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Abstract

The limited resources of embedded devices make it both costly and

difficult to deploy with general-purpose operating systems such as Linux.

The use of low level code compaction techniques can reduce the code

size of the kernel to better suit the environment of an embedded device.

However, using low level code compaction has typically precluded the

use of high level aliasing information. This makes it difficult to resolve

potential targets of indirect calls and which in turn reduces the degree of

code compaction. This honors thesis discusses a method for combining

high level aliasing information with low level code compaction of the Linux

kernel by having the high level alias analysis construct part of the kernel

call graph.

1 Introduction

As time goes on the use of embedded devices – such as cell phones, PDAs, MP3
players and the like – continues to grow. When choosing an operating system
for an embedded device, vendors must decide between developing a specialized
operating system in-house, or using a general purpose operating system such
as Linux. Developing a home brew operating system is both a time consuming
and expensive endeavor which deters such a pursuit. Unfortunately, general
purpose operating systems such as Linux tend to be less sensitive to the limited
resources of an embedded device, in particular the small amount of memory
available. While the Linux kernel can be configured to remove unnecessary
drivers, there are limits to the degree of custom tailoring that can be done to
the kernel by simply changing the configuration.

Code compaction through binary rewriting has proven an effective means of
reducing the code size of an application [5]. This requires – in part – the use of
inter-procedural analysis to determine what producers will not be executed in
a given application. This is complicated by the presence of indirect calls which
make construction of the call graph problematic. This issue is compounded
by both the lack of semantic information available in the decompiled binary
and the large presence of indirect calls in the Linux kernel unlike traditional
applications.

In the most conservative analysis, an indirect call could call any procedure in
a given application. This, of course, makes the elimination of entire procedures
from the kernel impossible though it does not preclude other types of code
compaction. Another approach that is more suitable at the binary level, is to, at
every indirect call, pose the question “which functions can have their addresses
taken at this point in the programs execution?” This approach will mean for a
given indirect call its targets will at most be any function in the application that
has its address taken at some point. This is still a highly conservative approach
but will at least provide some opportunity for procedure elimination. In order
to achieve greater precision alias analysis must be used, which attempts to solve
the more general problem of what pointers point to.
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2 Background

The question of aliasing comes in two varieties. The first, and weakest is for
some execution path P do two memory references a and b refer to the same
memory location, this is called may-alias. The second and stronger assertion
is that for all execution paths do two memory references a and b refer to the
same memory location, this is known as must -alias. Unfortunately, both of these
problems are, in general, undecidable [11]. This necessarily means that any alias
analysis algorithm is an approximation algorithm. We can characterize these
algorithms on several axis, most notably: flow-sensitivity, context-sensitivity,
and type-sensitivity. For a detailed survey and discussion of alias analyses and
their properties see [10].

Flow-sensitive alias analyses account for flow control within a procedure.
They produce separate aliasing information for different points in the control
flow of a procedure. Flow-insensitive analyses, by contrast, only produce alias-
ing information for the whole procedure and/or the whole program disregard-
ing both flow control and statement execution order. Flow-insensitive analyses
tend to be more conservative in their approximations but also less expensive
than flow-sensitive analyses. Context-sensitive alias analyses distinguish be-
tween different invocations of a procedure. For example, if a procedure P is
called from procedure Y and procedure Z, a context-sensitive analysis will pro-
duce aliasing information for both PY and PZ . Context-insensitive analyses
make no such distinction. The trade off between context-sensitive and context-
insensitive analyses is the same as with flow-sensitive and flow-insensitive: more
precision at a higher expense or less precision at a lower expense.

Type-sensitivity refers to using type information to assist in deriving aliasing
information. For example, a simple type-sensitive analysis might infer that if
references a and b have compatible types they may alias and otherwise they do
not alias. Type-sensitivity tends to be cheap in terms of runtime and memory
use though it does not – by itself – produce precise results. Alias analyses that
are type-sensitive are generally limited to operating at the source level or some
other high level program representation where type information is available.

Aside from issues of context-sensitivity, flow-sensitivity and the like, there is
the issue as to what level of representation of a program does one perform alias
analysis. When a program is written in several different languages, contains in
line assembly, or does not have the complete source code available, perfroming
alias analysis at a low level, such as on the machine code, is the apparent choice
[6]. However, this comes at a cost as the loss of high level semantic information,
such as type information, precludes an analysis from leveraging these semantics
to improve aliasing precision such as through a type-sensitive alias analysis.

The FA analysis [14, 15] demonstrates well the effectiveness of performing
alias analysis at the source level. The FA analysis is a flow-insensitive, context-
insensitive, and type-sensitive alias analysis. Being both flow- and context-
insensitive means that the algorithm has both a low cost, it runs in near linear
time, and a low precision. Nonetheless, by utilizing type information in distin-
guishing between different fields of a structure, it is able to achieve surprisingly
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accurate results, especially in terms of call graph construction [12]. In fact,
according to Milanova et al., the FA analysis produced the most accurate call
graph possible in all of the tests they performed [12].

Clearly, source level analyses provide better results in terms of precision
vs. cost – especially for call graph construction – because of their ability to
take advantage of source level semantic information. The problem our research
addresses is how to combine source code level alias analysis with machine code
level code compaction and show that such a combination can produce a higher
level of code compaction than performing the alias analysis at the machine code
level.

3 FA Analysis

Here we will give a brief summary of the FA analysis developed by Zhang et
al. [15]. As previously mentioned, the FA analysis is a flow-insensitive, context-
insensitive, type-sensitive alias analysis. This particular analysis categorizes
memory references into sets such that all the members in a given set may-alias
one another. This has the side effect that if A may point to B then B may
point to A. In other words, the FA analysis is symmetric.

The FA analysis does not take into account pointer arithmetic or array in-
dexing. So a statement such as *(p+1) or p[1] is simply treated as *p. The
analysis does, however, distinguish between different fields of a structure, so p.x

is distinct from p.y.
The FA analysis constructs for each memory reference an object name. An

object name is simply a variable name with a series of right-associative pointer
dereferences (*) and address operators (&) as well as left-associative field accesses
(.field). This construction mimics the use of memory references in C. For
example, the reference in C &(t->y) would map to the object name &(*(t).y).
Since pointer arithmetic is ignored by the FA analysis the reference *(p+1)

maps to the object name *p.
The PE equivalence relation (Pointer-related Equality) is used to partition

the set of all object names into equivalence classes. This relation is represented
by a graph GPE . Each vertex of the graph corresponds to an equivalence class
of object names. These vertices are connected via edges labeled as pointer-
dereference or by a field name.

We will only provide a rough sketch of the construction of GPE . The basic
outline is to initially place every object name in its own equivalence class. Edges
connect nodes as follows:

• If an equivalence class e1 contains an object name o.field where o is an
object name in equivalence class e2, then there is an edge labeled field

from the vertex v representing e2 to the vertex w representing e1 in GPE .

• If an equivalence class e1 contains an object name ∗o where o is an object
name in equivalence class e2, then there is an edge labeled * from the
vertex v representing e2 to the vertex w representing e1 in GPE .
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• If an equivalence class e1 contains an object name &o where o is an object
name in equivalence class e2, then there is an edge labeled * from the
vertex v representing e1 to the vertex w representing e2 in GPE .

For every assignment in the given program the equivalence class of the object
name representing left hand side of the assignment is merged with the equiva-
lence class of the object name of the right hand side. This involves identifying
the vertices representing these equivalence classes. If a merge results in a vertex
v being the source of two edges with the same label, then the equivalence classes
represented by the destination of these two edges are also merged.

Direct calls are handled similarly to assignments. The object names for the
function’s formal parameters are merged with object names for the parameters
of the function call. Indirect calls are handled somewhat differently. Suppose
an indirect call is made using function pointer p. Whenever a function’s object
name is merged with p then the object names for the call site’s parameters are
merged with the function’s formal parameters.

After the GPE is constructed, determining the potential targets of an indirect
call is straight forward. If an indirect call uses a function pointer f then the
possible targets are all the function object names in the same equivalence class
as f .

4 Overview

Our solution to combining source level aliasing information with low level code
compaction, is to implement a high level alias analysis – we will use the FA
analysis – run this analysis on the source code, and then construct a partial
call graph containing the call graph edges for indirect calls. The low level code
compaction can then use this partial callgraph to construct the actual callgraph
of the program by filling in the the remaining edges that are either normal
function calls or an edge needed for some unrelated reason.

Figure 1 provides the general outline of the overall system. The system can
be thought of as two chains, one performing the code compaction and another
performing source level alias analysis. We will not discuss the code compaction
chain in any great detail, it is mainly present for context. To demonstrate each
phase of our system we will use a small example program Hello (Figure 2) which
simply prints “hello world” via an indirect call.

In order to perform alias analysis of a given program, the source must first
be parsed. For this task we use a GEM (GCC Extension Modules) plugin to
hook into GCC’s frontend. GEM was developed by Dr. Chiueh et al. at State
University of New York and is simply a light weight patch for GCC that allows
one to write extension modules for GCC to modify GCC’s syntax trees and
other intermediate representations at various phases of compilation [4]. Unfor-
tunately, since compilation of an application generally occurs through multiple
invocations of GCC – building multiple object files which are then linked – and
our analysis depends upon information of the entire program. As a result, we
do not attempt to perform the actual alias analysis inside our GCC extension
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Figure 1: System Diagram

void hello(){ printf("hello world\n"); }

void main(void){

(void *f)();

f = &hello;

f();

}

Figure 2: Hello program code.

module, instead we dump a summary for each compilation unit. Figure 3 shows
the compilation unit summary for Hello.

The compilation unit summaries, once produced, are passed to a python
script which implements the FA analysis algorithm. This script produces a
partial call graph containing the edges for indirect calls. The call graph is
written to a file named callgraph. Figure 4 shows the partial callgraph file
produced for Hello.

5 Technical Details

5.1 GCC and GEM

One of the goals of our framework is to keep it as general as possible, since alias
analysis is not specific to a particular piece of software or a particular platform
our framework tries to embrace this generality. While GCC does work well with
many different pieces of software, there is still a great deal of software which is
not compatible with GCC and many pieces of software are only compatible with
particular versions of GCC. For example, the 2.4 version of the Linux kernel will
not compile with GCC 4 without a patch. Given this, the bulk of the analysis
is moved outside of GCC itself.

GEM is a GCC kernel patch that allows one to define their own extension
modules for GCC. The modules are in the form of a shared object file that
defines a gem_create and a gem_destroy function which are called by GCC
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<compunit>

<function id="hello">

<decl id="hello">

<namespace/>

<type-ref key="1"/>

</decl>

<functioncall>

<decl id="printf">

<namespace/>

</decl>

<param num="1">

<decl id="@cststring1">

<namespace/>

<type-ref key="2"/>

</decl>

</param>

</functioncall>

</function>

<function id="main">

<decl id="main">

<namespace/>

<type-ref key="1"/>

</decl>

<assignment>

<decl id="f">

<namespace>

<decl id="main">

<namespace/>

<type-ref key="1"/>

</decl>

</namespace>

</decl>

<address>

<decl id="hello">

<namespace/>

<type-ref key="1"/>

</decl>

</address>

</assignment>

<functioncall>

<decl id="f">

<namespace>

<decl id="main">

<namespace/>

<type-ref key="1"/>

</decl>

</namespace>

</decl>

</functioncall>

</function>

<type-table>

...

</type-table>

<compunit>

Figure 3: Hello compilation unit summary.

main:hello,

Figure 4: Hello partial call graph.
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at the beginning and end respectively of processing a compilation unit. GEM
also defines a set of function pointers called at key points during GCC’s pro-
cessing of a compilation unit, these function pointers can be set in gem_create.
The function pointers of particular interest to us are: gem_start_function,
gem_finish_function, gem_finish_decl. These function pointers are set in
the gem_create function of our extension module and allow us to access the
syntax trees for functions and global declarations. It should be noted that GCC
does not keep an explicit symbol table in its high level intermediate forms, rather
properties normally associated with the symbol table are stored as attributes of
syntax tree nodes. For example, given a variable declaration node of a syntax
tree, its identifier can be accessed using the DECL_NAME macro which simply
accesses the appropriate field containing the address of the identifier node.

At the point where the syntax trees are intercepted by GEM they are still in
a high level form. Most – if not all – of the original constructs of the language
– in this case C – are still intact such as compound literal expressions, all of
the various looping constructs, etc.. This form is rather tedious to deal with as
distinguishing between for and while loops or dealing with nested assignments
is not productive for our purposes. In fact, dealing with this form directly
would result in excessive code duplication. Luckily, as of GCC 4, there is an
intermediate form called GIMPLE form which is like a high level three address
form. By copying the intercepted syntax trees and converting them to GIMPLE
form we can work with a simplified syntax tree that still preserves a great deal
of semantic information.

Note that despite the simplicity of GIMPLE form it still maintains semantic
information such as the types for variables. Once in GIMPLE form, the as-
signments and function calls are picked out and written to a compilation unit
summary. As a small optimization, assignments not involving a pointer type
or some kind of aggregate type (such as a struture) are not recorded. Since
flow control statements and the like are not relevant to the FA analysis they are
simply ignored. In the next section, greater detail will be given to the specifics
of the compilation unit summaries.

5.2 Compilation Unit Summaries

Our software uses an XML markup for producing the compilation unit sum-
maries. The document contains three sections: a global assignment section, a
section for each function, and a type table section. The main purpose of these
sections is to categorize both where assignments happen and, with the use of the
type information, what aliasing might occur when aggregate types are involved.
Before going into extensive detail of each section, we start by looking at the
representation of an object name.

The construction of object names in the FA analysis are mapped to an
equivalent XML format. A variable/heap name is represented by a <decl>

tag, a field access by a <field_access> tag, a dereference by an <indirect>

tag, and an address operator by a <address> tag. To distinguish between two
variables of the same name but located in different scopes – such as being in
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different functions, or fields of different structure types, etc. – we introduce a
<namespace> tag which contains the object name of the scope to which a variable
belongs. So, for a variable local to a function, its <namespace> tag would contain
the object name for the function to which it belongs. If the variable in question
is actually the field of some structure type then the <namespace> tag will contain
either a <record> or <union_type> tag to denote the type of structure to which
it belongs. Global variables simply contain an empty <namespace> tag or, if
the variable is file scope, the name space tag contains a <file> indicating the
file to which it has scope.

To make this more concrete. Consider the object name (*next).prevwhere
next is a local variable of the static function __list_add in file_table.c

and prev is a field of structure type list_head. This object name would be
represented in our summaries as in Figure 5.

<field_access>

<indirect_ref>

<decl id="next">

<namespace>

<decl id="__list_add">

<namespace>

<file id="file_table.c">

<namespace/>

</file>

</namespace>

<type-ref key="770545756"/>

</decl>

</namespace>

<type-ref key="770545687"/>

</decl>

<type-ref key="770545664"/>

</indirect_ref>

<decl id="prev">

<namespace>

<record_type id="list_head">

<namespace/>

</record_type>

</namespace>

<type-ref key="770545687"/>

</decl>

<type-ref key="770545687"/>

</field_access>

Figure 5: XML representation of an object name.

The FA analysis expects assignments to be in the form of A = B where A
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and B are both object names as outlined in the FA analysis. GIMPLE form
presents assignments in the form a = b op c where op is some valid C operator.
Since GIMPLE form ignores pointer arithmetic, this generally transforms easily
into the representation expected by the FA analysis. One issue that does arise is
the initialization of global variables. Since GCC provides no facility to transform
the initialization expressions of global variables into GIMPLE form, some high
level constructs must be taken in to account. This involves taking a high level
C construct and breaking it down into a simple series of assignments. For
example, a constructor assignment such as Figure 6 is transformed into a series
of assignments shown in Figure 7.

static struct inode_operations umsdos_file_inode_operations = {

truncate: fat_truncate,

setattr: UMSDOS_notify_change,

};

Figure 6: Constructor assignment code.

umsdos_file_inode_operations.truncate = fat_truncate;

umsdos_file_inode_operations.setattr = UMSDOS_notify_change;

Figure 7: Constructor assignment broken into multiple simple assignments.

Assignments are represented in the summaries as simply an <assignment>

tag whose first child is the object name for the left had side of the assignment
and whose second child is the the object name for the right hand side of the
assignment. The right hand side may also be a function call as described next.

Function calls in the source program are represented in the summary using
a <function_call> tag. The function call is appropriately transformed – likely
through the introduction of temporary variables – such that each parameter
passed is a single object name and not an assignment or function call. The first
child of the <function_call> tag is the object name of the callee; the callee
may either be an address of a function object name (for direct calls) or a pointer
object name (for indirect calls). All subsequent children are <param> elements,
each with a number attribute indicating the argument position. Each <param>

element consists of a single object name representing a parameter of the function
call. For example, compare the function call to open_namei in Figure 8 to its
XML representation in Figure 9.

For each function in the compilation unit there is a summary for that par-
ticular function denoted by a <function> tag. The first child of a <function>

tag is the object name of that function. For a function with n parameters the
2nd through (n+1)th child of the <function> tag are object names for the
functions parameters in order. Next is the object name of the function’s return
value. The rest of the <function> tags children are either <assignment> tags or
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int open_namei(const char *pathname,

int flag,

int mode,

struct nameidata *nd);

struct file *flip_open(const char *filename, int flags, int mode){

int namei_flags, error;

struct nameidata nd;

// some code

struct nameidata *t01 = &nd; // temp inserted by GIMPLE

int error = open_namei(filename, namei_flags, mode, t01);

// some more code

}

Figure 8: Code snippet from the Linux file system code.

<function_call> tags. The representations of assignments and function calls
in the function summary are presented in the same order as they appear in the
source program.

All the types in the compilation unit are stored in the type table section,
denoted by a <type-table> tag, at the end of the compilation unit summary.
The type table itself is just a large hash table mapping integer keys to type
values. Every object name contains a <type-ref> tag with a key attribute
that corresponds to its type in the type table. Each value in the type table
may contain references to other values in the type-table and may even have
circular references for recursive types. The children of the <type-table> tag
are <value> tags each with a key attribute. The <value> tag contains exactly
one child which is one of several type tags. Function types are denoted with a
<function-type> tag, structure types with a <record-type> tag, union types
with a <union-type> tag, integer type with an <integer> tag, real type with
a <real-tag> and an array type with an <array-type> tag.

A <function-type> tag’s first n children correspond to types of parame-
ters for a function of that type and the last child corresponds to the type of
the return value type of a function of that type. The <record-type> tag and
<union-type> tag have a sequence of object names for their fields in the source
program. These fields appear in exactly the same order as in the source pro-
gram. The <integer> type tag has no children but does have a size and signed
attribute. These attributes correspond to the size of the integer type in bits
and a boolean value of which is true if the integer type is signed and false oth-
erwise. The <array-type> has exactly one child corresponding to the type of
each element of the array.
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<assignment>

<decl id="error">

<namespace>

<decl id="flip_open">

<namespace />

</decl>

</namespace>

</decl>

<function_call>

<address>

<decl id="open_namei">

<namespace />

</decl>

</address>

<param num="0">

<decl id="filename">

<namespace>

<decl id="flip_open">

<namespace />

</decl>

</namespace>

</decl>

</param>

<param num="1">

<decl id="mode">

<namespace>

<decl id="flip_open">

<namespace />

</decl>

</namespace>

</decl>

</param>

<param num="2">

<decl id="mode">

<namespace>

<decl id="flip_open">

<namespace />

</decl>

</namespace>

</decl>

</param>

<param num="3">

<decl id="t01">

<namespace>

<decl id="flip_open">

<namespace />

</decl>

</namespace>

</decl>

</param>

</function_call>

</assignment>

Figure 9: XML representation of Linux file system code snippet.
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Figure 11 shows the XML representation of a type table consisting of types
depicted in Figure 10. These types are loosely based off types from the Linux
kernel’s filesystem code.

struct file{

struct dentry *f_dentry;

struct file_operations *f_op;

};

struct file_operations {

int (*open)();

};

struct dentry {

struct dentry *d_parent;

};

Figure 10: Partial structure definitions from Linux file system code.

5.3 FA Analysis Implementation

Since our compilation unit summaries essentially insulate the implementation of
our analysis from the software used to gather information about the C code, we
are not locked into using any specific language in writing the FA analysis. Do to
time restraints, the implementation was written as a Python script. This allowed
for the analysis itself to be written relatively quickly and made debugging an
easier affair than if it had been written in C/C++. This has, however, come at
a cost as it currently takes upwards 1 hour to process the entire 2.4 Linux kernel
even with a minimalist kernel configuration. The inefficiencies of Python forced
us – somewhat ironically – to be more conscientious about efficiency during
implementation.

The approach used is loosely object oriented. Every assignment, object
name, function call, type, etc. maps to an object of an appropriate class. Figure
12 presents the class diagram for object names. Types have a similar mapping.

Since both object names and types are immutable and multiple occurrences
of the same object name/type occur quite frequently, it becomes quite costly
in terms of memory to create a new object for each object name. To deal with
this issue, object construction for classes related to object names and types
has been customized so that a cache is checked prior to object creation. If the
cache already contains an appropriate instance for the object name or type,
this instance is returned and no object creation occurs. This insures that there
are never multiple instances of equivalent object names or types. This not
only significantly reduces the memory footprint but it also significantly reduces
the run time as equality checks can be done based on memory addresses using
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<type-table>

<value key="1">

<record-type>

<decl id="dentry">

<type-ref key="5"/>

</decl>

<decl id="f_op">

<type-ref key=""/>

</decl>

</record-type>

</value>

<value key="2">

<record-type>

<decl id="open">

<type-ref key="7"/>

</decl>

</record-type>

</value>

<value key="3">

<record-type>

<decl id="d_parent">

<type-ref="5"/>

</decl>

</record-type>

</value>

<value key="4">

<integer-type size="32" signed="1"/>

</value>

<value key="5">

<pointer-type>

<type-ref key="3"/>

</pointer-type>

</value>

<value key="6">

<pointer-type>

<type-ref key="2"/>

</pointer-type>

</value>

<value key="7">

<function-type>

<type-ref key="4"/>

<void-type>

<function-type>

</value>

<value key="8">

<pointer-type>

<type-ref key="4"/>

</pointer-type>

</value>

</type-table>

Figure 11: Partial XML representation for Linux file system types.

Python’s “is” operator, as opposed to checking equality by recursing on object
names/types.

Caching object name instances is simple enough, since an object name is
either a variable/heap name, an object name with an address “&” or indirect
“*” prefix, or a field access “.” of two object names. For each class that inherits
from ObjectName, such as FieldAccess, Address, etc. we store a hash table
and in this hash table we store instances of that class using the hashes of their
children as the key. For example, Figure 13 shows the constructor for the
FieldAccess class which performs this caching.

Caching type instances can be more difficult as many types are recursive,
such as the structures often used for linked lists. This circular dependency
means we cannot simply use the subtypes of a given type as a key to a types
instance. Consequently, when a compilation unit summary is parsed, we allow
for multiple instances of the same type to exist, but once a compilation unit is
parsed, we prune out these duplicates.

Originally, the XML summaries were parsed in as a DOM using Pythons
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ObjectName

+namespace: Namespace

+children: [ObjectName] = []

+type: CType

FieldAccess

+structure: ObjectName

+field: ObjectName

+children: [ObjectName] = [structure,field]

Indirect

+pointer: ObjectName

+children: [ObjectName] = [pointer]

Address

+value: ObjectName

+children: [ObjectName] = [value]

Figure 12: UML class diagram for object names.

XML reader and the DOM objects were mapped into our internal representation
for object names, assignments, function calls, etc. While this was sufficiently
fast for small programs, using this method to process all of the summaries
for the Linux Kernel took upwards six hours. Consequently, the parsing was
rewritten to use an XML SAX parser. SAX does not build any tree structures
corresponding to the parsed XML document, it simply issues events whenever
a tag or attribute is encountered. We use these events to build up our own
internal representation for the summaries which is fairly trivial given the near
isomorphism between the internal representation we use and the structure of the
XML summaries. The code becomes slightly more complex and prone to error
due to pushing and popping objects from a stack, but by using this method,
it now only takes approximately one hour to parse the entire Linux kernel as
opposed to six.

The algorithm itself is implemented as closely as possible to the pseudo code
provided by [12]. The FA analysis uses a PE equivalence relation (Pointer-
related Equality) to categorize all object names into equivalence classes. If two
object names are in the same equivalence class then they may alias one another.
If two object names are not in the same equivalence class then they will not alias
each other. With each equivalence class there is an associated prefix which is
essentially a labeled edge list for pointer dereferences and field accesses. Using
the classes PEGraph and PENode (Figure 14) we represent these equivalence
classes and their corresponding prefixes as an explicit graph.

The methods init_equiv_class, find and merge correspond to the func-
tions init equiv class, find and union presented for the FA Analysis. These
methods behave in the expected manner given the functions in the FA analysis
they represent, so we will not go into extensive detail of them here. However,

17



class FieldAccess(ObjectName):

instance_dict = dict()

# objname is an instance of ObjectName occurring on

# the left hand side of a field access.

# field is an instance of ObjectName, or more

# specifically Declaration, and occurs on the right

# hand side of the field access.

def __new__(cls, objname, field):

try:

# If we have already constructed a FieldAcess

# for objname and field go ahead and return it.

return FieldAccess.instance_dict[(objname,field)]

except KeyError:

# We have not yet constructed an instance of

# FieldAccess for objname and field so lets

# make one now.

instance = ObjectName.__new__(cls)

ObjectName.__init__(instance)

# Here we store this instance for reuse.

FieldAccess.instance_dict[(objname,field)] = instance

instance.children = [objname,field]

instance.namespace = objname.namespace

instance.__calc_hash_value()

return instance

Figure 13: Modified constructor to cache instances.
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PEGraph

+init_equiv_class(object_name:ObjectName)

+merge(eqcA:PENode,eqcB:PENode): PENode

+find(object_name:ObjectName): PENode

PENode

+parent: PENode

+children: list

+getPrefix(label): ObjectName

1 * 1

*

Figure 14: UML class diagram for PENode and PEGraph.

there are some important considerations to make when using these methods.
All object names (an ObjectName instance) should be initialized prior to their
use by find otherwise an exception is raised. Also, the return value of find is
a PENode representing the equivalence class to which it belongs. This value is
only valid until the next call merge or init_equiv_class as the object name’s
equivalence class (and thus PENode) may change as a side effect of these method
calls. The union find algorithm is utilized to handle both lookups and merges
of equivalence classes.

PENode provides a method getPrefix which, given a field ObjectName instance
or the INDIRECT constant, will return an ObjectName instance for the prefix
of that field access or indirection respectively. This corresponds to the apply
function of the FA analysis.

The implementation of the FA algorithm itself is fairly straight forward from
the algorithm’s pseudo-code. There are some additions to the algorithm in-order
to better serve our particular needs. We reproduce an outline of the algorithm
here in Figure 15.

Notice that in our implementation of the FA analysis we do the initialization
of object names and the merging of regular assignments while we are still parsing
compilation unit summaries. This simply reduces the total amount of time
needed to run the analysis on large pieces of software such as the Linux kernel,
which, even in our minimalist configuration, contains nearly 300 compilation
unit summaries.

The function propagate_inlined_functions simply accounts for function
inlining by associating the the function calls contained in an inlined function
with the callees of the inlined function. The purpose of removing inlined function
at this point is to better serve the needs of machine code level optimizations
which will have no knowledge of inlined functions. The burden of dealing with
function inlining could be placed upon the machine level analysis but this would
require the use of DWARF debugging information.

The function write_callgraph simply dumps the callgraph to the given file
handle. The callgraph written is only a partial callgraph, only including edges
for the indirect calls. It is necessary for any analysis using these results to fill
in the gaps for normal function calls.
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5.4 External and Inline Assembly

As discussed earlier, high level alias analyses depend on the program being
written entirely in a high level language. The Linux kernel, however, contains a
great deal of inline assembly and external assembly files. To solve this problem,
we make use of approximate decompilation which was developed by Haifeng He
at the University of Arizona. We will briefly sketch his approach here, for a
more detailed discussion see [9].

Approximate decompilation transforms assembly code in to C code but does
not do so to preserve the exact computation. Instead, approximate decompila-
tion only attempts to preserve particular properties of the assembly code during
the translation. In our case, we wish to use the FA analysis on the translated
assembly code of the kernel. So the properties that must be maintained during
the approximate decompilation are those properties upon which the FA analysis
depends.

The FA analysis is flow-insensitive and context-insensitive so intra-procedural
control flow instruction in the assembly can be ignored. This includes branch in-
structions that do not transfer control outside of a given function. However, any
instruction which transfers control to another function – indicative of a function
call – must be preserved as the FA analysis needs to merge the parameters of
the call site with the formal parameters of the callee.

Instructions that move data around – all of which could possibly be memory
addresses – are translated into assignments. System instructions can simply
be ignored since they only manipulate hardware which does not affect alias
analysis.

5.5 Running the Analysis

To produce a partial call graph for the Linux kernel requires four steps:

1. Add GEM Patched GCC to the Path

2. Modify kernel Makefile

3. Compile kernel

4. Run FA Analysis Python Script

Since we use a version of GCC with the GEM patch applied for loading exten-
sion modules, we have to put this version of GCC on the path. Placing it before
other versions of GCC is sufficient to insure that the patched version of GCC is
used. We will assume that this version of GCC is in /home/trimblej/gcc-gem

but it could of course be else where. In the bash shell we would set the path as
follows:

$ export PATH=/home/trimblej/gcc-gem/bin:$PATH
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Modification of the kernel’s Makefile is also necessary in order to add the
appropriate command line argument to load our function summary GCC exten-
sion module. To make absolutely certain that the extension module is loaded,
we modify the CC variable as opposed to one the CFLAGS variables. Assum-
ing that the extension module is located at /home/trimblej/module.gem, we
change the following line in the root Makefile of the kernel from:

CC = $(CROSS_COMPILE)gcc

To:

CC = $(CROSS_COMPILE)gcc -fextension-module=/home/trimblej/module.gem

The kernel is then compiled in the usual way using a configuration file that
includes only the bare essentials needed by the hardware and software applica-
tions being used. After the kernel is compiled, the source tree will contain a
large number of files with an .xml extension. These files are the compilation
unit summaries. These summaries need to be passed as command line argu-
ments to the fa_analysis.py script which will run the FA analysis on them.
The simplest way to do this is to go to the kernel’s root directory and use the
find utility to grab all the .xml in the kernel’s source tree. Assuming that the
script is located at /home/trimblej/fa_analysis.py and the kernel’s source
at /home/trimblej/kernel, this would be executed as follows from the kernel’s
root directory:

This will write to a file called callgraph in the current directory which will
contain for each function with indirect calls its potential targets as a result of
those indirect calls. This is then used the binary rewriting code compaction
software to compact the kernel.

6 Experimental Results

Figure 16 displays the number of possible call targets for each indirect call.
There are 1092 indirect calls in total in the compiled Linux kernel we configured.

For code compaction of the kernel, a variety of benchmarks are taken from
the MiBench suite [8]. These benchmarks simulate the environment of an em-
bedded system. A brief summary of the programs used in each benchmark is
given in Table 1. The compaction results of for each benchmark is given in
Table 2 which includes the results both with and without the FA analysis data.

$ python ../fa_analysis.py ‘find -name "*.xml"‘
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Benchmark Programs
Boot
Automotive basicmath, bitcount, qsort, susan
Consumer jpeg, lame, mad, tiff2bw, tiff2rgba, tiffdither, tiffmedian, typeset
Network dijkstra, patricia, CRC32, sha, blowfish
Office ghostscript, ispell, rsynth, sphinx, stringsearch
Security blowfish, pgp sign, pgp verify, rijndael, sha
Telecomm CRC32, FFT, IFFT, ADPCM, GSM
Cellphone blowfish, sha, CRC32, FFT, gsm, typeset
Entertainment jpeg, lame, mad

Table 1: Test benchmarks.

Benchmark With FA Analysis Without FA Analysis Difference
Boot 72.5 77.2 4.7
Automotive 72.8 77.7 4.9
Consumer 73.1 78.1 5.0
Network 72.8 77.8 5.0
Office 73.0 77.9 4.9
Security 72.9 77.8 4.9
Telecomm 72.8 77.8 5.0
Cellphone 72.9 77.9 5.0
Entertainment 73.0 78.0 5.0

Table 2: Linux 2.4 kernel code compaction results as percentage of uncompacted
code.
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7 Experimental Evaluation

Table 16 shows some rather interesting results. First of all, out of the 1092
indirect calls found 752 of them – over half – were found to have exactly 1 target.
So the accuracy of most indirect calls is a drastic improvement over using a low
level alias analysis. However, 82 indirect calls have over 100 possible targets
and, out of those, 20 have over 200 possible targets.

All of the indirect calls containing over 200 possible targets are due to the
same set of function targets. This set includes all of the system call handlers
such as as sys_clone, sys_settimeofday, sys_mount. Some others in this
group appear to be be error handlers such as coprocessor_segment_overrun

and divide_error. The rest appear to deal with the file system such as
ext2_read_inode and proc_read_inode. Two of the indirect calls in the this
set are not particularly surprising, one is the function system_call and the
other error_code. The other indirect calls are in functions related to the filesys-
tem such as dcache_readdir, proc_readfd, and ext2_readdir. It is curious
to see specific filesystem functions like ext2_read_inode lumped together with
system call handlers though this may be accounted for by how Linux treats
everything as a file.

Those indirect calls having over 100 targets but less than 200 are also all
due to a particular set of functions. These all appear to deal with I/O ei-
ther in the filesystem code, such as ext2_mkdir, to various peripherals, such
as busmouse_read, or to memory, such as memory_open. Most of the in-
direct calls themselves are spread throughout the filesystem code such as in
dentry_open and vfs_symlink. Some of the calls are in system call handlers
such as sys_pread and sys_read. We can rationalize the size of this call target
set in a similar way as the previous such set: since almost everything in Linux
is represented as file it should not be overly suprising that filesystem code and
more general I/O code would get lumped together.

Establishing exactly how precise the FA analysis is in determing the potential
targets of indirect calls in the Linux kernel is something of a problem. Milanova
et al. established the accuracy of the FA analysis in finding potential targets
for indirect calls by using a small set of applications for which they, by hand (!),
constructed the callgraph. They then compared the results of the FA analysis
to this ideal, hand made, call graph [12]. Clearly this is impractical for the
Linux kernel. To give some notion of the precision we can compare to the fairly
primitive aliasing information gained when performing code compaction without
the FA analysis. With out the FA analysis, every indirect call has 1001 potential
targets, whereas the FA analysis produces an average of 14 potential targets for
each indirect call.

As far as the FA analysis’ usefullness in code compaction, all of the bench-
marks show an average compaction improvement of about 5% (Table 2) over
performing code compaction without the FA analysis.
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8 Related Work

Software written in object-oriented languages such as Java and C++ tend to
have a great deal of indirect calls as a result of virtual methods. Consequently, a
great deal of research has evolved concerning callgraph construction in object-
oriented languages [13, 7, 2, 1]. The techniques used to resolve indirect call
targets in object-oriented languages tend to be largely type based. Initially
we attempted to apply a type based approach to resolving indirect calls in the
kernel but the initial results were not satisfactory. The main barrier to applying
such type based approaches to the kernel code is that C is not a strongly typed
language. For example, in C, a pointer of type a can be implicitly cast to a
pointer of type b with only a warning from GCC by default.

Resolving indirect call targets is an essential task for code compaction. Ex-
isting work does alias analysis at the same level as the code compaction. Debray
et. al is the earliest instance found of low level code compaction using control
flow analysis [5]. Their work uses binary rewriting for compaction and resolves
indirect calls conservatively by assuming that an indirect Call’s target is poten-
tially any function whose address is taken. Chanet et al. uses a similar binary
rewriting technique for code compaction of the Linux kernel and uses essentially
the same method for indirect call resolution [3].

9 Conclusion

Combining high level aliasing information with low level code compaction of
the Linux kernel is both feasible and benificial. Combining source level aliasing
information with low level code compaction of the Linux kernel can be achieved
by having the source level analysis build part of the kernel call graph. The
kernel’s source code can be processed by using a GCC plugin and relevant
information stored as compilation unit summaries which are written in XML.
These summaries can then be used to run the FA analysis. Even though the FA
analysis is one of the least precise alias analysis algorithms its results are able
to improve code compaction of the kernel by 5%.

10 Future Work

Currently the granularity of the aliasing information from the source level pro-
vided to low level code compaction is only at the function level. This in turn
limits the level at which unreachable code can be eliminated. By providing
more general aliasing information about specific memory references finer grained
code compaction could be accomplished. The main barrier to this is developing
a mechanism by which the source level aliasing information can be effectively
communicated to low level code compaction. Using DWARF debugging infor-
mation may provide one avenue by which such can be accomplished.
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def run_fa_analysis(graph, files):

num_files = len(files)

functions = []

function_calls = []

# Do file parsing in a separate thread

parser_thread = FAParserThread(files)

parser_thread.start()

while num_files > 0:

num_files -= 1

# Get a compilation unit summary.

summary = parser_thread.results.get(True)

functions.extend(summary.functions)

for function in summary.functions:

# initialize function, argument, and return

# value object names.

...

for assignment in summary.assignments:

# initialize the object names of the left

# hand and right hand side of the assignment.

# merge left hand side and right hand side

# object names.

...

function_calls.extend(summary.function_calls)

for function_call in summary.function_calls:

# initialize target object name.

# initialize argument object names.

# initialize assignee object name [if return value saved].

...

for function_call in function_calls:

# Resolve function call targets and merge arguments

# with functions formals.

...

# Handle inlining of functions.

propagate_inlined_functions(functions, function_calls)

# Dump the callgraph.

f = open("callgraph", "w")

write_callgraph(functions, function_calls, f)

f.close()

Figure 15: FA algorithm implementation outline.
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Figure 16: Indirect Call Target Count.
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