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Single-Sequence Protein Secondary
Structure Prediction by Nearest-Neighbor

Classification of Protein Words

David Porfirio

Abstract

Predicting protein secondary structure is the process by which, given a
sequence of amino acids as input, the secondary structure class of each
position in the sequence is predicted. Our approach is built on the extrac-
tion of protein words of a fixed length from protein sequences, followed by
nearest-neighbor classification in order to predict the secondary structure
class of the middle position in each word. We present a new formulation for
learning a distance function on protein words based on position-dependent
substitution scores on amino acids. These substitution scores are learned
by solving a large linear programming problem on examples of words
with known secondary structures. We evaluated this approach by using a
database of 5519 proteins with a total amino acid length of approximately
3000000. Presently, a test scheme using words of length 23 achieved a
uniform average over word position of 65.2%. The average accuracy for
alpha-classified words in the test was 63.1%, for beta-classified words was
56.6%, and for coil classified words was 71.6%.
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1 introduction

Proteins are biological polymers composed of a chain of smaller molecules
called amino acids. A protein’s primary structure describes the sequence
of amino acids, whereas its secondary structure describes the local three-
dimensional formations that arise in-sequence due to the chemical interactions
between amino acids in the chain. There are three general classes of secondary
structures – (1) alpha helices, in which amino acids form a helical structure;
(2) beta sheets, which which parallel strands of amino acids connect laterally
to each other; and (3) coil structures that include formations not classified as
alpha helix or beta sheet (Fig. 1).

Figure 1: Example protein with all three basic secondary
structures (Aslanzadeh, 2012)[1]. Note that the coil struc-
ture includes every structure not an alpha helix or beta
sheet.

It is possible to predict a protein’s secondary structure given its primary
structure with high accuracy. PSIPRED is an popular example of software that
accomplishes this task. Given an amino acid sequence as input, PSIPRED uses
PSI-BLAST to perform a database search for proteins with a similar amino acid
sequence, called homologs. PSIPRED then uses neural networks to classify
the protein’s secondary structure (Jones, 1999)[4]. In contrast, single-sequence
prediction only uses the input protein sequence without a database of pro-
tein sequences, and does not need to find homologs through costly database
searches. This study presents a novel way to predict protein secondary struc-
ture via single-sequence prediction on a set of training words with known
secondary structures by performing nearest-neighbor classification on words
of a fixed length centered on all of the positions of a protein.

Nearest-neighbor classification is a technique that predicts the structure
class of a protein word using a database of other protein words labeled by class.
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In our implementation, an alpha-distance function compares a query word to
the set of all words with known alpha classifications, called the alpha-touchstone.
A different beta distance function compares the same query word to the set
of all words with known beta classification, called the beta-touchstone. The
secondary structure classifications of the query word’s k-nearest neighbors
determine whether the query word is classified as alpha or beta, or coil if none
of the nearest neighbors are close enough to the query word. Both distance
functions may be collectively referred to as the ”distance function” for the
purposes of this investigation.

Before prediction occurs, a default distance function exists, and a new
distance function is learned through linear programming on as set of train-
ing words with known secondary structures. The linear program, solved by
IBM’s CPLEX Optimization Studio, minimizes the degree to which the default
distance function mis-classifies the secondary structures of training words[3].
The solution to the linear program is an improved distance function, which
replaces the default distance function. Continual improvement of the distance
function is possible through setting up another linear program with the im-
proved default distance function as input, and then iterating on the distance
function.

The computational approach section of this investigation provides greater
detail about prediction and learning the distance function. The experimen-
tal results section shows that our current single-sequence computational ap-
proach yields improved accuracies on classifying protein words from the
single-sequence computational approach in previous work done by Benjamin
Yee in John Kececioglu’s research group. In the previous work, the accuracies
on disjoint training words were 58.0% in the alpha class, 44.1% in the beta class,
81.1% in the coil class, and 65.6% as the position-wise average, which averages
accuracies uniformly over all positions in the protein. The class-wise average
was 61.1%, which is the average of the accuracies from each individual class.
The new computational approach on disjoint training words yields an average
of 67.3% for words in the alpha class, 62.6% for words in the beta class, 75.5%
for words in the coil class, and 68.5% as the position-wise average. The same
number of words were predicted on in each class, so the class-wise average is
the same as the position-wise average.

Classifying words in the disjoint testing data, which contained words that
were not used to train the distance function, also yielded improved accuracies.
The previous computational approach reported 56.3% accuracy for predicting
alpha testing words, 41.5% for beta testing words, 79.1% for coil testing words,
60.0% averaged class-wise, and 63.3% averaged position-wise. In contrast, the
current computation approach yields accuracies of 63.1% for alpha testing
words, 56.6% for beta testing words, 71.6% for coil testing words, 63.8% aver-
aged class-wise, and 65.2% averaged position-wise. Despite these significant
improvements, our prediction accuracies are not yet competitive with those of
PSIPRED’s non-single-sequence approach, which reports average accuracies
above 75%[4].
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2 computational approach

2.1 The Distance Function

The distance function between two protein words is fundamental to predicting
the secondary structure of a word. Given a query word and another word
with known classification, the distance function will compute their likeness, or
distance from each other. It does this by calculating the cost of substituting
an amino acid at a specific position in one word with the amino acid at the
same position in the other word. These costs are called substitution scores,
whose values are dependent on the class X of the known word, the position
i of the amino acids being substituted, and the amino acids’ identities. The
notation for a substitution score will therefore be SX,i(a, b) for X ∈ classes,
i ∈ positions in both words, and a, b ∈ the set o f amino acids. The distance
function of a query word and a known word is simply the sum of all of the
substitution scores between corresponding amino acids, or

dX(w, v) = ∑
i in w,v

SX,i(a, b) f or word w ∈ query words and word v ∈ X (1)

The distance function can therefore be thought of as two separate distance
functions, one that computes the distance from a query word to a known alpha
word, and another that computes the distance between a query word and
known beta word. This is what is meant when the ”alpha” or ”beta” distance
functions are discussed. There is no distance function for coil words, which
will be discussed in the next section.

2.2 Predicting Secondary Structure Given a Distance Function and a Coil/Non-

coil Threshold

The distance of a word with unknown secondary structure to its alpha and
beta nearest neighbors determines whether that word is more likely to be
classified as alpha or beta. These distances might be significantly large, however.
Therefore, there exists a general mechanism by which a word with unknown
secondary structure is classified: if the word has significantly large distances
to its alpha and beta nearest neighbors, then it is classified as a coil word; else,
it is classified as either an alpha or beta word depending on whether the alpha
or beta nearest neighbors are closer. A coil/non-coil threshold distance, τ, is used
to decide whether a word is too far from its alpha and beta nearest neighbors.
If a word’s distance to it’s alpha and beta nearest neighbors is above τ, then
the word is classified as coil. Finding a value of τ that optimizes prediction
accuracies is detailed in section 2.4.

When given a query word w, the first priority is to classify it as coil or
non-coil. In order to do so, one alpha nearest neighbor a and one beta nearest
neighbor b must be found using the distance function. There are then three
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different schemes, termed Coil Schemes, that were implemented in the coil
classification process. Each coil scheme involves a different way of calculating
the critical nearest-neighbor distance (CNND), or the value that will determine
whether the query word is above or below τ:

Min Coil Scheme (default): CNND = min[dA(w, a), dB(w, b)]

Max Coil Scheme 2: CNND = max[dA(w, a), dB(w, b)]

Average Coil Scheme 3: CNND = dA(w,a)+dB(w,b)
2

In all schemes, if CNND > τ, then the query word is classified as coil.

The Min Coil Scheme is used most extensively in this investigation. If the
query word is determined not to be coil because it is above τ, then classification
as alpha or beta occurs. There are three variants for voting alpha vs. beta:

1-Nearest Neighbor Classification (1NN): If dA(w, a) < dB(w, b), where a is
the closest alpha word and b is the closest beta word, classify the query
word as alpha. Otherwise, classify the query word as beta. In the event
that both distances are equal, the word is classified as beta. This is the
default voting scheme.

k-Nearest Neighbor Classification (kNN): Gather the k alpha or beta nearest
neighbors to the query word, where k is an odd integer. Within these
nearest neighbors, if the total number of alpha words is greater than
the total number of beta words, then classify the query word as alpha.
Otherwise, classify the query word as beta. Since k is odd, there is no
chance that the number of alpha words will equal the number of beta
words.

k-Nearest Neighbor Classification with Radius τ (kNNR): Gather the k alpha
or beta nearest neighbors to the query word, where k is an odd integer,
but discard nearest neighbors whose distance to the query word is greater
than τ. Within the leftover nearest neighbors, if the total number of alpha
words is greater than the total number of beta words, then classify the
query word as alpha. Otherwise, classify the query word as beta. If there
is an odd number of words discarded, then there is a chance that the
number of leftover alpha nearest neighbors will equal the number of
leftover beta nearest neighbors.

Both the kNN and kNNR voting variants are based on a majority-vote.
Each word has a vote with a value of 1 in the set of k words, or k minus the
number of discarded words. The value that a vote is worth can be weighted,
and this is implemented in two ways:

• Weight by distance: A weight of 1
dX(w,v) applied to all v ∈ k nearest neighbors,

where w is the query word and X is the class of v.
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• Weight by touchstone: A weight of 1
|X| applied to all v ∈ k nearest neighbors,

where w is the query word and |X| is the number of training words in
the class of v. The set of training words constitutes the words used to
train the distance function.

As mentioned above, in the kNNR voting scheme there is a chance that the
numbers of alpha nearest neighbors and beta nearest neighbors in the set of k
nearest neighbors are equal. The likelihood of this happening is attenuated by
applying weights described above.

2.3 Learning a Distance Function

This section describes how a distance function is learned. The distance function
between two words is the sum of the individual distances, or substitution
scores, of amino acids with the same position in both words. A substitution
score is dependent on its designated class, the identity of the amino acids,
and the position in the word. k-Nearest Neighbor classification and linear
programming are then used to generate a new distance function that replaces
the default distance function. Iteration uses previously-generated distance
functions to learn better distance functions.

2.3.1 Touchstone and Training Sample Generation

A database of known protein sequences and their associated secondary struc-
tures were obtained from the National Center for Biotechnology Information
(NCBI) Reference Sequence Database[5]. The version of the database used in
this investigation is uncertain, but is estimated to have been updated in 2012.

Each time that the code is run a single file of protein sequences is chosen
to be the source of training and testing sequences. k-fold cross validation
splits the sequences in to k equally-sized1 protein subsets. In a given fold, k-1
of the protein subsets contain training proteins, which are used to generate
fixed-length training words for the training set of words, or the touchstone. The
remaining subset that contains testing proteins is used to generate fixed-length
testing words for the testing set of words. Ultimately, k-fold cross validation
generates k different combinations of the k subsets of training and testing
proteins, and each combination is called a fold. Each fold designates a different
testing protein subset out of the k protein subsets. The result is k distinct
testing sets within the k folds, each paired with a touchstone made up of
protein words that did not come from the testing protein subset. In a fold, it is
possible that duplicate words exist between the touchstone and testing sets,
since k-fold cross validation partitions whole protein sequences rather than
protein words.

Words from each class in the touchstone are placed in separate files. The
subset of alpha words within the touchstone will be called the alpha touch-
stone, symbolized by A. Likewise, the subset of beta words will be called

1 The subsets of protein sequences will only be equally-sized if the number of sequences is divisible
by k. Otherwise, the subsets are approximately equally-sized.
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the beta touchstone, symbolized by B, and the subset of coil words will be
called the coil touchstone, symbolized by C. In a word, the central amino
acid’s secondary structure determines the class of the word, meaning that word
lengths must always be odd. Words with invalid secondary structures, such as
those in an alpha helix less than 5 amino acids long or a beta sheet less than 3

amino acids long, are removed from the touchstone. Additionally, duplicate
words both from within and between each set were removed to ensure that
each word in the touchstone for each class was unique internally to its own
class and externally to the other classes. Thus, the overarching touchstone
contains no duplicate words.

The touchstone for each class is typically quite large, which slows down
computation. In order to attenuate running time of the code, a random sample
of training words, called a training sample, is taken from each touchstone to be
used as a supply of training query words in further steps. The training sample
for each class is written to its own file. In summary, the alpha, beta, and coil
touchstones comprise the overall touchstone, and are symbolized by A, B, and
C. The alpha, beta, and coil training samples contain random subsets of words
from A, B, and C, respectively, and will be symbolized by TA, TB, and TC.

2.3.2 Nearest Neighbor Querying

The nearest neighbors for words in each training sample are found. For words
from the training samples TA and TB, k nearest neighbors from the same class
are found from either the alpha or beta touchstones. These nearest-neighbors
are termed target words. Likewise, l nearest neighbors are taken from the
opposite touchstone, which can be either alpha or beta but not coil. These
nearest-neighbors are termed imposter words. Words from TA and TB and their
corresponding targets and impostors are written to separate files for a total of
four files:

• alpha training words and their alpha targets (a-a)

• alpha training words and their beta imposters (a-b)

• beta training words and their beta targets (b-b)

• beta training words and their alpha imposters (b-a)

For each coil word, l impostor nearest-neighbors are found from both the
alpha and beta touchstones. Words in TC and their corresponding impostors
are also written to separate files:

• coil training words and their alpha imposters (c-a)

• coil training words and their beta imposters (c-b)

Note that although query words come from the training samples, the
nearest neighbors are queried from the touchstone, and are not restricted to
the training sample.
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2.3.3 The Dispersion Tree

Protein words with known alpha or beta classifications are stored in separate
data structures, called dispersion trees, which are queried for nearest neighbors.
A dispersion tree is a tree-like data structure that takes O(n1.5logn) time to
construct, where n is the number of words stored in the tree. For distance
functions that satisfy the triangle inequality (Eq. 2), dispersion trees provide the
fastest nearest-neighbor search time of any available data structure (Woerner,
2016)[6].

2.3.4 Linear Program Formulation

The linear program (LP) is subject to four types of inequalities: the triangle
inequality, the identity inequality, the non- inequality, and various threshold
inequalities. The triangle, identity, and non-negativity inequalities act on sub-
stitution score variables, while the threshold inequalities act on error variables
and are constructed using the words in the training sample and their nearest
neighbors. The objective of the linear program is to minimize the sum of
the error variables subject to the constraints set by the inequalities. Upon
completing the minimization, the values of the substitution scores constitute
the improved distance function. The triangle, identity, and non-negativity
inequalities are listed below.

• Triangle inequality:

SX,i(a, b) + SX,i(b, c) ≥ SX,i(a, c) (2)

for X ∈ classes, i ∈ positions, and a, b, c ∈ the set o f amino acids

• Identity inequality:
SX,i(a, b)+ ≥ SX,i(a, a) (3)

for X ∈ classes, i ∈ positions, and a, b ∈ the set o f amino acids

• Non-negativity inequality:

SX,i(a, b) ≥ 0 (4)

for X ∈ classes, i ∈ positions, and a, b ∈ the set o f amino acids

The threshold inequalities are constructed using the files of query words
and their targets or imposters that were created in the nearest-neighbor query-
ing step. Additionally, there exist two threshold variables τA and τB whose
values are set by the linear program.

For a word w ∈ TA:

dA(w, vA) ≤ τA for k vA targets ∈ A− w (5)
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dB(w, vB) ≥ τB + 1 for l vB imposters ∈ B (6)

For a word w ∈ TB:

dA(w, vA) ≥ τA + 1 for k vA imposters ∈ A (7)

dB(w, vB) ≤ τB for l vB targets ∈ B − w (8)

For a word w ∈ TC:

dA(w, vA) ≥ τA + 1 for l vA imposters ∈ A (9)

dB(w, vB) ≥ τB + 1 for l vB imposters ∈ B (10)

Ideally, the threshold inequalities would be completely satisfied in the
solution to the linear program. Realistically, it is highly unlikely that every
target from the touchstone will be below its threshold and every imposter
from the touchstone will be above its threshold. Therefore, the threshold
inequalities must be adjusted to allow for violations. The amount by which
they are violated is quantified in error variables. The threshold inequalities
can be reworked as follows:

For a word w ∈ TA:

for k vA targets ∈ A− w:

ew,vA ≥ dA(w, vA)− τA (11)

ew,vA ≥ 0 (12)

for l vB imposters ∈ B

ew ≥ τB + 1− dB(w, vB) (13)

ew,vB ≥ 0 (14)

For a word w ∈ TB:

for k vB targets ∈ B− w

ew,vB ≥ dB(w, vB)− τB (15)

ew,vB ≥ 0 (16)
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for l vA imposters ∈ A

ew ≥ τA + 1− dA(w, vA) (17)

ew,vA ≥ 0 (18)

For a word w ∈ TC:

for l vA imposters ∈ A

eA
w ≥ τA + 1− dA(w, vA) (19)

eA
w ≥ 0 (20)

for l vB imposters ∈ B

eA
w ≥ τB + 1− dB(w, vB) (21)

eA
w ≥ 0 (22)

The last constraint that is given to the linear program is that τA = τB.
Finally, an objective function that minimizes error is set up from the error
variables, and is split into alpha, beta, and coil components:

βA
|A| ∑

w∈TA

(
α

k ∑
k targets f rom A

ew,vA + (1− α)ew) +

βB
|B| ∑

w∈TB

(
α

k ∑
k targets f rom B

ew,vB + (1− α)ew) +

1− βA − βB
|C| ∑

w∈TC

(eA
w + eB

w) (23)

βA, βB and α are constants that were determined experimentally. βA and
βB weight the alpha and beta errors versus the coil error. α weights the error on
targets versus that on imposters. The overall objective function is to minimize
the sum of the total error (Eq. 23).

In summary, the LP contains the inequalities listed above (Eq. 2-4 and
11-22), with the objective being to minimize the amount that the threshold
inequalities are violated, which is quantified through the error variables.
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2.3.5 Linear Program Optimization and Iteration

The above objective function and set of constraints are input into a linear
program to be solved by the CPLEX Optimization Studio. CPLEX forms a
matrix from the constraints listed in section 2.3.4. This matrix is large and
sparse due to the large amount of inequalities and variables that make up
the constraints. CPLEX accepts various parameters before optimizing, such
as which optimizer to use to solve the linear program. There are various
optimizers to select from, each suited to linear programming problems with
certain characteristics. For our purposes, the barrier optimizer was deemed
appropriate due to it being suited for large, sparse matrices. Additionally,
barrier crossover was deactivated.

The output from CPLEX is a new set of substitution scores, and therefore a
new function. The new distance function will replace the old distance function,
and one of two things can occur next. The new distance function can be used
to predict the secondary structure classifications of a set of testing words; or,
the nearest-neighbor querying, LP formulation, and LP optimization steps
can be repeated with the new distance function in order to generate an even
better distance function. Nearest-neighbor querying, LP formulation, and LP
optimization steps can occur for however many iterations as seen fit.

2.4 Finding an Optimal Coil/Non-coil Threshold

A value of τ = τA = τB is output from the linear program, but this initial
value can be improved. An ideal value of τ would be one in which all words
in the training sample below tau have true classifications as either alpha or
beta, and all words in the training sample above tau have true classifications
as coil. Of course, it is unlikely that training sample words will exhibit such
binary behavior, regardless of which coil prediction scheme is used to classify
the query words. Thus, the goal is to maximize the number of words above
tau with true coil classifications and minimize the number of words below tau
with true coil classifications. This can be achieved with a receiver operating
characteristic, or ROC curve.

For each word w ∈ TX for X ∈ classes and nearest neighbors a ∈ A− a and
b ∈ B− b, calculate the CNND of w, or in other words, either min[dA(w, a), dB(w, b)],
max[dA(w, a), dB(w, b)], or dA(w,a)+dB(w,b)

2 depending on whether the mini-
mum, maximum, or average coil schemes will be used for prediction, respec-
tively (see section 2.2).

Next, the query words are ordered from lowest to highest CNND. For every
pair of consecutive words that have different CNND values ci and cj, set a
temporary value τtemp:

τtemp =
ci + cj

2
(24)

As with regular τ, words above τtemp are predicted to be coil, whereas
words below τtemp are predicted to be non-coil. For every value of τtemp,
determine the following:
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• Number of true positives, TP. This is the number of query words that lie
above τtemp and also have true coil classifications

• Number of true negatives, TN. This is the number of query words that
lie below τtemp and also have true non-coil classifications

• Number of false positives, FP. This is the number of query words that lie
above τtemp, but have true non-coil classifications

• Number of false negatives, FN. This is the number of query words that
lie below τtemp, but have true coil classifications

The true positive rate (TPR) and false positive rate (FPR) of a given τtemp
can be calculated:

TPR =
TP

TP + FN
(25)

FPR =
TN

TN + FP
(26)

Graphing TRP vs. the FPR for each value of τtemp yields an ROC curve (Fig.
2). The upwardly-curved line indicates that the true positive rate at any given
τtemp is better than the false positive rate. The optimal tau will thereby be set
to the value of τtemp at which TPR + FPR = 1, which is the point on the curve
that is closest to the point (0,1), at which the TPR is maximized while the FPR
is minimized.

The area under the ROC curve is an indicator of the quality of the distance
function. The more area under the curve, the closer the curve gets to the upper
left corner of the graph, ultimately maximizing the TPR while keeping the FPR
minimized at the point on the curve where TPR + FPR = 1. Given an optimal τ,
a improved distance function should lead to improved classification of coil vs.
non-coil. The ROC curve is therefore a useful debugging tool for learning the
distance function, since each iteration of learning the distance function should
yield to an ROC curve with increased area underneath it.
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Figure 2: Sample ROC curve. Where the dashed line intersects the curve
indicates the point on the curve where TPR + FPR = 1. This is the closest
point on the curve to the upper-left corner of the graph.

3 experimental results

3.1 Input Parameters

10-fold cross-validation was performed to break up a database of 5519 proteins
into the touchstone and testing set. In each fold, 90% of the proteins were
designated as training proteins, while 10% were designated as testing proteins.
Both the touchstone and testing set were comprised of unique words of length
23, and words with invalid secondary structures were discarded, namely those
in alpha helices or beta sheets with too few amino acids. Thus, although
there could be no duplicate words within the touchstone and testing set
individually, duplicate words could exist between both sets. In each fold, there
were approximately 1,400,000 words in the touchstone. Approximately 460,000

of these words were known to be alpha, 280,000 were known to be beta, and
630, 000 were known to be coil. In each fold, there were approximately 270,000

words in the testing set. Approximately 100,000 of these words were known to
be alpha, 60,000 were known to be beta, and 110,000 were known to be coil.
The identities of the testing words were only used to evaluate our predictions.

150,000 words were randomly selected from the touchstone to be in the
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training sample for each fold. The number of targets and imposters for a query
word was set to 2 and 100, respectively. Lastly, 5 iterations were performed on
each fold to improve the distance function.

3.2 Determining Objective Function Constants βA, βB, and α

In order to determine the optimal values for the objective function constants
in the linear program, the distance function was learned nine different times,
each for the same amount of iterations and with objective functions that had
different combinations of βA = βB, and α (Fig. 3).

βA = βB α

Combination 1: 1
4

1
2

Combination 2: 1
4

2
3

Combination 3: 1
4

4
5

Combination 4: 2
5

1
2

Combination 5: 2
5

2
3

Combination 6: 2
5

4
5

Combination 7: 1
4

1
2

Combination 8: 1
4

2
3

Combination 9: 1
4

4
5

Figure 3: The different combinations of constants
experimentally tried.

The ROC curves for each distance function were compared, and the ob-
jective function constants corresponding to the curve with the largest area
underneath it were selected as the best constants to use out of the 9 combina-
tions. The optimal constants were determined to be βA = βB = 1

4 , and α = 1
2

(Fig. 4). No tests were performed to vary βA from βB, but these tests should
be performed in the future.
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Figure 4: The area under the ROC curve corresponding to βA = βB = 1/4
and α = 1/2 is the highest. The point on the curve that intersects with
TPR + FPR = 1 is also the closest to the upper left corner of the graph.
The area under the ROC curve corresponding to βA = βB = 2/5 and
α = 1/2 is the lowest out of all combinations of constants.

3.3 ROC Curves for the Min Coil Scheme

The classification of coil words becomes more accurate in each iteration of
learning the distance function. Improvement slows considerably by the fifth
iteration (Fig. 5).
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Figure 5: ROC curves for fold 0 of the tests run with the min coil scheme.
The area under the ROC curves increases in each iteration, indicating
improvement of coil classification in the distance function. Iterations 3

and 4 are omitted.

3.4 Accuracies for Min Coil Scheme

For the default coil/non-coil classification scheme, different alpha-beta voting
variants were tested. One test using the 1-NN variant was performed. All dif-
ferent combinations of kNN and kNNR classification systems were performed
by varying k from 3 to 5, and varying the weights applied to the voting. The
best results were selected based on the highest class-wise and position-wise
testing accuracies. The best results were obtained for 5-nearest neighbor with
radius τ classification, weighted by distance (Fig. 6). Using this voting scheme,
the training accuracies obtained were 67.3% for alpha, 62.6% for beta, 75.5%
for coil, and 68.5% averaged. The testing accuracies obtained were 63.1% for
alpha, 56.6% for beta, 71.6% for coil, 63.8% as the class-wise average, and 65.2%
as the position-wise average.

Some accuracies obtained seem odd, however, such as those obtained for
the 5-nearest neighbor classification scheme weighted by the touchstone, in
which the alpha accuracies are significantly lower than normal while the beta
accuracies are significantly higher than normal. A similar tendancy is exhibited
in the 5-nearest neighbor with radius τ classification scheme weighted by the
touchstone. This can likely be attributed to the low floating point precision
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used for the weights that are applied to the votes. The value of 1
|X| , where X is

the size of the alpha or beta touchstone, is very small. Even if the difference in
size between both touchstones is small, the low floating point precision could
exacerbate this difference. Future implementation of the weighting schemes
should increase the floating point precision.
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3.5 Preliminary Results for Max and Average Coil Schemes

The max and average coil schemes were not the focus of this investigation, but
preliminary results for these schemes were obtained for only one fold, and
only for the 1NN alpha-beta voting scheme.

Using the max coil scheme and 1NN alpha-beta voting, the training accura-
cies obtained were 65.0% for alpha, 60.7% for beta, 74.7% for coil, and 66.8%
averaged. The testing accuracies obtained were 59.5% for alpha, 53.2% for beta,
74.3% for coil, 62.3% as the class-wise average, and 64.2% as the position-wise
average.

Using the average coil scheme and 1NN alpha-beta voting, the training
accuracies obtained were 54.3% for alpha, 50.5% for beta, 66.3% for coil, and
57.0% averaged. The testing accuracies obtained were 51.2% for alpha, 46.6%
for beta, 67.6% for coil, 55.2% as the class-wise average, and 56.9% as the
position-wise average.

3.6 Runtime

On the University of Arizona High Performance Computing System, running
5 iterations to improve the distance function takes about 48 hours for each
fold. Predicting the secondary structures of each testing set of approximately
270,000 words takes about 4 hours. Thus, predicting the secondary structure of
each amino acid in a protein with 350 amino acids will take about 18 seconds.
This does not include the X minutes needed to load the touchstone of 150,000

words into the partition tree.

4 discussion

In our version of single-sequence protein secondary structure prediction, a
learned distance function determines the distance between a query word and
words in either the alpha or beta touchstones. The distance function does
not have a coil component, however, meaning that the distance between the
query word and known coil words cannot be found. Instead, if a query word
is sufficiently far from its alpha and beta nearest neighbors – that is, its critical
nearest neighbor distance is above the coil/non-coil threshold τ – then the
query word is classified as coil. The coil/non-coil threshold exists because
words cannot be classified as coil based on nearest-neighbor classification. This
is because the coil class is unstructured, containing all structures not alpha
or beta. Thus, the number of possible coil words is large, and it may not be
practical, or even possible, to have a touchstone large enough to contain them
all.

An advantage of our approach is that once a distance function is learned,
the secondary structures of protein words can be predicted quickly, and with-
out using a protein database. Rather, a touchstone of words is stored in a
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partition tree, and construction of the tree and querying words in the tree are
both efficient operations. Additionally, the size of the training sample is an
adjustable parameter that has only been briefly addressed, and smaller sizes
can decrease the runtime of learning the distance function. Given a touchstone
with a fixed cardinality, training sample cardinalities |TA| and |TB| can be
made as low as necessary. Our first attempts of learning a distance function
via our current approach had |TA| = |TB| = 60, 000 query words, and the
runtime for learning the distance function was considerably decreased due
to the nearest-neighbor querying step taking less time and there being fewer
inequalities being input into CPLEX. Lower training sample cardinalities yield
lower prediction accuracies, however.

In future work, fixed word lengths other than 23 will be tested in order to
determine the optimal word length. Word lengths of 21, 19, and 17 should
be tested in order to see the effects of decreased word lengths on prediction
accuracies. Although it is expected that lower word lengths will decrease the
training accuracies, the distance function will not over-fit to the training data.
As a result, the distance function may generalize better to the testing data.

Furthermore, global prediction of secondary structure can be implemented
that takes into account an entire protein sequence when predicting the sec-
ondary structure of a word. Classification of a word would be partially based
on the secondary structures of its adjacent words. Doing this will avoid predict-
ing alpha helix or beta sheet strands that are too short. Dynamic programming
might allow for optimal prediction that avoids these short runs. Another goal
is to predict using confidences that query words are in certain classes, rather
than our current all-or-nothing classification approach.

More work can be done fine-tuning the parameters that are set before
learning the distance function. The values of k for the number of targets and l
for the number of targets were constant at 2 and 100, respectively. Similarly,
CPLEX was always run with the same parameters, which are detailed in section
2.3.5. However, CPLEX offers many more parameters that can be tuned. It is
expected that adjusting additional parameters would affect the solving of the
linear program.

Lastly, the non-redundant database of protein sequences compiled by NCBI
is updated frequently. It is expected that the database of proteins used in our
investigation is a few years old, and can be updated in future versions of our
prediction code.

references

[1] Aslanzadeh, Vahid, and Mostafa Ghaderia. ”Homology Modeling and
Functional Characterization of PR-1a Protein of Hordeum Vulgare Subsp.
Vulgare.” Bioinformation 8.17 (2012): 807-11. Web.

[2] Benjamin Yee, Personal communication, 2014

[3] IBM Corp. Released 2015. IBM ILOG CPLEX Optimization Studio, Version

21



12.6.2 Armonk, NY: IBM Corp.

[4] Jones, David T. ”Protein Secondary Structure Prediction Based on Position-
specific Scoring Matrices.” Journal of Molecular Biology 292.2 (1999): 195-
202. Web.

[5] The NCBI handbook [Internet]. Bethesda (MD): National Library of
Medicine (US), National Center for Biotechnology Information; 2002 Oct.
Chapter 18, The Reference Sequence (RefSeq) Project. Available from
http://www.ncbi.nlm.nih.gov/books/NBK21091/

[6] Woerner, August, and John Kececioglu. ”Faster metric-space nearest-
neighbor search using dispersion trees.” In preparation, 2016.

22


	Introduction
	Computational Approach
	The Distance Function
	Predicting Secondary Structure Given a Distance Function and a Coil/Non-coil Threshold
	Learning a Distance Function
	Touchstone and Training Sample Generation
	Nearest Neighbor Querying
	The Dispersion Tree
	Linear Program Formulation
	Linear Program Optimization and Iteration

	Finding an Optimal Coil/Non-coil Threshold

	Experimental Results
	Input Parameters
	Determining Objective Function Constants A, B, and 
	ROC Curves for the Min Coil Scheme
	Accuracies for Min Coil Scheme
	Preliminary Results for Max and Average Coil Schemes
	Runtime

	Discussion
	References

