
APPLICATIONS OF POINTER ALIAS ANALYSES

BY

TASNEEM KAOCHAR

AThesis Submitted to The Honors College

In Partial Fulfillment of the Bachelor's Degree with Honors in

Computer Science

THE UNIVERSITY OF ARIZONA

DECEMBER zoo8

Department of Computer Science

STATEMENT BYAUTHOR

I hereby grant to the University of Arizona Librarv the nonexclusive
worldrdde rffi Io reproduce and distiibute my thesis an'd abstract (herein,
the "licensei[materiils'), in whole or in pait, in any and all media of
distribution and in any format in existence nbw or devel6ped in the future. I
represent and warrairt to the Universiw of Arizona'that the fcensed
miterials are my original work. that I am fhe sole owner of all riehts in and
to the licensed ?natelids, and that none of the licensed materials'infringe or
violate the riehts of others. I firrther reDresent that I have obtaine? dl
necessary .i$tr to permit the University^of Arizona Library to reproduce
and distribrlte any^nonpublic third paitv software necesiary ro access.
display run, or print my thesis. I ackirowledee that Universiw of Arizoni
Ubraiy may elect not to distribute my theiis in digital forrhat if, in its
reason'able judgment, it believes all such iights have noibeen secured.

Signed: \fro ' 'Qt?'"1"*
\

CONTENTS

1 Introduction 4

2 Background 5
2.1 Pointers and Their Usage in Programming Languages
2.2 High Level Alias Analysis
2.3 Low Level Alias Analysis

3 Overview of Case Studies 9

4 FA Analysis 10
4.1 The Problem
4.2 Analysis Implementation
4.3 Analysis Application
4.4 Experimental Results and Evaluation

5 Dynamic Assembly Level Analysis 16
5.1 The Problem
5.2 Analysis Implementation
5.3 Analysis Application
5.4 Experimental Results and Evaluation

6 Value Set Analysis 19
6.1 Analysis Implementation
6.2 Analysis Application
6.3 Experimental Results and Evaluation

7 Conclusion 24

8 Future Work 26

9 Acknowledgments 27

10 References 28

3

1. INTRODUCTION

Consider for a moment the tremendous growth of electronic devices such as
cellphones, MP3 players, digital cameras, DVD players and GPS systems within the
last decade. With each passing year, these devices ! known as embedded devices
because of special!purpose computer system that reside within them ! are shrinking
in size and weight while performing increasingly advanced functionalities. How are
engineers achieving these seemingly contradictory goals?

At the heart of this problem is the need to reduce the size of the special!purpose
computer system that reside within each embedded device. One compelling choice
is to identify and eliminate any unnecessary code present in the computer system
and thereby reduce the memory footprint of the operating system "5, 8#. In order to
carry out this process $ known as dead code elimination $ the use of a pointer
analysis is an absolute must.

Pointer alias analyses play a critical role in various areas of computer science
research. The objective of an alias analysis is to answer a central question: can a
given memory location be accessed in multiple ways? This question arises due to the
existence of a pointer data type in many programming languages that make it
possible for two expressions to refer to the same mutable location in memory. To
address this question, an analysis is necessary in order identify all the potential
aliases $ multiple references to the same storage location in memory $ that may
occur when a program in executed "10#. In the example of the compaction of
operating systems %OS& within embedded devices described above, the fact that
most OS code make use of pointer data types necessitates the use a pointer alias
analysis to analyze the OS and identify any repetitious and/or unnecessary code.

There are numerous classifications of pointer alias analyses in the research field. In
this thesis, an alias analysis is broadly defined under two categories: high %source&
level alias analysis and low %assembly& level alias analysis. A high level alias analysis
attempts to identify potential aliases by recovering information from a high level
representation of the source code. Contrastingly, a low level alias analysis seeks to
disambiguate memory relationships by analyzing the low level representation of the
source code. Most tools that exist today analyze programs written in high level
languages rather than deal with low!level assembly because the latter presents many
new challenges "11#. Unlike assembly level alias analyses, high level alias analyses that
work on intermediate representation built from the source code can take advantage
of source level semantic information and thus yield more precise results "20#. In
many cases, however, researchers have access solely to the program assembly code
and therefore any useful program analysis must be able to handle low!level assembly.
The decision to use a high level analysis versus a low level analysis is thus often based
on the needs of the client application.

In this thesis the terms pointer alias analysis, pointer analysis, and alias analysis are used
interchangeably to refer to a static code analysis that seeks to establish the possible
runtime values of each pointer present in the code. The remainder of the thesis is
organized as follows. Chapter 2 provides a thorough discussion of pointers and
pointer alias analyses, including their necessity for analyzing programs that employ
pointers or pointer!like structures. Chapter 3 provides an overview of the three
di'erent types of pointer algorithms that I have implemented. Chapters 4 to 6 then
go into an in!depth discussion of each of the implementations, providing a detailed
look at the challenges that emerged during the process and the specific application
of each implemented analysis. Chapter 7 summarizes the conclusions and Chapter 8
describes possible future extensions to each implementation. The thesis concludes
with a series of acknowledgments in Chapter 9.

4

2. BACKGROUND

Although research on pointer alias analyses dates back to the late 1970s, the
increasing demand for more accurate and/or cost e(cient analysis algorithms makes
this topic a focal point in computer science research today. A pointer alias analysis is
essential for analyzing programs written in languages that employ pointers and
pointer!based data structures, such as C, C++, Java and Objective C. The purpose of
a pointer analysis is to determine the storage or memory locations a pointer may
point to when a program is executed. All pointer analyses employ a static code
analysis technique in which the program being analyzed is never actually executed
but rather the analysis gathers information by exploring a! the possible execution
paths that could occur if the program were executed.

2.1 Pointers and Their Usage in Programming Languages

A pointer is a data type that refers to another value stored in memory using its
address %see figure 1&. One can obtain the value to which a pointer refers by
dereferencing the pointer. In its most fundamental form, a pointer is a memory
address and thus can be treated as such. Pointers are directly supported in languages
such as C, C++, Pascal and most assembly languages. Other popular languages, such
as Java, make heavy use of pointers in behind!the!scenes implementation of the
language and thus shield its users from the challenges that arise through pointer
usage. Pointers are primarily used for creating references and are essential for
constructing many data structures, including lists, queues and trees, as well as for
passing data between di'erent parts of a program.

The diagrams on the following page o'er a brief look at some common pointer
usages using C code. Figure 2 illustrates simple pointer manipulation in C using a
integer pointer. Figure 3 shows an example specific to C and C!like languages in
which a function pointer may be used to indirectly call a function.

5

20104

20108

20112

20116

20120

B 25

50104

50108

50112

50116

50120

A 20112

Figure 1: Pointers
Pointer A points to memory location B which stores integer values.

6

Figure 2: Simple pointer usage %in C&

1: int pointerFun() {

2: int num1 = 5;

3: int num2 = -15;

4: int *ptr; // ptr is a pointer to an integer

5: ptr = &num1; // ptr = the address of num1

6: num2 = num2 + num1;

7: ptr = &num2; // ptr = the address of num2

8: return 0;

9: }

ptr 0x7fffffc9a864

0x7fffffc9a864

num1 5

0x7fffffc9a868

num2 -10

ptr 0x7fffffc9a864

0x7fffffc9a864

num1 5

0x7fffffc9a868

num2 -15

1: int add(int i, int j) {

2: return i+j;

3: }

4: int sub(int i, int j) {

5: return i-j;

6: }

7: int pointerFun() {

8: int num1 = 5; int num2 = -15;

9: int (*fptr)(int, int); // fptr is a pointer to a function

10: fptr = &add;

11: fptr = ⊂

12: return (*fptr)(num1, num2); // will call function sub and then

13: // return the value returned from sub

14: }

fptr 0x7fffffe922a0

0x7fffffe922a0

add

0x7fffffe922ac

sub

Figure 3: Indirect call made through a function pointer %in C&

fptr 0x7fffffe922ac

0x7fffffe922a0

add

0x7fffffe922ac

sub

While both of the examples demonstrated in figures 2!3 are trivial, they highlight
the essential functionality of pointers. In figure 3, line 12 contains an indirect
function call via the use of a function pointer, fptr. In this particular example it is not
di(cult to determine that the function call on line 12 will call function sub because
we can see from the sequence of statements executed that the most recent
assignment of fptr was to sub %line 11&. However, imagine a scenario where the right!
hand side of the assignment on line 11 was replaced by a call to a function foo defined
in a distant part of the code which returns a function pointer. Imagine that foo itself
consisted of multiple calls to functions defined elsewhere. When the call to function
foo returns and the assignment on line 11 is carried out, it is impossible to determine
what function fptr points to at this point of execution without a thorough analysis
of the code. This scenario highlights the ambiguity that can arise when one is trying
to determine the potential values of a pointer at a given point in a program's
execution.

In order to disambiguate the relationship between any two given pointer
expressions, an analysis must make either one of two assertions. The first and
weaker assertion is that for some execution path P, two memory references a and b
refer to the same memory location; this is known as a may!alias relationship. The
second and stronger conclusion, known as a must!alias relationship, asserts that for
a! execution paths, two memory references a and b refer to the same memory
location. Due to the nature of this problem, all pointer alias analyses are
undecidable and thus, the implementation of any alias analysis is based on an
approximation algorithm "14#. Existing algorithms for pointer alias analysis di'er
considerably in their precision and cost. However, all analyses are conservative and
therefore guaranteed to report all possible pointer relationships that could actually
occur at runtime. An analysis A is said to be more precise than analysis B if solution
set computed by A is a subset of the solution set of B. It is generally agreed that
more precise algorithms are usually much more costlier to compute but whether the
additional cost is worth the degree of accuracy that such algorithms yield is
debatable "16#. The worst!case time complexities of existing analyses range from
almost linear to doubly exponential "11#, although most often the worst!case
behavior is not indicative of typical performance.

There are numerous classifications of pointer alias analyses in the research arena.
Although some of these classifications will be discussed in various parts of this
thesis, the broadest classification referenced in this thesis divides a pointer alias
analysis into two categories: high level %source level& alias analysis and low level alias
analysis. A source level alias analysis can be further classified based on the type of
information it collects as it analyzes program code. The following two subsections
provide a thorough discussion of each type of analysis and the benefits and
drawbacks that each carries.

2.2 High Level Alias Analysis

A pointer alias analysis performed at the program source code level %or an
intermediate high level code representation& is known as a high level alias analysis.
By nature, high level alias analyses can take advantage of source level semantic
information and therefore provide more accurate disambiguations of pointer
references. A source level analysis can be described in terms of several properties:
flow!sensitivity, context!sensitivity and type!sensitivity "10#.

Flow!sensitive alias analyses take into account control flow within the program code
and thus produces separate aliasing information for di'erent points in the control
flow of the program. Contrastingly, flow!insensitive analyses produce aliasing
information for the entire program, disregarding both flow of control and statement
execution order. Therefore, flow!insensitive analyses, while less expensive than their

7

counterparts, are more conservative in their approximations of pointer
relationships. Context!sensitive alias analyses distinguish between di'erent
invocations of a procedure within the program code. For instance, if a procedure P
is called from procedure Y and procedure Z, a context!sensitive analysis will produce
distinct alias information for both PY and PZ. A context!insensitive analysis ignores
such distinctions and therefore produces a solution set that is more conservative
and hence less precise. %As discussed earlier, the smaller the solution set of an
analysis, the more precise the analysis is considered to be in relation to other
analyses. On the same note, the more conservative an analysis is in its
approximations of pointer relationships, the larger the size of the solution set it will
produce.&

The final classification of source level alias analyses pertains to the use of type
information. Type!sensitive alias analyses make use of type information when
deriving aliasing relationships "20#. For instance, a basic type!sensitive alias analysis
would recognize that two references a and b that are of incompatible types cannot
alias each other. Although the incorporation of type information in creating aliasing
relationships can significantly improve the results of an alias analysis, such
information is only available at the source code level and therefore in scenarios
where users do not have ready access to the program source code, an alternative
approach must be undertaken for code analysis.

2.3 Low Level Alias Analysis

An alias analysis that analyzes program assembly code %available via the program
binary& is known as a low level alias analysis. Because of the nature of assembly code,
the techniques used for source code analysis are insu(cient for analyzing executable
code. Below is a list of some noteworthy challenges that arises when dealing with
assembly code %compiled from a publication by Brumley and Newsome "3#&:

! Assembly code lacks the presence of any expressive types and therefore any
form of heuristic based on type information is obsolete.

! Assembly code lacks any notion of function abstractions and control flow is
exclusively defined by either unconditional or conditional jumps to locations.

! Memory in assembly is laid out as one, big contiguous chunk of storage,
making it di(cult to determine where the allocation of one object ends and
the next one begins.

! Heavy use of address arithmetic in assembly makes such arithmetic di(cult
to ignore. Many source level alias analyses do not take into account address
arithmetic but all low level analyses must do so in order to successfully
handle memory dereferences at the assembly level, which almost always
involve address arithmetic.

! Widespread use of indirect jumps in assembly makes it di(cult to predict
flow of control.

The use of a low level alias analysis becomes necessary when source code is not
available, such as in the case of malware analysis where the malware is only available
in its executable form. In addition to situations where its use is a must, low level alias
analyses can provide some significant benefits over source level analyses. Whereas
source level analyses typically support a specific high level language, low level
analyses make no assumptions pertaining to the syntactic constructs defined in
certain high level languages and can therefore handle code that may originally have
been written in multiple languages. Some source code, while being primarily written
in one high level language, can also contain inlined assembly code; only a low level
analysis would be able to analyze such sites of inlined assembly code.

While the implementation of an alias analysis that processes assembly code can be
significantly more challenging than the implementation of a source level alias
analysis, its usage is sometimes necessary and in many cases, such an analysis can
provide information that otherwise would be lost.

8

3. OVERVIEW OF CASE STUDIES

The following three chapters outline the three di'erent program analyses that I
have implemented in the course of my undergraduate research career. Each analysis
was implemented because it was deemed to be the most appropriate $ in terms of
cost, e(ciency and degree of accuracy ! for the problem being addressed. Chapter 4
discusses my implementation of a source level flow insensitive alias analysis with the
goal of identifying and eliminating unreachable code in the Linux kernel and thereby
compacting its size to better satisfy the needs of an embedded device . Chapter 4
and 5 discuss two di'erent approaches to addressing the same problem: determining
the transition from seemingly benign to actual malicious code in a malware binary.
Chapter 4 describes a standalone, rudimentary dynamic assembly level analysis that
adds instructions to the existing assembly code in order to exert some control over
the execution of the binary. Chapter 5 discusses the implementation of a more
sophisticated and detailed analysis that can process assembly code at a finer
granularity.

9

4. FA ANALYSIS

The ability to identify and eliminate unused code in an application is becoming
increasingly significant as the amount of memory space available in many popular
special!purpose computer systems becomes limited "6#. A perfect example of this is
embedded devices. Over the past decade, the use of embedded devices such as cell
phones, MP3 players, digital cameras, microwave ovens and DVD players, has
evolved rapidly with the continuous desire of consumers for newer, smaller and
slicker!looking gadgets. The urge to decrease size and weight, reduce power
consumption, and lower production cost has limited the amount of memory available
to the computer systems embedded within these devices. In order to satisfy the ever
increasing desire to execute more and more sophisticated applications $ such as
encryption and speech recognition $ these systems must now be able to run larger
programs on limited space. The accumulation of these desires leads to increasingly
large programs running on limited memory space, and as a result, the need for an
operating system that can be tailored to run sophisticated applications while using a
small amount of memory is invaluable.

4.1 The Problem

One of the most popular operating systems %OS& that vendors use for embedded
devices is Linux, which has been freely available to the public since its creation. Built
as a general!purpose OS, however, Linux is less sensitive to the limited resources of
an embedded device, in particular, the reduced memory availability. Thus, code
compaction or reducing the code size of the Linux kernel ! the central component of
the OS responsible for managing system resources such as memory ! is critical in
tailoring the Linux OS to better suit the environment of an embedded device. The
applications in the Linux kernel contain much more data that codes for greater
functionality than what is needed or desired for an embedded device. Thus,
identification and elimination of unused code in the kernel %as per the requirements
of the device& ! referred to as dead code elimination ! is integral in the compaction of
the overall operating system "9#.

In order to identify unused or dead code in a given program, it is necessary to
construct a call graph for the program that provides information about all the calling
relationships between di'erent functions in the program. Such a program call graph
can be used to determine, given a set of input functionalities desired of the program,
what part of the program code will never be called in order to carry out those
functionalities. With the construction of an accurate call graph, one can identify
code that is never executed and therefore can be eliminated. Hence, it is necessary to
carefully choose and implement an alias analysis that can construct the most precise
program call graph while maintaining a manageable cost.

4.2 FA Analysis Implementation

The flow!insensitive alias %FA& analysis, a type of pointer alias analysis developed by
Zhang et al. "22, 23#, has been previously shown to produce the most accurate call
graphs in a comparison test with other analysis algorithms "16#. In addition to
ignoring the order in which statements are executed in the code %hence, flow!
insensitive&, the FA analysis is also context!insensitive, field sensitive and type
sensitive. Being both flow! and context!insensitive means that the analysis algorithm
has a low cost $ running in almost linear time in terms of the size of the program and
the size of the produced call graph $ and low precision. For the purposes of creating
a call graph for the Linux kernel, however, the low precision is tolerable because
obtaining even some information about calling relationships in a relatively short

10

execution time is invaluable.

The FA analysis algorithm begins by constructing an object name for each memory
location found in the code. As the kernel code is processed, the analysis merges
object names together into sets called equivalence classes. Each equivalence class
represents a set of aliases. At the end of the analysis, a graph that contains the alias
sets for all function pointers in the code is created. Once this graph is constructed,
determining the potential targets of an indirect call %made through a function
pointer& is simple. If an indirect call uses a function pointer p, then the possible
targets of that call are all the function object names in the same equivalence class as
p. Figure 4 shows a small step!by!step example of how $ given a series of source code
statements %taken from figure 3 in Chapter 2& $ the analysis identifies the set of
object names and groups them into equivalence classes.

11

Figure 4: Set of equivalence classes produced from the source code in figure 3

Note: * = pointer dereferenc" symbol = the value at the location to which a pointer points to; & = address
of symbol = the address in memory where variable is located

4.3 Application of the FA Analysis

The construction of a program call graph for the Linux kernel consists of the
following two steps:

1. Converting the C source code of the Linux kernel into compilation unit
summaries using an XML markup that preserves semantic information
pertaining to the high level language, such as the types of variables. Since
flow of control statements are not taken into consideration by the FA
analysis, this information is not present in the final compilation unit
summaries. This transformation of C source code into compilation unit
summaries %that would then serve as input to the FA analysis& was performed
by John Trimble, a former undergraduate student in our research group who
has worked extensively with the FA analysis algorithm, including writing his
own implementation in Python "20#.

2. My implementation of the FA analysis, written in the C programming
language, loops through each compilation unit summary produced in step 1
until all summaries have been processed. In order to process the XML
summaries, my implementation uses Libxml2, a XML C parser and toolkit
developed for the gnome project "15#. Libxml2 parses a XML file and
produces a tree data structure which can then be traversed by the client ! in
this case, my program ! in order to process each node information.
Throughout this processing phase, the equivalence classes defined in the FA
analysis algorithm are generated. At the end, the analysis dumps the call
graph for the kernel, which consists of the following:

1. for each function with indirect calls $ print the list of potential targets
of that function %as a result of the indirect calls&

Figure 5 presents the code for a sample Hello program that consists of an indirect
function call. Figures 6 and 7 contain the resulting compilation unit summary and
call graph produced by the FA analysis for the Hello program, respectively. These
figures originally appeared in Trimble's thesis "20# and are reproduced here as
reference.

12

Figure 5: Hello program code

13

Figure 6: Hello program compilation unit summary

Figure 7: Hello program call graph produced by FA analysis

Once the program call graph of the Linux kernel code has been constructed, it is
then used by the code compaction software to compact the kernel. The flowchart in
figure 8 summarizes this sequence of events.

4.4 Experimental Results and Evaluation

A pointer alias analysis can be evaluated based on several metrics, the most common
of which are accuracy of results and speed %low execution time&. The desire for
accuracy in an analysis is obvious but e(ciency is an equally important
characteristic because often times alias analyses are used by client programs as a
small part in an apparatus that is already complicated and expensive. Thus the
motivation to keep the alias analysis itself simple and inexpensive is high. In the
case of the FA analysis and its role in the kernel code compaction apparatus %see
figure 8&, it was crucial to have an analysis that would process the entire kernel in a
relatively short time. Additionally, while the FA analysis was specifically applied to
the kernel compaction software in our research work, we wanted to implement an
inexpensive alias analysis that would be an attractive choice for other applications as
well.

Since the source level code of the Linux kernel was converted into a XML
representation, the implementation of the FA analysis was not required to be
written in any specific language. One of the primary motivations of writing the
implementation in C was to take advantage of the flexibility that C data structures
allow in order create an e(cient analysis. My initial implementation of the FA
analysis took upwards of 8 hours to process the entire Linux kernel, the approximate
size of which is 781,826 bytes. Using program profiling tools such as gprof, the
GNU profiler "8#, I was able to identify several execution bottlenecks ! areas of the
code where most of the execution time was being spent ! in my implementation
code. Mostly all of the identified bottlenecks pointed to sections of the code that
used expensive string comparison operations to process tree nodes. After modifying
my implementation to make use of a more e(cient string table lookup to process
the tree nodes, I was able to reduce the execution time of the analysis to 2.5 hours.
This speedup, while significant, was still far from an ideal execution time for a
pointer alias analysis. Further use of gprof gave mixed results as to any remaining
bottlenecks in the code, making it di(cult to determine the underlying source of
the execution time overhead.

14

Code
compaction
software

Linux kernel
C source

code

XML
compilation
summary units

FA Analysis

Figure 8: Overview of Linux kernel compaction apparatus

In regards to the accuracy of the program call graph produced by the FA analysis,
results varied depending on the input size. When analyzing individual modules of
the Linux kernel, the analysis proved to be fairly accurate, producing a call graph
that had at most twenty potential targets for any given function with indirect calls.
When analyzing the entire kernel code, however, imprecision crept into the analysis
results, generating a call graph that for some functions with indirect calls, produced
hundreds of potential targets.

It is di(cult to pinpoint exactly the source of the disappointing results of the FA
analysis implementation. The following are some hypotheses regarding the
outcome:

1. The Libxml2 parser may have played a role in the poor performance of the
FA analysis. The XML parser was repeatedly invoked by the analysis in
order to process each compilation unit summary. However, due to the
existence of the parser's source code in a separate library %not available to
us&, the GNU profiler was unable to perform any profiling analysis on the
parser. This may explain why the profiler produced such mixed results at
times, unable to pinpoint the execution time bottlenecks in the code.

2. Information lost in the process of converting the Linux kernel source code
files into XML compilation unit summaries may have led to the imprecision
observed in the FA analysis results.

15

5. DYNAMIC ASSEMBLY ANALYSIS

Security of computer systems has been a key component of computer science
research for many decades but in recent years, with an explosive surge in malware
attacks, computer security has come to the forefront of research investigations.
Today, there is a growing market for security products that can detect and eliminate
viruses and worms from a computer system before any harm is done. Thus, the need
for tools to better understand a binary executable and determine whether it exhibits
any suspicious characteristics commonly observed in malicious code is critical for
ensuring computer security.

5.1 The Problem

Recently, one of the most common virus detection methods employed by the
software security industry involves a brute!force test on the suspect file by trying to
match byte patterns from the file to a database of known malware byte patterns.
Many malware writers today fight against such detection methods by transmitting
malware in a packed or encrypted form and thereby scrambling the bytes in the
executable "21#. In a packed malware, the malicious code is originally encrypted to
evade detection by antivirus scanners and is only unpacked %decrypted& and
executed when the malware is run. When the malware is executed, control jumps to
the unpacker routine, descrambling the bytes until the malicious code is visible, and
then jumps to the recently unpacked malware code. Because of the nature of packed
malware, any binary exhibiting the characteristics of a self!modifying piece of code
is flagged as suspicious.

This packed format presents an obstacle for researchers wishing to analyze
malicious code, many of whom turn to dynamic code analysis techniques for the
task "12#. Most of the existing dynamic analyses used in malware detection function
by executing each instruction in the binary and scanning memory in search for
matches with the known malware database. While such an analysis can successfully
detect a packed malware, any information distinguishing the part of the malware
code that is responsible for carrying out the unpacking %the unpacker routine&
versus the part that actually executes the unpacked and malicious code is unknown.
The lack of such information prevents researchers from forming any concrete ideas
about the control flow graph of the malicious code and therefore, fully
understanding the behavior of the malware.

5.2 Dynamic Assembly Analysis Implementation

Our first, simple approach in determining whether a binary executable is a packed
malware and then identifying the point of transfer from the unpacker routine to the
actual malicious code in the binary involves a brute!force dynamic assembly analysis.
The objective of the analysis is to process and execute the binary instruction!by!
instruction until a point deemed to be the transition point is reached. The
transition point is defined to be the moment right before the analysis executes an
instruction that has been modified by a previously executed instruction.

Before the analysis phase begins, an initial disassembly of the binary %using an
existing disassembler tool& breaks down the executable into basic blocks and within
each basic block, into a list of assembly instructions. The dynamic assembly analysis
processes the global list of instructions generated from the disassembly and
maintains a list of all the memory locations that have been written to by the
instructions, referred to as the write set.

16

For each assembly instruction, the analysis performs the following:

1. Prior to executing the instruction, a check is performed to see if the address
of the instruction to be executed exists in the write set

2. If the instruction address exists in the write set, the analysis stops
because the transition point has been found.

3. If the instruction address does not exist in the write set, the analysis
executes the instruction. If the instruction is an instruction that writes to
memory, the destination address of the instruction %the location where it
writes to memory& is added to the write set.

4. Repeat the process for next instruction.

My implementation of the dynamic assembly analysis involved adding the above
described functionalities in the form of additional assembly instructions inserted
into the global instruction list. The implementation also included the addition of
assembly instructions that ensured the safe manipulation of the stack and all the
registers prior to the execution of each original instruction from the binary. While I
implemented the described instrumentations of the global instruction list, a key part
of the instrumentation required the usage of address translation routines that was
implemented earlier by a graduate student in our research group.

5.3 Application of Dynamic Assembly Analysis

The dynamic assembly analysis that we implemented was applied to a known packed
malware: the Hybris C email worm. %figure 9 displays the unpacker code for this
malware.& The malware initialization begins by loading registers with the address
%0x401000& and size %5418 words& of the region to be unpacked, and the decryption
key. The code then iterates through a loop, decrypting the specified region until the
counter goes to zero. At this point the execution drops out of the loop and jumps to
the unpacked region, which now contains the descrambled, malicious code. While
unpackers employed by other malware may vary in certain aspects, all unpackers
share the common self!modifying characteristic evident in Hybris C; that is, the
property of modifying memory to create new code that was not present in the
original binary.

5.4 Experimental Results and Evaluation

The dynamic assembly analysis was tested on the Hybris!C and Hybris!D email
worms. Hybris!D is an extension of the Hybris!C worm and the code for both
malware is almost identical except for the technique each employs in directing

17

Figure 9: Hybris C email worm

control to the unpacked code once the unpacker routine has completed. In the case
of Hybris!D, instead of employing the more obvious single jump statement for this
purpose %as is evident in Hybris C, see figure 9, I8&, it uses two instructions $ a push
and a return $ to push the address of the unpacked malware body onto the stack and
then jump to that address. The dynamic assembly analysis was successfully able to
recognize the suspicious behavior of these two malware and identify the transition
from unpacker code to unpacked malware body in each. In the case of the Hybris C
example shown in figure 9, the correctly identified transition point is I8 : jmp
0x401000.

While the dynamic assembly analysis successfully recognized the Hybris!C and
Hybris!D worms as malicious binaries and identified the transition point in each
code, both of these examples are relatively small and simple. When dealing with
more complex and larger malware files, the approach taken by the dynamic
assembly analysis will be significantly less e(cient because it requires the
instrumentation of each individual instruction that appears in the original binary
prior to the execution of the unpacked malware body. Most packed malware today
employs complex unpacker routines that consist of at least hundreds of instructions.
Individual instrumentation of each of these instructions would be costly, resulting in
a high execution time for the analysis. Furthermore, dynamic analysis of malware
binaries is also subject to certain vulnerabilities that are discussed in detail in the
next chapter.

18

6. VALUE SET ANALYSIS

The drawbacks of the dynamic assembly analysis described in the previous chapter
has necessitated the need for a more sophisticated approach to addressing the
problem of malware detection and behavior analysis. One of the major drawbacks
with analyzing malware binaries dynamically is that it allows the malware to employ
dynamic defenses such as anti!debugging defense, time bombs and logic bombs "5,
12#. A malware binary with an anti!debugging defense attempts to detect whether
the binary's execution is being monitored by the host system and if so, does not
carry out the execution of the malicious code. Other examples of dynamic defenses
include time bombs, which cause the malware to be activated only on certain times
or dates, and logic bombs, which cause the malware to be activated based on the
detection of some environmental trigger. A dynamic analysis of a malware binary
only explores one execution path of the malware and therefore in the case where
dynamic defenses are employed, cannot always recognize the suspicious nature of
the code. Hence, in order to analyze packed malware binaries that may also make
use of dynamic defenses, it is necessary to conduct a static analysis that explores all
possible execution paths of the binary.

Our method for analyzing packed malware statically can be summarized into two
phases: %1& given an initial disassembly of a binary executable, identify code
unpacking and find the associated unpacker routine and %2& transform the unpacker
code into a customized unpacker that can then be emulated to unpack the malicious
binary. A fundamental component of this method is a pointer alias analysis that is
necessary for both %a& the identification of transition points that signal where
control may be transferred to unpacked, malicious code and %b& the identification of
the actual static unpacker routine. Alias information obtained from an analysis is
essential in determining the possible targets of indirect memory operations and
indirect control transfers in the malware binary.

The nature of this work requires a low level pointer analysis that can obtain alias
information from an executable in the absence of source code, as is necessary when
analyzing viruses and worms. Developing a pointer alias analysis algorithm that can
be used to analyze potential malware executables with a satisfactory degree of
precision is nontrivial. Thus, we chose to resort to existing literature to identify a
suitable algorithm rather than formulating our own. The extensive work of Gogul
Balakrishnan as published in his dissertation in December 2007 "2# provided us with
a fairly recent, well!written and thoroughly detailed alias analysis algorithm, the
performance and precision of which can be further improved, if so desired, by
additional optimizations outlined by the author.

6.1 Value Set Analysis Implementation

Our alias analysis implementation based on Balakrishnan’s dissertation work
involved two distinct tasks. The first task was to implement all the necessary
internal data structures such as representations of individual memory regions,
abstract locations corresponding to variable!like entities in an executable, value sets
denoting the set of addresses in a memory region and finally, mappings from
abstract locations to value sets and from memory regions to value sets. Once all the
data structures were in place, the next step was to implement the flow!sensitive,
context!sensitive, intraprocedural analysis algorithm that aims to explore a
program’s behavior for all possible inputs and all possible states that the program
can reach.

19

At the topmost level, the value set analysis deals with a data structure known as the
AbsEnv, which represents the abstract environment of the program at any given
point during its execution. The AbsEnv maintains a list of all the memory regions
defined in the program. The analysis classifies all data objects into three distinct
categories of memory regions: %1& global region ! for memory locations that hold
global data, %2& activatio# record region $ for memory locations pertaining to a
particular function or procedure %local data&, and %3& ma!oc or heap region $ for
memory locations allocated at a particular heap site. In order to represent the
potential value of any given memory location, Balakrishnan's algorithm employs
several di'erent levels of data structures, the most basic of which represents the
value as a set, defined by a strided interval. Figure 10 provides a detailed look at the
data structures involved in the value set analysis algorithm. While the
implementation of the value set analysis was a group e'ort, I was personally
responsible for implementing most of the underlying functionalities of the data
structures shown in figure 10.

20

Figure 10: Value set analysis data structures

The value set analysis processes the malware binary instruction!by!instruction,
updating all components of the current abstract environment %AbsEnv& for the
program as necessary. In addition to keeping track of all data objects, the AbsEnv
also maintains information pertaining to the potential value%s& of each of the
registers at any given time.

6.2 Value Set Analysis Application

The value set analysis plays a critical role in our desire to determine whether a given
binary executable exhibits the characteristics of a packed malware and if so, identify
the transition point from the unpacker routine to malicious code. Before the
analysis phase begins, the binary is disassembled using PLTO, a disassembler tool
developed by our research group "19#. The disassembly partitions the original
malware code into basic blocks and within each basic block, into a list of assembly
instructions. The value set analysis then processes this global list of instructions,
determining the possible target addresses of indirect memory operations in the
disassembled code. Using the information gathered by the value set analysis, a list of
potential transition points %or transfer of control to the unpacked code& is
generated. The list generated is referred to as the set of “potential” transition points
in order to account for imprecision in the binary level alias analysis. For each
potential transition point t, the results of the value set analysis is used to determine
the set of memory locations that can be modified along the execution paths to $ to
identify the static unpacker. Once the static unpacker has been extracted, it is
transformed in order to eliminate any dynamic defense code and add
instrumentation to identify the true transition point in the malware. Finally, the
static unpacker is emulated to observe its e'ects on memory and hence, the
remainder of the malware code.

Figure 11 provides an overview of the sequence of events described above. Step 1,
parts of step 2, step 3 and most of step 4 was implemented by other members of my
research group. In addition to my work on the value set analysis, I also implemented
the instrumentation of the static unpacker %in its transformation phase& and the
final emulation. Many parts of the code used for the instrumentation and emulation
of the static unpacker was recycled from the dynamic assembly level analysis
implementation described in Chapter 5.

21

Figure 11: Overview of malware detection apparatus

1) Disassembly
and control
flow analysis

2) Value set
analysis

3) Potential
transition point
identification

4) Static
unpacker

extraction and
transformation

5) Emulation
of static
unpacker

6.3 Experimental Results and Evaluation

The static unpacker was tested on the original Hybris!C email worm described in
Chapter 6 as well as several variants of the Hybris code. The variants, constructed
by a doctoral student in our group, was specifically handcrafted to incorporate
di'erent types of dynamic defenses. Figure 12%a& shows the control flow graph of the
original Hybris code. In this example, while the packed code begins with B0 at
address 0x401000, the malware begins execution with the unpacker routine at B1
%address 0x4064a8&. As the loop in the unpacker routine executes %block B2&, it
overwrites the garbage instructions that are visible in B0 with actual malicious code.
Figure 12%b& shows a variant of the Hybris code that begins execution at Bdd by
loading a value into register %eax and then conditionally branching to the unpacker
routine if the value is nonzero.

22

Figure 12: Two versions of the Hybris!C worm

Our prototype static unpacker was able to successfully identify the transition point,
extract, modify and emulate the unpacker routine in each malware. In the case with
the dynamic defense, the static unpacker correctly identified and eliminated the
dynamic defense code.

23

 7. CONCLUSION

After nearly two years of research work relating to pointer alias analyses, I have
learned that implementations of most pointer analyses $ even ones based on
relatively simple algorithms such as the FA analysis $ are nontrivial. While
implementations of binary level alias analyses are much more complex and di(cult
than source level analyses, the latter is by no means a walk in the park. Below are
several lessons I have learned over the course of my research experience:

1. Familiarity with the code base that one will be interacting with during the
course of writing any implementation is crucial in successfully completing a
good implementation. In the ideal case, we would all be working with our
own code all the time and hence there would be no need to understand
code written by another programmer. In reality, however, we are often given
the task of continuing to build or extend a project that has been previously
implemented by one or more programmers. In these situations, I have
learned that it is essential to understand what others have written thus far
before beginning one's own implementation. Sometimes we are lucky and
the previous authors are available and willing to help in the understanding
of their code in person or via email. Other times we are not so lucky and
the task becomes more di(cult.

While working on the FA analysis implementation, I decided to not worry
myself with the GCC frontend, implemented by John Trimble, because it
was independent of the analysis implementation. In retrospect, I wish I had
spent more time understanding the frontend that produced the XML
compilation unit summaries that my implementation had to process. I
believe that had I spent some time in understanding Trimble’s
transformation of Linux kernel source code into XML summaries, I might
have had a better understanding of the imprecision that was observed in my
analysis results and its potential causes.

Additionally, my work on the FA analysis has taught me the uncertainties
that accompany any usage of libraries created by other research groups.
Like in the case of most libraries available for free on the web, the writer%s&
of the Libxml2 parser %that I used in my FA analysis implementation&
provided an API %application programming interface& outlining all the
functionalities that the parser supported. The source code for the parser
was not readily available to all its users and hence, I was never able to
confirm our hypothesis that the ine(ciency evident in my analysis
implementation was somehow related to the parser implementation.

Learning from the FA analysis work, when it came to implementing the
value set analysis outlined by Gogul Balakrishnan, instead of using the
analysis API that Balakrishnan and his research group made available to
other academic research groups, we decided to build our own
implementation from scratch. This gave us the advantage of being able to
modify Balakrishnan’s algorithm for our own purposes and made us well
aware and knowledgeable about the code base we were working with.

As I have learned from experience, familiarity with one’s code base is
critical in hunting down program bugs and understanding program
behavior.

24

2. Accuracy always trumps e(ciency and any optimizations should be
implemented at the end only if there is good indication that the benefits it
provides will outweigh the cost of the additional work. In each of the
analyses I have helped to implement thus far, our first and foremost goal
has always been accuracy. Often times, this meant that our initial
implementation was always the most simple and straight!forward method
of addressing the task, even if the methodology was ine(cient.

In the case of the FA analysis, my first implementation involved a simple
linked!list data structure to process all the tree node information received
from the parser. In my later, more e(cient implementation, I made several
optimizations to the code, including the addition of other data structures,
such as a hash table for string lookup and comparisons.

Likewise, in the course of our value set analysis implementation, we
decided to keep things simple, implementing only the first part of
Balakrishnan’s algorithm: an intraprocedural analysis. While the addition
of an interprocedural phase to the analysis will most likely be necessary in
the future, we wanted to have a simple, running analysis that we could test
using our basic test cases.

During the implementation of both the dynamic assembly analysis and the
value set analysis, we also considered several optimization algorithms.
When dealing with assembly level code, the optimal functionality for any
program analysis is to be able to recognize when the code enters a loop and
instead of emulating all the iterations of that loop %a very expensive and
time consuming task&, make some smart conclusions about the data objects
whose values the loop modifies after emulating the e'ects of one or at
most two iterations of the loop. There are some existing complex
optimization algorithms that deal particularly with these types of
situations. For the dynamic assembly analysis, no optimizations were
implemented. For the value set analysis, we initially considered
implementing one such optimization known as widening and its inverse,
narrowing. Simply put, in the case when the value of a data object is being
modified inside a loop, a complex widening and narrowing optimization "4#
would recognize the repeated modification and make an intelligent
conclusion about the final value of the data object at the end of the loop.

Because of the complexity involved in implementing such an optimization,
at this time we have decided to resort to a very simple version of widening
in our analysis. In our current implementation of the value set analysis,
when the value of a data object is recognized as being continually modified
inside a loop %usually after two iterations&, the analysis immediately sets the
value set corresponding to that object as unknown. In this manner, we are
not being precise in our implementation but at the same time, we are
ensuring that incorrectness does not creep into our analysis results. For the
Hybris!C virus variants on which we have tested our analysis thus far, our
implementation has proved to be su(cient. It is likely, however, that down
the road we will be implementing these optimizations when dealing with
more complex malware that necessitate the use of a smarter analysis.

It is di(cult to quantify the amount of work, time and e'ort that has gone into the
implementations discussed in this thesis. As is the case with most big programming
projects, each implementation phase not only involved writing many lines of code $
at least several thousand $ but also countless hours of debugging, the joys of which
only a programmer can appreciate.

25

8. FUTURE WORK

For the Linux kernel code compaction project, the source level FA analysis provided
aliasing information only at the function level. This, unfortunately, limits the
amount of unreachable code in the Linux kernel that can be identified and therefore
eliminated. If we were able to collect more information from the Linux kernel
source code, an extension to the FA analysis may be made to provide further finer
grained aliasing information, specifically relating to memory references "20#. This
information would, in turn, be beneficial to the code compaction software.

In regards to the binary level value set analysis, several extensions of the current
implementation is planned for the future in order to successfully handle a larger
collection of malware. Due to time constraints, our initial implementation of
Balakrishnan's value set analysis consisted only of an intraprocedural phase. In order
to handle procedure calls as well as indirect jumps and calls, we would like to extend
our current implementation to include an interprocedual analysis phase.
Additionally, we would like to explore possible implementations of several
optimizations briefly discussed in Balakrishnan's thesis, specifically a sophisticated
widening algorithm "4# and an a(ne!relation analysis "17#.

26

9. ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Saumya K. Debray for his continuos support,
encouragement and guidance throughout my undergraduate research career. Special
thanks to John Trimble for making my transition into the FA analysis
implementation project smooth and pain!free. I would like to thank Kevin Coogan
" a mentor and colleague who stars as the anonymous graduate student several times
in this thesis " for his patience and wisdom during our work together on the
assembly level alias analyses. Special thanks to Gregg Townsend for his clear
articulation of Balakrishnan's value set analysis. Finally, I would like to thank all the
current and former members of the SOLAR research group " especially Dr. Greg
Andrews, Somu Periyanayagam, Drew Davidson, Haifeng He, Joe Roback and Keith
Fligg " who have helped me grow academically and individually during my
undergraduate years at the University of Arizona.

All my love and thanks to my dear family " Abbu, Ammu, Apu and Safat " for the
never!ending love, support and faith.

27

10. REFERENCES

!1" G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Proc. Conf. o! Compiler Constructio! "CC#, pages 5#23, April 2004.

!2" Gogul Balakrishnan. WYSINWYX: Wha$ You Se% Is No$ Wha$ You eXecute,
Ph.D. dissertation and Tech. Rep. TR$1603, Computer Sciences Department,
University of Wisconsin, Madison, WI, August 2007.

!3" D. Brumley and J. Newsome. Alias analysis for assembly. Technical Report CMU$
CS$06$180, Carnegie Mellon University School of Computer Science, 2006.

!4" P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction of approximation of fixed points. In Proc.
Principles of Programming Languages "POPL#, 1977. !wdiening"

!5" A. Danielescu. Anti$debugging and anti$emulation techniques. CodeBreakers
Journal, 5%1&, 2008. http://www.codebreakers$journal.com/. !dynamic defenses"

!6" Saumya K. Debray, William Evans, Robert Muth, and Bjorn De Sutter. Compiler
techniques for code compaction. ACM Transactions o! Programming Languages and
Systems, 22%2&:378#415, 2000.

!7" Saumya K. Debray, Robert Muth, and Matthew Weippert. Alias analysis of
executable code. In Symposiu& o! Principles of Programming Languages, pages 12#24,
1998.

!8" GNU gprof. http://gnu.huihoo.org/gprof$2.9.1/gprof.html.

!9" Haifeng He, John Trimble, Somu Perianayagam, Saumya Debray, and Gregory
Andrews. Code compaction of an operating system kernel. In Symposiu& o! Cod%
Generatio! and Optimization, 2007.

!10" Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In 2001
ACM SIGPLAN'SIGSOFT Workshop o! Progra& Analysis for So(war% Tools and
Engineering "PASTE’01#, Snowbird, UT, 2001.

!11" M. Hind and A. Pioli. Which pointer analysis should I use? In ISSTA ’00:
Proceedings of th% 2000 ACM SIGSOFT International Symposiu& o! So(war% Testing
and Analysis, pages 113#123, 2000.

!12" Lord Julus. Anti$debugging in win32, 1999. VX Heavens.
http://vx.netlux.org/lib/vlj05.html.

!13" M. G. Kang, P. Poosankam, and H. Yin. Renovo: A hidden code extractor for
packed executables. In Proc. Fi(h ACM Workshop o! Recurring Malcod% "WORM
2007#, November 2007. !dynamic analysis"

!14" William Landi. Undecidability of static analysis. ACM Lett. Program. Lang. Syst.,
1%4&:323#337, 1992.

!15" Libxml2 XML C parser. http://xmlsoft.org/.

!16" Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Precise and e'cient call
graph construction for c programs with function pointers. Journal of Automated

28

So!war" Engineering. 2004.

!17" M. Müller#Olm and H. Seidl. Precise interprocedural analysis through linear
algebra. In Proc. Principles of Programming Languages #POPL$, 2004. !a$ne"

!18" P. Ször. Th" Ar% of Computer Virus Research and Defense. Symantek Press, February
2005. !dynamic analysis"

!19" Benjamin Schwarz, Saumya Debray, Gregory Andrews, Matthew Legendre.
PLTO: A link#time optimizer for the intel ia#32 architecture. In Proc. 2001 Workshop
o& Binary Translation.

!20" John Trimble. Combining High Level Alias Analysis 'ith Low Level Cod"
Compactio& of th" Linux Kernel. University of Arizona. Honors thesis, 2006.

!21" Andrew Walenstein, Arun Lakhotia. The Software Similarity Problem in
Malware Analysis. In Dagstuhl Seminar Proceedings: Duplication, Redundancy, and
Similarity i& So!ware. 2007.

!22" Sean Zhang. Practical Pointer Aliasing Analyses for C. PhD thesis, 1998.

!23" Sean Zhang, Barbara G. Ryder, and William Landi. Program decomposition for
pointer aliasing: A step toward practical analyses. In Foundations of So!war"
Engineering, pages 81%92, 1996.

29

