
An Adaptive Data Structure for Nearest

Neighbors Search in an General Metric Space

Joseph Thomas

Thesis Adviser: John Kececioglu

June 1, 2010

Abstract

We consider the problem of computing nearest neighbors in an ar-

bitrary metric space, particularly a metric space that cannot be easily

embedded in Rn. We present a data structure, the Partition Tree, that

can be constructed in O(n logn) time, where n is the size of the set of

points to be searched, and has been experimentally shown to have an av-

erage query time that is a sublinear function of n (roughly O(log(n)α)

where 4 ≤ α ≤ 5). Our experiments show that this data structure could

have applications in bioinformatics, particularly protein secondary struc-

ture prediction, where it can be used for similarity search among short

sequences of proteins’ primary structure.

1 Introduction

Similarity search is a problem that arises in many areas of computer science, and

can be broadly described as follows: Suppose we possess a database of objects

and receive another object as a query. For that query, we would like to find a

collection of objects in the database that are the closest to the query.

An everyday example of similarity search involves the popular Internet radio

service “Pandora.” This application plays each user a personalized sequence of

songs according to their tastes. Users input their favorite songs and musicians

into the system, and Pandora in turn attempts to select songs from its library

that are most similar to the user’s input.

A common method for defining a similarity search problem is to select an

objective function F that maps a pair of objects to a real number measuring

1

their proximity. To search for objects similar to a given query q one attempts

to find elements p of the database which maximize or minimize F (p, q).

To determine the optimal database element quickly, one needs to know addi-

tional properties of the objective function. One property which arises frequently

is that F is a metric. Let X denote the domain of objects under consideration,

so that F is a function from X ×X to R. In order to be a metric, F must have

three properties:

• Positivity: F (x, y) ≥ 0 for all x, y ∈ X, with equality if and only if x = y.

• Symmetry: F (y, x) = F (x, y) for all x, y ∈ X.

• Triangle Inequality: For any x, y, z ∈ X, F (x, z) ≤ F (x, y) + F (y, z).

Intuitively speaking, these three constraints ensure F has the properties ex-

pected of a distance. That is, the distance measure between any two points

is positive, the distance from p to q is the same as the distance from q to p,

and when we consider a “triangle” of three points, the triangle has the familiar

property that the sum of any two sides’ lengths upper bounds the length of the

remaining side.

We define a metric space to be a pair (S, d), where S is a set of points and

d : S × S → R is a metric. From the perspective of similarity search, smaller

values of d(x, y) indicate greater similarity between the points x and y. Given

these mathematical objects we can define an important data structures problem:

The K Nearest Neighbors Problem

• Input: A metric space (S, d), a finite set of points D ⊆ S, a query point

q ∈ S, and k ∈ N.

• Output: The k points x1, x2, . . . xk ∈ D for which the function x 7→ d(x, q)

is smallest. These k points are called the k nearest neighbors of q.

Our original interest in similarity search arose as part of a project to predict

proteins’ secondary structure given its primary structure. From the computer

scientist’s perspective, a protein’s primary structure can be viewed as a sequence

of letters chosen from a 20 letter alphabet of amino acids. As part of our

prediction procedure we defined a word to be an n-tuple of amino acids that

appear consecutively within a primary structure. For a given word, we needed

the ability to rapidly select the k most similar words from a database of observed

words. In our application, similarity is measured by a metric defined on words.

2

This metric is specified by a 20×20 matrix M and a sequence of weights {wi}ni=1

such that each wi ≥ 0 and
∑n
i=1 wi = 1. For each pair of amino acids (a, b),

M encodes a “substitution cost”, M [a, b]. For two words A = (a1, . . . , an) and

B = (b1, . . . , bn), we define:

d(A,B) =

n∑
i=1

wiM [ai, bi]

Unlike many metric spaces which arise in applications, ours cannot be imme-

diately embedded in Rm for some m.1 This prevented us from directly utilizing

many nearest neighbors data structures developed in computational geometry,

like the binary space partition tree. We decided to invest the time required to

develop our own data structure, the Partition Tree, that is capable of performing

a nearest neighbors search in an arbitrary metric space.

The problem of nearest neighbors search bears some resemblance to prob-

lems involving searching a totally ordered set. For instance, in both problems it

is natural to employ the algorithm design technique divide-and-conquer to or-

ganize the data in a way that allows it to be searched quickly. However, where

searching a totally ordered set is a well solved problem for which one can make

strong asymptotic guarantees about the amount of time and space required to

perform a search, researchers have made less progress on the problem of nearest

neighbors search.

A pathological example of a metric space may help to explain this state of

affairs. For a given set S, the trivial metric d : S × S → R is defined to be the

map such that d(x, x) = 0 for all x ∈ S and d(x, y) = 1 for all x, y ∈ S, x 6= y.

Though (S, d) is a metric space, in this case we cannot use the axioms d satisfies

to rule out many candidate nearest neighbors in a single operation.

At this point in time, experts on the nearest neighbor search problem can

mostly offer only heuristics that work well in practice. For a data set of n

points, our data structure guarantees only that the tree can be constructed in

O(n log n) time and a k nearest neighbors query can be solved in O(n log k)

time, which is no better than a naive solution to the problem.

In practice, though, our data structure has been much more effective than

the naive solution. We have empirically observed that the average amount of

1We considered generalizing the idea of a word, so that instead of an n-tuple of amino
acids, one stores n convex combinations of the twenty amino acids at each position. This
would have allowed us to embed the space of words in R20n, but the memory required to
represent each word would have been too great for our purposes.

3

time needed to perform a k nearest neighbors query is a sublinear function of

|D|, where D is the input data set.

We will later see that a search tree is a natural type of data structure to

apply to the k nearest neighbors problem. Indeed, examining the work of past

researchers, one sees that the data structures they have designed are based

on a common strategy that they pursue by a variety of heuristics. Our data

structure is distinguished by its adaptive heuristics. At tree-construction time,

we perform an initial analysis of the data and customize the structure of the

search tree accordingly.

The remainder of this thesis consists of two parts. In the first part, we

define the partition tree and the heuristics which motivated our design. In the

second part, we describe our procedures for testing the performance of the data

structure and analyze the experimental results.

2 The Partition Tree Framework

We mentioned earlier that our data structure is developed using the algorithm

design technique divide-and-conquer. Among nearest-neighbor data structures,

the idea of recursively subdividing the data in a way that facilitates rapid search

is prevalent; it appears, for instance, in techniques proposed in [2] and [3].

Given a metric space (M,d) and a point p ∈M , a natural set to study in a

divide-and-conquer approach is the ball centered at p. Given a positive r ∈ R,

the closed ball Br(p) of radius r centered at p is defined

Br(p) = {q ∈M : d(p, q) ≤ r}

Because the distance function d satisfies the triangle inequality, there is a useful

criterion for determining when the intersection of two balls is empty:

Given bounding balls Br(p) and Br′(p
′), if d(p, p′) > r + r′, then

Br(p) ∩Br′(p′) = ∅.

To prove this fact, suppose by way of a contradiction there exists a point

q in the intersection. Then d(p, q) ≤ r and d(p′, q) ≤ r′. But that implies

d(p, q) + d(p′, q) ≤ r + r′ < d(p, p′), which contradicts the fact d satisfies the

triangle inequality.

Most divide-and-conquer strategies are based upon this criterion. These

data structures subdivide the input data set into a collection of bounding balls

4

(which are themselves be recursively subdivided). During a query, they maintain

a dynamic bounding ball about the query point, where the radius of the ball

is determined by the distance from the query point to the best known solution

to the query. As better solutions are found, the radius of this bounding ball

shrinks. When it can be shown that the bounding ball about the query and

a bounding ball B in the data structure do not overlap, then B (and all its

subsets) can be eliminated from the search.

We realize this organizing principle with a tree. Each node N in the tree

represents a set of points SN . Within the tree, a node N is the ancestor of

a node N ′ if and only if SN ⊆ SN ′ . In addition, each leaf node represents

a set containing a single point. Each node is also identified with a bounding

ball. This entails storing, for each node N , the center of the bounding ball (a

point c) and the radius of the ball, r. The pair (c, r) must be chosen such that

SN ⊆ Br(c), since we will use the bounding ball to determine whether we need

to inspect the points in SN for a given query.

Nearest neighbor data structures that are organized in a manner similar

to ours tend to have a common fundamental search procedure which can be

customized with a variety of heuristics to improve performance. We sketch it

below:

Procedure 1. K-Nearest-Neighbors Query Procedure (Sketch)

• Input: A search tree T , a query point q, and k ∈ N the number of nearest

neighbors to find.

• Output: The set of k points in T that are closest to q.

1. Initialize a queue S to hold the root of T and allocate an array P for k

nearest neighbor candidates.

2. If S is empty, return the current nearest neighbors. Otherwise, let N be

the node dequeued from S.

3. Let (c, r) be the point-radius pair specifying the bounding ball of N . Let

τ be maxp∈P d(p, q), or ∞ if P is not full. If d(c, q) ≥ r + τ , return to 2;

we do not need to inspect the points in this node.

4. Inspect O(1) of the points in the set identified with N , to see if any can

be used to improve the set of nearest neighbor candidates, P . Using S,

enqueue each of node N ’s children and return to 2.

5

From the standpoint of a computer scientist who needs to perform nearest-

neighbor searches quickly (and is less concerned about theoretically guaran-

teeing a sub-linear search time), the problem of developing a nearest neighbor

data structure is to implement a collection of heuristics that make this query

procedure run quickly in practice.

From the sketch of the query procedure, it is clear that the terms in the

inequality d(c, q) ≥ r + τ are important — when this inequality holds, we can

ignore a subtree (and thereby a possibly large set of points). For this reason, we

refer to the inequality as the pruning inequality and the terms in the inequality

as the pruning quantities.

Our goal is to construct the tree in a way that causes this inequality to hold

often and ensure that when the inequality holds, a nontrivial portion of the data

set can be eliminated from the search.

Given this overview of the data structure and our goals, we must specify

two procedures: a construction procedure that determines how the tree should

be organized to represent the input points and a query procedure that specifies

how the procedure should be searched for the k nearest neighbors to an input

point q.

2.1 Partition Tree Construction

To construct a partition tree for a set of points S in a metric space (M,d),

we require a partition rule that determines how the collection of points at a

node should be partitioned into the l smaller collections of points that will be

represented at the subtrees of its children. We also require a center selection

rule that chooses, for a collection of points S, the element that will serve as the

center of its bounding ball.

We mentioned earlier that the terms in the pruning inequality play an impor-

tant role in determining how quickly a query can be performed. Unfortunately,

these terms depend in a dynamic way on the particular q, the query, c, the

current center, and the candidates inspected so far, which determines τ . The

tree, in contrast, is static—we construct it once and then use it to solve many

queries without changing its structure. Consequently, our first task is to obtain

static estimates for the dynamic quantities in the pruning inequality.

To compute these estimates, we introduce the idea of a sparse sample that

approximates the input set of points with a much smaller set.2 We define the

2Later in this section, we will see that a very important application of the sparse sampling

6

procedure for selecting a sparse sample as follows:

Procedure 2. The Sparse Sampling Procedure

• Input: A set of points S, a metric d defined on S, and k ∈ N.

• Output: A set of at most k points from S, the sparse sample.

• Time Complexity: O(k|S|), by maintaining a few key sums.

1. If S has k or fewer points, return S.

2. Otherwise, let K := |S|, and let the points of S be numbered si, i =

1 . . .K. Let P := {s1, s2, . . . , sk} be an initial set of candidate sparse

sample points.

3. For each j := k + 1, k + 2, . . . ,K, do:

(a) Let p := sj .

(b) Define a function E : S → R by

E(s) =
∑

s′∈P\{s}

d(s′, p)−
∑

s′∈P\{s}

d(s′, s)

(c) Let s∗ = argmaxs∈P E(s). If E(s∗) > 0, then exchange p for s∗ in P .

4. Return P .

This greedy optimization selects a set of k points in which the average dis-

tance between any two points is large. When we use this procedure, k is a fixed

constant so that the time complexity of the procedure is just O(|S|).
We use the sparse sampling procedure to obtain a conservative estimate of

the k-nearest-neighbor bounding ball radius (τ in the pruning inequality). To

do this, we compute a sparse sample S for the input data set D, and then use

a straightforward procedure to find:

τ̂ := (1 + ε) max
p∈S

min
q∈D\{p}

d(p, q)

procedure is to compute, for a given set of points SN , a pair of points p, q ∈ SN for which
d(p, q) is large. This application was what initially motivated us to develop the sparse sampling
procedure, since spending θ(|SN |2) time to compute the maximally distant pair was too costly
for our purposes.

7

where ε is a small constant in [0, 1] (say, 0.05). In words, τ̂ is a fixed percentage

larger than the greatest 1-nearest-neighbor distance for each point in the sparse

sample.

Once we have computed the parameter τ̂ , we are ready to begin recursively

partitioning the data set D. Given an internal node N in the tree, representing

a set of points SN , we partition SN into three subsets: “left” (L), “middle”

(M), and “right” (R). The subtrees we generate from each of these subsets will

have a center selected from the set of points it represents.

The motivation for partitioning SN in this way is to obtain two sets of points

(L and R), which have disjoint bounding balls that are far apart. In this way,

we try to ensure that when N is inspected we will be able to eliminate at least

one of L or R from the search. The middle portion M serves as a kind of “slack

variable.” When SN contains points which cannot be placed in L or R without

undermining our goals, we can place these in the middle portion and refine them

on the next partitioning step.

To obtain distant, disjoint bounding balls for L and R, we choose two dis-

tinguished “extremal” points x and y from the data set to be the centers of the

left and right sets. To identify x and y we compute a sparse sample P for SN

and then select two points from the sample according to an objective function.

For a given point p ∈ P , let d̄p denote the average distance from p to every

other point in SN . In keeping with the divide-and-conquer strategy, we would

like to divide the points of SN among L,M,R, without making any subtree’s

bounding ball radius large or putting all of the points in one subtree.

Suppose r is the radius of a subtree T with p at its center. Then if q is an

“average” query, we can ignore T in our search if d(p, q) ≈ d̄p ≥ r+ τ̂ . In other

words, provided the bounding ball has radius r ≤ d̄p − τ̂ , we are likely to be

able to eliminate T often. Our heuristic, then, is to add as many points to T as

possible, without causing r to exceed d̄p − τ̂ .

To select x and y, then, we define a function φ by which maps a point p in

the sparse sample to |{s ∈ SN : d(p, s) ≤ d̄p− τ̂}|. We choose x and y to be the

two sparse sample points with the greatest values of φ. Thus, x and y have the

following desirable properties:

• Among the points in SN , they are far apart.

• They allow the most points of SN to be added to their subtrees without

exceeding our desired radius bound.

8

Having computed x and y, we are ready to partition the points in SN into sets

L, M , and R. In partitioning the points, we have two concerns:

• Assign as many points as possible to L and R, without exceeding their

ideal bounding ball radii d̄x − τ̂ and d̄y − τ̂ , respectively.

• Ensure that L ∪ R and M each contain at least a small fraction of the

points in SN .

The first goal tries to ensure that when when we prune away either the left or

right subtree, this will eliminate a large number of the points from our search.

The second goal guarantees that the tree has height O(log n), where n is the

total number of points stored in the tree, which in turn will guarantee O(n log n)

time to construct. In principle, if every time we inspected a node we pruned

away at least one child, and this child had at least a nontrivial fraction of the

tree’s leaves, then a nearest neighbor query would require log(n) time to solve,

which would be ideal.

With these goals in mind, we define the following partitioning procedure:

Procedure 3. Partitioning SN

• Input: A collection of points SN , the distance function d, extremal points

x, y, and the partitioning parameters τ̂ , d̄x, d̄y, η.

• Output: Sets L, M , R such that SN = L∪M∪R and L,M,R are pairwise

disjoint.

• Time and Space Complexity: O(|SN |)

Define the following predicates, for an input point p ∈ SN :

CloserToX(p) := d(p, x) < d(p, y)

CloserToY(p) := ¬CloserToX(p)

InLeftBall(p) := d(p, x) ≤ d̄x − τ̂

InRightBall(p) := d(p, y) ≤ d̄y − τ̂

IsLeftPoint(p) := InLeftBall(p) ∧ (CloserToX(p) ∨ ¬InRightBall(p))

IsRightPoint(p) := InRightBall(p) ∧ (CloserToY(p) ∨ ¬InLeftBall(p))

1. Let k = bη · |SN |c. Remove points x and y from SN .

9

2. If 0 < 2k ≤ |SN |, then perform the following initial partitioning: Let

φ : SN → R be the function φ(p) := min{d(p, x), d(p, y)}. Define a com-

parison function <φ on SN , by specifying p <φ q if φ(p) < φ(q). Initialize

A and B such that A consists of the k points in SN under <φ and B

consists of the k greatest points under <φ.

3. Initialize S := SN \ (A ∪B). Now write:

L := {x} ∪ {p ∈ A : CloserToX(p)} ∪ {p ∈ S : IsLeftPoint(p)}

R := {y} ∪ {p ∈ A : CloserToY(p)} ∪ {p ∈ S : IsRightPoint(p)}

M := SN \ (L ∪R)

Clearly, further details must be supplied in order to ensure an efficient imple-

mentation of this procedure (both in terms of time and space), but these would

obscure the main ideas behind our protocol. If the input set SN is stored in an

array, it is possible to carry out the algorithm in place. The solution makes use

of a standard k-th order statistic finding algorithm, like the one found in [1].

We still need to specify the center selection rule. From the procedure above,

it is clear that the centers of the L and R subsets are just x and y, respectively.

For the center of the M , we select argminm∈M |d(m,x)− d(m, y)|.
Having defined a partition rule and center selection rule, we construct the

tree by the following recursive procedure:

Procedure 4. Partition Tree Construction Procedure

• Input: A set of points S, a metric d defined on S, and the static parti-

tioning parameter τ̂ .

• Output: A partition tree T .

• Time Complexity: O(n log n), where n = |S|. This follows from the linear

time complexities we have established for the procedures above and an

application of the Master theorem.

1. If S = ∅, return NULL.

2. If S = {p} for some point p, return a leaf node with p as its center and 0

as its bounding ball radius.

3. At this point, we know |S| ≥ 2. Compute a sparse sample for S, and select

from it a pair of extremal points x, y. Compute d̄x and d̄y.

10

4. Fixing η as a small constant in [0, 1], say 0.05, apply the partitioning

procedure to obtain sets L,M ,R that partition S.

5. Recursively apply the construction procedure to L, M , and R to obtain

subtrees TL, TM and TR.

6. Apply the center selection rule to choose a center c for S. Compute the

bounding ball radius r for this choice of center.

7. Return a node with c as its center, r as its bounding ball radius, and TL,

TM , TR as its subtrees.

2.2 Querying the Partition Tree:

We have customized the general procedure for searching the tree in two ways.

Both heuristics relate to the radius of the dynamic bounding ball about the

query, τ . Observe that if τ can be made small early in the query process,

then when we inspect subsequent nodes it is easier for the pruning inequality

d(p, q) > τ + r to be satisfied, so that more subtrees can be eliminated from the

search.

Our first heuristic is called best-first search. In the sketch of the query

procedure, when a node is inspected its children are placed in a queue for later

examination. This does not take into account that by inspecting certain nodes

earlier, it may be possible to prune away more subtrees. Therefore, in a best-

first search we replace the queue with a heap which orders the nodes in a way

we believe will cause τ to decrease rapidly.

The total ordering we define on the nodes is derived from the distance d,

and is partially determined during the tree-construction phase. For each node

N in the tree, we select a representative RN ∈ SN as part of the construction

procedure for N . Recall that when we partition SN , we compute a sparse sample

S for SN . For each p ∈ S, we compute the average distance d̄p from p to any

other point in SN . Using this information, we set RN := argminp∈S d̄p.

To order the nodes in the queue for a given query q, we specify that N ≤ N ′

if d(RN , q) ≤ d(RN ′ , q). In other words, we order our search such that nodes

with representatives closer to the query are inspected first.

A second heuristic we have implemented, called bootstrapping, determines a

good initial bound on the k-nearest-neighbors distance by solving a 1-nearest-

neighbors problem and then an approximate k-nearest neighbors problem. The

implementation is based on the observation that leaves which are close within

11

the search tree (in the sense that they are contained in a common subtree of

small height) correspond to points which are likely to be close to one another

within the metric space. Consequently, we may be able to obtain a good bound

on the final value of τ by first computing the 1 nearest neighbor to the query

point, then naively computing k candidate nearest neighbors using the leaves of

a small subtree around the 1 nearest neighbor.

To implement this heuristic, we add a “parent pointer” to each node in the

tree and define the following procedure:

Procedure 5. Bootstrap Bounding Procedure

• Input: A search tree T , a query q, k ∈ N indicating the number of nearest

neighbors desired.

• Output: A set of k nearest neighbor candidates.

1. Let p denote the nearest neighbor to q. Compute an initial bound b on

d(p, q) by computing the distance from q to each element of a sparse sample

of the data set D (which as been saved as a field of the search tree).

2. Using b as an initial bound, perform a 1 nearest neighbor search of T to

solve for p. Store the leaf node N which represents {p}.

3. Using the parent pointers, compute N ’s bk/2cth ancestor, N ′.

4. Compute a list L of all of the leaves which have N ′ as their ancestor.

Compute the k nearest neighbors to q in L using a naive method. Return

these candidates.

Given these two heuristics, our final query procedure is:

Procedure 6. K-Nearest Neighbors Query Procedure

Input: A search tree T , a query point q, and k ∈ N the number of nearest

neighbors to find.

Output: The set of k points in T which are closest to q.

1. Use the Bootstrap Bounding Procedure to compute an initial set of k

nearest neighbor candidates. Place these in a max-heap P , which orders

nodes by their distance to the query.

2. Initialize a min-heap S to hold the root of T , ordered according to our

best first order.

12

3. If S is empty, return the current nearest neighbors. Otherwise, let N be

the node extracted from S.

4. Let (c, r) be the point-radius pair specifying the bounding ball of N . Let

τ be maxp∈P d(p, q). If d(c, q) > r + τ , return to 2; we do not need to

inspect the points in this node.

5. If d(c, q) < τ , add c to P and delete the largest element of P (the most

distant nearest neighbor candidate).

6. Add each of node N ’s children to S and return to 2.

2.3 Summary

In this section, we considered the procedures for constructing and querying

the partition tree. Surveying the field of nearest-neighbor data structures for

general metric spaces, one can see that most are variations of a natural divide-

and-conquer strategy. This strategy arises from the fact the points in the space

satisfy the triangle inequality, which determines a useful criterion for when two

bounding balls are disjoint.

Our partition tree data structure features three main heuristics. During

tree construction, we approximate the quantities in the pruning inequality, and

structure the tree in a way that facilitates search. At query time, we use best-

first search and bootstrapping to decrease the size of query’s bounding ball,

which also decreases query time.

3 Experimental Results

3.1 Methodology

If we examine the published work in the area of nearest neighbor search, we see

that among data structures developed for an arbitrary metric space it is common

to test a new data structure on a variety of Euclidean and non-Euclidean metric

spaces to determine its effectiveness. Yianilos, for example, tested his Vantage

Point Tree construction on a metric space consisting of points in Rn and a

metric space of black and white images [3].

We have pursued similar experimental procedures, selecting three metric

spaces for testing. Nearest neighbors search has the desirable property that we

13

can quantify a data structure’s performance by the number of distance calcula-

tions it performs during a query. This statistic is easy to track (either explicitly

or with the aid of profiling software) and is invariant under the experimenter’s

choice of programming language. For each metric space we considered, we se-

lected a set of 103 points to serve as our query set. We also selected sets of size

103, 104, 105, and if possible 106 to serve as data sets.

Our testing procedure was as follows:

Procedure 7. Partition Tree Performance Test

• Input: A data set D, a query set Q, a metric d, and k ∈ N, the number of

nearest neighbors to find during each search.

• Output: A log of the search results.

1. Construct a partition tree from D and d.

2. For each q ∈ Q, use T to compute the k nearest neighbors in D to q and

report how many distance calculations were performed during the query.

(It may be useful to record other profiling data, such as the distances from

the nearest neighbors to the query).

One of the principle aims of our data structure was to perform significantly

fewer distance computations than a naive search. Consequently, for each query

operation a natural way to measure performance is to examine the ratio

(Total distance computations performed during a query)

(Total points in the data set)

since the denominator represents number of distance computations the naive

approach would perform. Viewed as a percentage, we can say that the closer to

0% this statistic is, the better the search performance.

A second useful observation is that we can adequately measure the data

structures’ performance by looking at the average of this ratio over a large

number of queries. Most applications of a nearest neighbor data structure (in-

cluding our own) will run in batch mode, so we are more concerned with the

total cost of many query operations than we are with the cost of any particular

query.

In the introduction, we mentioned that we are particularly interested in effi-

ciently solving nearest neighbor queries in a space of “protein-words,” since this

has applications in bioinformatics. We created a second set of tests to precisely

14

determine the data structure’s performance in this case. We also wanted to

see how our data structure compares with another published nearest neighbors

data structure for this application. To this end, we created data sets of size

2k for k = 9, 10, . . . , 20 and implemented the simplest “Vantage Point Tree”

described by Yianilos. To compare the two data structures, we applied the test

described above for each data set, using the same set of 103 query elements. To

analyze the results, we compared the average number of distance computations

per query for each test.

3.2 Metric Spaces Selected for Testing

Mathematics and computer science provide a variety of examples of metric

spaces on which to test nearest neighbor data structures. Perhaps the most

obvious metric space arises in multivariable calculus, Rn under the Euclidean

(L2) norm. As a test case, this space has the advantages that (for 1 ≤ n ≤ 3) we

easily produce diagrams detailing how a given data set of points is distributed in

the space and how our data structure has selected bounding balls to partition

those points. We constructed test data for this space by randomly selecting

points within the unit n-dimensional hypercube (the Cartesian product of n

copies of the set [0, 1]).

Because of our interest in metrics defined on words, we also considered a

common metric from information theory, the Levenshtein Distance. This dis-

tance is defined on any two strings of symbols, for our purposes the standard 26

letters of the English alphabet. Given strings V = {vi}ni=1 and W = {wj}mj=1,

we define d(V,W) to be the minimum number of string operations required to

transform V into W , where a valid string operation consists of deleting, replac-

ing, or inserting a letter into V . This distance can be computed using dynamic

programming. To construct test data for this space, we randomly selected sets

of words from a dictionary of English words.

The final metric space we considered was the space of “protein-words” de-

scribed in our introduction. In this case, we chose words of length 7. Recall

that the distance defined on this space depends upon a table M that describes,

for every pair of amino acids a, a′, the (positive) substitution cost of replacing a

with a′. We obtained M from a common matrix for protein sequence alignment,

BLOSUM62. The distance also depends upon a sequence of weights {wi}7i=1,

all positive and summing to 1. We chose to make our weights symmetric about

the middle position (so w1 = w7, w2 = w6, and w3 = w5), subject to the con-

15

ditions that w3 = w4/2, w2 = w3/2, and w1 = w2/2. We constructed test data

for this metric space by decomposing a set of proteins from the Protein Data

Bank. These proteins were chosen to have less than 30% sequence identity by

the researchers in [4].

3.3 Query Test Results

In this section, we provide the details of our experiments, for each of the three

metric spaces we decided to consider. In each table entry, we record the average

number of distance calculations per query, as a percentage of the total data

set size for that test. Each test (determined by a data set size and a number

of nearest neighbors) is performed twice, once with bootstrapping and once

without. For tests that use bootstrapping, we report the average query to data

set percentage for only the distance calculations performed during the final

search of the tree, after we have established a bound on the k-nearest neighbors

distance.

Table 1: Query Tests for Points in R2

With Bootstrapping Without
|D| 1-NN 3-NN 5-NN 7-NN 1-NN 3-NN 5-NN 7-NN
103 4.861 5.843 6.093 6.409 5.797 6.482 6.924 7.315
104 0.310 0.310 0.420 0.450 0.480 0.480 0.530 0.530
105 0.063 0.180 0.132 0.138 0.177 0.180 0.190 0.200
106 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

There are several important details to be gleaned from this data. First,

each column contains a descending sequence of values (as a function of the data

set size |D|). This indicates that, if we view the average number of distance

computations the data structure performs during a query as a function of the

data set’s size, this function is a sublinear function of |D|.
Second, the data structure solves queries very quickly for points in R2 in

comparison with its performance on the other two metric spaces. This is not

surprising, given that the points we selected are evenly distributed over the

space (the unit square), the dimension of the space is low, and the metric on

the space has many useful analytic properties. In short, this space is ideally

suited to constructing nearest neighbor search trees.

Finally, we can see that although bootstrapping had a positive effect, that

effect was not particularly substantial, particularly when one considers that two

16

searches of the tree must be performed. The “1-NN with bootstrapping” column

is particularly informative, since it tells us how long it takes to search the tree

when we already know the distance from the query to the nearest neighbor.

Table 2: Query Tests for English Words
With Bootstrapping Without

|D| 1-NN 3-NN 5-NN 7-NN 1-NN 3-NN 5-NN 7-NN
103 57.690 58.170 58.208 58.223 57.772 58.170 58.208 58.223
104 48.136 53.533 54.441 54.914 49.597 53.538 54.444 54.916
105 23.774 37.951 41.233 42.885 27.138 38.019 41.279 42.918

In Table 2, we can see that the data structure’s performance is significantly

worse for words under the Levenshtein distance than what we observed for points

in R2. However, the data structure still manages to ensure the average query

time remains a sublinear function of |D|. The metric space of English words

under the Levenshtein distance differs considerably from the space of points in

R2 under the Euclidean norm. Intuitively, if we choose a point p in the latter

metric space, we can expect the function d(p, ·) to attain a wide variety of values

for points in the data set. In contrast, the range of the Levenshtein distance

is constrained to N and the words in the English language are not uniformly

distributed random strings. As a result, it may be that constructing a good

search tree for these words is more difficult, particularly for small sets of words.

Table 3: Query Tests for Protein Words
With Bootstrapping Without

|D| 1-NN 3-NN 5-NN 7-NN 1-NN 3-NN 5-NN 7-NN
103 39.947 50.949 53.119 54.447 45.024 51.253 53.381 54.714
104 12.245 23.444 25.919 27.720 19.494 25.156 28.120 30.162
105 2.292 5.376 6.012 6.544 4.590 6.320 7.295 8.044
106 0.185 0.955 1.077 1.204 0.756 1.226 1.460 1.633

In Table 3, we can see that our data structure performs fairly well on the

metric space we have defined on protein words. In particular, since we want to

use this data structure to solve nearest neighbor queries for very large sets of

words (between 1 and 3 million points), it is heartening to see that the data

structure searches only a small fraction of the words when |D| = 106.

The second set of experiments further clarifies the impression that our data

structure can solve queries in sublinear time and suggests that our data structure

is competitive with Yianilos’ Vantage Point Tree.

17

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Log Log Data Set Size

8

9

10

11

12

13

14

15
Lo

g
Av

er
ag

e
#

 D
is

ta
nc

e
Ca

lc
ul

at
io

ns

Partition Tree Performance
without Bootstrapping

1-NN
3-NN
5-NN
7-NN

From the chart above, we can see that for a data set S, log log |S| is roughly

proportional to the logarithm of the average number of distance calculations

required to solve a query. Further calculation reveals the slope of the lines

above to be somewhere between 4 and 5, which suggests a query requires time

O(log(|S|)α) where 4 ≤ α ≤ 5.

18

Our second set of experiments also allows us to better characterize the effect

of bootstrapping.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Log Log Data Set Size

8

9

10

11

12

13

14

15

Lo
g

Av
er

ag
e

#
 D

is
ta

nc
e

Ca
lc

ul
at

io
ns

Partition Tree Performance
with Bootstrapping

1-NN
3-NN
5-NN
7-NN

From the chart above, we can see that with the exception of the 1-NN test,

each line has slope between 4 and 5. (The data structure’s performance in the

1-NN case may be an artifact of the input data or the fact that in this case the

bootstrap step provides a “perfect” bound for solving the query.) It appears

that while bootstrapping can improve query time somewhat, it does not cause

queries to run asymptotically faster than a standard query.

Our final graph, when compared with the first, demonstrates that the Van-

tage Point Tree and Partition Tree can solve nearest neighbor queries equally

quickly. This is encouraging for two reasons. In a Vantage Point Tree, the

elements in the data set are in one-to-one correspondence with the nodes of

the tree. In contrast, in a Partition Tree the elements in the data set are in

one-to-one correspondence with the leaves of the tree. In addition, during a

query to a Vantage Point Tree, we inspect a node at the cost of one distance

calculation, whereas in a Partition Tree, we inspect a node at the cost of two

distance calculations. Thus the Partition tree is at a disadvantage in compar-

19

ison to the Vantage Point Tree—it has more nodes (likely twice as many) and

performs more distance calculations per node inspected. The fact the Partition

Tree remains competitive with the Vantage Point Tree, despite these limitations,

suggests that our data structure could be made faster than the Vantage Point

Tree with some minor modifications.

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
Log Log Data Set Size

8

9

10

11

12

13

14

15

Lo
g

Av
er

ag
e

#
 D

is
ta

nc
e

Ca
lc

ul
at

io
ns

Vantage Point Tree Performance

1-NN
3-NN
5-NN
7-NN

Namely, the “center” and “representative” fields in the current tree nodes

could be exchanged for a single field, and we could modify our rules for struc-

turing the tree so that the data set elements are in one-to-one correspondence

with the tree’s nodes.

From the graph, some additional calculation shows that like the Partition

Tree, for a data set S, a query to the Vantage Point tree generated from S

requires time O(log(|S|)α) where 4 ≤ α ≤ 5.

4 Conclusion

We have described a static data structure, the Partition Tree, which solves

the k-nearest-neighbor problem. If n is the size of the input data set, the

20

data structure can be constructed in O(n log n) time and queried in O(n) time,

although in practice we have seen that on average, the query operation takes

time sublinear in n (approximately O(log(n)α), where 4 ≤ α ≤ 5).

Among nearest neighbor data structures, many take the form of a search

tree based upon a criterion for deciding when two balls are disjoint. This cri-

terion depends upon an important inequality, the pruning inequality. Our data

structure is developed from an analysis of this inequality. At tree-construction

time, we estimate the terms in this inequality and adaptively structure the tree

in a way that makes it likely for this inequality to hold at query time. This

substantially reduces the number of elements we need to inspect during a query.

We also introduced two query-time heuristics, bootstrapping and best first

search. We observed that bootstrapping, at least as it is currently implemented,

does not provide a significant enough improvement in the final search time to

make up for its initial 1 nearest neighbor search. However, it seems quite plau-

sible that one could modify the procedure to make this heuristic more effective.

Another area one could further analyze is the idea that some metric spaces

intrinsically lend themselves to nearest-neighbors search. For instance, we saw

experimentally that searching for nearest neighbors in R2 under the Euclidean

norm is substantially “easier” than searching for nearest neighbors among En-

glish words under the Levenshtein distance. One might be able to characterize

this by studying a histogram of all pairwise distances between any two points

in a large set of representatives from the space. Well understood metric spaces,

like the Euclidean plane and the trivial metric space, could then be compared

with the resulting histogram to gain a better understanding of the space under

consideration. In particular, one might be able to analyze these histograms at

tree-construction time to better structure structure the tree for search.

5 Works Cited

[1] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clif-

ford. Introduction to Algorithms (3rd ed.). MIT Press. 2009.

[2] Ullman, Jeffrey K. Metric Trees. Applied Mathematics Letters. Vol. 4, No.

5, pp. 61-62, 1991.

[3] Yianilos, Peter N. Data Structures and Algorithms for Nearest Neighbors

21

Search in General Metric Spaces. Proceedings of the Fourth ACM-SIAM Sym-

posium on Discrete Algorithms, January 1993.

[4] Zhou, Tuping; Shu, Nanjiang; Hovmller, Sven. A novel method for accu-

rate one-dimensional protein structure prediction based on fragment matching.

Bioinformatics. 2010 Feb 15;26(4):470-7. Epub 2009 Dec 9.

22

