the central control flow mechanism in most X clients.

1The X Window System is a trademark of the Massachusetts Institute of Technology.

1

The Programming Interface

The X-Icon interface has been constructed using Xlib [Get88, Nye 88], the low-level C interface for X
Window programming. Like Xlib, X-Icon provides a windowing mechanism without enforcing a particular
policy, user interface, or look-and-feel. Although based on Xlib, X-Icon provides a higher-level abstraction
more consonantwith the rest of the Icon language. The run-time system implements retainedwindows, auto-
matically redrawing obscured portions of windows when they become visible; events other than keystrokes
and mouse events are similarly handled automatically. Higher-level toolkits and libraries implementing
advanced user interface features can be written in Icon.

Most window-system interfaces are event driven, meaning that they present a paradigm in which an
event-reading loop is the primary control mechanism driving the application. Although this paradigm is
central in the underlying implementation, it is optional in the X-Icon programming model. Since X-Icon’s
windows handle many events automatically and “take care of themselves”, applications follow the event-
driven paradigm only when it is needed and appropriate. Simple window applications can be written using
very ordinary-looking code.

Icon’s dynamic typing and polymorphic approach to control structures and operations greatly reduce the
burden on the user interface programmer. Icon’s standard file I/O routines all work on windows, and greatly
simplify text-oriented applications. Arguments to Xlib graphics routines are simplified because the display
and selected graphics context are implied by the window argument. The event-reading function produces
different types of values for different types of events: keystrokes are strings, and mouse events are integers.
Icon’s polymorphic case expression allows keyboard and mouse events to be handled conveniently in a
unified fashion.

The above properties combinedwith the extensive use of default valuesmake simplewindowapplications
extremely easy to program, while providing flexibility where it is needed in more sophisticated applications.

The File Device Model

Windows are a special file data type opened with mode x; thus, a simple X-Icon program might look like
this:

procedure main()
w := open("helloTool", "x")
write(w, "hello, world")
do processing ...
close(w)

end

A window appears on the screen as a rectangular space for text and/or graphics. Windows (files opened
withmode x) are open for both reading andwriting. They support the usualfile operationswith the exceptions
of seek() and where(); given window arguments, these functions simply fail. The type() of a window is
"window"; the image is "window(windowname)". Like other files, windows close automatically when
the program terminates, so the call to close() in the above example is optional.

2

At this point enough has been covered to write a first useful X-Icon program: xprompt. Xprompt is a
utility for shell programmers who occasionally need to retrieve a filename or other simple input from the
user when the shell script is run. The program pops up a window on the user’s screen asking a question,
reads the user’s answer, and writes it out on its standard output where it can be accessed by the shell script
by means of the backquotes. For example,

biff ‘xprompt "Shall I turn on biff for you? "‘

Xprompt uses the file model and Icon’s built-in file operations to do all the work:

procedure main(args)
w := open("xprompt", "x") stop("can’t open window")
every writes(w, !args, " ")
write(read(w))

end

This example is fully operational and is not unlike a standard Icon program that might perform the
same task. In an X environment, there may be dozens of windows with programs competing for the user’s
attention, and this is where xprompt is more useful than an ordinary Icon program. Popping up a prompting
window on the user’s screen attracts quite a bit more attention than a standard Icon program — especially
if the shell script that is executing is running a window that has been obscured behind another window or
reduced to iconic size to save screen space. This version of xprompt is visually unappealing because the
default window size is inappropriate, and the default font used is too small. A nicer looking version is given
below.

Text Coordinates

Windowsare a variant of the file data type, butmore specifically they are modeled after the standard computer
terminal text screen and support features such as scrolling and cursor positioning. These features employ a
coordinate system that describes screen positions in terms of the row and column within the text that is in
view in the window. The rows are counted from the top of the screen to the bottom and the columns are
counted from the left of the screen to the right. Row and column coordinates are one-based; that is, the very
upper left corner of the screen is text position (1,1). The function XGotoRC(w, r, c) moves the text cursor
for w to row r, column c.

Window Attributes

A window’s state consists of several attributes. Each attribute has an associated value. Some values are
defined by external forces in the window system (such as the user or window manager), while others are
under program control. In the absence of program-supplied values, attributes are assigned default values.

Icon’s standard function open() has been extended to allow any number of string arguments after the
file name and mode arguments. The format of these strings is more precisely described in the next section.
These arguments specify initial values of attributes when the window is created. For example, to say hello
in italics on a window with blue background one can write:

3

procedure main()
w := open("helloTool", "x", "font=italics", "bg=blue")
write(w, "hello, world")
processing ...

end

In order for this code to run as-is, there must be an X-Window font named italics.
To use a more concrete example, window attributes allow xprompt to use a larger, more readable font,

and display itself in a window exactly one line high:

procedure main(args)
w := open("xprompt", "x", "font=12x24", "lines=1") stop("can’t xprompt")
every writes(w, !args, " ")
write(read(w))

end

Xprompt might attract even more attention to itself on a color monitor by utilizing bright foreground and
background colors instead of the default black-on-white.

After a window is created, its attributes may be inspected and set using the Icon function
XAttrib(w, s1, s2, ...). XAttrib() either gets or sets window attributes according to the string arguments.
Certain attributes can only be read by XAttrib() and not set.

Window Attribute-Values

Attributes are read and written as strings of the form "attr [=val]", e.g.

w := open("Hello", "x", "lines=24", "columns=80")
write(w, "Hello, world")
XAttrib(w, "fg=red", "bg=green", "font=italics", "row=12")
write(w, "Goodbye ...")

Arguments to XAttrib() and open() that include an equals sign are assignments; the attribute is set to
the given value if possible, but XAttrib() fails otherwise. open() only contains attribute assignments of this
form. XAttrib() generates a string result for each of its arguments; in the case of assignment, the result is the
same "attr=val" form the arguments take. Attributes are also frequently set by the user’s manipulation of
the window; for instance, cursor or mouse location or window size.

String arguments to XAttrib() that consist only of an attribute are queries. When multiple queries are
made via a single call toXAttrib(), each answer is generated in turn as the attribute suffixed by the appropriate
=val value. Results from multiple queries are generated in the order in which the arguments were passed
to XAttrib(). Thus, XAttrib(w, "lines", "columns") generates two results, for example, "lines=25"
followed by "columns=80".

In the common case in which a single attribute query is made, the attribute name and equals sign are omit-
ted from the return string since the attribute is not ambiguous. In the example above, XAttrib(w, "lines")
returns the string "25".

4

Xm: a File Browser

Using attributes leads to applications that are still similar to ordinary text applications, but begin to exhibit
special properties. Xm is a trivial X version of the UNIX pager utility named more. Xm displays a text file
(its first argument) in a window, one screenful at a time, and allows the user to scroll forward and backward
through the document. This simple version of xm is less flexible than UNIX more in most ways (it is written
after all in less than thirty lines of code), but it gains certain flexibility for free from its X Window System
roots: The window can be resized at any time, and xm takes advantage of the new window size after the next
keystroke. The complete text of xm is presented in Appendix A.

Xm begins with the lines

procedure main(argv)
if *argv = 0 then stop("usage: xm file")

These two lines simply start the main procedure and issue a message if the program has been invoked
with no filename. A more robust version of xm would handle this case in the proper UNIX fashion by
reading from its standard input.

After its (scant) argument checking, xm opens the file to be read, followed by a window to display it in.

f := open(argv[1], "r") stop("can’t open ", argv[1])
w := open(argv[1], "x") stop("no window")

If either of these values cannot be obtained, xm gives up and prints an error message.
With an open file and window in hand, xm is ready to read in the file. It does so in brute-force fashion,

reading in all the lines at once and placing them in a list.

L := []
every put(L, !f)
close(f)

A more intelligent approach would be to read the file gradually as the user requests pages. This approach
makes no difference for short files but is superior for very large files.

At this point, xm has done all of its preparatory work, and is ready to display the first page of the file
on the screen. After displaying the page, it waits for the user to press a keystroke: a space bar indicates the
next page should be displayed, the "b" key backs up and displays the preceding page, and the "q" key
quits the application. The overall structure looks like:

repeat
display the current page of text in the file
read and execute a one-keystroke command

Xm writes out pages of text to the screen by indexing the list of lines L. The index of the first line that is
displayed on the screen is remembered in variable base, and paging operations are performed as arithmetic
on this variable.

5

XClearArea(w)
XGotoRC(w, 1, 1)
every i:= 0 to XAttrib(w, "lines") 1 do

if i + base < *L then writes(w, L[i + base + 1])
write(w)

UNIX more writes a nice status line at the bottom of the screen, indicating where the current page is
within the file as a percentage of the total file size. Writing this line out in reverse video is a matter of calling
XAttrib() before and afterwards. Computing the percentage is done based on the last text line on the screen
(base + XAttrib(w, "lines") 1) rather than the first.

XAttrib(w, "reverse=on")
writes(w, " More (",

((100 > (base + XAttrib(w,"lines") 1) * 100 / *L) 100),
"%)")

XAttrib(w, "reverse=off")

Keystrokes are read from the user using Icon’s regular built-in function reads().

case reads(w, 1) of
"q": break
" ": base := (*L > (base + XAttrib(w, "lines") 1) fail)
"b": base := (0 < (base XAttrib(w, "lines") + 1) 0)

Xm demonstrates that X-Icon demands little or no window system expertise of the Icon programmer.
Ordinary text applications can be ported to X with very few changes by adding a window argument to calls
to functions such as read() and write(). After a program has been ported, it is simple to enhance it with
attributes such as colors and fonts. Other more subtle output attributes are discussed later in the section on
graphics contexts.

A Bitmapped-Graphics Device Model

Built-in functions corresponding directly to a subset of the Xlib interface provide X-Icon programmers
with convenient access to X Window bitmapped graphics capabilities. These facilities constitute a second
programming model for windows, but there are no programming “modes” and code that uses graphics may
be freely intermixed with code that performs text operations. There are many graphics functions, and they
are detailed in the reference section of this document. The reader should consult Xlib documentation (see,
for example, [Nye88]) for the precise semantics of many of these calls.

Among graphics functions, one major addition to Xlib is the XDrawCurve() function. This function
draws smooth curves through specified points.

6

&window: The Default Window Argument

Just as Icon has keywords that supplydefault files for text input and output,X-Icon has a keyword,&window,
that supplies a default window for graphic input and output. &window is like&subject in that it is a variable;
it starts out with a value of &null and can be assigned to using Icon’s regular assignment operator. Only
window values (and the null value) may be assigned to &window. &window serves as a default argument
to most X-Icon functions and is used implicitly by various operations. Exceptions are noted in the reference
section.

In the previous program example, if xm used &window instead of the variable w, the argument could
be omitted from the calls to XClearArea() and XAttrib(). The window argument still has to be supplied for
calls to normal file functions such as write() and writes() since these functions default to &output instead
of &window. Window argument defaulting is not very important in the preceding example, but it is quite
important for more graphics-oriented programs where it can both shorten the code and make it faster.

Graphics Coordinates

A coordinate system was introduced earlier for text-handling; that coordinate system was defined in terms
of rows and columns of text, and was used primarily to talk about positioning text on the screen in a manner
similar to a standard computer terminal text-display. None of the graphics functions affect the text cursor,
and text and graphics can be mixed freely.

The graphics functions use an integer coordinate system that counts individual pixels (picture elements,
or dots). Like the text coordinate system, graphics coordinates start in the upper left corner of the screen.
From that corner the positive x direction lies to the right and the positive y direction moves down. Unlike
the text coordinate system, the graphics coordinate axes are zero-based, which is to say that the very top
leftmost pixel is (0,0).

Converting Between Graphics and Text Coordinates

X-Icon uses four integer valued keywords to generically refer to coordinates: &x and &y refer to pixel
coordinates and &row and &col refer to text coordinates. &x and &col are coupled since they both refer to
horizontal position in their respective coordinate systems; similarly &y and &row are coupled.

Generally, these values will be assigned by X-Icon and read by the Icon program as a result of various
operations described later. Sometimes, however, it is useful to convert between text and graphics coordinates
in some window. Assigning to &x, &y, &row, or &col has the effect of assigning a converted value to the
appropriate coupled keyword in the other coordinate system. The converted values are computed in&window
using its current font. For example, the following code computes the graphic coordinates corresponding to
row 10, column 10 in the current font, and prints a pair of values such as 54,128.

&row := &col := 10
write(&x, ",", &y)

7

Events

All user input actions including keystrokes and mouse clicks are termed events. In X-Icon many events are
handled by the run-time system without intervention of the programmer. These include window redrawing
and resizing, etc. Other events are put on an event queue in the order they take place, for processing by the
Icon program.

Regular keyboard events are communicated to the Icon program through any of the standard file input
functions (for example, reads(w, 1)). When reading from a window using the standard input functions,
only keyboard events are available; mouse and special key events that are processed during standard input
on a window are dropped.

In addition to being closed by the function close() or by program termination, under many window
systems a window may be killed by the user or window manager; when a window is killed in this manner,
the Icon program executing it terminates with runtime error number 141 (“program terminated by window
manager”).

Event Queue Manipulation

The event queue is an Icon list that stores events until the program processes them. When a user presses
a key, clicks or drags a mouse, or resizes a window, three values are placed on the event queue: the event
itself, followed by two integers containing associated event information. The low-order sixteen bits of the
two integers give the mouse location in pixel coordinates at the time of the event. The high-order sixteen
bits are reserved by the system. Events are removed from the queue by built-in input functions including
read() and reads().

In addition to the “cooked” input functions read() and reads(), two “raw” input functions are defined for
windows. XPending(w) produces the event queue, while XEvent(w) produces the next event for window
w and removes it from the queue.

If no events are pending, the list returned by XPending() is empty. If events are pending, the number of
elements on the event queue is normally *XPending(w) / 3. The list returned by XPending() is special in
that it remains attached to the window, and additional events may be added to it at any time during program
execution. In other respects it is an ordinary list and can be manipulated using Icon’s list functions and
operators.

Since the list returned by XPending() remains attached to the window and is used by subsequent calls
to XEvent(), it can be used to achieve a variety of effects such as simulating key or mouse activity within
the application. The ordinary list function push() is all that is required to insert events at the head of
the queue (that is, so that they are the next events to be read). Inserting events at the tail of the queue is
complicated by the fact that the X server can add events between calls to put() that the program might make.
XPending(w,x1 ,...,xn) adds x1 through xn to the end of w’s pending list in guaranteed consecutive order.

The X-Icon function XEvent(w) allows the Icon program to read the next keyboard or mouse event.
Generally, keyboard events are returned as strings, while mouse events are returned as integers and are
described more fully below. Special keys, such as function keys and arrow keys, are also returned as
integers, described below.

8

If no events are pending, XEvent() waits for an available event. Once an event is available, XEvent()
removes an element from the queue and produces it as a return value. In addition, XEvent() removes the
next two elements and assigns them to the keywords &x and &y indicating the x and y pixel coordinates of
the mouse at the time of the event. XEvent() also assigns the mouse location to keywords&row and&col in
text row and column coordinates; these are provided solely for the convenience of text-oriented applications
as they could be extracted from &x and&y by indirect means. The values of &x, &y, &row, and &col remain
available until a subsequent call to XEvent() again assigns to them.

Frequently when several windows are open, the program needs to await user activity on any of the
windows and handle it appropriately. Although this could be implemented by repeatedly examining each
window’s pending list until a nonempty list is found, such a busy-waiting solution is wasteful of CPU time.
The function XActive() waits for window activity, relinquishing the CPU until an event is pending on one
of the open windows, and then returns a window with a pending event. XActive() cycles through the open
windows on repeated calls in a way that avoids window starvation. A window is said to starve if its pending
events are never serviced.

Mouse Events

Mouse events are returned from XEvent() as integers indicating the type of event, the button involved, etc.
Keywords allow the programmer to treat mouse events symbolically. The event keywords are:

Keyword X Event
&lpress mouse press left
&mpress mouse press middle
&rpress mouse press right
&lrelease mouse release left
&mrelease mouse release middle
&rrelease mouse release right
&ldrag mouse drag left
&mdrag mouse drag middle
&rdrag mouse drag right
&resize window was resized

The followingprogram usesmouse events to draw a box that follows themouse pointer around the screen
when a mouse button is pressed. The attribute drawop=reverse allows drawing operations to serve as their
own inverse and is described later. FunctionXFillRectangle() draws a filled rectangle on the window and is
described in the reference section. Each time through the loop the program erases the box at its old location
and redraws it at its new location; the first time through the loop there is no box to erase so the first call to
XFillRectangle is forced to fail by means of Icon’s operator.

9

procedure main()
&window := open("hello", "x", "drawop=reverse")
repeat if XEvent() === (&ldrag &mdrag &rdrag) then

XFillRectangle(x, y, 10, 10) # erase box at old position
XFillRectangle(x := &x, y := &y, 10, 10) # draw box at new position

end

The Icon program can inspect the rest of the window’s state using XAttrib(). Between the time the
mouse event occurs and the time it is produced by XEvent(), the mouse may have moved. In order to get
the current mouse location, use XQueryPointer() (see below).

Whenmore than one button is depressed as the drag occurs, drag events are reported on the most recently
pressed button. This behavior is invariant over all combinations of presses and releases of all three buttons.

Resize events are not mouse events, but they are reported in the same format. In addition to the event
code, &x, &y, &col and &row are assigned integers that indicate the window’s new width and height in
pixels and in text columns and rows, respectively.

Bme: a Bitmap Editor

A simple bitmap editor, bme, demonstrates event processing including mouse events. It displays both a
small and a “magnified” display of the bitmap being edited, allows the user to set individual bits, and allows
the user to save the bitmap. Bme consists of three procedures. It employs several graphics functions; the
reader is encouraged to consult the reference section for descriptions of those functions. The complete text
of bme is presented in Appendix A.

Bme starts by declaring and initializing several variables. w1 andw2 are the magnified and regular-sized
windows, respectively. WIDTH andHEIGHT store the bitmap’s dimensions. WIDTH andHEIGHT default
to 32.

procedure main(argv)
WIDTH := HEIGHT := 32

The bitmap’s width and height can be specified on the command line with a geo option, e.g. bme geo
16x64. Geometry arguments are popped off the argument list if they are present.

if argv[1] == " geo" then
pop(argv) # pop " geo"
argv[1] ?

WIDTH := integer(tab(many(&digits))) stop("bad geo syntax")
="x" stop("bad geo syntax")
HEIGHT := integer(tab(0)) stop("bad geo syntax")
pop(argv) # pop arg, e.g. 16x64

10

Following the geometry arguments, Bme proceeds to check for a supplied file argument specifying the
bitmap to edit. If one is found, it is read into the regular scale window w, and then the magnified scale
window is constructed.

In order to construct themagnified scale window, each pixel is copied (repeatedly) into the corresponding
pixels in the expanded version of the image. An alternative would be to use the function XPixel() to read
the contents of the regular scale window.

Construct magnified copy of bitmap
every i := 0 to HEIGHT 1 do

every j := 0 to WIDTH 1 do
XCopyArea(w2, w1, j, i, 1, 1, j * 10, i * 10)
XCopyArea(w2, w1, j, i, 1, 1, j * 10 + 1, i * 10)
every k := 1 to 4 do

XCopyArea(w1, w1, j * 10, i * 10, 2, 1, j * 10 + k * 2, i * 10)

XCopyArea(w1, w1, j * 10, i * 10, 10, 1, j * 10, i * 10 + 1)
every k := 1 to 4 do

XCopyArea(w1, w1, j * 10, i * 10, 10, 2, j * 10, i * 10 + k * 2)

After the windows are loaded with their initial contents, if any, a grid is drawn on the magnified image
to delineate each individual pixel’s boundary. The user’s mouse actions within these boxes turn them white
or black.

The main event processing loop of bme is very simple: Each event is fetched with a call to XEvent()
and immediately passed into a case expression. The keystroke "q" exits the program; the keystroke "s"
saves the bitmap in a file by calling XWriteImage(), asking for a file name if one has not yet been supplied.

case e := XEvent(w1) of
"q": return
"s":

/s := getfilename()
XWriteImage(w2, s)

Mouse events all result in the drawing of a black (for the left button) or white (for the right button) dot
in both the magnified and regular scale bitmaps.

&lpress &ldrag:
dot(w1, w2, &x / 10, &y / 10, 1)

11

Drawing of black andwhite dots is handled identicallyby proceduredot(), whose optional third argument
specifies a black dot (if it is present) or a white dot (if it is absent). The dot is drawn usingXFillRectangle()
in the magnified window; in the regular scale window XDrawPoint() suffices.

procedure dot(w1, w2, x, y, black)
if black then

XFg(w1, "black")
XFg(w2, "black")

else
XFg(w1, "white")
XFg(w2, "white")

XFillRectangle(w1, x * 10, y * 10, 10, 10)
XDrawPoint(w2, x, y)
XFg(w1, "black")
if /black then XDrawRectangle(w1, x * 10, y * 10, 10, 10)

end

Bme illustrates basic X-Icon event-handling: a single case expression that handles various keystrokes
and mouse events as different cases makes the control structure simpler than in other languages’ event
processing.

Special Keys

The regular keys that X-Icon returns as one-letter strings correspond approximately to the lower 128
characters of the ASCII character set. These characters include the control keys and the escape character.
Modern keyboards have many additional keys, such as function keys, arrow keys, “page down”, etc. X-Icon
produces integer events for these special keys; the integer values correspond to X window keysyms. A
selection of the more common keysyms are given in Appendix B. The complete collection of keysym values
are defined in the X include file <X11/keysymdef.h>.

Graphics Contexts

Some attributes are associated with the window itself, while others are associated with the graphics context
used by operations that write to windows. Although this distinction is not necessary in simple applications
such as xm, it becomes useful in more sophisticated applications that use multiple windows or draw many
kinds of things in windows. A graphics context consists of the colors, patterns, line styles, and text fonts
and sizes.

Although they are called graphics contexts, text mode operations use these attributes too: Text is written
using the foreground and background colors and the font defined in the graphics context performing the
operation. Table 2 in the reference section lists those attributes associated with a graphics context.

12

BindingWindows and Graphics Contexts Together

Graphics contexts can be shared among windows, and different graphics contexts can be used to write to the
same window. An X-Icon window value is actually a binding of a window on the screen (a system window)
with a particular graphics context. When open(s,"x") is called, it creates both a system window, and a
context, and binds them together, producing the binding as its return value.

The built-in function XBind() is used to manipulate bindings. XBind(w1, w2) creates a new window
value consisting of the window associated with w 1 bound to the graphics context associated with w2. If w2
is omitted, a new graphics context is allocated. The new context starts out with attributes identical to those
of w1’s context.

If both window arguments are omitted, the binding produced has no associated system window on the
screen; it is an invisible pixmap that can be used to manipulate images without showing them on-screen.
Such images can then be copied onto visible windows with XCopyArea(). The default size of the pixmap
is the same as the default window size.

Following any window arguments, XBind() accepts any number of string attributes to apply to the new
window value, as in open() and XAttrib().

After calling XBind(), two or more Icon window values can write to the same system window. The
cursor location is associated with the window and not the graphics context, so writing to one window and
then the other produces concatenated (rather than overlapping) output by default. Closing one of those
window values removes the system window from the screen but does not close the logical window; at that
point the remaining binding references an invisible pixmap. The logical window closes after the last binding
associated with it closes.

Use of XBind() can significantly enhance performance for applications that otherwise require frequent
graphics context manipulations (see Figure 1). It can also promote consistency in the look and feel of several
related windows.

Coordinate Translation

Agraphics context is a structure that chiefly consists of a set of graphics attributes that are used during drawing
operations. In addition to these attributes, contexts have two attributes that perform output coordinate
translation, dx and dy. dx and dy take integer values and default to zero. These integers are added into the
coordinates of all output operations that use the context; input coordinates in &x and &y are not translated.

Attribute Types

Every attribute has an associated attribute type that defines the range of values that the attribute may take.
Although all attribute values are encoded as strings, they represent very different window system features.
Table 3 in the reference section lists the different attribute types and their values. This section provides
additional details on some of the attribute types.

The attribute pointer refers to mouse pointer shapes are taken from the standard X Window cursor font.
The valid names are derived from the corresponding C symbolic constants defined in <X11/cursorfont.h>.
The values are derived from the C constants used in Xlib, shortened appropriately. Some of these strings

13

Figure 1: Some Uses of Bindings

have spaces in them, for example, "sb up arrow". When the pointer attribute is set, the mouse pointer
takes on a shape indicated in Figure 2 whenever the mouse is within the window in question.

The display attribute takes as a value the name of an XWindow server on which the window is to appear.
This attribute can only be assigned to during the call to open() or XBind() in which the window is created.
Most functions that involve multiple windows or shared resources, such as XBind(), only work on windows
created on the same display.

The attribute iconic takes a value indicating the window’s iconic state. Windows with iconic state
"root" are references to the X Window Server’s root window and cannot be moved or resized. Such
windows typically are not used for normal drawing operations; the root window does not preserve its
contents when obscured by other windows.

Text font and the foreground and background colors are specified using whatever strings are recognized
by the X server being utilized. In addition, the foreground and background may be specified by strings
encoding the red, green, and blue components of the desired color. The standard X Window hex format
"#rgb" is accepted, in which r, g, and b are 1 to 4 hex digits each, encoding the most significant bits of their
respective components. Red, green, and blue may also be given in decimal format, separated by commas.
The components are given on a scale from 0 to 65535 used internally byX, although color X servers typically
offer far less precision. For example, "bg=32000,0,0" requests a dark red background; if the X server

14

Figure 2: Mouse Cursors

is incapable of such, it approximates it as closely as possible from the available colors. "fg=0,65000,0"
requests a light green foreground.

The attribute pos refers to the positionof the upper-left corner of the window on the screen. Screen posi-
tion is specified by a string containing an x and a y coordinate separated by a comma, e.g. "pos=200,200".

Drawing Operations

At the individual pixel level, all text and graphic operations amount to a combination of some source bits
with the bits that are already there. By default, drawing operations consist of the source bits overwriting
whatever was present in the window beforehand. This behavior is not always what is desired.

Drawing operations are the sixteen possible logical combinations of the bits of the source (the bits to
be drawn) and the destination (the bits already in the window). Drawing operations are specified by their
string names assigned to the graphics context attribute drawop, which has a default value of "copy".
The standard Xlib drawing operations are available using the names given in the table below. Operations
other than "copy" are potentially nonportable or even undefined and should be used only with a clear
understanding of the X color model.

In addition to the sixteen standard X drawing operations, there is one special drawop value that provides
a portable higher-level reversible drawing operation. "drawop=reverse" changes pixels that are the

15

foreground color to the background color, and vice-versa. The color it draws on pixels that are neither
the foreground nor the background color is undefined. In any case, drawing a pixel a second time with
"drawop=reverse" restores the pixel to its original color.

In Xlib terms, "drawop=reverse" draws using the bit-wise xor’ed value of the current foreground and
background colors as its source bits. It combines these bits with the destination using an xor function. These
two features allow it to work with all foreground and background colors on all display hardware.

"and" "andInverted" "andReverse" "clear" "copy" "copyInverted"
"equiv" "invert" "nand" "noop" "nor" "reverse"
"or" "orInverted" "orReverse" "set" "xor"

Mutable Colors

The standard color allocation mechanism takes an rgb color value and allocates an entry for that color in a
color map. Such values may be shared when more than one application needs the same color. X terms these
color map entries as “shared” or “read-only”.

Some color hardware devices are able to dynamically change the rgb color values for color map entries.
Without updating all of display RAM, the colors of such entries can be changed almost instantaneously.
X terms these as “mutable” or “read-write” color map entries. This mechanism can be used to produce a
variety of special effects on those color systems that support it.

The function XNewColor(w) allocates a mutable color table entry on w’s display if one is available,
and fails otherwise. XNewColor(w, r, g, b) initializes that color table entry to a color given by r, g and b
integer red, green and blue components, while XNewColor(w, s) initializes the color table entry to a color
given by string color name as in XAttrib(). XNewColor() returns a small negative integer that may be used
in calls toXFg(), XBg(), and XAttrib(). The mutable color may then be changed via the functionXColor(w,
n, x, g, b) where n is the small negative integer returned by XNewColor().

Window Icons

Each window is at any given instant in one of two possible states: it is either full-sized, or it is a miniature
iconic window that often is suggestive of the contents of the full-sized window. Ordinarily window state
changes are controlled by the user and are outside of program control; certain special mouse events on a
window are sent not to the window but to a program called a window manager that iconifies or enlarges a
window, moves it, resizes it, etc.

An X-Icon program need not be aware of the states of its windows, nor need it be concerned about
what icons are used to represent them, since this is the job of the window manager (who in turn takes its
instructions from the X user). Because the programmer often has a better idea of what an appropriate icon
for a particular application would be, X-Icon includes a function, XIconImage(w, s), to specify an image
to be used as a window’s icon. s is a string file name of an image to use as the icon; the file may be either a
standard X bitmap or an XPM pixmap [LeHo91].

16

Similarly, a function XIconic(w, s) is provided to allow the program to request that a window be in
the state given by s, one of "icon" or "window". Another function, XMoveIcon(w, x, y) requests that
windoww’s icon be moved to coordinates x, y. These functions are subject to the cooperation of the window
manager in use; using these features in an Icon program limits its portability.

Etch: a Drawing Program

This section presents a view of the X-Icon interface via a more extended programming example. The full
text of a drawing program, called etch, is presented in Appendix A.

Etch’s primary function is to allow the user to scrawl handwritten messages by pressing the left mouse
button and dragging the mouse. The right mouse button draws white, with the effect of erasing previously
drawn pixels. The middle button draws straight lines between where the mouse button is depressed and
where it is released. A “rubberband” line is redrawn continuously as the mouse moves, in order to assist the
user in placing the line. The control-L key erases the screen, and the ESC key terminates the program.

In order tomake things interesting, etch supports a distributedor sharedmode in which two people sitting
at different displays see and may scrawl on a replicated pair of windows at the same time. Etch consists of a
single procedure, main(av). Etch takes an optional command-line argument, the name of a remote display
for communication purposes. If that argument is present, it is the first element in the list av; otherwise av is
an empty list and its size (given by *av) is 0.

Etch begins by opening a square window on the X server with the line

w1 := open("etch", "x", "geometry=300,300") stop("can’t open window")

After the window is successfully opened, two additional bindings to the same window are created, one
with invertible drawing operations and the other with opposite foreground and background colors by the
calls

w2 := XBind(w1, "drawop=reverse")
w3 := XBind(w1, "reverse=on")

Note that the extra bindings are not really necessary, since w1’s drawing operation and foreground
and background colors can be modified using the XAttrib() function, but the use of XBind() shortens and
simplifies code, and improves performance.

As mentioned above, etch displays identical windows on a primary display defined implicitly by X
conventions and an explicitly-given secondary display if *av > 0. Opening a window on the secondary
display is accomplished by including a display specification as an extra argument in the call to open():

w4 := open("etch", "x", "display=" av[1] ":0", "geometry=300,300")
w5 := XBind(w4, "drawop=reverse")
w6 := XBind(w4, "reverse=on")

Following the opening of all windows and creation of all bindings, the program goes into an event
processing loop. In each step of the loop, both displays are queried for available events via calls to
XPending(). After a display with an available event is selected, the event is read with a call to XEvent().

17

An Icon case expression is used to handle the different kinds of events. Keyboard events consist of one
character strings. The escape character " e" simply breaks out of the event loop and the control-L character
" ˆl" simply calls XClearArea().

Since there are potentially two screens being drawn on, all graphics calls are repeated twice. If no second
display was specified on the command line, the variables for the second window have the Icon value &null
instead of a valid binding. Calls to the second window all contain tests for this absence in the form of Icon’s
check for nonnull operator, the backslash (). If the second window value is null, the backslash causes the
argument (and hence, the invocation) to fail. Null value tests are used similarly to handle boundary cases
where coordinates haven’t yet been defined. The case clauses handling mouse drag event are:

&ldrag:
XDrawLine(w1, x1, y1, &x, &y)
XDrawLine(w3, x1, y1, &x, &y)
left and right buttons use current position
x1 := &x # for subsequent operations
y1 := &y

&rdrag:
XDrawLine(w4, x1, y1, &x, &y)
XDrawLine(w6, x1, y1, &x, &y)
left and right buttons use current position
x1 := &x # for subsequent operations
y1 := &y

&mdrag:
if /dragging then dragging := 1
else # erase previous line, if any

XDrawLine(w2, x1, y1, x2, y2)
XDrawLine(w4, x1, y1, x2, y2)

x2 := &x
y2 := &y
XDrawLine(w2, x1, y1, x2, y2)
XDrawLine(w4, x1, y1, x2, y2)

The line drawing function requires that the mouse position at the time the button is pressed be available
at the time the button is released. Extra variables are used to remember past events’ positions so that lines
can be erased and redrawn when the mouse is being dragged. Since there are two mice involved when two
displays are used, two sets of variables are used throughout the program. The variables are “swapped” in
and out for each event so that the same central event processing code can be used for both displays.

18

X-Icon ReferenceManual

Table 1: Window Attributes

The following attributes are maintained on a per-window basis.

Window Attribute Type Source Name Default
size, in rows and columns integer lines, columns 12x80
size, in pixels integer height, width above
position on the screen integer pair pos
position, x coordinate integer posx
position, y coordinate integer posy
size and position geometry spec geometry
iconic state window state iconic window
icon position integer pair iconpos
icon image image iconimage
icon label string iconlabel
window label (title) string windowlabel
cursor location (row,column) integer row, col 1,1
pointer (mouse) shape mouse shape pointer X cursor
pointer location (row,column) integer pointerrow, pointercol
cursor location, in pixels integer x, y
pointer location, in pixels integer pointerx, pointery
device on which the window appears device name display
display type integer triple visual
display depth, in bits integer depth
display height, in pixels integer displayheight
display width, in pixels integer displaywidth
buffer a sequence of commands switch batch off
visible cursor during raw input switch cursor off
initial window contents image file name image

19

Table 2: Graphics Context Attributes

The following attributes are maintained in graphics contexts that are independent of any particular window.

Context Attribute Type Source Name Default
foreground and background color color fg, bg
text font font name font fixed
text font’s max height, width integer fheight, fwidth
text font leading integer leading fheight
text font ascent, descent integer ascent, descent fheight
drawing operation logical op drawop copy
graphics fill style fill style fillstyle solid
graphics line style line style linestyle solid
graphics line width integer linewidth 1
reverse fg and bg colors switch reverse off
clip rectangle position integer clipx, clipy 0
clip rectangle extent integer clipw, cliph 0
output translation integer dx, dy 0

Table 3: Attribute Types

The following table summarizes valid string values that may be assigned to the various attributes in the
preceding tables.

Type Values Example
color color name or rgb value "red", "0,0,0", "#FFF"
device name X display "unix:0"
fill style solid, stippled, opaquestippled "solid"
font name X font "fixed"
geometry spec intxint[+-]int[+-]int "100x100+50+20"
image file name "flag.xpm"
integer 32 bit signed integers "0"
integer pair int,int "0,0"
line style solid, onoff, doubledash "onoff"
logical op (see Drawing operations) "reverse"
mouse shape (see Figure 2) "gumby"
string any string "hello"
switch on, off "off"
window state normal, iconic, root "iconic"

20

Built-in Functions

X-Icon adds the following built-in functions to Icon’s repertiore. The functions are presented here using the
conventions given in the Icon book [Gris90]. Arguments named x and y are pixel locations in zero-based
integer graphics coordinates. Arguments named row and col are cursor locations in one-based integer text
coordinates.

Functions with a first parameter named w default to &window and the window argument can be omitted
in the default case. This may be viewed as analogous to write(). This defaulting behavior does not apply to
functions with multiple window arguments.

close(w) : w close window

close(w) closes a binding on a window. The window on the screen disappears after any associated
binding is closed, but the window can still be written to and read/copied from until all open bindings
are closed or the program terminates.

Errors: 103 s not string
See also: open(), XBind()

open(s,"x",s1,...,sn) : w open window

open(s, "x") opens a window for reading and writing with default text and graphic attributes.
Non-default initial values for attributes can be supplied in the third and following arguments to
open().

Errors: 103 s not string
See also: close(), XBind()

XActive() : w produce active window

XActive() returns a window that has one or more events pending. If no window has an event
pending, XActive() blocks and waits for an event to occur. To find an active window, it checks
each window, starting with a different window on each call in order to avoid window “starvation”.
XActive() fails if no windows are open.

See also: XPending()

21

XAttrib(w,x1,...,xn) : s... generate or set attributes

XAttrib(w,x1,...) retrieves and/or sets window and context attributes. It generates strings encoding
the value of the attribute(s) in question. If called with more than two arguments, it prefixes each
value by the attribute name and an equals sign (=). If xi is a window, subsequent attributes apply to
xi. XAttrib() fails if it is given an invalid attribute name or if is is unable to set the attribute to the
requested value.

Errors: 140 w not window
109 xi not string or window

XBg(w,x,g,b) : s background color

XBg(w,x,g,b) retrieves and/or sets background color by name, rgb, or mutable color value. With one
argument, the background color is retrieved. With two arguments, the background color is set by a
string color value (either a name or rgb encoded as a string) or integermutable color value. With four
arguments, the last three arguments are integers denoting the red, green, and blue components of the
background color to set. Note that in Xlib the graphics context background color is distinct from the
window background used whenever windows are cleared or enlarged. The window background is
set during open() and may not be changed. XBg() fails if the server is not able to set the background
to the requested color.

Errors: 140 w not window
101 x or g or b not integer
103 x not string (two arguments)

See also: XFg()

XBind(w1,w2,s1,...,sn) : w bind window to context

XBind(w1,w2) produces a new value that binds the window associated with w 1 to the graphics
context associated with w2. If w2 is omitted, a new graphics context is created, with font and color
characteristics defaulting to those present in w1. If both window arguments are omitted, the new
binding denotes a pixmap that is not associated with any window on the display at all. Additional
string arguments specify initial attributes of the new binding, as in XAttrib(). XBind() fails if a
display cannot be opened or if an attribute cannot be set to a requested value. &window is not a
default for this function.

Errors: 140 w1 or w2 not window
109 si not string

See also: XAttrib()

22

XClearArea(w,x,y,width,height) : w clear to window background

XClearArea(w,x,y,width,height) clears a rectangular area within the window to the window’s
background color. This is not the current background defined in the context, but rather it is the
background color defined at window creation time in the call to open(), or white if there was none.
If width is 0, the region cleared extends from x to the right side of the window. If height is 0, the
region cleared extends from y to the bottom of the window.

Defaults: x,y,width,height 0 (all)
Errors: 140 w not window

101 x, y, width, or height not integer
See also: XEraseArea()

XClip(w,x,y,width,height) : w clip to rectangle

XClip(w,x,y,width,height) clips output to a rectangular area within the window. If width is 0, the
clip region extends from x to the right side of the window. If height is 0, the clip region extends
from y to the bottom of the window.

Defaults: x,y,width,height 0 (all)
Errors: 140 w not window

101 x, y, width, or height not integer

XColor(w,i,x,g,b) : w set mutable color

XColor(w,i) produces the current setting of mutable color i. XColor(w,i,x,g,b) sets the color map
entry identified by i to the given color. XColor() fails in the case of an invalid color specification.

Error: 140 w not window
101 i, x, g, or b not integer
103 x not string (three arguments)

See also: XNewColor()

23

XCopyArea(w1,w2,x,y,width,height,x2,y2) : w copy area

XCopyArea(w1,w2,x,y,width,height,x 2,y2) copies a rectangular region within w1 defined by
x,y,width,height to window w 2 at offset x2,y2. XCopyArea() returns w1. &window is not a
default for this function.

Defaults: x, y, x2, y2 0
width, height 0 (all of w1)

Errors: 140 w1 or w2 not window
101 x, y, width, height, x 2, or y2 not integer

XDrawArc(w,x,y,width,height,a 1,a2,...) : w draw arc

XDrawArc(w,x,y,width,height,a 1,a2,...) draws any number of arcs, including ellipses. Each is
defined by six integer coordinates. x, y, width and height define a bounding rectangle around the
arc; the center of the arc is the point (x +width=2,y+ height=2). Angles are specified in 64th’s of a
degree. Angle a 1 is the start position of the arc, where 0 is the 3 o’clock position and the positive
direction is counter-clockwise. Angle a2 is not the end position, but rather specifies the direction
and extent of the arc. When drawing a single arc, height defaults towidth, producing a circular arc,
a 1 defaults to 0 and a2 defaults to 360 * 64 (a complete ellipse). Supplied angle values are treated
modulo 360*64; larger values “wrap around” the circle or ellipse.

Default: a 1 0
a2 360 * 64

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XFillArc()

XDrawCurve(w,x 1,y1,...,xn,yn) : w draw curve

XDrawCurve(w,x 1,y1,...,xn,yn) draws a smooth curve connecting each x, y pair in the argument
list. If the first and last point are the same, the curve is smooth and closed through that point.

Errors: 140 w not window
101 argument not integer or bad argument count

24

XDrawLine(w,x 1,y1,...,xn,yn) : w draw line

XDrawLine(w,x 1,y1,...,xn,yn) draws lines between each adjacent x, y pair in the argument list.

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XDrawSegment(), XFillPolygon()

XDrawPoint(w,x 1,y1,...,xn,yn) : w draw point

XDrawPoint(w,x 1,y1,...,xn,yn) draws points.

Errors: 140 w not window
101 argument not integer or bad argument count

XDrawRectangle(w,x 1,y1,width1,height1,...) : w draw rectangle

XDrawRectangle(w,x 1,y1,width1,height1,...) draws rectangles. The width and height arguments
define the perceived size of the rectangle drawn, like the C version of this function. The actual
rectangle drawn is width+1 pixels wide and height+1 pixels high.

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XFillRectangle()

XDrawSegment(w,x 11,y11,x21,y21,...) : w draw line segment

XDrawSegment(w,x 11,y11,x21,y21,...) draws line segments (alternating x, y pairs are connected).

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XDrawLine()

25

XDrawString(w,x 1,y1,s1,...) : w draw text

XDrawString(w, x, y, s) draws text s at coordinates (x, y). This function does not draw any
background; only the characters’ actual pixels are drawn. This function uses the drawop attribute,
so it is possible to use "drawop=reverse" to draw erasable text. XDrawString() does not affect
the text cursor position. Newlines present in s cause subsequent characters to be drawn starting at
(x, current y + leading), where x is the x supplied to the function, current y is the y coordinate the
newline would have been drawn on, and leading is the current leading associated with the binding.

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XDrawLine()

XEraseArea(w,x,y,width,height) : w erase to context background

XEraseArea(w,x,y,width,height) erases a rectangular area within the window to the context’s
current background color, the color defined by XBg() and/or the bg attribute of XAttrib(). If width
is 0, the region cleared extends from x to the right side of the window. If height is 0, the region
erased extends from y to the bottom of the window.

Default: x,y,width,height 0 (all)
Errors: 140 w not window

101 x, y, width, or height not integer
See also: XClearArea()

XEvent(w) : x read event

XEvent(w) retrieves the next event available for window w. If no events are available, XEvent()
waits for the next event. Keystrokes are encoded as strings, while mouse events are encoded as
integers. The retrieval of an event is accompanied by assignments to the keywords &x, &y, &row,
and &col.

Error: 140 w not window
See also: XPending()

26

XFg(w,x,g,b) : s foreground color

XFg(w,x,g,b) retrieves and/or sets foreground by name or “r,g,b” similar to XBg(). XFg() fails if
the server is not able to set the foreground to the requested color.

Errors: 140 w not window
101 x, g, or b not integer
103 x not string (two arguments)

See also: XBg()

XFillArc(w,x,y,width,height,a1,a2,...) : w draw filled arc

XFillArc(w,x,y,width,height,a 1,a2,...) draws filled arcs, ellipses, and/or circles. Coordinates are
as in XDrawArc() above (not off by one as in the Xlib version of this function).

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XDrawArc()

XFillPolygon(w,x 1,y1,...,xn,yn) : w draw filled polygon

XFillPolygon(w,x 1,y1,...,xn,yn) draws a filled polygon. The beginning and ending points are con-
nected if they are not the same.

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XDrawLine()

XFillRectangle(w,x 1,y1,width1,height1,...) : w draw filled rectangle

XFillRectangle(w,x 1,y1,width1,height1,...) draws filled rectangles.

Errors: 140 w not window
101 argument not integer or bad argument count

See also: XDrawRectangle()

27

XFlush(w) : w flush window output

XFlush(w) flushes window output. Normally window output commands such as line and text
drawing are buffered until enough commands to fill a network packet have accumulated. The
behavior is analogous to the standard C buffered file routines. Window output also is automatically
flushed whenever the program blocks on input. When this behavior is not adequate, a call to
XFlush() sends all window output immediately, but does not wait for all commands to be received
and acted upon.

Error: 140 w not window
See Also:XSync()

XFont(w,s) : s get/set font

XFont(w) produces the name of the current font. XFont(w,s) sets the window context’s font to
s and produces its name or fails if the font name is invalid. The valid font names are currently
system-dependent. XFont() fails if the requested font name is not present on the X server.

Errors: 140 w not window
103 s not string

XGotoRC(w,row,col) : w go to row, col

XGotoRC(w,row,col) is the same as XAttrib(w, "row=" row, "col=" col), coordinates are
given in characters. The column calculation used by XGotoRC() assigns to each column the pixel
width of the widest character in the current font. If the current font is of fixed width, this yields the
usual interpretation.

Defaults: row, col 1
Errors: 140 w not window

101 row or col not integer
See also: XGotoXY()

28

XGotoXY(w,x,y) : w go to x, y

XGotoXY(w,x,y) is the same as XAttrib(w,"x=" x,"y=" y); coordinates are given in pixels.

Defaults: x, y 0
Errors: 140 w not window

101 x or y not integer
See also: XGotoRC()

XIconic(w,s) : w set iconic state

XIconic(w,s) requests that window w be reduced to an icon or expanded in size, depending on
argument s. If s is "icon", the window is reduced to an icon. If s is "window", the window is
expanded to full size. If s is omitted the window’s state is queried; either "icon" or "window"
is returned. This procedure is subject to the higher-level control of the X window manager and
consistent behavior across all window managers cannot be guaranteed.

Errors: 140 w not window
103 s not string

XIconImage(w,x) : w set icon image

XIconImage(w,x) sets window w’s icon pixmap from either a preloaded pixmap image (if x is a
window value) or a pixmap file (if x is a string). If x is omitted the call returns the icon (string file
name) associated with the window, or the empty string if the pixmap was set from another window
value. This procedure is subject to the higher-level control of the X windowmanager and consistent
behavior across all window managers cannot be guaranteed.

Errors: 140 w not window
103 x not window or string

See also: XReadImage()

29

XIconLabel(w,s) : w set icon label

XIconLabel(w,s) sets windoww’s icon label from string s. If s is omitted, the call returns the icon
label associated with the window.

Errors: 140 w not window
103 x not string

See also: XWindowLabel()

XMoveIcon(w,x,y) : w move icon

XMoveIcon(w,x,y)moves the icon associatedwith windoww to coordinates x,y with respect to the
upper lefthand corner of the screen. If w is iconified, the move is immediate, otherwise it specifies
where w’s icon will appear when w is iconified. This procedure is subject to the higher-level
control of the X window manager and consistent behavior across all window managers cannot be
guaranteed.

Defaults: x, y 0
Errors: 140 w not window

101 x or y not integer
See also: XMoveWindow()

XMoveWindow(w,x,y,width,height) : w move/resize window

XMoveWindow(w,x,y) moves window w to coordinates (x,y) with respect to the upper left-
hand corner of the screen. XMoveWindow(w,x,y,width,height) moves and resizes the window.
XMoveWindow() sends a request for a move to the windowmanager, but the actual move is subject
to the window manager and may or may not take place.

Defaults: x, y 0
Errors: 140 w not window

101 x, y, width, or height not integer
See also: XMoveIcon()

30

XNewColor(w,x,g,b) : i allocate mutable color

XNewColor(w,x,g,b) allocates an entry in the color map and returns a small negative integer that
can be used to specify this entry in calls to routines that take a color specification, such as XFg().
If x or x,g,b are specified, the entry is initialized to the given color. XNewColor() fails if it cannot
allocate an entry.

Error: 140 w not window
101 x, g, or b not integer
103 x not string (two arguments)

See also: XEvent(), XFg(), and XColor()

XParseColor(w,s) : i, i, i generate RGB values from color name

XParseColor(w,s) generates three integers ranging from 0 to 65,535 denoting the RGB components
from string color name s. XParseColor() also recognizes comma-separated decimal "r ,g,b"
component strings and standard X hexadecimal component "#rgb" where each of r, g, and b are
one to four hexadecimal digits. XParseColor() fails if string s is not a valid color name.

Errors: 140 w not window
103 s not string

XPending(w,x1,...,xn) : L produce event queue

XPending(w) produces the list of events waiting to be read from window w. If no events are
available, this list is empty (its size is 0). XPending(w,x1,...,xn) adds x1 through xn to the end of
w’s pending list in guaranteed consecutive order.

Error: 140 w not window
See also: XEvent()

31

XPixel(w,x,y,width,height) : L produce window pixels

XPixel(w,x,y,width,height) produces pixel contents from a rectangular area within window w.
width * height results are produced. Results are produced starting from the upper left corner and
advancing down to the bottom of each column before the next one is visited. Pixels are returned
in integer values; ordinary colors are encoded positive integers, while mutable colors are negative
integers that were previously returned byXNewColor(). Ordinary colors are encoded with the most
significant eight bits all zero, the next eight bits contain the red component, the next eight bits the
green component, and the least significant eight bits contain the blue component. These eight-bit
component values are the most-significant bits of regular X sixteen-bit color values.

Error: 140 w not window
101 x, y, width, or height not integer

See also: XEvent()
XNewColor()

XQueryPointer(w) : x, y produce mouse position

XQueryPointer(w) generates the x and y coordinates of the mouse relative to window w. If w
is omitted, XQueryPointer() generates the x and y coordinates of the mouse relative to the upper
left corner of the entire screen. XQueryPointer() fails if the supplied window argument denotes a
pixmap created by XBind() instead of an ordinary window.

Error: 140 w not window
See also:XWarpPointer()

XReadImage(w,s,x,y) : i load image file

XReadImage(w,s,x,y) loads an image from the file named by s into window w at offset x,y. x
and y are optional and default to 0,0. Two image formats are supported, the standard XBM bitmaps
(black and white) and XPM pixmaps (color) [LeHo91]. If XReadImage() succeeds in reading the
image file into window w, it returns either an integer 0 indicating no errors occurred or a nonzero
integer indicating that one or more colors required by the image could not be obtained from the
server. XReadImage() fails if file s cannot be opened for reading or is an invalid file format.

Default: x, y 0
Errors: 140 w not window

103 s not string
101 x or y not integer

32

XSetStipple(w,width,bits,...) : w define stipple pattern

XSetStipple(w,width,bits,...) defines a stipple pattern of width width. width must be a number
between 1 and 32 inclusive. The least-significantwidth bits of each subsequent integer argument is
interpreted as a row of the pattern. The pattern is used by the fill versions of the rectangle, arc and
polygon drawing functions when the fillstyle attribute is stippled or opaquestippled.

Errors: 140 w not window
101 width or bits not integer
205 width out of range

XSync(w,s) : w synchronize client and server

XSync(w,s) synchronizes the program with the X server attached to window w. Output to the
window is flushed, and XSync() waits for a reply from the server indicating all output has been
processed. If s is "yes", all events pending on w are discarded.

Errors: 140 w not window
See also: XFlush()

XTextWidth(w,s): i compute text pixel width

XTextWidth(w,s) computes the pixel width of string s in the font currently defined for windoww.

Errors: 140 w not window
103 s not string

XUnbind(w) : w release a binding

XUnbind(w) releases the binding associated with file w. Unlike close(), XUnbind() does not close
the window unless all other bindings associated with that window are also closed.

Errors: 140 w not window
See also: XBind()

33

XWarpPointer(w,x,y) : w move mouse pointer

XWarpPointer(w,x,y) moves the mouse pointer suddenly from one place to another on the screen.
The x and y coordinates are relative to window w; they may be negative. If w is omitted, x and y
are relative to the upper left corner of the screen.

Errors: 140 w not window
101 x or y not integer

See also: XQueryPointer()

XWindowLabel(w,s) : w set window label

XWindowLabel(w,s) sets window w’s window label (also called the window’s title) from string s.
If s is omitted, the call returns the label associated with the window.

Errors: 140 w not window
103 x not string

See also: XIconLabel()

XWriteImage(w,s,x,y,width,height) : w save image file

XWriteImage(w,s,x,y,width,height) saves an image of dimensionswidth, height from window w
at offset x, y to a file named s. x and y are optional and default to (0,0). width and height are
optional and default to the entire window. The file is written in the color XPM pixmap format if the
supplied file name argument ends in .xpm or the UNIX compress(1) program is called to produce a
compressed format if the file name ends in .xpm.Z; otherwise, the image is written in the standard
X Window bitmap format. XWriteImage() fails if s cannot be opened for writing.

Defaults: x, y 0
width, height (all)

Errors: 140 w not window
103 s not string
101 x, y, width, or height not integer

Acknowledgements

The design of X-Icon has benefitted tremendously from group discussion both within and without the Icon
Project and can be considered a group effort. Icon Project members during this period included Ralph
Griswold, Nick Kline, Gregg Townsend, Ken Walker, and myself. Gregg Townsend designed mutable
colors and XBind() and ferreted out inconsistencies in the design and implementation. Sandra Miller wrote

34

XDrawCurve(), implementedmutable colors, added icons to Icon, andmade numerous other improvements.
SteveWampler andBobAlexander contributed numerous suggestions, bug reports, and inspirational program
examples.

References

[Gris90] Griswold, R. E. and Griswold,M. T. The Icon ProgrammingLanguage, second edition. Prentice-
Hall, Englewood Cliffs, New Jersey, 1990.

[LeHo91] LeHors, A. The X PixMap Format. Groupe Bull, Koala Project, INRIA, France, 1991.

[Nye88] Nye, A., editor. Xlib Reference Manual. O’Reilly & Associates, Inc., Sebastopol, California,
1988.

[Sche86] Scheifler, R.W. andGettys, J. TheXWindowSystem. ACMTransactionsonGraphics, 5:79–109,
April 1986.

35

Appendix A: Sample Programs

Xm

#
Name: xm.icn
Title: simple X-Icon file browser
Author: Clinton L. Jeffery
Date: September 23, 1991
#
procedure main(argv)

if *argv = 0 then stop("usage: xm file")
f := open(argv[1], "r") stop("can’t open ", argv[1])
w := open(argv[1], "x") stop("no window")
L := []
every put(L, !f)
close(f)
base := 0
repeat

XClearArea(w)
XGotoRC(w, 1, 1)
every i:= 0 to XAttrib(w, "lines") 2 do

if i + base < *L then writes(w, L[i + base + 1])
write(w)

XAttrib(w, "reverse=on")
writes(w," More (",

((100 > (base + XAttrib(w,"lines") 2) * 100 / *L) 100),
"%)")

XAttrib(w, "reverse=off")
case reads(w, 1) of

"q": break
" ": base := (*L > (base + XAttrib(w, "lines") 2) fail)
"b": base := (0 < (base XAttrib(w, "lines") + 2) 0)

close(w)
end

36

Bme

#
Name: bme.icn
Title: BitMap Editor
Author: Clinton L. Jeffery
Date: Sept. 22, 1991
#
An X-Icon bitmap editor.
#

procedure main(argv)
WIDTH := HEIGHT := 32

if argv[1] == " geo" then
pop(argv) # pop " geo"
argv[1] ?

WIDTH := integer(tab(many(&digits))) stop("geo syntax")
="x" stop("geo syntax")
HEIGHT := integer(tab(0)) stop("geo syntax")
pop(argv)

if (*argv > 0) & (f := open(s := (argv[1] (argv[1] ".xbm")))) then
close(f)
w1 := open("BitMapEdit", "x", "width=" (WIDTH * 10),

"height=" (HEIGHT * 10), "pos=400,400") stop("open")
w2:= open("BitMap", "x", "width=" WIDTH, "height=" HEIGHT,

"pos=330,400", "image=" s) stop("open")
Construct magnified copy of bitmap
every i := 0 to HEIGHT 1 do

every j := 0 to WIDTH 1 do
XCopyArea(w2, w1, j, i, 1, 1, j * 10, i * 10)
XCopyArea(w2, w1, j, i, 1, 1, j * 10 + 1, i * 10)
every k := 1 to 4 do

XCopyArea(w1, w1, j * 10, i * 10, 2, 1, j * 10 + k * 2, i * 10)

XCopyArea(w1, w1, j * 10, i * 10, 10, 1, j * 10, i * 10 + 1)
every k := 1 to 4 do

XCopyArea(w1, w1, j * 10, i * 10, 10, 2, j * 10, i * 10 + k * 2)

37

else
w1 := open("BitMapEdit", "x", "width=" (WIDTH * 10),

"height=" (HEIGHT * 10), "pos=400,400")
stop("open")

w2:= open("BitMap", "x", "width=" WIDTH, "height=" HEIGHT, "pos=330,400")
stop("open")

XFg(w1, "black")
every i := 0 to HEIGHT 1 do

every j := 0 to WIDTH 1 do
XDrawRectangle(w1, j * 10, i * 10, 10, 10)

repeat
case e := XEvent(w1) of

"q": return
"s":

/s := getfilename()
XWriteImage(w2, s)

&lpress &ldrag:
dot(w1, w2, &x / 10, &y / 10, 1)

&mpress &mdrag:
dot(w1, w2, &x / 10, &y / 10)

end

procedure dot(w1, w2, x, y, black)
if black then

XFg(w1, "black")
XFg(w2, "black")

else
XFg(w1, "white")
XFg(w2, "white")

38

XFillRectangle(w1, x * 10, y * 10, 10, 10)
XDrawPoint(w2, x, y)
XFg(w1, "black")
if /black then XDrawRectangle(w1, x * 10, y * 10, 10, 10)

end

procedure getfilename()
wprompt := open("Enter a filename to save the bitmap", "x", "font=12x24", "lines=1")

stop("can’t xprompt")
rv := read(wprompt)
close(wprompt)
if not find(".xbm", rv) then rv := ".xbm"
return rv

end

39

Etch

#
Name: etch.icn
Title: Distributed Etch-A-Sketch
Author: Clinton L. Jeffery
Date: April 17, 1991
#
An X-Icon drawing program. Invoked with one optional argument, the
name of a remote host on which to share the drawing surface.
#
Dragging the left button draws black dots.
The middle button draws a line from button press to the release point.
The right button draws white dots.
Control-L clears the screen.
The Escape character terminates the program.
#

procedure main(av)
#
open an etch window. If there was a command line argument,
attempt to open a second window on another display. For
each window, create a binding with reverse video for erasing.
#
w1 := open("etch", "x") stop("can’t open window")
w2 := XBind(w1, "drawop=reverse")
w3 := XBind(w1, "reverse=on")
if *av > 0 then

w4 := open("etch", "x", "display=" av[1] ":0")
stop("can’t open window, display=", av[1])

w5 := XBind(w4, "drawop=reverse")
w6 := XBind(w4, "reverse=on")

repeat
#
Wait for an available event on either display.
#
w := XActive()
if w === (w1 w2) then

x1 := xa
x2 := xb

40

y1 := ya
y2 := yb
dragging := draga

else
x1 := xc
x2 := xd
y1 := yc
y2 := yd
dragging := dragc

case e := XEvent(w) of
#
Mouse down events specify an (x1,y1) point for later drawing.
(x2,y2) is set to null; each down event starts a new draw command.
#
&lpress &mpress &rpress:

x1 := &x
y1 := &y
x2 := y2 := &null

#
Mouse up events obtain second point (x2,y2), and draw a line.
#
&lrelease:

XDrawLine(w1, x1, y1, &x, &y)
XDrawLine(w4, x1, y1, &x, &y)

&mrelease:
XDrawLine(w1, x1, y1, &x, &y)
XDrawLine(w4, x1, y1, &x, &y)
dragging := &null

&rrelease:
XDrawLine(w3, x1, y1, &x, &y)
XDrawLine(w6, x1, y1, &x, &y)

#
Drag events obtain a second point, (x2,y2), and draw a line
If we are drawing points, we update (x1,y1); if we are
drawing lines, we erase the "rubberband" line and draw a

41

new one at each drag event; a permanent line will be drawn
when the button comes up.
#
&ldrag:

XDrawLine(w1, x1, y1, &x, &y)
XDrawLine(w4, x1, y1, &x, &y)
left and right buttons use current position
x1 := &x # for subsequent operations
y1 := &y

&rdrag:
XDrawLine(w3, x1, y1, &x, &y)
XDrawLine(w6, x1, y1, &x, &y)
left and right buttons use current position
x1 := &x # for subsequent operations
y1 := &y

&mdrag:
if /dragging then dragging := 1
else # erase previous line, if any

XDrawLine(w2, x1, y1, x2, y2)
XDrawLine(w5, x1, y1, x2, y2)

x2 := &x
y2 := &y
XDrawLine(w2, x1, y1, x2, y2)
XDrawLine(w5, x1, y1, x2, y2)

" 014": # Control-L
XClearArea(w1)
XClearArea(w4)

" e": break

if w === w1 then
xa := x1
xb := x2
ya := y1
yb := y2
draga := dragging

42

else
xc := x1
xd := x2
yc := y1
yd := y2
dragc := dragging

end

43

Appendix B: Some X Keysyms

The table below shows some keysym integer values produced by XEvent() for special keys. These values
were sampled on a Sun Sparcstation IPX running an MIT X11R5 server. The actual mapping between keys
and keysyms is defined by the X server, and not by X-Icon.

Value Key Value Key
65470 f1 65480 l1 (clash with f11)
65471 f2 65481 l2 (clash with f12)
65472 f3 65482 l3
65473 f4 65483 l4
65474 f5 65484 l5
65475 f6 65485 l6
65476 f7 65486 l7
65477 f8 65487 l8
65478 f9 65488 l9
65479 f10 65489 l10
65480 f11
65481 f12

65361 left 65386 help
65362 up 65513 alt
65363 right 65511 left diamond
65364 down 65512 right diamond
65496 home 65312 compose
65498 pgup 0 alt graph
65500 middle, or 5 key 65490 pause
65502 end 65491 prsc
65504 pgdn 65492 scroll lock

65493 r4 (keypad =) 65407 num lock
65494 r5 (keypad /) 65379 insert
65495 r6 (keypad *)

44

Appendix C: Bugs and Deficiencies

There is no means of creating child windows. All windows created by Icon are children of the root
window and are managed separately by the window manager.

There currently is no way to set many of the X graphics attributes, e.g., fill rule, cap style, join style.

X-Icon provides no way to directly access the Xlib plane mask or pixel values. This limits the
effectiveness of the attribute drawop.

There is limited support for event modifiers such as the control, alt, and shift keys. The alt key(s) are
ignored entirely. Control and shift are lost for mouse events, and applied automatically to keystrokes
so there is no way to detect, for example, the difference between a “backspace” key and the user
pressing control-H.

Event processing is done intermittently, and there are no timestamps on events, so user input techniques
that depend on time (such as double-clicking) do not work reliably.

Event processing routines are poll-based rather than interrupt-based. Programs that block doing
activities such as standard i/o reads are unable to handle even simple screen maintenance such as
windowmovement. This is an artifact of the current implementation and the XWindow system itself.

The text cursor does not flash and is almost invisible when a large window full of text in a small font
is displayed.

45

