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INTRODUCTION 

In today’s world of code tampering, code theft and software piracy, protecting 

one’s intellectual property is of utmost importance for every programmer. Protecting 

one’s intellectual property has come into focus once again with the introduction of 

architecture independent code format (Java bytecode [1]), and because of the emergence 

of reverse engineering tools such as decompilers [2, 3]. Programmers have played with 

the idea of encryption for many years and have succeeded in implementing the safest 

algorithms to protect their data. This is very safe when the attacker does not physically 

have the source code but can only execute the code. This means that the software runs on 

a remote server and consumers pay to use the software remotely. This is not 

economically viable for the consumer and for the software developer for large 

applications due to network constraints. The immediate solution for the software 

developer is to encrypt the source code and make it available to the consumer. This shall 

work only if the entire decryption, encryption and execution process happens in the 

hardware. But again in the execution process, if the intermediate code runs on a virtual 

machine interpreter then the code and can be intercepted and decompiled [4] which is the 

case for most architecture independent code. Therefore one is left with no other choice 

but to use architecture specific code. But that too can be reverse engineered with the help 

of architecture specific decompilers [2].  

Code Obfuscation was introduced in the security and cryptographic communities 

to tackle the problem of attackers reverse engineering intermediate code to source code. 

Code Obfuscation is an approach whereby one transforms sensitive code to another form. 

This transformed code is behaviorally same as the original, but in the process of 



 

obfuscation the transformations results in intermediate code that is difficult for the 

attacker to understand even after decompiling it to source level. This is because 

obfuscation inserts extra computations into the original code so as to divert and 

disillusion the mind of the attacker by giving him a lot of options as to where the code 

might go next. Though this process results in software that is slower and larger than the 

original, it does to an extent protect the intellectual property of the software developer.  

 

Formal Definition of Obfuscation 

 Given a set of obfuscating transformations T =  {T1 … Tn} and a program P 

consisting of source code objects {classes, methods, statements, etc.} {S1 … Sk}, find a 

new program P
1
 = {…, S

1
j = Ti (Sj) …} such that: 

 P
1
 has the same observable behavior as P, which means that the semantics are 

preserved. 

 The obscurity of P
1
 is maximized, which means that reverse engineering and 

understanding P
1
 will be more time consuming than reverse engineering and 

understanding P. 

 The resilience of P
1
 is maximized, where by the transformations cannot be undone 

through automatic tools. 

 The stealth of each transformation is maximized while the cost (execution time/ 

space) incurred is minimized. [7] 

 

 

 



 

Obfuscation can be mainly classified into two kinds 

 Control Transformation Obfuscation 

 Data Transformation Obfuscation 

 

Control Transformation Obfuscation 

 We define Control Transformation Obfuscation as those obfuscation schemes that 

change the control flow of the program. These are mainly done through the use of 

Opaque Constructs. Opaque Predicates are those constructs that always have one value. 

We can consider them as Boolean constants. They are always either true or false. 

 

Data Transformation Obfuscation 

 We define Data Transformation Obfuscation as those obfuscation schemes that 

alter the underlying data structure or the variables used in the program. 

 

Our focus is to figure out the efficacy of obfuscated code through Control 

Transformations hence we shall limit our research to Buggy Code and Bogus Predicates. 

Both of the above two mentioned are control flow obfuscation schemes developed by the 

Sandmark team at the University of Arizona [6]. We shall test how the two obfuscation 

schemes fare against profiling and some intelligent static attacks namely, Detection of 

Exception Handling Blocks and Dead Method Elimination. 

 

 



 

BACKGROUND 

 Compatibility of code across different platforms has become one of the most 

important aspects of software development today. Therefore we see the emergence of 

architecture independent code formats such as Java bytecode, C# etc. which give rise to 

the distribution of code in intermediate code format. 
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     Figure 1 

Code is first compiled into intermediate code that is architecture independent. It is then 

the distributed amongst the consumers who just need the architecture specific virtual 

machine interpreter to interpret the intermediate code that they have bought. Figure 1 

illustrates as to how architecture independent code is compiled, converted into 

Intermediate Code, which is then distributed, and then executed with the help of a virtual 

machine that is architecture specific. This shows us the flexibility and advantage of using 

architecture independent code because the software developer doesn’t have to worry 

about customizing his code to fit the needs of different architectures. We use Java Byte 

Code, intermediate code generated by the Java Compiler (javac) for our research.  
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Java Byte Code: 

 Java Byte Code is the intermediate, architecture independent code that is 

generated when a .java (source file) is compiled. This intermediate code is stored in a 

class file, which inherits the same name as the .java (source file) with a .class extension. 

This intermediate code can be distributed as is and can be run on a computer that has the 

Java Virtual Machine (JVM) installed on it with the help of the java class file executor 

(java). 

 

Java File: 

 The java file is the source file for the application / applet. It contains the source 

code written in the higher-level language, with the Java language syntax specifications. 

 

Class File: 

 The class file is the intermediate code that is generated when a Java file is 

compiled. It contains the byte code instructions that are needed by the JVM to run the 

program.  

 

Jar File: 

 The Java Archive (JAR) file format enables you to bundle multiple files into a 

single archive file. Typically a JAR file will contain the class files and auxiliary resources 

associated with applets and applications. For our purposes we make our JAR files (test 

cases) to be Executable Jar files. (java –jar <ExecutableJarFileName>). 

 



 

Obfuscation Tool and Libraries: 

The obfuscation tool that we have used is Sandmark, developed at the University 

of Arizona, Computer Science Department [6]. We make use of another library called the 

BCEL (Byte-Code Engineering Library) developed by Marcus Dahm [5]. It is a tool that 

allows manipulation of byte-code at runtime after which one can save the transformed 

class/jar files. Sandmark also uses BCEL to manipulate byte-code instructions for its 

obfuscation schemes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

OBFUSCATION SCHEMES 

Buggy Code 

This algorithm runs through an application (jar file) looking at all its class files. It 

then runs through all the methods of each class file looking for a significant section of 

code that doesn’t have a conditional or an unconditional branch Instruction. When it has 

found such a section it makes a copy of that code and inserts some “junk” instructions 

that manipulate bogus variables that it has declared at the beginning of the function. The 

algorithm then uses an opaque predicate in a branch Instruction with the obfuscated code 

as a fall-through to the branch Instruction and the correct (original) code as a jump to the 

branch Instruction. The opaque predicate used is always true. 

           Before Obfuscation         After Obfuscation 

 

 

 

 

 

   

  

 

 

Figure 2.1     Figure 2.2   

Figure 2.1 shows the control flow graph containing the basic blocks of a function before 

obfuscation. Figure 2.2 on the other hand shows the same function with a colored section, 
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which indicates to the obfuscated code, and the non-colored part, which indicates to the 

original path of code execution. Since the obfuscated part of the code is branched over by 

the Opaque Predicate therefore the colored section (obfuscated code) is never executed. 

Hence if we are able to somehow keep track of how many times a particular basic block 

is executed then we shall successfully identify the colored section (obfuscated code).  

 

Bogus Predicates 

This algorithm also makes use of opaque predicates like the buggy code 

obfuscation scheme with a slight difference that instead of looking for sections of code 

containing no branch instructions it looks for sections of code that do contain conditional 

branch instructions. Once it has found one it appends the branch instruction conditions 

with a randomly selected opaque predicate.  

There is a list of opaque constructs maintained by the obfuscation scheme. At run 

time whenever a conditional expression is encountered one of the opaque predicates is 

selected from the list randomly and is appended to the current conditional expression 

thereby creating another path in the control flow of the program. As a result of the above 

there is a single induced edge for every embedded opaque construct in the conditional. 

This induced edge is never traversed for any input because it is a fall through edge of a 

conditional that is always true (embedded opaque predicate). Hence if we are able to find 

out how many times a particular edge is traversed then we can identify this induced edge. 

Once this induced edge is identified we can hypothesize that both the parent and the child 

of the edge is obfuscated. 

 



 

Before Obfuscation    After Obfuscation 

 

 

   

 

 

 

 

 

 

       Figure 3.1 

 

 

 

 

 

 

 

                         Figure 3.2 

Figure 3.2 illustrates how an opaque predicate is initialized (B6), calculated and then 

stored (B7). If we compare Figure 3.1 and 3.2 we clearly see the induced edge (in red) 

between basic block # 8 and basic block # 4 which shall never be executed for any input. 
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THEORY BEHIND THE IMPLEMENTATION 

 After looking at the algorithms of both buggy code and bogus predicates one 

comes to the conclusion that buggy code obfuscation scheme shall crack when subjected 

to basic block profiling. Basic Block Profiling [8] is a technique whereby one can find 

out certain properties of a certain basic block in a control flow of a program. The 

property that we shall implement is to find out the count of how many times a particular 

block is executed. 

 Bogus predicates obfuscation scheme on the other hand is vulnerable to an attack 

through edge profiling. Edge Profiling [8] is a technique whereby one can find out certain 

properties of edges in a control flow of a program. Edges are the arbitrary arrows 

(defining flow of control) between two basic blocks. The property that we shall 

implement is the count of how many times a certain edge is traversed when the program 

is executed. 

 Both these implementations give results after the program has done executing 

hence they are dynamic attacks. 

 We subject the two obfuscation schemes to a set of static attacks namely 

identification of exception-handling routines and Dead Method Elimination. This was 

implemented because most of the code is not executed at runtime hence counts for many 

basic blocks would come to be zero. Also for a “good” run for a program, which means 

that there are no exceptions generated while execution, exception-handling routines shall 

never be executed. The above two mentioned techniques were introduced into the 

research so as to reduce the huge number of false positives that we were getting after just 

profiling the obfuscated code. 



 

IMPLEMENTATION 

All the tools mentioned above were implemented in Java using Sandmark [6] and 

BCEL libraries [5]. 

 

Basic Block Profiling 

 In Basic Block Profiling we used a global static array that kept counts of all the 

basic blocks in the application to be profiled. This array was stored in the main class of 

the application. Each basic block is associated with a unique number. The mapping is the 

number to be incremented in the global array. When the program quits a special function 

is called that prints out the global array with all the counts of each basic block. This 

function is also inserted in the application while the application is being prepared for 

profiling.  

 Since we know the mapping between the identifier of the basic block and the 

index to the array we insert lines of intermediate code (Java bytecode instructions) right 

before every basic block which increments the count of that particular basic block by one. 

So every time a certain basic block is traversed the profiling code is executed and count 

incremented. Figure 4.1 and 4.2 illustrate non-instrumented and instrumented code 

respectively. In Figure 4.2 the colored basic blocks are the instrumentation code that 

increment the count of the successor basic block in the global array of counts of basic 

blocks. INC(basic block) is the function illustrated in the Figure 4.2 which does the 

incrementation as explained above. 

 

 



 

 

 

 

 

 

 

 

  

Figure 4.1     Figure 4.2 

 

Edge Profiling 

 In this tool we use the same notion of storing counts similar to Basic Block 

Profiling but here we store the counts for edges. The edges in the control flow graph can 

be uniquely identified by their source and destination, both of which are basic blocks in 

the control flow graph of the method. Therefore for each edge we create an edge 

identifier as the pair of its source and destination. This mapping is used to instrument the 

code. A function is used for incrementing the global array of counts and just like in Basic 

Block Profiling the counts are printed out at the end when the application quits. So 

whenever an edge is traversed count for that edge is incremented in the global array. 

Figure 5.1 and 5.2 illustrate non-instrumented and instrumented code respectively. In 

Figure 5.2 the colored basic blocks are the instrumentation code that increment the count 

of the edge that is traversed by using the edge identifier as described above. 
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Figure 5.1    Figure 5.2 

 

Exception Handler Removal 

 This tool was implemented because for a “good” run of an application exception-

handling code is never executed. Exception handling code is present in most Java 

programs because they use libraries and library methods that throw exceptions. As our 

hypothesis suspects zero count blocks to be obfuscated we would get huge false positives 

for a “good” run of the program. So to reduce the number of false positives from the 

profile data we identify the blocks that correspond to exception-handling routines in the 

application. This is done through the BCEL library, which extracts exception-handling 

information from the byte code file. The library therefore allows one to identify the 

exception-handling code in a given method. We can then find out the basic blocks that 

are in an exception-handling routine. These blocks are removed from the set of false 

positives that we contain because we make sure that during the execution of the 
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INC(B1-B2) 
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obfuscated code we provide the application “good” set of inputs that do not cause any of 

exception-handling routines to be executed. Figure 6 illustrates the exception handling 

code range (B1 to B5). If there is an exception in the exception handling code range then 

the control shifts to the exception handling code (EXC1 to EXC2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 

The green arrows illustrate an execution with no exceptions and the red arrows show the 

transfer of control to the exception handling routine. This shows that EXC1 and EXC2 

will not get executed if the green path is taken. 
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Dead Method Elimination 

 The other source of huge false positives could be methods that are never executed. 

They might be present in the program as mere debugging tools that the programmer 

forgot to remove. The do no harm to the program as they are never executed hence these 

shall also pop up in the profile data with zero counts. This is also backed by the 80-20 

rule, which says that most of the time is spent in twenty percent of the code. To tackle 

this problem we implement a simple reachability algorithm that takes into account the 

name of the method, the class in which it is defined and the parameters that it takes. We 

construct a graph with vertices as methods signatures (the string comprising of the class 

name the method is defined in concatenated with the method name concatenated with the 

parameters) and edges as calls to other functions. We shall name such a graph as a C-

Graph. The reachability algorithm figures out if all the methods in the graph were 

reachable by the “main” function of the Main-Class or not. All those methods not 

reachable from the “main” function are termed unreachable and their basic blocks 

removed from the profile data. The method name coupled with the class name of the 

method and the signature of the method was used as the identifier for the vertex. This 

takes care of methods having similar names with different parameters (functional 

overloading).  

After we find out the methods that are unreachable we double check with the 

profile data if they really have zero counts or not. We do this test because Java Reflection 

could have been used where one can call a method at runtime, whose name might be 

determined at runtime. Therefore statically it would be impossible to figure out what the 

method was called. If the blocks of the method termed “unreachable” do have counts 



 

greater than zero then we discard those methods as they might have been called through 

Java Reflection or implicitly (static functions). 

Algorithm A 

 

List N contains all methods. 

Tree T contains the parent as the caller and the child as the callee. 

Method boolean ifReachable(String src, String dest) 

  reached = false 

 

  If src == null 

   return false 
  

  If src == dest 

   return true 
 

  findNode of src in the List N 

  

 If src is visited 

   return false 

 else 

   set src to visited 

 

Iterate through all the children of the src getting srcNode from T 

  If child == src 

   reached = true and break 

 

If reached == false 

Iterate through all the children of src getting srcNode from T 

   If IfReachable(child, dest) == true 

    reached = true and break 

   

  return reached 

 

Figure 8 illustrates the above algorithm on a small test case with two class files. The 

figure is the graph constructed on which the above reachability algorithm is executed. 

The figure clearly shows that the graph will not contain the unreachable methods and 

hence the algorithm will point out that those methods are unreachable. Code 1 is the 

pseudo-code of the test case. 



 

 

 Class T1     Class T2 

  Int a      Int b 

        T1 k 

  T1()     

a = 0     T2() 

      b = 0 

Int sub(Int a)     

   Return this.a – a   main() 

 T2 t 

  Print()       t.k.sub(6) 

   print a      

       End of Class 

 End of Class     

   

 

Code 1. 

 

The above code generates the following C-Graph. 

 

 

  

 

 

 

 

 

Therefore when Algorithm A is executed on such a C-Graph we see that reachability of 

T1.Print() from T2.main() fails. Therefore we can remove all the blocks in T1.Print() 

from the set of suspected obfuscated blocks.  

 

 

T1.Print() 

() 
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() 

T2() 

() 
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([L java/lang/String;)V 



 

TEST CASES 

The test cases used in our research for obfuscation and then subsequently used in 

profiling and static attack techniques were chosen with the following criteria. 

We wanted to test our profiling and static attack techniques on real programs, 

programs that contained redundancy of code and extra methods hence we chose 2 student 

projects (Test9obf) and (Hash2) that implemented hash tables turned in as a class project 

for CSC 345 in Spring 2003. The 2
nd

 set of test cases (Illness, Matrix and Decode) was 

taken from the Sandmark test suite. The 3
rd

 set of test cases was the SpecJvm 98 suite of 

which 5 test cases were chosen (_200_checkobf, _201_compress, _205_raytrace, 

_227_mtrt and _222_mpegaudio). After the profiling data was collected we classify the 

basic blocks based on the count and whether they existed in the list of obfuscated blocks. 

So we get a 4-bucket arrangement as explained in Figure 8. 

 0 COUNT NON-ZERO COUNT 

JUNK Obfuscated Blocks with 0 Count Obfuscated Blocks with non 0 Count 

NONJUNK Good Code with 0 Count Rest of the code 

Figure 8. 

Following are the characteristics of the test cases used. 

Static Test9obf Hash2 Illness Matrix Decode 
_200_ 
check 

_201_ 
compress 

_205_ 
raytrace 

_227_ 
mtrt 

_222_ 
mpegaudio 

           

Classes 6 5 16 2 4 17 22 29 29 5 

Methods 53 39 104 10 20 108 175 227 227 56 

Basic Block 1565 1059 1655 209 595 2285 3331 3205 3212 308 

Instructions 2843 2013 3933 576 1586 4075 7303 7187 7199 541 

Table 1. 

 

 

 



 

RESULTS AND OBSERVATIONS 

From the data collected we see that we are able to trace down a part of the obfuscated 

code because we had the list containing the obfuscated basic blocks. But since the 

attacker doesn’t have this list we introduce the term focus percentage, which is defined as 

the percentage of code the attacker should see with respect to the original code length to 

find obfuscation. The following chart shows to us that the focus of the attacker is 

decreased considerably for all the test cases.  

Focus % at different levels of sophistication
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Chart 1 

From the chart we see that the focus of the attacker is reduced considerably when the 

code that is obfuscated by buggy code is subjected to Basic Block Profiling and then 

subsequently to the static attacks shown above. 
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BBP = Basic Block Profile 

EXC = Isolation of Exception Handling Routines 

DME = Dead Method Elimination 

Chart 2. 

Once again we see that by using the above three mentioned techniques we are able to 

focus the attackers attention to a certain section of the code that does contain the 

obfuscation. Therefore we conclude that Edge Profiling and static attacks can be used to 

crack programs obfuscated through Bogus Predicates. 

 

  Test9obf  Hash2  Illness  Matrix  Decode  

  0 Non 0 0 non 0 0 non 0 0 non 0 0 non 0 

Profiling JUNK 1 1 2 0 3 0 3 1 0 0 

  NON 885   267   562   9   (Noobf)   

                      

 Blocks 52   52   14   0       

Exception JUNK 1 1 2 0 3 0 3 1     

 NON 833   215   548   9       

                      

 Blocks 505   30   376   0       

Dead Method JUNK 1 1 2 0 3 0 3 1     

 NON 328   185   172   9       

 



 

  
_200_ 
check  

_201_ 
compress  

_205_ 
raytrace  

_227_ 
mtrt  

_222_ 
mpegaudio  

  0 non 0 0 non 0 0 non 0 0 non 0 0 non 0 

Profiling JUNK 2 1 6 1 4 0 3 1 4 0 

  NON 1176   1265   478   571   260   

                      

 Blocks 
136, 76=0 
 60 Non 0   

169, 166=0 
3 Non 0   

35, 1=0 
34 Non 0   35   1   

Exception JUNK 2 1 6 1 4 0 3 1 4 0 

 NON 1110   1099   477   536   259   

                      

 Blocks 484   653   419   419   217   

Dead Method JUNK 2 1 6 1 3 1 3 1 4 0 

 NON 626   446   132   117   42   

  Table 2. 

Table 2 is the data collected from the Buggy Code obfuscation scheme. It shows the 4-

bucket analysis of the code after each level of sophistication. We see that as expected the 

number of false positives decreased as we applied some intelligent static attacks on the 

code.  

 

  Test9obf  Hash2  Illness  Matrix  Decode  

  0 non 0 0 non 0 0 non 0 0 non 0 0 non 0 

Profiling JUNK 301 70 156 95 44 11 41 55 54 39 

  NON 952  366  545  45  394  

            

 Blocks 57  57  14  0  0  

Exception JUNK 301  156 95 44 11 41 55 54 39 

 NON 895  309  531  45  394  

            

 Blocks 612  60  397  0  104  

Dead Method JUNK 301 70 156 95 44 11 41 55 54 39 

 NON 283  249  134  45  297  

 

 

 

 

 



 

  
_200_ 
check  

_201_ 
compress  

_205_ 
raytrace  

_227_ 
mtrt  

_222_ 
mpegaudio  

  0 non 0 0 non 0 0 non 0 0 non 0 0 non 0 

Profiling JUNK 563 94 174 91 137 327 143 321 24 13 

  NON 1607  1331  1029  1015  263  

            

 Blocks 185  124  35  35  1  

Exception JUNK 563 94 174 91 137 327 143 321 24 13 

 NON 1445  1215  1021  980  262  

            

 Blocks 448  719  650  617  203  

Dead Method JUNK 563 94 174 91 137 327 143 321 24 13 

 NON 997  496  371  363  59  

    Table 3. 

Table 3 is the data collected from the Bogus Predicates obfuscation scheme. Here too we 

use the same notions as used in Table 2. The 4-bucket analysis again shows to us that the 

focus of the attacker is brought down considerably. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CONCLUSION AND FURTHER RESEARCH 

From the analysis we conclude that we have aided the attacker into finding out 

where control flow obfuscation is present. This shows to us that control flow obfuscation 

is weak and can be broken by using simple profiling techniques. Therefore control flow 

obfuscation is not very effective against dynamic profiling techniques. 

Another way that one could further bring down the focus percentage is to analyze 

branch instructions. Control Flow Obfuscation rely on branch Instructions for their 

obfuscation and so if one can just profile branch Instructions and deduce some opaque 

properties of its conditionals then we can further reduce the focus percentage making any 

control flow obfuscation even more susceptible to dynamic and intelligent static attacks. 
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