

Restructuring AZDBLab
The Science of Databases

11/21/2009

Version 3.0

Adam Robertson

1

Table of Contents
Introduction .. 2

UML Editors ... 2

BOUML .. 3

Netbeans ... 3

Eclipse ... 3

UML Diagrams ... 4

External Libraries .. 5

Code Changes .. 6

Project Maintenance ... 7

Oracle Server Restart .. 7

Ant ... 8

CVS .. 8

Additional Documentation .. 8

Conclusion ... 9

2

Introduction

 AZDBLab is a Java application that enables its users to perform experiments on

databases and record the results. These results are then used to test new theories relating to

databases. It works very well in most cases, but is lacking in others. AZDBLab is a complex

system that at times seems impossible to comprehend or add to. The purpose behind this project

was to reorganize AZDBLab to allow future developers to understand and expand upon it faster,

as well as increasing the amount of useful documentation. Improving the documentation

included creating several documentation files and UML diagrams of the code.

UML Editors

 One of the first hurdles in restructuring AZDBLab was creating several UML diagrams

of the current system. Before this could commence, a UML editor was required, as the existing

editor, Violet, couldn’t handle large diagrams very well. When a Violet diagram was closed, all

of the elements inside that diagram were rearranged. When this happened, Violet usually ended

up stacking most of the elements in the diagram on top of one other. The only known

workaround for this was to just leave Violet open. Another thing that Violet lacked was the

ability to copy and paste multiple elements in or across diagrams. Although these problems

didn’t occur or weren’t much of a hindrance in smaller projects, it was clear that for

diagramming a system as large as AZDBLab, another UML editor was required.

 When looking for a new UML editor there were several features that were considered

important. First and foremost among these was the humble copy and paste. This feature was

believed to help save time by allowing similar content to be copied between diagrams,

specifically during the phase of the project when the diagrams where being maintained. Another

feature deemed useful was the ability to support diagrams based off of preexisting code. There

wasn’t really a clear picture of what this support might entail, as editors ranged from being able

to create entire diagrams from existing code to not supporting existing code at all.

3

BOUML

The first UML editor which was reviewed was BOUML. It was easy to pick up and use,

with one exception. When a class was placed inside a package, the class could not be moved.

This problem was later solved via the BOUML forums on source forge. The way to do this was

to move the package to the back. This was done by left clicking and selecting move to back.

BOUML supported copying, pasting and could generate class objects based on preexisting code

as well as code from UML diagrams in several languages, including java. This essentially means

that for each class, BOUML would fill in all of the methods and fields so that this class would

correspond with the code. However, it was an open source project, developed by a one person.

This made using this editor risky, as the owner of the project could decide to drop it and then all

of the diagrams created in this editor would be essentially useless.

Netbeans

While looking into BOUML, another UML editor was discovered. Netbeans had a plugin

that let its users create UML diagrams. This plugin provided the ability to copy and paste, both

inside and across diagrams. Like BOUML, it produced the class objects used in the UML

diagrams. However, like Violet, Netbeans had some issues with larger UML diagrams. Firstly it

slowed down considerably when the diagrams got larger. Secondly it had some trouble exporting

large diagrams to images. The most alarming issue with Netbeans was that it experienced some

trouble loading diagrams after saving them. Fortunately this was only an issue on Ubuntu, and

this issue was resolved with the Netbeans 6.7.1 release. There was never any trouble with this on

Windows.

Eclipse

 After looking at Netbeans, it was discovered that Eclipse also had a modeling plugin.

This was not given much consideration as at this point the first two UML editors seemed

sufficient.

The choice between UML editors boiled down to BOUML, and Netbeans, with Eclipse

as a secondary option. BOUML was much faster than Netbeans, and it also had less trouble

exporting larger diagrams. Netbeans had more developers on its side, and it also had more

4

features. The real deciding factor was that Netbeans was supported by a team of developers,

while BOUML just had one person working on it. This was considered an issue because if the

developer for BOUML stopped supporting it, then all of the work done on the diagrams would

be rendered useless, thus Netbeans was chosen as the UML editor for AZDBLab.

UML Diagrams

The next step was deciding exactly how much detail should be in the diagrams. Since

there wasn’t a best answer for this, it was decided that three diagrams would be created. The

least detailed one, level 0, would just show the packages, with none of the classes inside of them.

The next diagram, level 1, would have packages and classes, but it wouldn’t show any of the

methods or fields of the classes. The last diagram, level 2, would show all of the packages,

classes, methods, and fields. This design was chosen to ensure that for all circumstances there

would be diagram with the appropriate level of information.

To improve readability, all of the packages and classes should be in roughly the same

position in each of the diagrams. This would make transitioning from one diagram to another

easier. The code in AZDBLab was divided into several parts: Model, View / Control, and

Plugins. Therefor it was logical to divide the UML diagrams in a similar fashion. They were

divided into three columns, with plugins on the right, the model in the middle, and view / control

on the left. There were several packages that didn’t fit into any of these categories. These

packages were placed in the same location below the three main categories.

Some problems with Netbeans occurred while making the largest UML diagram that

were not apparent during the initial testing. Exporting large diagrams to images over a certain

amount of pixels didn’t work or worked too slowly to be useful. To export it one can simply

zoom out, to about 50%, then export the images. However, printing this diagram directly from

Netbeans works correctly. Another issue was that moving large packages was prohibitively slow,

or with some large packages simply didn’t work most of the time. Copying packages sometimes

rearranged the contents of the packages, but this was a minor issue. Copying was only used

across diagrams; hence the packages would need to be rearranged anyways. In Netbeans,

elements in the diagrams are linked to the actual code, so for some diagrams it was necessary to

5

hide most or all of this information. For several classes, this information which was hidden while

saving reappeared after loading the diagram. It could be manually hidden again before the

diagram was used, but this behavior would repeat when it was reloaded. This problem appears to

have been solved with the last Netbeans update (6.7.1), and several of other problems might have

also been solved, such as the issues with exporting large images.

External Libraries

AZDBLab depended on several external libraries; however, these libraries had been

accidently deleted. Updates were found for most of the old jars, but there were several for which

the updated version didn’t match up with the original: crimson.jar, Jakarta-

ant.jar, jaxp.jar, and salvo.jar. Fortunately, after most of the new libraries were

found, a copy of the older libraries was discovered. There was some odd behavior with one

library, jaxp. For one method, setAttribute, the code was not implemented! Whenever the

method was called, it simply threw an exception that said that the method was not implemented.

Looking at the code for setAttribute confirmed this. The functionality for this method was

the same in both the new and old versions of the library. This functionality is used by the

XMLHelper class (in model.experiment). These errors didn’t seem to affect the overall

functionality of AZDBLab.

Including external libraries within Eclipse can be done in two basic ways: relative or

absolute (file paths). For absolute file paths, Eclipse would search for the file starting from the

root directory on the local file system. For example /home/adam/libs/ant.jar would

include ant.jar if the file existed in that location. This is how the libraries in AZDBLab were

included. The benefit of this was that the file size on CVS was smaller. However, this

configuration was not portable, as the libraries would have to be moved to the same location to

be included. This was not always possible because file paths have different starting point in

windows, “C:”, than in UNIX, “/”, which meant the paths for the libraries would have to be

changed when switching between the two. For relative file paths, the libraries would have to

reside in the project directory. This would mean that all of the libraries would need to be inside

of CVS, making the CVS directory larger. However, since Eclipse would search for the libraries

6

by starting inside the project directory, it would be able to find them on any system without any

changes. When including the new libraries portability was chosen over size, so they were

included relatively.

Plugins for AZDBLab were stored as jar files in the plugins folder. Since they depended

on AZDBLab classes, and these classes were reorganized, it was necessary to change the code

for the plugins. This was a simple matter of changing the import statements to reflect the new

location of the classes. Then the new code was jarred and placed into the plugins folder again.

Some of the source code for the packages was not updated since this code was not discovered

until recently.

Code Changes

The overall structure of AZDBLab was greatly changed during this project. The

following is a brief list of these changes. Several packages (scenario, aspect, analytic,

and experimentalSubject) were moved from the model package to the newly created

plugins package inside the azdblab package. The executor package was renamed

executable and moved into the model package. The mediator and queryGenerator

packages were moved inside the query package. The resultAnalyzer package was moved

into the model package. All of the exceptions were grouped inside the newly created

exception package (inside the azdblab package). The contents of the dbmsConnector

package were placed inside the dialogs package, and the dbmsConnector package was

deleted. The runStatusNodes package was deleted and its contents were moved into the

objectNode package.

After looking at the objectNode class, it became apparent that there were more

efficient ways to structure this class. It was an abstract class that all of the nodes on the left side

of the display were required to extend. It provided a framework for these nodes to have icons and

panels on the right side of the display. All of its subclasses had a method (getIconResource)

that returned one of two icons, one if it was open, and the other if it was closed, except in one

class. This method was turned into a concrete method inside objectNode that used two newly

created fields in its subclasses. The fields were the strings that were returned (one for open, the

7

other for closed). This method was simply overridden in the subclass that didn’t follow this

structure. For another method (getDataPanel) some of the subclasses created a new panel

every time it was called, while most made one the first time this method was called, and simply

returned it on subsequent calls. This functionality was moved into objectNode. This abstract

method (getDataPanel) was made into a concrete one, which set a new protected field

(JPanel dataPanel) to the result from a new abstract method (createDataPanel), if

the field was null. It (getDataPanel) then returned the new field (dataPanel). After

making these changes to objectNode, its corresponding subclasses were also changed to

conform to objectNode. During this process some of the strings for the getIconResource

were accidentally changed. This caused a null pointer error when AZDBLab tried to use these

strings to fetch the resources. After some debugging this was discovered and quickly fixed.

The class AZDBLAB was renamed to Constants, as it only contained constants, and

three fields. The three fields (String LAB_USERNAME, String LAB_PASSWORD, and

String LAB_CONNECTSTRING) were moved from the new class Constants to the

existing class Main (in azdblab.executable). This new location was deemed to be a

better fit as the fields were used throughout AZDBLab.

An error message was added when the plugins folder was missing, or empty. This was

added in the DBMSConnectorDlg, in the loadLabnotebookConnections method. This

error message is a dialog that allows users to exit from AZDBLab or continue.

Project Maintenance

There were several compile time errors that had to be resolved after moving the

packages. Eclipse was using an unofficial java library, which didn’t include some of the classes

required by AZDBLab. Changing this to Java version 6 fixed all of these errors.

Oracle Server Restart

At one point during this project, the entire system stopped working. The problem was that

when AZDBLab tried to log in to an Oracle server, where it stored its data, the server didn’t

respond. When testing the Oracle server directly it was discovered that when an incorrect

8

username-password combination was given, the server responded with an error message saying

so. But when the correct username-password combination was given, it simply didn’t respond.

Why and how this occurred is still a mystery, but fortunately restarting the Oracle server fixed

the problem, and it didn’t occur again.

Ant

In AZDBLab the old way to build the jar was by using Ant. Ant is an XML-based build

utility. It worked well and was easy to learn and use so this was not changed. However, the

build.xml file, which is used by Ant to jar AZDBLab, reported an error when it was run. The

problem was that Ant was attempting to use an external library which wasn’t where Ant

expected it to be. Moving the library to the correct location fixed the problem.

CVS

The code for AZDBLab is stored on Lectura in a CVS directory, along with some

supporting information about AZDBLab. This data structure caused problems at several points.

Sometimes it was not possible to delete files in the current version of the code but keep them in

previous versions. This was desirable because keeping records of previous version can be

helpful. However it was possible to delete the file from all versions by deleting the file on

Lectura. This wasn’t an ideal solution, but it was necessary to use this approach on several

occasions.

The structure of supporting information was also changed. A directory for the external

libraries (lib) was added. The scripts in the main directory were moved into a new directory

(called scripts) along with the directory obsolete scripts. All of the documentation

was consolidated into a new folder called doc. In this folder several sub folders were created to

help organize information: tasks, uml, and uml_output (for print outs of the UML).

Additional Documentation

A to-do list was created, and then moved into the tasks folder. This was then split up into

several files, one for each task. This was to encourage and facilitate including additional

information with each task, and to help organize the tasks. In the doc folder several tutorials were

9

added. A hints file was created to contain miscellaneous, but highly useful information that could

potentially save new developers hours of frustration. A jarring AZDBLab file was created to help

new developers build an AZDBLab jar file. This file also contains a very brief Ant tutorial; just

enough to understand how build.xml works. A list of CS computers was added, since connecting

to these computers was useful and there wasn’t a list of them online. A new vs. old libs

spreadsheet was to show which new library should be used to replace each old library and

whether or not the new library works correctly. A read me file was also added as a place to

provide a system overview.

Conclusion

Adding documentation and changing the structure of the code helped streamline

AZDBLab, making it both more logical and easier to build upon. This will allow future

developers to further improve on AZDBLab more efficiently. Working on this project allowed

me to acquire lots of useful skills. It allowed me to learn how to use various tools such as Ant,

and the Netbeans UML editor. It also gave me experience working on a large scale project that

was tens of thousands of lines long and would be used by other developers.

Attachments

There are two attachments to this thesis.

AZDBLab Presentation

This is a PowerPoint presentation outlining my independent study and thesis. It

introduces some basic concepts before explaining how they were used. The

presentation doesn’t assume its viewers are familiar with any of the concept or

tools used for my independent study or thesis.

Level 0 UML Diagram

This is a UML diagram of AZDBLab. It only shows the packages. There are three

columns in the diagram that are used to organize the packages. The rightmost

column is for the GUI, the middle column is for the model, the leftmost column is

for the plugins.

1/27/2010

1

REFINEMENT OF AZDB LAB

Adam Robertson

What AZDB Lab is

� Performs operations
on databases

� Records the results

� Run experiments
of databases

� Automated

� Used to test new
theories

Outline

� Independent Study

� Goals

� Adding R

� Adding Gnuplot

� UML Diagrams of changes

� Honors Thesis

1/27/2010

2

The R Language

� Started as S at Bell Laboratories

� Statistics-based programming language
� Operations

� Analysis

� Graphing

� True programming

 language

Adding R

� Communicating Between R and Java

� Run R from the command line

� Java executor class

� Specify input + output files

� With command line options

� Writing the input file

� Store data as an R variable

� Write commands to perform on the data

Gnuplot

� Graphing utility

� 2D / 3D

1/27/2010

3

Adding Gnuplot

� Communicating between Gnuplot and Java

� Similar to R

� Writing the input file

� Data file

� Operations file

� Gnuplot Settings

� Mapping for options to values

Outline

� Independent Study

� Honors Thesis

� Restructuring AZDB Lab

� UML Tools

� Design Patterns

� Current UML Diagram

� Building AZDB Lab

UML

� Diagrams of code

� Compact Visual Representation

� Offers different levels of information

� Different types of diagrams

� Class

� Object

� Activity

1/27/2010

4

UML Tools

� Violet

� Used to model AZDB Lab in the past

� Tons of quirks

� Bo UML

� Maintained by one person

� Netbeans UML

� Used to model AZDB Lab

 currently

� Eclipse Modeling

Design Patterns (Gang of Four)

� Simple solutions to general problems

� Increases organization / abstraction

� Creation

� Singleton – One instance of a class

� Behavioral

� Observer – Notify other classes of changes

� Structural

� Iterator – Give information without giving the
underlying data structure

Observer

1/27/2010

5

UML of AZDB Lab

Outline

� Independent Study

� Honors Thesis

� Restructuring AZDB Lab

� Building AZDB Lab

� Ant

� XML

� Sample Build.xml

Ant

� Similar to make file

� But with less quirks

� Used to automatically build projects

� Saves time vs. compiling individual files

� Used to group smaller tasks

� Build utility

� Uses XML to specific functionality

1/27/2010

6

XML

� Represents data textually

� Looks like HTML

� Tags (Open / Close)

� Uses ‘<’ and ‘>’ as separators

<?xml version="1.0"?>
<note>
 <to>Adam</to>
 <from>Adam</from>
 <heading>Reminder</heading>
 <body>Test Tomorrow!</body>
</note>

Sample Build.xml

 <project name=“Sample“ >
 <!-- set global properties for this build -->
 <property name="src" location="src"/>
 <property name="build" location="build"/>

<target name="init">
 <!-- Create the build directory structure used by compile -->
 <echo> This prints on the console </echo>
 <mkdir dir="${build}"/>
</target>

<target name="compile" depends="init“ >
 <!-- Compile the java code from ${src} into ${build} -->
 <javac srcdir="${src}" destdir="${build}"/>
</target>

</project>

Conclusion

� Provided an interface between R /
Gnuplot and java

� Experienced a programming on a
large scale project

� Help optimize + design future
additions to AZDB Lab

� Learned how to use Ant

� I plan to use this in the future

	Restructuring_AZDBLabV4.pdf
	AZDBLab_presentation.pdf
	azdblab_level0_uml.pdf

