
Optimizing and Reverse Engineering Itanium Binaries�
Noah Snavely

EPIC (Explicitly Parallel Instruction Computing) architectures, such as the Intel IA-64 (Itanium), address common
bottlenecks in modern architectures by supporting novel features such as explicit instruction-level parallelism, predi-
cated instructions, and control and data speculation. While these features promise to make code more efficient, the fact
that these new architectural features are visible to the programmer means that EPIC code is more difficult to generate
and analyze than code for more traditional architectures. In this paper we discuss methods for dealing with Itanium
code in a way that is less tied to the specific features of the Itanium architecture, using a system we have developed
called the Itanium Link-Time Optimizer (ILTO). We also present new algorithms for generating efficient Itanium code
and for reverse-engineering Itanium programs in the context of ILTO.

�This work was supported by the National Science Foundation under grants CCR-0073394, EIA-0080123, and CCR-0113633.

1

Contents

1 Introduction 3

2 Overview 4
2.1 The Itanium Architecture . 4

2.1.1 Explicit Parallelism and Predication . 4
2.1.2 Speculation . 5

2.2 ILTO: The Itanium Link-Time Optimizer . 5

3 Predicate Analysis 7
3.1 Predicate Relations . 7

3.1.1 Disjointness . 7
3.1.2 Dominance . 8

3.2 Predicate Analysis Algorithm . 9

4 The Front-end of ILTO 10
4.1 Unscheduling . 11
4.2 Unpredication . 13
4.3 Edge simplification . 15

4.3.1 Dominating Predicates . 16

5 The Back-end of ILTO 17
5.1 Instruction Scheduling . 17
5.2 If-Conversion .17
5.3 Code Layout .19
5.4 Experimental Results . 19

6 Reverse Engineering Issues 22
6.1 Speculation . 22

6.1.1 Background . 22
6.2 Unspeculation . 23

6.2.1 Load Sinking . 24
6.2.2 Recovery Code Verification . 26
6.2.3 Memory Disambiguation . 30

6.3 Experimental Results . 31

7 Related Work 32

8 Conclusions and Future Work 33

9 Acknowledgements 34

2

1 Introduction

There has been a great deal of recent interest in EPIC (Explicitly Parallel Instruction Computing) architectures, such
as the Intel IA-64 (Itanium), that boast features such as predicated instructions, explicit instruction-level parallelism,
and control and data speculation. A predicated instruction is guarded by a Boolean source operand; the instruction
is executed only if this guard evaluates to true. In addition, instruction-level parallelism is explicit: the compiler
is responsible for collecting instructions into groups that will be executed in parallel. Control and data speculation
refer to the existence of special instructions that have more freedom of movement during scheduling than normal
instructions.

These features are intended to improve performance by increasing the number of instructions that can be executed
in each cycle, in the case of predication and instruction-level parallelism, or by decreasing the amount of time the
CPU spends waiting for memory fetches, in the case of speculation, but there are costs associated with these features.
First, since these features are visible to the user, the burden is on the compiler to make effective use of them, and
therefore new algorithms and techniques must be developed to generate good code. Second, heavily optimized EPIC
code is difficult to analyze and transform with traditional algorithms, because these algorithms are typically unaware
of features such as predication, and may produce incorrect or over-conservative results when applied to predicated
code. Third, to someone who is trying to read and comprehend a program, optimized EPIC code may be inscrutable,
because predication and speculation—particularly when combined with traditional optimizations such as instruction
scheduling—tend to severely obfuscate the original program logic. In this paper we address, and present solutions to,
each of these problems.

With regards to the first problem, predication is one of the most important features for the compiler to be aware
of. In order to generate efficient code, a compiler must selectively eliminate conditional jumps in favor of predicated
instructions that are conditionally executed. This process, known asif-conversion, must be carried out judiciously: if
it is too aggressive, it leads to contention for system resources and a concomitant degradation in performance; if it is
not aggressive enough, it results in insufficient instruction-level parallelism, which also leads to a loss in performance.
An important question that must be addressed in this regard is: when in the compilation process should if-conversion
be carried out? One option is to do if-conversion early in the code generation process, with subsequent analyses
and optimizations working on predicated code. This is the approach taken by Augustet al. [3], who carry out
aggressive if-conversion early, and subsequently perform partial reverse if-conversion during instruction scheduling.
The advantage of such an approach is that the compiler can take full advantage of instruction predication in a variety
of low-level optimizations. A disadvantage is that this exacerbates the second problem mentioned above: analyses and
optimizations in the compiler backend may have to be reimplemented to cope with predication.

In this paper we describe a system we have developed, called the Itanium Link-Time Optimizer (ILTO), that
uses the opposite strategy: machine dependent optimizations such as if-conversion are delayed until after most other
optimizations have been carried out. The advantage here is that other analyses and optimizations do not have to be
made predicate-aware. Our system is abinary-rewriter, so its input is a program that may already be heavily optimized.
Therefore in addition to presenting a new algorithm for if-conversion, we also present algorithms for the dual problem
of unpredication, or reverse if-conversion, that is, removing predication from code. In the context of both if-conversion
and reverse if-conversion, it is useful to have knowledge of certain relationships between predicate registers to perform
these tasks effectively. Therefore we also describe a simple algorithm for analyzing predicated code and computing
these relationships.

With respect the third problem, that of program comprehension, we address the problems associated with spec-
ulation. Optimizations based on speculation can significantly change the structure of programs, speculation tends to
make low-level code difficult to understand and analyze. In this paper we present a technique for undoing low-level
optimizations based on speculation in order to expose the original structure of speculative programs.

The remainder of the paper is organized as follows. Section 2 gives background information on the Itanium
architecture and on ILTO, our experimental optimization system. Section 3 describes how we analyze the use of
predicate registers to compute what we call predicate disjointness and dominance sets. Section 4 describes the front-
end of ILTO, which transforms raw Itanium code into an intermediate form. Section 5 describes the back-end of ILTO,
in which the intermediate code is transformed back into efficient Itanium code using new algorithms, and shows the
effectiveness of these algorithms experimentally. Section 6 discusses reverse engineering issues on the Itanium, in
particular those related to speculation, and describes how we have used ILTO to reverse engineer Itanium binaries.
Finally, Section 7 discusses related work, and Section 8 gives concluding remarks.

3

2 Overview

The work reported in this paper was carried out in the context of ILTO, a link-time optimizer we have developed for
the Intel Itanium processor. This section summarizes relevant aspects of the Itanium architecture, including predicated
instructions, instructions groups, bundles, and templates. We then give an overview of the organization of ILTO.

2.1 The Itanium Architecture

2.1.1 Explicit Parallelism and Predication

The Itanium contains multiple functional units and uses programmer specified instruction-level parallelism. Moreover,
every instruction ispredicated: It specifies a one-bit predicate register, and if the value of that register is true (1), then
the instruction is executed; otherwise, the instruction usually has no effect. The Itanium has 64 predicate registers;
registerp0 has constant value true (assignments to it are ignored). Many instructions in programs usep0 as their
predicate; these are said to beunguardedand by convention the predicate register is not specified in assembly code (as
shown below). Instructions that specify a predicate register other thanp0 are said to beguarded.

Predicate registers are set by compare instructions. There are three broad classes of compares: normal, uncondi-
tional, and parallel. A normal compare has four operands: two data operands that are compared, and two predicate
registers that are assigned the result and its complement. An unconditional compare is like a normal compare, ex-
cept that it clears both predicate-register operands before doing the data comparison and setting the results; moreover,
the predicate registers are cleared even if the instruction is not executed because its guard is false. A parallel-OR
compare sets both predicate-register operands if the data comparison is true; otherwise neither predicate register is
changed. A parallel-AND compare clears both predicate-register operands if the data comparison is false; otherwise
neither predicate register is changed. Parallel compares are used to compute sequences of logical OR and logical AND
operations.

The compiler writer or assembly programmer expresses parallelism by forming what are calledinstruction groups.
Each group is a sequence of instructions that do not contain register dependencies and hence that can potentially be
issued in parallel. In particular, instructions in a group cannot in general contain read-after-write (RAW) or write-
after-write (WAW) register dependencies. (Write-after-read dependencies are allowed in a group since the processor
will ensure that the read occurs before the data is overwritten.) The programmer indicates the end of an instruction
group by means of what are calledstop bits.

Following is an example of a sequence of predicated instructions:

cmp.eq p6,p7=r10,r11
(p6) ld8 r15=[r32]
(p7) ld8 r16=[r33] ;;
(p6) add r15=r15,1
(p7) add r16=r16,1 ;;
(p6) st8 [r32],r15
(p7) st8 [r33],r16

The first instruction is unguarded and always executed. It compares the contents of general registersr10 and
r11 ; if they are the same, predicate registerp6 is set to true and registerp7 is set to false; otherwisep7 is set to true
andp6 is set to false. Because the values ofp6 andp7 are complements of each other, exactly one set of load, add,
store instructions will execute, depending on which ofp6 or p7 is true. There are register dependencies between the
add and load instructions, and between the store and add instructions, so stop bits—indicated by double semicolons
;; —are placed after the pair of loads and the pair of adds.

The Itanium processor fetches instructionbundlesthat are 128 bits long (two words). Each bundle consists of
three 41-bit instructionslotsand a 5-bittemplate. The template specifies the kind of functional unit needed by each
instruction—integer, memory, branch, etc.—and where stop bits are located. The processor views up to two bundles
(six instructions) at a time and attempts todisperseall of them to functional units in parallel. An instruction can be
dispersed when a functional unit is available; up to six instructions can be dispersed at the same time, but instructions
are never dispersed out of order.

An instructionissueswhen it can be dispersed and when all the resources it requires (e.g., source registers) are
available. Asplit issueoccurs whenever an instruction does not issue at the same time as the previous instruction.

4

(Split issue leads to a delay of at least one clock cycle.) Stop bits always cause a split issue, because they indicate the
presence of register dependencies. On the other hand, predication never causes a split issue.

2.1.2 Speculation

In addition to predication, the Itanium supportsspeculation. Speculation refers to the execution of instructions before it
is known that it is necessary, or possibly even safe, to execute them, and is intended to give the compiler more freedom
when scheduling instructions. On the Itanium speculation is expressed with two special types of load instructions:
control speculative anddataspeculative loads. Control speculative loads may be moved past branch instructions on
which they are dependent, while data speculative loads may be moved past potentially dependent store instructions.
Speculation checks are also provided to either verify the success of a speculative load, or branch to recovery code in
case of a failed speculative load. The benefit to using speculation is that potentially high-latency load instructions,
when speculative, can be executed earlier than is otherwise possible. Speculation is discussed in more detail in Section
6.

To summarize, Itanium instructions are predicated, and they have to be placed into groups (demarcated by stop
bits) and bundles (with associated templates). Using predicates wisely and scheduling instructions efficiently are thus
keys to producing efficient code. The Itanium also supports speculative loads, which can be used to reduce the time
the CPU spends waiting on memory.

2.2 ILTO: The Itanium Link-Time Optimizer

Our experimental infrastructure is a software system called ILTO (Itanium Link-Time Optimizer). ILTO has the
same basic structure as PLTO, a link-time optimizer we have developed for the Intel IA-32 (Pentium) architecture
[18]. In particular, ILTO reads in a binary object file, disassembles the code, carries out numerous analyses and code
optimizations, performs if-conversion and code scheduling, and finally lays out code blocks and assembles a new
binary. The place occupied by ILTO in the compilation process is illustrated in Figure 2.2.

For code analysis and optimization purposes, ILTO constructs a control flow graph (CFG) for each function in a
program [1]. Control flow across function boundaries is represented using aninterprocedural control flow graph(e.g.,
see [15]). It consists of the control flow graphs of all the functions in the program, together with edges representing
calls and returns that connect the flow graphs of different functions. As shown in Figure 2, a function call is represented
using a pair of blocks, acall block and areturn block. There is acall edgefrom a call block to the entry block of
the callee, with a correspondingreturn edgefrom the exit block of the callee to the return block. Indirect function
calls are modeled using a special pseudo-functionF? that represents worst-case behaviors; e.g., it uses and defines all
registers, writes to all memory locations, etc.

Disassembly and assembly are obviously architecture dependent. However, the representation of basic blocks,
structure of the CFG, and—most importantly—the various analyses and optimizations are essentially the same as in
PLTO. The special characteristics of the Itanium—such as predication, instruction groups, and bundles—are thrown
away as the control flow graph is created. This lessened the time it took to develop ILTO, and more importantly it
permits existing architecture-independent analyses and optimizations to be employed. However, it means that we have
to deal with predication, stop bits, and bundling when scheduling and laying out code.

The transformation of the input binary executable into a normalized intermediate form constitutes the front-end
of ILTO. The front-end prepares the binary to be analyzed and transformed in the optimization stage. Finally, in the
back-end of ILTO normalized code is transformed back into an efficient stream of Itanium instructions, and the file is
written back to disk. These stages are briefly described below:

1. Front-end

(a) Build Control Flow Graph.Disassemble instruction bundles and build a control flow graph (CFG) with
individual instructions. Eliminate dead code by doing a depth-first search from the entry point to mark
reachable code.

(b) Predicate Analysis.Compute predicate register relation sets, as described in Section 3.

(c) Unschedule Instructions.Group together related instructions.

5

file1.c

fileN.c

.

.

.

file2.f

.

.

.

Source files
(C, FORTRAN, etc.)

 Unpredication
 Predicate analysis
Front−end

Back−end
 Predicate analysis
 Scheduling
 If−conversion

file1.o

file2.o

fileN.o

Object files

Executable program

libraries

a.outcompiler linker

ILTO

Optimization stage

Figure 1: Compilation Model for Link-Time Optimization with ILTO

(d) Unpredicate the CFG.Remove predication from the instructions in the CFG by constructing explicit deci-
sion nodes.

2. Optimization stage

(a) Code Optimizations.Analyze and optimize the code: liveness analysis, function inlining, constant propa-
gation, etc. For this paper, this phase is not used, as discussed in the results section.

3. Back-end

(a) Scheduling and If-Conversion.Form a schedule for each basic block and convert decision nodes to predi-
cated instructions where possible. Group instructions into bundles.

(b) Predicate Analysis.Recompute predicate register relation sets.

(c) Code Layout.Layout and align the basic blocks, using edge profiles as a guide. (Edge profiles are gener-
ated during a training run on an instrumented version of the unpredicated CFG.)

(d) Global Bundle Check and Patch.Iterate through the basic blocks to check the validity of instruction
bundles and to repair them when needed.

Predicate analysis, used in both the front- and back-ends of ILTO, is described in the next section. After the
discussion of predicate analysis, the front- and back-ends themselves are described in detail.

6

call
block

block
return

ret

ret

ret

entry block

return edge

call f

caller callee

(dummy)
exit block

ca
ll

ed
ge

Figure 2: Representing function calls in the interprocedural control flow graph

3 Predicate Analysis

As mentioned in Section 2, predicate registers on the Itanium are written to by comparison instructions. Relationships
that exist between predicate registers can be inferred at every point in the program by taking the semantics of these
special instructions into account. In this section we will first discuss the predicate relationships that are of interest
because of their use in analyzing predicate code. Next, we will describe the predicate analysis algorithm that we use
to compute these relationships.

3.1 Predicate Relations

Given Booleansp andq, ‘p) q’ denotes logical implication, i.e.,p) q � (:p) _ q, while ‘p, q’ denotes logical
equivalence, i.e.,p, q � (p) q) ^ (q) p). We define the following notions of disjointness:

3.1.1 Disjointness

Definition 3.1 Booleansp andq are said to beweakly disjointif p) :q. They are said to bestrongly disjoint(or
complementary) if p, :q.
Note that both weak and strong disjointness are symmetric—e.g., ifp) :q, thenq) :p—so it is not necessary to
specify directionality for either of them.

As an example, the following instruction sets predicate registersp6 andp7 to complementary values, depending
on whether general registerr5 is less than registerr6 :

cmp.lt p6,p7=r5,r6

Immediately after this instruction,p6 andp7 are strongly disjoint, independent of their actual values. They remain
strongly disjoint until some instruction (on some path) invalidates the relationship.

Suppose the next instruction that altersp6 or p7 is

(p8) cmp.eq p6,p7=r10,r11

This instruction is executed conditionally, depending on whetherp8 is true. However,p6 andp7 will still be strongly
disjoint, even though their values might have changed. (Ifp6 andp7 were weakly disjoint before this instruction,
they would also be weakly disjoint after it; if we knew nothing about their relation before the instruction, we would
still know nothing.)

The weakly disjoint relationship most often arises due to instances of unconditional compare instructions. An
example is

(p8) cmp.unc.eq p6,p7=r10,r11

If p8 is true, the semantics of this instruction are the same as a normal compare. However, an unconditional compare
first clears both predicate operands,p6 andp7 above, and these remain cleared if the guard predicate is false. Thus,
after this instruction,p6 andp7 are weakly disjoint: they cannot both be true but they might both be false.

7

initializeweak IN(B) , strong IN(B) , anddom IN(B) as described in the text;weakOUT(B) = weak IN(B) ;strongOUT(B) = strong IN(B) ;domOUT(B) = dom IN(B) ;
for each instructionI in basic blockB in their order of occurrence inB do

if I is not a compare instructionthen continue;
/* Assume I has the form: (pG) compare-opcode pA,pB=data-operands */
if I is a normal compare instructionthen

if I is unguarded, i.e.,pG == p0 then
remove all pairs containingpA or pB fromweakOUT(B) , strongOUT(B) , anddomOUT(B) ;
add (pA, pB) toweakOUT(B) andstrongOUT(B) ;

else
setwasInWeak to true if (pA, pB) is inweakOUT(B) and to false otherwise;
setwasInStrong to true if (pA, pB) is in strongOUT(B) and to false otherwise;
remove all pairs containingpA or pB fromweakOUT(B) , strongOUT(B) , anddomOUT(B) ;
if wasInStrong then

add (pA,pB) toweakOUT(B) andstrongOUT(B) ;
else ifwasInWeak or pG == pA or pG == pB then

add (pA,pB) toweakOUT(B) ;
else

/* now no relations between pA and pB */
end if

end if
else ifI is an unconditional compare instructionthen

remove all pairs containingpA or pB fromweakOUT(B) , strongOUT(B) , anddomOUT(B) ;
add (pA, pB) toweakOUT(B) ;
add (pG, pA) and (pG, pB) to domOUT(B) ;
for all (p, pG) that are inweakOUT(B) do

add (p, pA) and (p, pB) toweakOUT(B) ;
end for
for all (p, pG) that are indomOUT(B) do

add (p, pA) and (p, pB) to domOUT(B) ;
end for

else/* I is a parallel AND or OR compare instruction */
remove all pairs containingpA or pB fromweakOUT(B) , strongOUT(B) , anddomOUT(B) ;

end if
end for

Figure 3: Computing Predicate Relation Sets for a Basic Block

3.1.2 Dominance

Another important predicate relationship that arises from the use of unconditional compares is dominance.

Definition 3.2 A booleanp is said todominatea booleanq if q) p, i.e. if p must be true wheneverq is true.

For instance, after execution of the compare instruction

(p8) cmp.eq p6,p7=r10,r11

p8 dominates bothp6 andp7 , because the semantics of the unconditional compares guarantee that ifp8 is false,
bothp6 andp7 will also be false. Note that while the disjointness relations are symmetric, dominance is not. In fact,
the dominance relation creates a partial-ordering of predicate registers at every program point. For each registerp, at
any given program point there is a unique maximal dominance chainp) p 1) p2) : : :) pk. Recall that on

8

the Itanium registerp0 is hardwired totrue , sop0 dominates every predicate register. Thereforep0 terminates any
maximal dominance chain. Dominance chains are used during unpredication of the control flow graph, described in
Section 4.

3.2 Predicate Analysis Algorithm

In order to do effective unpredication, if-conversion, and instruction scheduling (see Sections 4 and 5), we need
to know—at each instruction—how predicate registers are related to each other. In particular, for a given register,
which other register is strongly disjoint from it, which other registers are weakly disjoint from it, and which registers
dominate or are dominated by it? (There can be at most one register that is strongly disjoint, but there could be several
that are weakly disjoint, as well as several that dominate.) The predicate analysis phases in the ILTO system compute
this information for the start and end of each basic block in a program, as described below. (It is straightforward to
propagate information from the start of a basic block to instructions in the block.)

Our predicate analysis is a forward dataflow analysis that propagates sets of pairs of predicates(p; q) over the
control flow graph of a function. We consider three kinds of such sets at each basic blockB:

Definition 3.3 Setweak IN(B) is the set of pairs of weakly disjoint predicates at the entry to blockB, andweakOUT(B)
is the set of pairs of weakly disjoint predicates at the exit from blockB. Similarly, strong IN(B) is the set of pairs
of strongly disjoint predicates at the entry to blockB, andstrongOUT(B) is the set of pairs of strongly disjoint
predicates at the exit fromB. Finally,dom IN(B) is the set of “dominance” pairs(p; q), wherep dominatesq, at the
entry to blockB, anddomOUT(B) is the set of dominance pairs at the exit fromB.

LetB0 denote the entry block of the function under consideration. The following dataflow equations specify how
the above six sets are computed.

1. The dataflow information at the exit from a basic blockB is obtained, as usual, by taking the dataflow informa-
tion enteringB and propagating it throughB. In particular,weakOUT(B) is a function ofweak IN(B) and the
instructions inB, and similarlystrongOUT(B) is a function ofstrong IN(B) and the instructions inB, anddomOUT(B) is a function ofdom IN(B) and the instructions inB.

2. Determining predicate relationships at the entry to a blockB involves three cases:

(a) For intraprocedural analysis we assume that nothing is known at the entry blockB 0 to a function:weak IN(B0) = strong IN(B0) = dom IN(B0) = ;:
(b) If B is the return block for a call to a functionf from a blockB 0, then the dataflow information enteringB

is obtained by taking the predicate relations that hold at exit fromB 0, i.e., just before control is transferred
to f , and filtering this through the summary information known about the behavior of the callee functionf : weak IN(B) = FnOutf (weakOUT(B0)),strong IN(B) = FnOutf (strongOUT(B0)), anddom IN(B) = FnOutf (domOUT(B0)).

(c) Otherwise, it consists of the predicate relations that hold at the exit from each ofB’s predecessors, and so
are guaranteed to hold at entry toB:weak IN(B) = \P2preds(B)weakOUT(P) ,strong IN(B) = \P2preds(B)strongOUT(P) , anddom IN(B) = \P2preds(B)domOUT(P) .

Figure 3 gives the algorithm for computingweakOUT(B) , strongOUT(B) , anddomOUT(B) fromweak IN(B) ,strong IN(B) , anddom IN(B) . There are several cases to consider, but the details are straightforward applications of
the kinds of reasoning illustrated in the examples at the start of this section. For example, a normal comparison makes

9

its predicate-register operands strongly disjoint and hence also weakly disjoint; thus, the pair of operands gets added to
both the strong and weak output sets. The unconditional compare instruction has the most complex effect, because it
clears both predicate-register operands before conditionally setting one of them. A parallel compare instruction has the
simplest effect with respect to predicate disjointness because it either does nothing or modifies both predicate-register
operands, and hence it destroys any disjointness relationship that might have existed for either predicate register.

We solve the dataflow equations given above by starting with the initial valuesweak IN(B) = strong IN(B) = dom IN(B) = ;weakOUT(B) = strongOUT(B) = domOUT(B) = ;
for all basic blocksB in a function, and then computing a fixpoint by iteratively applying the equations above until
there is no change to any of these sets.

In case 2(b) of the dataflow equations above,FnOutf (S) denotes the effect of the function callf on the predicate
relations at the call site. A simple conservative estimate for intra-procedural analyses is to assume that nothing is
known about predicate relationships at the return from a function call. We can do better, however, by identifying for
each functionf , the setUnhg(f) of predicate registers whose values will not be affected by a call tof . We proceed
as follows:

1. DefineSaveRestore(f) to be the set of predicate registers that are saved at entry tof before any use, and restored
prior to leavingf . These sets can be determined by inspecting the prolog and epilog off ’s code.

2. LetUnhg(B) be the set of predicate registers whose values will not be changed during the execution ofB:Unhg(B) = � ; if B ends in a function callfp j p not assigned to inBg otherwise

Then, the set of predicate registers that are unaffected by a call tof is given byUnhg(f) = SaveRestore(f) [(\B2bloks(f)Unhg(B)):
Note that the setUnhg(f) can be computed in a single pass over the instructions off . We can then define the effect
of a call to a functionf on predicate relationships as follows:FnOutf (S) = f(p; q) 2 S j fp; qg � Unhg(f) g:
This is a pessimistic estimate of the effects of a function call, because when computingUnhg(B) for a basic blockB, we assume that all predicate registers may be overwritten ifB contains a function call. A better approach is
to propagateUnhg(f) values over the call graph of the program and iterate to a fixpoint. This is what we have
implemented.

It is relatively straightforward to extend these equations to do inter-procedural analysis. At this time, we have
extended the analysis described above into a simple context-insensitive inter-procedural algorithm, and we are looking
into a context-sensitive inter-procedural version.

4 The Front-end of ILTO

The first purpose of the front-end is to first read in an Itanium executable, disassemble it, and construct the CFG
to represent the control flow of the input program. This results in a stream of Itanium instructions in which special
features of the Itanium are still visible. In particular, instructions are still grouped into bundles and instruction groups,
and are still predicated. The second purpose of the front-end is to remove the traces of these features from the code.
First we unbundle and ungroup instructions by removing stop bits. We then remove predication from the code by
replacing guard predicates by decision nodes and adding new basic blocks and edges to the CFG. This process is
known asunpredicationor reverse if-conversion.

One way to unpredicate the instruction stream is to create a new basic block for every predicated (non-branch)
instruction in the program. While correct and simple, this method would create huge number of basic blocks. The

10

problem is that it ignores any relationships that exist between the predicates of nearby instructions, which can help to
group instructions together during unpredication. Therefore, instead of making single instructions the basic units of un-
predication, we can often take account of predicate relations to simplify the resulting CFG. Having a less-complicated
CFG simplifies later analyses and makes it easier to produce efficient code later on. However, before we can take ad-
vantage of relationships between predicate registers during unpredication, there are two problems that must be solved.
First, predicate relations are not explicit in Itanium code; they are implicitly created by a stream of one or more in-
structions that write to predicate registers. These relationships must be computed using predicate analysis, which was
described in the previous section. Second, instructions with related guard predicates may not be adjacent, and so it may
be difficult to combine related instructions into the same CFG node during unpredication. To alleviate this problem,
prior to unpredication related instructions are physically grouped together in a phase calledunscheduling.

4.1 Unscheduling

Aggressive scheduling permutes instructions within basic blocks. Assuming that the scheduler is semantics-preserving,
the permutation it produces has the same meaning as the original code, but it may be more difficult to analyze because
scheduling can destroy the correspondence between physical relations and semantic relations that often exist in un-
optimized code. In particular, predicate groups created early on during compilation may be split up by unrelated
instructions during scheduling. Consider the code

mov r4 = r5
(p6) mov r1 = r2
(p6) add r2 = 8,r2

sub r3 = 8,r1

This fragment contains two instructions predicated onp6 . Since they are adjacent, it is easy to see that they can be
combined into a single node during unpredication as follows:

mov r4 = r5
(p6) br.cond Label1

br Label2

Label1:
/* Grouped instructions */
mov r1 = r2
add r2 = 8,r2

Label2:
sub r3 = 8,r1

However, suppose that the dependencies between these instructions are such that the compiler could have separated
the two predicated instructions during scheduling, for instance:

(p6) mov r1 = r2
sub r3 = 8,r1

(p6) add r2 = 8,r2
mov r4 = r5

In this case it is not as clear that theInstr2 andInstr3 can be grouped in the same block during unpredication. If
we fail to recognize the relationship between these two instructions, the unpredicated fragment will look like this:

(p6) br.cond Label1
br Label2

Label1:
/* First predicated instruction */
mov r1 = r2

11

Label2:
sub r3 = 8,r1

(p6) br.cond Label3
br.cond Label4

Label3:
/* Second predicated instruction */
add r2 = 8,r2

Label4:
mov r4 = r5

This unpredicated fragment contains twice as many blocks (four) as the unpredicated fragment for which the two
predicated instructions were originally adjacent, and contains two paths that are impossible to execute. This may
impact analyses that occur later on in ILTO.

The goal of unscheduling is to group together related instructions that may have been separated during the com-
piler’s instruction scheduling phase. To make this notion precise, we first define the basic unit of unpredication:

Definition 4.1 A predicate groupis a maximal sequence of consecutive predicated instructions(p 1)I1; (p2)I2; : : : ; (pn)In,
all in the same basic block, such thatp1; : : : ; pn are related predicates.

(The precise relations between predicates in a predicate group will be described in the next section.) Note that predicate
groups are not necessarily sequences of guarded instructions. A sequence of unguarded instructions (instructions
whose guard predicate isp0) also form a predicate group, since each instruction in the sequence is guarded by the
same predicate.

The unscheduling algorithm we present seeks to permute instructions within a basic block so as to minimize the
number of predicate groups in that block. It does so bymergingpredicate groups whenever possible. Two predicate
groupsA andB can be merged if:

1. Each of the predicates that appear inA is related to each of the predicates that appear inB.

2. A andB can be moved next to each other.

A predicate group has some freedom of movement: a predicate groupA can move past an adjacent groupB as long
as no dependencies exist between the instructions inA and the instructions inB. Assuming all other groups remain in
place, an instruction group can occupy a range of positions whose boundaries are either dependent instruction groups
or the boundaries of the basic block containing that group. This range extends both forwards (with the direction
of control-flow) and backwards (against the direction of control-flow). Our unscheduling algorithm consists of two
stages: first it finds the forward range of each predicate group, and attempts to find another group in that range with
which the first can be merged. It then does the same for the backward range. The forward range scanning algorithm is
described in more detail in figure 4; the backward range scan is completely analogous.

The scan must be done in both directions because the process of merging two groups is sometimes asymmetric;
that is, it is possible that a groupG cannot be moved forward to another groupG 0, but thatG0 can be moved backward
to meetG, or vice-versa. Recall the fragment

(p6) mov r1 = r2
sub r3 = 8,r1

(p6) add r2 = 8,r2
mov r4 = r5

The first predicate group (made up of the first instruction) cannot be moved down to meet and merge with the
second predicate group (made up of the third instruction), since there is a dependent instruction in the way. However,
nothing prevents the second group from being moved up to meet the first.

12

/* Scan of forward range of predicate groups */
for each basic blockB do

for each predicate groupG (in reverse order)do
if G is the last group inB then

continue
endif
for each predicate groupG 0 following G do

if G andG0 can be mergedthen
disconnectG
insertG immediately beforeG0
mergeG andG0 into a single predicate group
break

else ifsome instruction inG0 is dependent on an instruction betweenG andG 0 then
break

else ifG0 is the last predicate groupB then
break

endif
endfor

endfor
endfor

Figure 4: The Basic Unscheduling Algorithm (Forward Pass)

4.2 Unpredication

Unpredication, also called reverse if-conversion, is the process of replacing guard predicates with decision nodes and
supporting control-flow structure. The basic algorithm we present to do this operates on predicate groups, and has two
major steps:(i) find the predicate groups and(ii) for each predicate groupG, disconnect each instruction inG from
the CFG and insert it into a new block; afterwards adjust edges between blocks as needed. We defined predicate groups
in the previous section, but did not specify exactly what relations constitute a predicate group. The core algorithm is
independent of this definition, but the details are highly dependent. We will now give three definitions of a predicate
group and show how the unpredication algorithm must change in response. Also, the effectiveness of unpredication is
related to how rich the predicate group definition is – the relationships that are conserved upon unpredication are the
same as the relationships captured by a predicate group. We will use a running example,

cmp.eq p,q = x,0
(p) cmp.eq r,s = y,0
(r) mov z = 1
(s) mov z = 2
(q) mov z = 3

to demonstrate this.
The simplest way to define a predicate group is as a consecutive sequence of instructions guarded by the same

predicate; we will call this asimple predicate group. Finding all the simple predicate groups in the program is
straightforward, as is creating the control flow necessary to remove the predication. However, using this definition
as the basis for our algorithm means that all relations implicit in the guard predicates of instructions—except for
the identity relation—will be lost upon unpredication. This can be seen in Figure 5(a), which shows the results of
unpredicating our example using simple predicate groups.

A smarter way to define a predicate group uses the complementary relation: acomplementary predicate groupis
a consecutive sequence of instructions each guarded by eitherp or q, wherep andq are complementary predicates.
Finding complementary predicate groups is also easy, since predicate relation analysis gives us complementarity in-
formation at every program point. To unpredicate a complementary predicate group, we create two new blocks: a
true block for the instructions predicated onp and afalseblock for the instructions predicated onq. Notice that in
our running examplep andq are complementary after the first instruction, but instructions predicated onp andq are

13

 cmp.eq P,Q = x,0

(Q) br.cond

...

(R) br.cond

mov z = 1

(S) br.cond

mov z = 2

mov z = 3

T

F

F

T

T

F

 cmp.eq R,S = y,0

(P) br.cond

T F

 cmp.eq P,Q = x,0

 cmp.eq R,S = y,0 mov z = 3

(R) br.cond

mov z = 1

(S) br.cond

mov z = 2

T

F

T

...

(P) br.cond

T F

(a) Simple algorithm (b) Complement-aware algorithm

Figure 5: CFG After Unpredication

not adjacent. However, unscheduling will merge them into a single complementary predicate group. The resulting
control-flow graph resulting from unpredicating our example using complementary predicate groups is shown in Fig-
ure 5(b). This algorithm preserves the complementary relationship between predicate registers by expressing it with
an if-then-else control-flow structure, dominance information is lost. In this case, the fact that the instructionsmov z
= 1 andmov z = 2 can only be executed ifp is true is not reflected in the structure of the control-flow graph.

Including the dominance relation in the definition of a predicate group makes the definition more complex. While
a predicate typically has at most one complementary predicate at any given time, a predicate can be dominated by
(or dominate) many other predicates. Recall that dominance defines a partial ordering of the predicate registers,
so for a registerp, there is a unique maximal dominance chainp) p 1) p2) : : :) pk. This suggests a
generalization of the model of predication used on the Itanium. Suppose we allow instructions to be guarded by
several predicate registers, designated by(p1; p2; : : : ; pn), which are conjunctive; i.e., an instruction is executed if and
only if each of its guard predicates is true. Then if an instructionI has guard predicatep and the dominance chainp) p1) p2) : : :) pk exists atI , we can make dominance explicit by changing the instruction(p) I to the
equivalent instruction(p; p1; : : : ; pk) I. We will call this new model themulti-predicatemodel. For instance, under
the multi-predicate model our example would look like this:

cmp.eq p,q = x,0
(p) cmp.eq r,s = y,0

(r,p) mov z = 1
(s,p) mov z = 2

(q) mov z = 3

Note that if we use the multi-predicate model then we no longer need to make the second compare instruction
unconditional—the same effect is achieved by guarding two of the move instructions with multiple predicates.

Now we can construct a definition of predicate group that takes both dominance and complementarity into account:
a full predicate group is a sequence of consecutive instructions whosemost dominantguard predicate is eitherp or q,
wherep andq are complementary predicates.

If each instruction is predicated on a single guard predicate then a full predicate group reduces to a complementary
predicate group, for we have already described the unpredication algorithm. How then must the unpredication algo-
rithm change to take advantage full predicate groups? We simply apply the algorithm multiple times. Each time the
most dominant predicate guarding an instruction is removed, until none remain.

To see how this works, let us run the algorithm on the multi-predicate version of our example, and see how the code
is changed after each pass. At first, there is a single predicate group in the block consisting of the three instructions

14

mov z = 3

 cmp.eq P,Q = x,0

...

(P) br.cond

 cmp.eq R,S = y,0
(R) mov z = 1
(S) mov z = 2

FT

mov z = 3

 cmp.eq P,Q = x,0
(P) br.cond

FT

...

T F

 cmp.eq R,S = y,0
(R) br.cond

 mov z = 1 mov z = 2

(a) CFG after first pass (b) CFG after second pass

Figure 6: Two Passes of the Iterative Unpredication Algorithm

predicated onp and the one predicated onp’s complement,q. The first pass, will split these four instructions into two
blocks as shown in figure 6(a).

The three instructions that had been predicated onp have been put in thethen block, andp has been removed
from their predicate lists. The instruction that had been predicated onq has been moved into theelse block, andq
has been removed from its predicate list. Before this pass, predicatesr ands had beenconditionally complementary
on p; that is, ifp is true, thenr ands must be complementary predicates. After the pass, the instructions predicated
on r ands exist in their own specialized path where the relation between them is stronger. In other words,p must be
true when these instructions are executed, because the block containing them is only reached whenp is true; hence the
condition on whichr ands are complementary is always satisfied.

On the next pass of the unpredication algorithm, the newly complementary instructions are separated into disjoint
paths, as shown in figure 6(b). At this point, only conditional branches are predicated, so the algorithm terminates.
The final control-flow graph explicitly expresses all the important information latent in the code containing predicated
lists. The only remaining question is how to convert singly-predicated code into code that uses predicate lists. This can
be done by computing dominance chains at each program point using predicate analysis. Note that the implementation
omitsp0 from the end of computed dominance chains, since it is useful to consider instructions predicated onp0 to
be unpredicated (otherwise an iterative unpredication algorithm will never terminate!).

4.3 Edge simplification

So far we have concentrated on preserving predicate relationships within a basic block; relationships that extend across
basic-block boundaries are not necessarily exploited. For instance, consider the code:

Begin:
cmp.eq p,q = x,0

(p) mov y = 1
(q) br.cond After

Fallthrough:
(p) mov z = 1

After:
(q) mov z = 2

This fragment consists of three blocks, each of which will be unpredicated separately. Unpredication produces the
control-flow graph shown in Figure 7(a).

In this control-flow graph there are multiple paths that can never be taken. For instance, it is impossible that blocks
B2, B4, B6 are executed in that order, becauseB2 can only be reached ifp is true – hence, ifB4 is reached fromB2,
the branch inB4 must always be taken. So, nothing prevents us from redirecting the edge fromB2 to B4 to instead
point to B5. We call such a redirection anedge simplification. When is it possible to do such edge simplification?
More formally, given a path from blockA to blockB to blockC, under what conditions is it safe to replace the edgeA! B be with the edgeA! C?

The conditions are twofold:

15

 cmp.eq P,Q = x,0
(P) br.cond

mov y = 1

(P) br.cond

mov z = 1

(Q) br.cond

mov z = 2

br After

...

T F

T

F

T

F

B2

B1

B4
B3

B5

B6

B7

B8

 cmp.eq P,Q = x,0
(P) br.cond

(Q) br.cond

mov z = 2

br After

...

(P) br.cond

mov z = 1

mov y = 1

T F

F

T

F

B1

B3

B6

B7

B8

B4

B5

B2

T

(a) Unpredicated CFG before edge
simplification

(b) Unpredicated CFG after edge simplification

Figure 7: An example of edge simplification

1. ExecutingB does not change the value of any register or memory location; therefore the only program state thatB can possibly change is the program counter.

2. Whenever control flows fromA toB, the edgeB ! C must be taken (as opposed to any other edgeB ! D).

If a block B contains a single instruction, and that instruction is a branch, thenB satisfies the first condition.
Checking that a block satisfies the second requires more analysis. To prove that control must flow in a certain direction
along an execution path we must show that it is impossible for control to flow any other way. Our method for showing
that a path is impossible is to find some predicate register that must be both true and false at some point along the path.

4.3.1 Dominating Predicates

Definition 4.2 A predicatep pre-dominatesa basic blockB if p must be true on entry toB. Similarly, p post-
dominatesB if p must be true at the end ofB.

Definition 4.3 A predicatep pre-antidominatesa basic blockB if p must be false on entry toB. Similarly, p post-
antidominatesB if p must be false at the end ofB.

These relationships usually arise from the guard predicates on branch instructions. Suppose that a block ends
with a branch predicated onp (with complementq), and letA be the target of the branch andB be the fall-through
block. Thenp pre-dominates blockA and pre-antidominates blockB; converselyq pre-antidominates blockA and
pre-dominates blockB. If no instruction inA writes top or q then the relations are preserved through the block:P
will post-dominateA andQ will post-antidominateA. To compute dominator sets we use a simple dataflow analysis.

Using the pre- and post- dominance, we can replace the second of the pair of edge-simplification conditions with
a weaker condition:2(a). There exists a predicatep such thatp post-dominatesA and pre-antidominates each ofB’s successors exceptC.

If p post-dominatesA then when control flows fromA to B, p must be true at the beginning ofB. If condition 1 is
satisfied, thenB does not change the value ofp, sop must be also be true at the beginning of the block that is branched
to fromB. AmongB’s successors,p can only be true on entry toC, so control must flow toC. Therefore condition2(a) implies condition 2.

Edge simplification of our example CFG produces the CFG shown in Figure 7(b). While the number of blocks and
edges is unchanged, the number of paths fromB1 to B8 has decreased from six to two.

16

5 The Back-end of ILTO

The back-end of ILTO is the complement to the front-end: its purpose is to transform the code from its intermediate
form to a form that makes use of the special features of the Itanium in order improve efficiency. The most important
stages of the back-end areinstruction scheduling, in which we attempt to order Itanium instructions in an efficient way,
andif-conversion, in which selected control flow structures are partially or fully replaced by predicated code. These
two stages take place in parallel, as described below. After scheduling and if-conversion takes place, the code is laid
out and reassembled, and the binary is written to disk. These steps are described below, with particular emphasis on
scheduling and if-conversion. Afterwards we show the results of experimentally evaluating the performance impact of
the transformations described in this section, and conclude that our approach does not degrade the performance of the
input binary.

5.1 Instruction Scheduling

When scheduling instructions on the Itanium, there are two primary concerns. The first concern is to hide the latencies
of instructions as much as possible. The latency of an instruction is the number of cycles that elapse between the
time an instruction is executed and the time its results are ready. For instance, while addition of two integers takes a
single cycle on the Itanium, adding two floating point numbers can take up to five cycles. Similarly, a load instruction
can take anywhere from two to twenty-one cycles (depending on which level of cache is hit). If during execution an
instruction attempts to use a register that is not yet available because a high-latency instruction has just written to it,
then the processor stalls until the result is ready. Therefore, our scheduler attempts to schedule instructions so as to
minimize the time that the processor needs to stall while awaiting the completion of a computation. To achieve this
goal, we use a conventional list scheduling algorithm developed by Gibbons and Muchnick [7].

The second concern of our instruction scheduler is to exploit the instruction-level parallelism capabilities of the
Itanium architecture by bundling instructions intelligently. As mentioned in Section 2, the Itanium can execute up
to six instructions at once, but has only two arithmetic units, two memory units, two floating point units, and three
branch units. Therefore in long sequences of code with no branches, instructions must be carefully bundled in order
to maximize the throughput of a program. In order to make the most effective use of resources when bundling instruc-
tions, predicate analysis must be used to accurately compute dependencies between instructions. The reason for this
is that two instructions may appear to be dependent (for instance they might write to the same register), but may in
fact be independent if their predicates cannot both be true at the same time. For instance, consider the following code
fragment:

cmp.eq p6,p7=x,0 ;;
(p6) cmp.eq.unc p8,p9=y,0 ;;
(p7) mov z=2
(p8) mov z=0
(p9) mov z=1

Notice that even though the last three instructions all write to the same variable,z , the two compare instructions
guarantee that exactly one register out ofp7 , p8 , andp9 will be true when the three moves are executed. We can
determine this using predicate analysis, and therefore our bundler can schedule these three instructions in the same
instruction group. Our instruction bundling algorithm is similar to one described in [9], but we augmented it to handle
several special cases.

5.2 If-Conversion

If-conversion is the process of replacing explicit control transfers in code by predicated instructions that are executed
conditionally depending on the value of a Boolean source operand [2]. It can improve performance in a number of
different ways. First, it can eliminate difficult-to-predict branches and reduce branch misprediction rates [4]. Second,
it can increase instruction-level parallelism. Finally, by allowing the producer of a value to be moved to an earlier
point in the instruction stream, if-conversion can be used to hide instruction latencies.

Figure 8 gives an outline of our if-conversion algorithm. The basic idea is simple: For each basic block in a
function, we first schedule the instructions in the block, then we try to use if-conversion to improve the code for that
block. This employs the predicate disjointness sets described in the previous section and is done as follows:

17

for each basic blockB in the functiondo
1. scheduleB as described above;
2. sort the successors ofB in decreasing order of execution frequency;
3. for each successorS of B do

if S has more than one predecessorcontinue;
for each nopN in B do /* Eliminate no-ops in B if possible */

if there is an instructionI in S that can replaceN without affecting any
dependencies or adding stop bitsthen

removeI from S;
replaceN with an appropriately predicated version ofI ;

endif
end for
/* Eliminate branch instructions in B if possible and profitable */
if (a) S is if-convertible intoB; and (b) there is a branch instructionJ in B that

can be eliminated by fully if-convertingS intoB; and () the number of
groups inS is less than a fixed [architecture-dependent] thresholdthen

replace each instructionK in S by an appropriately predicated version ofK in B;
delete the branch instructionJ
delete the basic blockS

end if
end for

end for

Figure 8: The Basic If-Conversion Algorithm

1. We attempt to replacenops in the block by useful instructions from its successor blocks.

2. If a block ends in a conditional branch, and it is profitable and possible to eliminate this branch, we replace the
conditional branch by appropriately predicated instructions from the block’s successors.

In this context, given a basic blockB and a successorB 0 of B, we say thatB 0 is if-convertible intoB if every
instruction inB 0 can be if-converted into a predicated version that can then be inserted at the end ofB, prior to any
branch instruction at the end ofB, without altering any use-definition relationships between any pair of instructions.

A few aspects of this algorithm that deserve comment. First, when processing a basic blockB and considering
a successor block from which to if-convert instructions intoB, we do not consider any successorS that has more
than one predecessor. The reason for this is that ifS has multiple predecessors, then each instruction moved out ofS
would have to be replicated in the predecessors ofS. This would result in code growth, and it would complicate the
if-conversion algorithm because it would be necessary to ensure that such code replication preserves correctness. In
principle we could clone the blockS in such circumstances to create a block with a single predecessor, which can then
be processed as described; however, our implementation does not currently do this.

Second, when considering whether to use if-conversion to eliminate a branch instruction at the end of a blockB,
we want to make sure that this does not introduce so many predicated instructions intoB that the cost of executing
these instructions exceeds the cost of the original branch instruction they replaced. We do this using an architecture-
dependent threshold that models the cost of executing a branch instruction: if the number of predicated instruction
groups being introduced intoB is less than this threshold, it is deemed profitable to eliminate the branch instruction.
The reason we first attempt to use instructions fromS to eliminate no-ops inB before attempting to eliminate branch
instructions inB is that the number of instructions inS may initially exceed this threshold, but by pulling out instruc-
tions fromS to replace no-ops inB, we may be able to reduce the number of instructions inS to below the threshold,
thereby allowing the branch instruction inB to be eliminated.

Finally, an aspect of the overall if-conversion process that is not discussed in Figure 8 is that it is sometimes
necessary to find a free predicate register. Consider the following code fragment:

cmp.eq p6,p0=r14,r15 ;;

18

(p6) br.cond L1
mov r14=0
br.few L2 ;;

L1: mov r14=1 ;;
L2: add r15=r14,2

We would like to convert this to a single predicated block, e.g.:

cmp.eq p6,p7=r14,r15 ;;
(p6) mov r14=0
(p7) mov r14=1 ;;

add r15=r14,2

However, since the compare instruction that sets registerp6 in the original code discards the complement ofp6 , 1 we
must find a predicate register to hold the complement. This registerpmust be free at the compare instruction and must
not be defined on any path from the compare to the instruction(s) whose predicated version would use the complement
of p6 . If there are multiple compare instructions that set the guard predicate of the branch register (i.e., different paths
to the branch contain different compare instructions), thenpmust not be defined on any path from any of the compares
to the instructions that would usep. Our implementation currently uses a simple conservative approximation for this:
If a predicate registerp is not defined or used by a functionf or any function reachable fromf , and ifp is saved and
restored at entry to and exit fromf , thenp can safely be used for this purpose withinf .

5.3 Code Layout

Before the binary is reassembled, code layout is performed. The goal of goal layout is to place basic blocks in memory
in an order that minimizes(a) the number of taken branches executed,(b) the number of instruction cache misses,
and() the number of page faults incurred, and involves moving frequently executed blocks to one end of the address
space and infrequently executed blocks to the other. The layout algorithm used in ILTO is described by Pettis and
Hansen in [16]. Since basic blocks are moved during layout, branch instructions may be deleted, added, or may need
to have their sense switched. If a block could be entered by means of a fall-through edge, then we have to insert an
explicit branch if the block is moved. If we move a block so that its entry point immediately follows what had been a
branch to the block, then we want to delete the branch to the block.

As a (somewhat artificial) example of code motion, consider the following C program fragment:

if (x > 0)
{ statements1; }

else
{ statements2; }

Straightforward Itanium code for this would be

cmp.gt p6,p7 = x,0 ;;
(p7) br.cond Else

code for statements1
br.cond Done

Else: code for statements2
Done:

If we decide to switch the positions of the code blocks forstatements1 andstatements2 , the only other change
we need to make is to usep6 to guard the predicate on the branch instruction. This is a safe transformation because
p6 andp7 are strongly disjoint. This illustrates another use of predicate analysis.

5.4 Experimental Results

We evaluated our ideas using a set of seven programs from the SPECint-2000 benchmark suite:bzip2, gzip, mcf,
parser, twolf, vortex, andvpr. The programs were run on an HP i2000 workstation with a 733 MHz Intel Itanium

1The compare instruction actually assigns the complement ofp6 to predicate registerp0 . However, sincep0 is hard-wired to the valuetrue, the
effect is to discard the complement.

19

Program Code Density S1=S0
Original (S0) Optimized (S1)

bzip2 0.7011 0.7134 1.0175
gzip 0.7031 0.7127 1.0136
mcf 0.7012 0.7128 1.0165
parser 0.6985 0.7130 1.0208
twolf 0.6985 0.7121 1.0195
vortex 0.7300 0.7367 1.0091
vpr 0.6994 0.7134 1.0201

GEOMETRIC MEAN 1.017

(a) Code Density

Program Execution Time(sec) T1=T0
Original (T0) Optimized (T1)

bzip2 1155.04 1002.59 0.868
gzip 1041.97 984.34 0.945
mcf 1506.34 1491.62 0.990
parser 1305.39 1266.66 0.970
twolf 1483.17 1405.97 0.948
vortex 1072.89 1001.57 0.934
vpr 1057.34 991.74 0.938

GEOMETRIC MEAN 0.941

(b) Execution time

Table 1: Performance:gcc-compiled programs

processor running Redhat Linux 7.1, kernel 2.4.3-12. The memory configuration of the system was as follows: split
L1 instruction and data caches, each consisting of 16 KB of 4-way set associative cache memory with 32-byte lines;
a 96 KB unified L2 cache; a 2 MB unified L3 cache; and 1 GB of main memory and 2 GB of swap space. Execution
times for these programs were obtained as follows: Each binary was run five times on an unloaded machine and
its runtime was measured using the Unixtime command; the largest and smallest of the resulting run times were
discarded; then the arithmetic mean of the remaining three execution times was computed and taken as the running
time for that binary. We used statically linked binaries for our experiments, compiled with additional flags to instruct
the linker to retain relocation information.2

Static code density figures, expressing the ratio of useful (i.e., non-nop) instructions to the total number of instruc-
tions, were obtained as follows. For the input binaries, we measured code densities after first discarding unreachable
code (in order to exclude code brought in by the linker from libraries that is not referenced by the program). Code
densities after optimization were obtained just before the executables were written out and hence after all optimiza-
tions had been carried out. For these experiments, ILTO did not use any optimizations other than those described here,
so the data presented reflectonly the effects of if-conversion and predicate analysis.

Recall that, unlike Augustet al. [3], we postpone if-conversion until the end of the compilation process in order
to keep our analyses and optimizations architecture-independent as far as possible. When evaluating our algorithm,
therefore, there are two independent questions of interest: First, how effective is our algorithm at improving the
performance of an unpredicated instruction stream, e.g., such as that produced by a conventional optimizing compiler
that does not have specialized support for predication? Second, how effective is the algorithm in actually identifying
available opportunities for if-conversion? The difference between the two is that it is possible, in principle, that we
could obtain performance improvements from our if-conversion algorithm (the first question) even if it had weaknesses
that caused it to miss a lot of optimization opportunities (the second question).

To address the first question, we evaluate our algorithm on programs compiled using thegcccompiler, which does
not have very sophisticated facilities for dealing with predication; we usedgccversion 2.96, at optimization level-O3.

2The requirement for statically linked executables is a result of the fact thatILTO relies on the presence of relocation information to distinguish
addresses from data. The Unix linkerld refuses to retain relocation information for executables that are not statically linked.

20

Program Code Density S1=S0
Original (S0) Optimized (S1)

bzip2 0.7023 0.7165 1.0203
gzip 0.7047 0.7191 1.0205
mcf 0.7010 0.7140 1.0186
parser 0.7042 0.7203 1.0229
twolf 0.7041 0.7200 1.0225
vortex 0.7220 0.7391 1.0236
vpr 0.7010 0.7150 1.0200

GEOMETRIC MEAN 1.021

(a) Code Density

Program Execution Time(sec) T1=T0
Original (T0) Optimized (T1)

bzip2 843.65 820.16 0.972
gzip 633.15 648.86 1.025
mcf 1409.94 1419.79 1.007
parser 1190.45 1190.30 1.000
twolf 1267.49 1261.49 0.995
vortex 835.32 824.86 0.987
vpr 906.85 925.15 1.020

GEOMETRIC MEAN 1.001

(b) Execution time

Table 2: Performance:ecc-compiled programs

Table 1 gives performance results for this case. Table 1(a) shows code densities before and after optimization. It can
be seen that our algorithm yields a slight improvement in code density of about 1.5%. Code density is improved by
the if-conversion process, which replaces useless instructions, and by predicate analysis, which makes scheduling (and
bundling) less constrained.

Table 1(b) shows the effect of our optimization on execution speed. The column labelled “Original” refers to the
executable produced bygcc, while that labelled “Optimized” refers to the executable obtained using our if-conversion
algorithm on the input binaries. The biggest speedup is obtained for thebzip2program, which improves by over 13%.
On average, we see a speed improvement of 5.8%.

For the second question, we consider binaries obtained using Intel’secccompiler version 5.0.1, at optimization
level -O3 together with profile feedback, i.e.: the programs were compiled with the options ‘-O3 -prof gen,’
then executed on the SPEC training inputs to generate profiles, and finally recompiled with the options ‘-O3 -
prof use,’ Here we take input binaries that have already been heavily optimized by an industrial-strength, predicate-
aware optimizing compiler using profile feedback; remove all predication using reverse if-conversion; then if-convert
back using our algorithm. If there are significant weaknesses or imprecision in our algorithm, the quality of the code
produced by our optimizer would be inferior to that of the input file, so we would see a performance degradation
relative to the input binary. If, on the other hand, our approach is effective in identifying if-conversion opportunities,
the performance of the code generated by ILTO should be comparable to that of the input binaries. Table 2 shows
the performance numbers in this case. As shown in Table 2(a), our algorithm is actually able to improve static code
densities by 2% on average compared to the originalecc-generated code. With respect to execution speed, as shown
in Table 2(b), it can be seen that our algorithm produces code whose performance is essentially the same as that of
the inputecc-optimized binaries. On three programs,bzip2, vortex, andtwolf, our algorithm produces slightly faster
binaries; on three others,gzip, vpr, andmcf, we get a slight slowdown. On average, the code obtained from ILTO
is 0.1% slower than the original binaries. This indicates that in general, our predicate analysis and if-conversion
algorithms are able to identify and recover pretty much all of the opportunities for if-conversion that were present in
the input program but that were obfuscated during the initial reverse if-conversion phase.

21

6 Reverse Engineering Issues

As we described ILTO’s organization in section 2, sandwiched between the front-end and the back-end of ILTO is
the machine-independent optimization stage (which is not discussed in this paper). We have shown in the previous
section that ILTO provides a solid foundation for implementing additional optimizations, since the algorithms used in
the framework of ILTO do not have a large negative impact on performance, even when run on highly optimized code.
However, because Itanium code is converted to an intermediate representation, the middle stage of ILTO may include
any analyses and transformations, not just ones aimed at improving performance, without the those analyses and
transformations needing to be predicate-sensitive. Therefore, we have also used ILTO as a platform for investigating
reverse-engineering issues on the Itanium.

In a sense, unscheduling and unpredication, described in Section 4, can be classified as reverse-engineering trans-
formations, since they result in code that is less tied to specific features of the Itanium (i.e. predication) and less
mangled by compiler optimizations (i.e. scheduling), and is therefore easier to understand and analyze. But predica-
tion and scheduling are by no means the only contributors to program obfuscation. In this section, we describe how,
using ILTO, we applied reverse-engineering techniques to speculation, another feature of the Itanium.

6.1 Speculation

It is well known that processor speeds are growing faster than memory speeds, which means that the performance gap
between the processors and memory is also growing steadily. One effect of this is that high-performance processors
may be hamstrung because the memory system cannot deliver data as fast as the CPU would like. beyond what is pos-
sible using conventional instruction scheduling techniques, advanced architectures such as the Intel IA-64 (Itanium)
have offered an innovative architectural feature:speculation. The idea is to allow (long-latency) instructions to be ex-
ecuted much earlier than would be possible in traditional architectures—possibly before it is even known whether the
results of the computation will be used—in the hopes that initiating such expensive computations early will result in
their results being available if and when they are needed. Judicious use of speculation can lead to significant improve-
ments in performance [12]. However, speculation adds structure to generated code that does not reflect any logic in the
original source, and can significantly change the placement of instructions relative to unoptimized code. As a result,
speculation tends to make low-level code obscure and difficult to understand, analyze, and reverse engineer. This can
complicate the task of maintaining or understanding software for which the original source code is unavailable.

In this section we present a technique for undoing low-level optimizations based on speculation in order to expose
the original structure of speculative programs and thereby render them more amenable to the application of higher-
level reverse engineering tools. We explain speculation in some detail, discuss how speculated code can be more
difficult to understand than normal code, and describe a method for undoing optimizations based on speculation. The
model for speculation we use follows that of the Intel Itanium, but the techniques we present are general enough to be
applied to any model that supports the same speculative operations as the Itanium.

6.1.1 Background

In order to generate efficient code, optimizing compilers attempt to hide the latencies of expensive operations by
scheduling them as far apart as is necessary. However, instruction scheduling is constrained by dependencies between
instructions: in particular, an instructionI that iscontrol dependenton a conditional branchJ—i.e., J determines
whetherI is executed—cannot, in general, be scheduled earlier than the branch instructionJ . This is illustrated in
Figure 9(a), where basic block B0 tests whether registerr2 contains a non-NULL value; the load instruction in block
B1 is control dependent on the branch in B0. Moving the load above the branch in this case would be incorrect: the
resulting code would generate an error ifr2 has a NULL value. Such control dependencies limit our ability to hide the
latencies of expensive operations such as loads from memory.

To address this problem, next-generation architectures, notably the Intel Itanium, have introduced an architectural
feature calledcontrol speculation, whose essential feature is the speculative load instruction, denoted by the opcode
‘load.s.’ The behavior of a speculative load is similar to those of a normal load, but with one important difference:
if the instruction generates an exception, such as segmentation or page fault, the exception is not handled immediately;
instead, a special bit associated with the destination register of the load, called aNaT (“Not a Thing”) bit, is turned on.
Later when the program reaches a point where the result of the load is needed, a special speculation check instruction
(with the opcode ‘chk.s’) is issued on the destination register of the load. If the register has itsNaT bit set, then

22

B1

if p goto B2
p := cmp.eq r2, #0

B0

r3 := add r1, r3

B2

r4 := add r3, r5

r1 := load [r2]

if p goto B2

p := cmp.eq r2, #0
B0

r3 := add r1, r3

recovery code

B1

r3 := add r1, r3

B3

B2

chk.s r3, B3

r4 := add r3, r5

r1 := load.s [r2]

r1 := load [r2]

(a) Original unspeculated code (b) Code with speculation

Figure 9: An example of control speculation

execution branches to recovery code provided by the compiler; otherwise, execution continues as normal.NaT bits
can propagate from one register to another. That is, if a source register of an instruction has itsNaT bit set, then the
NaT bit of its destination register will become set. This means that a string of dependent instructions can follow a
speculative load, and in general these instructions will all have to be reissued in recovery code.

Using control speculation to the example shown above, we can move the load instruction above the preceding
branch, in the process turning it into a speculative load. The resulting code, shown in

Figure 9(b),3

is considerably harder to understand than the original, for two reasons. First, there are more instructions, more
execution paths, and more convoluted program structure to consider in the speculated code. Second, the speculative
load has moved farther from its use, with intervening recovery code whose behavior has to be taken into account,
thereby obscuring the original program logic. The problem is exacerbated even further in larger programs where the
speculation is more aggressive, causing the speculative load to have moved across several conditional branches rather
than the single branch in the example above, and where the recovery code may, for example, itself contain other
speculative or check instructions, thereby resulting in significantly more convoluted control flow. The next section
describes a method of unspeculating code that essentially reverses the process of speculation, and hence makes the
code easier to understand.

6.2 Unspeculation

Unspeculation refers to the process of transforming a program containing speculative loads to a semantically equivalent
program where some or all of the speculative instructions have been replaced by “ordinary” load operations. Our
approach to unspeculation consists of two distinct phases. First, we move each speculative load to one or more points
in the code stream where it can potentially be replaced by an unspeculative load operation. Second, we verify that the
speculative instruction can be safely replaced by an unspeculative load. Each of these steps is semantics-preserving.

23

r2 := add #8, r4
r1 := load.s [r2]
r2 := add #4, r2
r3 := add #1, r1

chk.s r3, Recover

r2 := sub #8, r5
r1 := load.s [r2]
r2 := add #4, r2
r3 := add #1, r1

(a) Before load sinking

r1 := load.s [r2]

r3 := add #1, r1
r2 := add #4, r2

chk.s r3, Recover

r2 := add #8, r4 r2 := sub #8, r5

(b) After load sinking

Figure 10: An example of load sinking

6.2.1 Load Sinking

The main difference between “ordinary” and speculative load operations is that exceptions raised by the latter are
deferred via theNaT bits. It follows that, when a speculative load is encountered in a program, the very fact that
a speculative load has been used—rather than an “ordinary” one—indicates that it cannot be guaranteed to execute
without any exceptions. In general, therefore, we cannot simply replace a speculative load by an unspeculative one
and expect to preserve program semantics. Instead, the speculative load must be moved to some appropriate later point
in the code stream as part of unspeculation.

In this connection, the check instruction(s) associated with a speculative load indicates where a legal result for that
load is expected, and suggests a natural placement for such loads, immediately before such a check instruction. In
effect, this pushes the speculative load down into the basic block containing the corresponding check instruction, past
any intervening conditional branches. We refer to this process of moving speculative loads “down” towards their check
instructions, illustrated in Figure 10, asload sinking. Note that when a speculative loadI is sunk, other instructions
that depend fromI must be sunk as well. To make this notion of “dependence” precise, define two instructionsI andJ to bedirectly dependent(writtenI *) J) if:

1. I may write to any register or memory location that may be read byJ ; or

2. I may read from any register or memory location that may be written to byJ ; or

3. I andJ may write to the same register or memory location.

Let*)? denote the reflexive transitive closure of the*) relation. We say thatI andJ aredependentif I *)? J .

I1 I2 I3

J1
J2 J3 J4 J5

load.s load.s

chk.s chk.s chk.s chk.s chk.s

load.s

Figure 11: General structure of speculative computations

3For simplicity, we depart from the syntax of Itanium assembly instructions (which tend to be quite different from those of more familiar
architectures) and write our instructions as follows, whereop denotes the operation,dst is the destination, andsr1, sr2, . . . are the source
operands:

dst := op sr1 sr2 . . .

A memory load instruction is expressed as a simple indirect access through a register, with any necessary address computations, displacements, etc.,
being carried out explicitly:

dst := load [r] .

24

Load sinking is complicated by the fact that there may not be a one-to-one correspondence between speculative
load and check instructions: a speculative load may be checked by several different check instructions, and a check
instruction may check several different speculative loads. This is illustrated in Figure 11. Moreover, we have to
contend with the possibility that a speculation check may be associated with several different speculative loads, which
may have different sets of dependent instructions associated with them. The remainder of this section addresses these
issues in greater detail.

Finding relationships between instructions Our first goal is to identify, for a given speculative load, the set of
associated check instructions that test whether that load succeeded or failed. As mentioned in Section 6.1.1, however,
a computation can propagateNaT bits from one register to another. For this reason, a speculation check associated
with a speculative load into a registerr may not check the registerr itself, but possibly some other registerr 0 whose
value has been computed from that ofr. This is illustrated in Figure 9(b), where the speculation check (in basic block
B1) checks registerr3 even though the speculative load (in block B0) loads into registerr 1. Thus, to determine whether
a given check is associated with a given speculative load, we need to know whether or not the check’s source register
may be aNaT as a result of the failure of that load. To this end, given an instructionI � ‘r := load.s ...’ that
defines a registerr and a check instructionJ � ‘chk.s r 0, . . . ’, say thatJ checksI if either of the following hold:

1. r0 � r, and the definitionI of r reachesJ ;4 or

2. there is an instructionI 0 that usesr and which propagatesNaT bits from its source operands to its destination,
such that(i) the definitionI of r reachesI 0, and(ii) J checksI 0.

The set of speculation checksChk (I) associated with a speculative loadI can then be defined asChk (I) 4= fJ j J is a speculation check andJ checksIg:
In Figure 9(b), for example, sinceadd instructions propagateNaT bits, the chain of reaching definitions along the
execution path

r1 := load.s [r2] # Block B0
r3 := add r1, r3 # Block B1
chk.s r3, B3 # Block B1

allows us to infer that the check instruction in block B1 is associated with the speculative load in block B0.
Given a speculative loadI , the setChk (I) can be determined via a depth-first traversal of the control flow graph

starting atI . At each point, we keep track of the set ofspeculative registersat that point, i.e., the registers whoseNaT
bits may be set. Initially, this contains only the destination register of the speculative load. It is updated during the
traversal using information about instructions that propagateNaT bits. The traversal stops whenever the speculative
register set becomes empty. The setChk (I) then consists of the speculation checks that can be reached in this traversal.

Analogous to the setChk (I) for a speculative loadI , we can consider the setLd(J) of speculative loads associated
with a check instructionJ : Ld(J) 4= fI j I is a speculative load andJ 2 Chk (I)g:
This set can be derived from theChksets computed for the speculative loads in the program.

Speculative regions Intuitively, in order to carry out load sinking to a speculation checkJ , the set of instructions
sunk toJ must be well defined, i.e., must be the same for all speculative loadsI 2 Ld(J). To see the reason for this,
consider the speculative loadsI1 andI2, and the speculation checkJ2, in Figure 11. LetS1 be the set of instructions
dependent on the speculative loadI1, andS2 the set dependent onI2. When sinkingI1 we want to move all the
instructions inS1 down to the check instruction; when sinkingI2, similarly, we want to move all ofS2. If S1 6= S2 it
is not clear what instructions ought to be moved down to the check; if this happens, load sinking is said to fail.

To make these ideas precise, we define a speculative region as follows:
4A definition I of a variable or registerx is said toreacha program pointp if there exists an execution path fromI to p along whichx is not

redefined, i.e., along which the value assigned tox by I may survive [1].

25

Definition 6.1 Thespeculative regionof a speculative loadI is a pair(L;C) whereL is a set of speculative loads
andC is a set of speculation checks, such thatL andC are the smallest sets satisfying:(i) I 2 L; (ii) if x 2 L andy 2 Chk (x) theny 2 C; and(iii) if x 2 C andy 2 Ld(x) theny 2 L.

A speculative region is unspeculated as a single unit. This means that for each such region, either load sinking succeeds
and all speculative code in the region is moved at once, or that it fails and no instructions are moved. To make this
notion precise, consider an execution path� from a speculative loadL to a checkC 2 Chk (L). LetDep L(�) denote
the set of instructions along� that are dependent onL. We can now make precise the conditions under which load
sinking can be carried out for a speculative region:

Definition 6.2 A speculative region(L;C) of a speculative load is said to bepath-independentif, for any pair of
speculative loadsI1; I2 2 L and checkJ 2 C, and any two paths�1 betweenI1 andJ and�2 betweenI2 andJ , it is
the case thatDepL1(�1) = DepL2(�2):
As an example, Figure 11 shows a total of eight distinct paths between the speculative loads and associated checks.
Path independence requires that the instructions dependent on the speculative loads along each such pair of paths be
the same.

If a speculative region(L;C) is path-independent, load sinking becomes straightforward:

1. Let� be an arbitrary path from some load inL to some check inC andS = Dep L(�) the instructions on�
dependent onL.

2. For each speculative loadI 2 L delete the instructionsS betweenI and any check inC.

3. For each checkJ 2 C, copy the instructionsS to the top ofJ ’s basic block. Additionally, if there are any
non-speculative instructionsS 0 in S that compute a value that is live along a path that leaves the region without
going through a speculation check, copyS 0 onto this path.

The code structure resulting from load sinking is illustrated in Figure 12.

load.sr := addr

Brecr’,chk.s

recovery code
+

...fall−through code...

BrecBfallthru

...fall−through code...

Bmerge

πpass πfail

Bchk

... speculative instructions...
pass path fail path

Figure 12: Code structure after load sinking

6.2.2 Recovery Code Verification

In the code resulting from sinking, shown in Figure 12, there are two possible outcomes for the speculation check in
blockBhk . If the speculative load completes successfully without setting anyNaT bits, execution takes thepass path�pass � Bhk ! Bfallthru ! Bmerge . Or else the speculative load may fail and setNaT bits, in which case control
goes through the recovery code along thefail path � fail � Bhk ! Bre ! Bmerge. The effect of unspeculation
is twofold. First, the speculation check instruction and the fail path� fail are eliminated. Second, the speculative
instructions inBspe are converted to unspeculative ones, which means that exceptions deferred by the speculative
code are no longer deferred after unspeculation. In order for this to be correct, the code must satisfy two conditions:

26

chk.s r3, Brec

Brec

B0

B1

r1 := load.s [r2]
r2 := add #4, r2

r3 := add #1, r1

(1)
(2)
(3)
(4)

r2 := sub #4, r2

r3 := add #1, r1

r1 := load [r2]
r2 := add #4, r2

(5)
(6)

(8)
(7)

Figure 13: An Example of Recovery Code Verification

1. [Path Equivalence.] The execution paths�pass and�fail must be equivalent, in the sense that for every register
and memory locationx, the value ofx at the entry toBmerge must be the same when execution goes along�pass
as when it goes along�fail .

2. [Load Equivalence.] For every memory locationy from which there is a speculative load inB hk , there must be
an unspeculative load fromy in Bre.

The need for the first criterion is obvious: if�pass and�fail can produce different values for some register or memory
location, then eliminating�fail in the course of unspeculation can potentially change the behavior of the program. The
second criterion is motivated by the need to ensure that the exception behavior of the code after unspeculation is the
same as that of the original code before unspeculation. The following example illustrates a situation where the load
equivalence condition is not satisfied:

r1 := NULL
r2 := load.s [r1]
chk.s r2, Rec

r2 := 0 /* fall-through */
br End

Rec: r2 := 0 /* recovery */
br End

It is easy to see that this code fragment satisfies the path equivalence criterion. In this case, the speculative load results
in a deferred exception that causes the check to branch to the recovery code, where registerr 2 is assigned the value
0. However, if we replace the speculative load by an unspeculative load, the result will be an exception that is not
deferred, thereby changing the behavior of the program.

The remainder of this section discusses how we verify these criteria. Our current implementation is able to reason
about path equivalence only when each of the pass path� pass and the fail path�fail is a single straight-line path
with no branches. It can sometimes happen that the pass and/or fail path may contain other speculation checks that
introduce branching structure into the code, but this gets eliminated during the course of unspeculation. To catch such
situations, we iterate the unspeculation process until no more speculative code can be eliminated. As the experimental
results reported in Section 6.3 indicate, this suffices for most instances of speculation encountered in practice.

Verifying Path Equivalence The simplest case of path equivalence is when the recovery code is identical to the
speculated code, except for the speculative load that is replaced with an unspeculative load. In general, however, the
contents of registers may change between a speculative load through a registerr and a check on that load, as illustrated

27

in basic block B3 in Figure 10(b). To recover if the load fails, the correct address has to recomputed before reissuing
the load, and so the recovery code needs extra instructions to fix the program state appropriately. This is illustrated in
Figure 13 (which shows the speculation and recovery code corresponding to Figure 10(b)); the parenthetical numbers
to the left of instructions are provided for convenience in referring to them. The first instruction in the recovery
code sequence, instruction 5, undoes the changes to registerr 2 after the speculative load, restoring its value to that
at the speculative load. After this the load is reissued, this time unspeculatively. The remainder of the recovery code
recomputes values that were computed using the result of the speculative load. As this example illustrates, both the
speculative code and the recovery code may contain address and register computations, which have to be taken into
account when reasoning about path equivalence.

To prove path equivalence for the code at a speculation check, we specify a set� describing values of the initial
program state at the speculative load for which path equivalence does not hold—i.e., for some register or memory
locationx, the value ofx along the pass path differs from its value along the fail path. We then attempt to show that� = ; using constraint solving techniques. If we are able to do so, we conclude that there are no program states that
can cause path equivalence to be violated, and hence that path equivalence holds.

Given a formulaA and a set of variablesV , let(9[V ℄)A
denote the formula where the existential quantification is over all of the variables inA except for those inV . Using
this notation, we can write the specification of the set� as:� = f�x j (9[�x℄)[p(�x) ^	f (�x) ^�(�x)℄g
where�x is a tuple representing (the relevant portion of) the program state;	 p(�x) and	f (�x) are formulae expressing
the values of locations at the end of the pass path and the fail path, respectively, in terms of the initial values�x; and�(�x) states that there is some location whose value at the end of the pass path is different from that at the end of the
fail path, i.e., path equivalence does not hold.

In constructing these formulae, relationships between the values of registers can be expressed straightforwardly,
but indirect memory accesses make it harder to reason about the contents of memory locations. Our current imple-
mentation is conservative in its treatment of memory: our treatment of memory aliasing is discussed in more detail in
Section 6.2.3. This is not a significant problem in practice, however, since changes to memory viastoreinstructions
tend to be rare in recovery code. The discussion below focuses on reasoning about register values.

Assume that each instruction in the program is given a unique identifying number: the instruction with numberk
is writtenIk. We describe the construction of the formula	p, corresponding to the pass path, as a conjunction of the
constraints specified below; the construction of	f , corresponding to the fail path, is exactly analogous. The value of
a registerr at the beginning and the end of the pass path are denoted byr p0 andrpe respectively. At intermediate points
along the pass path, the value of registerr immediately after instructionI k is denoted byrpk. For each instructionIk
along the pass path,	p contains a conjunctCk that captures the effect ofIk . These are defined as follows:

1. Ik � ‘r := load [s]’. In this caseCk � rpk = mem(spj) whereIj is the most recent instruction that defines
registers (j = 0 if s has not yet been defined along the pass path), andmemis an uninterpreted function symbol.

2. Ik � ‘r := s � t’ for some operation�, and registerss andt. There are two cases, depending on whether the
analyzer knows the semantics of the� operation.

If the semantics of� is known to the analyzer, thenCk � rpk = f�(spi ; tpj) whereIi is the most recent
instruction that defines registers (i = 0 if s has not yet been defined along the pass path),I j is the most recent
instruction that defines registert (j = 0 if t has not yet been defined along the pass path), andf� is a function
that expresses the semantics of the operation�. Our analyzer knows about the semantics of some common
arithmetic instructions: e.g., if� = add thenf� is the binary function ‘+,’ signifying addition; if� = sub thenf� is ‘�,’ signifying subtraction; etc.

If the semantics of the operation� is not known to the analyzer, then we cannot specify the set�, and path
independence cannot be verified.

Finally, for each registerr, 	p contains a conjunct expressing the final value ofr: let the last instruction along the
pass path that definesr beIk (k = 0 if r is not defined along the pass path), then this conjunct is given by

28

rpe = rpk .

As mentioned above, the construction of	f , corresponding to the fail path, is exactly analogous.
The formula� expresses that some register has a final value that is different along the pass and fail paths:� � _r a register

rpe 6= rfe :
In the actual implementation, we refine this process to reduce the size of constraints and the cost of checking satisfi-
ability of constraints. First, it suffices to restrict our attention to the (usually small) set of registers that are actually
modified along at least one of the pass and fail paths. Second, we reduce the number of instructions that we have to
consider by walking backwards on each path from the merge point, marking instructions that are identical on both
paths, until we reach two non-identical instructions or the top of the check block. If we happen to hit the top of the
check block, then the relation becomes vacuously empty, so there is nothing to check. Our implementation uses the
Omega calculator [17] to determine the satisfiability of the constraints defining the set�.

The algorithm can be illustrated using the recovery code shown in Figure 13. We have� = f�x j (9[�x℄)[p(�x) ^	f (�x) ^�(�x)℄g:
where the tuples�x are tripleshr10; r20; r30i. We have:	p = r1p1 = mem(r20)^ r2p2 = r20 + 4^ r3p3 = r1p1 + 1^ r1pe = r1p1^ r2pe = r2p2^ r3pe = r3p3.	f = r1f1 = mem(r20)^ r2f2 = r20 + 4^ r2f5 = r2f2 � 4^ r3f3 = r1f1 � 1^ r1f6 = mem(r2f5)^ r2f7 = r2f5 + 4^ r3f8 = r1f6 + 1^ r1fe = r1f6^ r2fe = r2f7^ r3fe = r3f8 .� = r1pe 6= r1fe _ r2pe 6= r2fe _ r3pe 6= r3fe
The reader may verify that these constraints simplify in a straightforward way to giver1pe = mem(r20) ^ r2pe = r20 + 4 ^ r3pe = mem(r20) + 1r1fe = mem(r20) ^ r2fe = r20 + 4 ^ r3fe = mem(r20) + 1
whence the� constraints are falsified, which implies that� defines the empty set. This, in turn, implies path equiva-
lence for the code in Figure 13.

Verifying Load Equivalence Load equivalence can be determined using an approach very similar to that described
above for path equivalence. The idea is to pair up speculative loads with unspeculative loads in the recovery code, and
use a constraint-based test analogous to that above to determine whether the address registers being used in the two
loads could have different values.

29

6.2.3 Memory Disambiguation

Memory disambiguation involves knowing enough about the contents of registers at a given program point to decide
if two registers can contain overlapping addresses at any time during execution. This is a difficult problem in general
(e.g., see [11, 14]), exacerbated by the lack of semantic structure at the machine code level. Our current implementation
generalizes a simple analysis technique known asinstruction inspection[5, 20]. The general idea here is that two
memory references can be inferred to be non-conflicting if either(i) they point to disjoint regions of memory, e.g.,
the stack and the global data area; or(ii) they use distinct offsets from the same base registerr, with no intervening
definitions ofr.

Our implementation considers four mutually disjoint memory regions: the procedure stack, the heap, the static
global data section, and the global offset table. The last of these deserves some explanation. In Itanium programs
64-bit constants (e.g., addresses) usually do not appear directly as immediate operands, but are loaded from a special
region of memory called the global offset table.5 To fetch an address from this table, an offset is added to a particular
register (r1) designated as the global data pointer, which contains the address of the first entry in the table. There are
two components to our analysis:

1. Region Analysis.We use a simple iterative dataflow analysis to associate, with memory reference in the pro-
gram, a subset of these regions that the reference may access.

2. Offset Computation. For memory accesses that cannot be guaranteed to be in disjoint memory regions based
on this analysis, we use a simple backward offset computation to determine whether they involve accesses at
difference offsets from the same base address.

These are discussed in more detail in the following sections.

Region Analysis Region analysis is a dataflow analysis whose goal is to identify the memory region(s) that a register
may point at. We start with the set of regions

D = fheap, stack, global, GOT, numg
whereheap refers to heap locations,stack to stack locations,global to globals,GOT to the global offset table, and
num to numerical constants. The analysis domain then is the powerset of this set,P(D), ordered by subset inclusion;(P(D);�) forms a complete lattice, with least element; denoting an unreachable reference, and greatest elementD
denoting an unknown value. Instructions within a basic block are handled as follows:

1. Registerr1, and addresses computed by adding numerical constants tor1, point into the global offset table.

2. If a registerr points into the global offset table, then an indirect load throughr points to a global.

3. The stack pointersp, and addresses computed by adding numerical constants tosp, point into the stack.

4. load(f global, heap, stackg)) unknown

5. malloc(), alloc(), calloc()) heap

6. location� number) location

Set union is used as the meet operator to propagate information across basic blocks. Values are propagated iteratively
until a fixpoint is attained, i.e., until there is no change to the set computed for any register.

Offset Computation Given a memory access from registerr1 and another from registerr2, we can reason that these
accesses do not overlap if the absolute value of the difference betweenr 1 andr2, jr1 � r2j, is at least as large as the
size of the memory being accessed (for instance, if both access four-byte words, then to guarantee that they do not
overlap we must show thatjr1 � r2j � 4). A simple way to determine the difference between two registers is to find
another registerr such that the values ofr1 andr2 can be both be expressed as constant offsets off the value ofr, i.e.r1 = r + 1 andr2 = r + 2, where1 and2 are known. Then the difference is simplyj1 � 2j. In order to findr
we use the backwards computation shown in Figure 14.

5Other 64-bit architectures where the instruction width is smaller than 64 bits, e.g., the Compaq Alpha, use a similar approach for handling
64-bit constants.

30

Let I1 and I2 be two instructions in the same basic block B (such that I2 is one or more instruc-
tions after I1), which read from the memory locations stored in registers r1 and r2, respectively.
Also, let w1 and w2 be the number of bytes of memory accessed by I1 and I2, respectively. The
following algorithm returns TRUE if the two accesses might alias, and FALSE if they cannot.

let r01 = r1; r02 = r2; 1 = 2 = 0
/* Stage 1: analyze code backwards from I2 to I1 */
for each instructionI from I2 to I1 do

if I is of the formr01 = r +
let r01 := r and1 := 1 +

else ifI writes tor01
return TRUE; /* r1 cannot be expressed as an offset */

end if
end for

/* Stage 2: analyze code backwards from I1 */
for each instructionI from I1 to the top ofB do

if I is of the formr01 = r +
let r01 := r and1 := 1 +

else ifI is of the formr02 = r +
let r02 := r and2 := 2 +

else ifI writes tor01 or r02
return TRUE; /* The registers cannot be expressed as offsets */

end if

/* Check to see if the registers can now be expressed as offsets from the same register */
if r01 = r02

if 1 < 2 ^ j1 � 2j � w1 return FALSE;
else if1 > 2 ^ j1 � 2j � w2 return FALSE;
else returnTRUE; /* The accesses overlap */
end if

end if
end for

Figure 14: The Offset Computation Algorithm

6.3 Experimental Results

To evaluate our ideas, we first created Itanium binaries that contained a large amount of speculated code. We compiled
a set of benchmarks from the SPECint-2000 suite (bzip2, gzip, mcf, parser, twolf, vortex, andvpr) with Intel’s ecc
compiler version 5.0.1, at optimization level-O3 together with profile feedback, i.e.: the programs were compiled
with the options ‘-O3 -prof gen,’ then executed on the SPEC training inputs to generate profiles, and finally
recompiled with the options ‘-O3 -prof use.’ This process produces binaries with a significant amount of control
speculation.

The effectiveness of our unspeculation algorithm can be measured both quantitatively and qualitatively. First, there
are situations—such as when the path independence condition is not met—where our algorithm will fail to unspeculate
a region of code. Therefore we want to know how often our unspeculation algorithm succeeds in converting speculated
code to non-speculated code. Second, since the goal of unspeculation is to make programs easier to understand, we
need some way to gauge how successful our algorithm is in this respect.

To address the first question, we compare the number of speculative loads and speculation checks in the program
before unspeculation to the number after unspeculation. In general, the more often our algorithm can untangle a

31

Program SPECULATIVE LOADS SPECULATION CHECKS

Orig. Unspec. Improvement (%) Orig. Unspec. Improvement (%)
(L0) (L1) ((L0 � L1)=L0) (C0) (C1) ((C0 � C1)=C0)

bzip2 130 31 0.762 124 42 0.661
gzip 224 62 0.723 181 54 0.702
mcf 94 31 0.670 97 34 0.649
parser 483 85 0.824 451 75 0.834
twolf 1542 385 0.750 1399 354 0.747
vortex 5339 451 0.916 5217 352 0.933
vpr 608 152 0.750 614 145 0.764

GEOM. MEAN: 0.767 0.750

Table 3: Amount of speculated code before and after unspeculation

BASIC BLOCKS EDGES INSTRUCTIONS

PROGRAM Orig. Unspec. Change (%) Orig. Unspec. Change (%) Orig. Unspec. Change (%)(B0) (B1) (B0 �B1)=B0 (E0) (E1) (E0 �E1)=E0 (I0) (I1) (I0 � I1)=I0
bzip2 2509 2299 8.7 4188 3867 7.7 9259 8881 4.1
gzip 3189 2845 10.8 5297 4767 10.0 12957 12345 4.7
mcf 1118 956 14.5 1774 1533 13.6 4000 3715 7.1
parser 8866 7838 11.6 15891 14243 10.4 29779 27939 6.8
twolf 20543 17916 12.8 33083 29022 12.3 79469 74571 6.2
vortex 43641 30932 29.1 79658 59251 25.6 165189 141245 14.5
vpr 10570 9425 10.3 18805 16997 9.6 44319 42143 4.9

GEOM. MEAN: 12.9 11.9 6.3

Key: Orig: Original speculated code; Unspec: Unspeculated code

Table 4: Effects of unspeculation on program size

speculative region, the higher this ratio will be. Table 3 shows the results of counting the number of (a) speculative
loads and (b) speculation checks before and after speculation. It can be seen that our algorithm reduces the number of
speculative loads by about 79.5% and the number of speculation checks by about 78.2% on average.

For the second question, we use the idea that a simpler control-flow graph is usually easier to analyze and under-
stand than a more complicated one, and therefore one measure of how much our algorithm contributes to compre-
hension is the relative complexity of the CFG before and after unspeculation. To estimate complexity, we count the
number of instructions, basic blocks, and edges between blocks in the program. The results of this experiment are
shown in Table 4. This table shows that, on average, the number of instructions decreased by about 6.8%, the number
of basic blocks decreased by about 14%, and the number of edges decreased by about 12.7% after unspeculation. For
one benchmark, vortex, we saw a significantly larger decrease in the number of instructions, blocks, and edges —
about 14.5%, 29.1%, and 25.6% respectively.

We are also interested in the effect that unspeculation has on performance: since unspeculation attempts to undo a
compiler optimization, we expect that unspeculation results in less efficient code. To test this, we ran the same timings
tests as described in Section 5.4 on the original binaries and on the binaries after unspeculation. The results of these
tests are shown in Table 5. This table shows that the unspeculated binaries suffer a performance hit of about 6% on
average.

7 Related Work

If-conversion has been investigated by Mahlkeet al., who discuss the formation and use of hyperblocks—single entry
multiple-exit collections of basic blocks [13]. The focus of their work, by contrast with that described here, is in

32

Program Execution Time(sec) T1=T0
Original (T0) Unspeculated (T1)

bzip2 843.65 843.17 0.999
gzip 633.15 675.51 1.067
mcf 1409.94 1434.44 1.017
parser 1190.45 1227.04 1.031
twolf 1267.49 1336.75 1.055
vortex 835.32 1009.82 1.209
vpr 906.85 969.03 1.069

GEOMETRIC MEAN 1.062

Table 5: Performance

identifying which set of blocks should be included in a hyperblock. Once a hyperblock has been formed, if-conversion
is used to transform it into a single basic block containing predicated instructions, which is very different from what
we do. Augustet al. discuss the tradeoffs associated with the timing of if-conversion in the overall compilation process
[3]. They advocate an approach dual to ours, namely, carrying out aggressive if-conversion early in the compilation
process, using compiler analyses and optimizations that understand predicated code, and then selectively reverse-if-
convert during scheduling where appropriate. We have shown that it is possible to get excellent performance without
requiring analysis and optimization phases to understand predicated code.

Mahlke et al. use the notion ofpredicate hierarchy graphsto keep track of relationships between predicates
[13]. Their analysis is based on keeping track of which predicates guard the definition of other predicates, and so
does not work well when predicate relationships are not hierarchical. Eichenberger and Davis describe an analysis
that collects logical expressions expressing relationships between predicates [6]. A more precise approach, based on
keeping track of logical partitions between predicate expressions, is described by Gillies et al. [8] and Johnson and
Schlansker [10]. None of these analyses extend across join blocks, i.e., where multiple control flow paths merge.
Sias, Hwu and August discuss the efficient implementation of predicate analyses using binary decision diagrams, and
extend prior work to handle general control flow [19]. The analysis described here, by contrast, takes a very different
approach. It is formulated within the framework of a traditional meet-over-all-paths dataflow analysis, which makes it
relatively straightforward to understand, implement, and extend in various ways, e.g., to inter-procedural analysis. We
have already extended our analysis to a context-insensitive inter-procedural predicate disjointness analysis, and we are
currently investigating the question of context-sensitive inter-procedural disjointness analysis.

8 Conclusions and Future Work

In this paper we have presented new approaches for optimizing, analyzing, and reverse-engineering Itanium code, and
have described a system, ILTO, that implements our ideas. We have shown that ILTO— which removes traces of
machine-dependent optimizations such as predication from the input binary in order to render the code more amenable
to traditional analysis, and which delays if-conversion until the tail-end of the rewriting process—can nonetheless gen-
erate efficient code (about 6% faster than code generated bygccover the SPECint-2000 benchmark suite). Therefore
the organization of and algorithms used by ILTO provide a good starting point for implementing further optimizations.
In addition, we used ILTO as a platform for investigating unspeculation, and developed algorithms that effectively
perform this reverse-engineering transformation.

Much work remains to be done on the core optimization stage of ILTO. Though ILTO provides an intermediate
form of Itanium code free of predication, some existing optimization algorithms must need be tweaked to deal with the
particular instruction and register set of the Itanium. Others are more difficult to port: for instance, function inlining is
complicated by the existence of register windows on the Itanium, and implementing this optimization would involve
complicated analysis. Finally, there are Itanium-specific optimizations that would be interesting to evaluate, such as
optimizations involving the global offset table, which heavily used by the Itanium but absent in other architectures.
On the other hand, it would also be interesting to use ILTO as a framework for investigating other Itanium-specific
“unoptimizations,” such as converting software-pipelined loops to conventional loops.

33

9 Acknowledgements

I would like to thank my advisors, Dr. Greg Andrews and Dr. Saumya Debray, without whom the work presented
in this paper could not have been possible. This work was also supported by the National Science Foundation under
grants CCR-0073394, EIA-0080123, and CCR-0113633.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers – Principles, Techniques, and Tools. Addison-Wesley, Reading,
Mass., 1985.

[2] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to data dependence. In
Proc. Tenth Annual ACM Symposium on Principles of Programming Languages, pages 177–189, January 1983.

[3] D. I. August, W. W. Hwu, and S. A. Mahlke. A framework for balancing control flow and predication. InProc.
30th Annual International Symposium on Microarchitecture, pages 92–103, 1997.

[4] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact of if-conversion and branch prediction on program
execution on the Intel Itanium processor. InProc. 34th Annual International Symposium on Microarchitecture,
pages 182–191, December 2001.

[5] S. K. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. InProc. 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL-98), pages 12–24, January 1998.

[6] A. E. Eichenberger and E. S. Davidson. Register allocation for predicated code. InProc. 28th Annual Interna-
tional Symposium on Microarchitecture, pages 180–191, 1995.

[7] P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling for a pipelined architecture. InProc. ACM
SIGPLAN 86 Symposium on Compiler Construction, pages 11–16. June 1986.

[8] D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker. Global predicate analysis and its application to register
allocation. InProc. 29th Annual International Symposium on Microarchitecture, pages 114–125, 1996.

[9] S. Haga and R. Barua. EPIC Instruction Scheduling Based on Optimal Approaches. InProc. First Annual
Workshop on Explicitly Parallel Instruction Computing Architectures and Compiler Technology, 2001.

[10] R. Johnson and M. Schlansker. Analysis techniques for predicated code. InProc. 29th Annual International
Symposium on Microarchitecture, pages 100–113, 1996.

[11] William Landi. Undecidability of static analysis.ACM Letters on Programming Languages and Systems,
1(4):323–337, December 1992.

[12] S. S. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery, and J. P. Shen. Post-pass binary adaptation for
software-based speculative precomputation. InProc. ACM SIGPLAN’02 Conference on Programming Language
Design and Implementation (PLDI), June 2002.

[13] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective compiler support for predicated
execution using the hyperblock. In25th Annual International Symposium on Microarchitecture (MICRO-25),
pages 45–54, 1992.

[14] R. Muth and S. K. Debray. On the complexity of flow-sensitive dataflow analyses. InProc. 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL-00), pages 67–80, January 2000.

[15] E. W. Myers, Jr. A precise inter-procedural data flow algorithm. InConference Record of the Eighth Annual
ACM Symposium on Principles of Programming Languages (POPL ’81), pages 219–230, January 1981.

[16] K. Pettis and R. C. Hansen. Profile-guided code positioning. InProc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 16–27, June 1990.

34

[17] W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence analysis.Comm.
ACM, 35:102–114, August 1992.

[18] B. Schwarz, S. K. Debray, and G. R. Andrews. Plto: A link-time optimizer for the Intel IA-32 architecture. In
Proc. 2001 Workshop on Binary Translation (WBT-2001), 2001.

[19] J. W. Sias, W. W. Hwu, and D. I. August. Accurate and efficient predicate analysis with binary decision diagrams.
In Proc. of the 33rd Annual International Symposium on Microarchitecture, pages 112–123, 2000.

[20] D. W. Wall. Speculative execution and instruction-level parallelism. Technical Report TN-42, Digital Equipment
Corporation, Western Research Lab, March 1994.

35

