Drawdown Automata, Part 1: Basic Concepts

Cellular Automata

A cellular automaton is an array of iden-
tical, interacting cells. There are many possible
geometries for cellular automata; the most com-
monly used are shown in Figure 1.

O/NEN  _EEN

one-dimensional

(b)

.

two-dimensional

/]

L]

RYAN

I,

A

Hy
e f

Y

three-dimensional
Figure 1. Cellular Automata Geometries
We'll confine our attention, at least ini-

tially, to square cells in two dimensions, as
shown in Figure 1b.

The cells in cellular automata have states,

indicated in Figure 1 by different colors. We’ll
confine our attention to cellular automata in
which the cells have only two states, 1 and 0,
indicated by black and white respectively. Fig-
ure 2 shows an example.

Figure 2. Drawdown Automata

The choice of the term drawdown au-
tomatais deliberate; thatis exactly the purpose
for which we’ll use them.

A cellular automaton, as a whole, passes
through a succession of configurations corre-
sponding to the states of its cells. The automa-
ton goes from one configuration to another at
discrete intervals of time, the states of all its
cells changing in parallel. The change of state
of a cell is determined by a transition rule that
depends on the neighbors of the cell and is the
same for all cells in the automaton.

The neighborhood of a cell can be defined
in different ways. Figure 3 shows one of the
most frequently used neighborhoods, which s
named after John von Neumann, who used it
in his studies of self-reproducing machines.
See the side bar on the next page.
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Figure 3. Von Neumann 5-Neighborhood
The cell itself is labeled C. Its four neigh-
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Cellular Automata Applications

John von Neumann, who played a
major role in the de-
sign of modern com-
puters, was among
the first to use cellular
automata as models
for abstract machines.

He proved that it '
is possible, in prin- &% Al
ciple, to design ma- John von Neumann
chines that not only 1903-1957
are capable of repro-
duction but also of evolving into more
complicated machines.

Cellular automata are widely used as
discrete models of physical systems and
have been used to simulate a wide range of
natural processes such as turbulent fluid
flow, gas diffusion, forest fires, and ava-
lanches. Cellular automata can even be
used to generate pseudo-random numbers.

Considered abstractly, cellular au-
tomata exhibit a wide variety of behaviors:
self organization, chaos, pattern formation,
and fractals.

John Conway’s Game of Life is the
best known abstract application of cellular
automata. In it, a wide variety of patterns
with life-like properties are born, interact,
and die in fascinating and complex ways.
Vastamounts of human and computer time
have been expended exploring this strange
world.

bors are labeled according to their relative
positions according to the points of the com-
pass.

Figure 4 shows another commonly used
neighborhood, named after Edward F. Moore,
anearly pioneer instudies of cellular automata.
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Figure 4. Moore 9-Neighborhood

Subscripts are used to denote times, which
proceed 1,2, 3, ... . For example C, is the state
of C at time 10.

A typical transition rule is the “parity
rule” for the 5-neighborhood:

C, =(C+N+E +5 +W,)mod 2

Thatis, C, , =1 if the sum of the neighborhood
states (including C itself) is odd and 0 other-
wise.

Anotherinteresting ruleis the “voter rule”
for the 5-neighborhood:

C, =Llif(N+E +S +W)>2
C,=0if(N+E+S +W)<2
C,, = ~C otherwise

i+1

where ~C is the complement of C: 1if C=0, 0
itC=1.

Note that in the voter rule, the result may
depend on the value of C, while in the parity
rule, it does not: In the parity rule, Cis treated
no differently than its neighbors.

Cellular Automata Topology

Before we can go further, we need to deal
with a sticky issue: What happens to the cells
at the edge of an automaton? What are their
neighbors?

This problem can be dealt with in several
ways. The way chosen depends on the context
in which the cellular automaton is considered.

One way is to consider the cellular au-
tomaton to be infinite withoutedges, with cells
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extending off indefinitely in all four direc-
tions. Another way is to treat the cells at the
edges as unchanging, serving as akind of static
border.

Aless obviousbutnatural and useful way
in the context of drawdowns is to consider the
cellular automaton to wrap around from edge
to edge. See Figure 5.

Figure 5. Neighborhood Wraparound

Thus, the N neighbor of a cell on the top
edgeis the cell in the corresponding row on the
bottom edge, and so on.

From a topological point of view, this
constitutes wraparound of the horizontal and
vertical edges and also of the top and bottom
edges. The result is a three-dimensional sur-
face known as a torus, as suggested by Figure

Figure 6. Torus

The cells on this torus are distorted be-
cause the “horizontal” circumference is larger
than the “vertical” circumference so that the
general shape to be seen more easily. Perspec-
tive causes the shapes of the cells to be skewed.

It is not necessary to actually make a tor-
oidal cellular automaton. It is only necessary,
when applying rules, to determine the neigh-

bors according to the wraparound topology.

It is worth noting that edge wraparound
is equivalent to an infinite plane of repeats.

Pattern Sequences

When a cellular automaton is started in a
specific configuration and a rule is applied
repeatedly, a pattern sequence results.

Figure 7 shows the beginning of the pat-
tern sequence that results from applying the 5-
neighborhood parity rule to the pattern shown
in Figure 2. The complete sequence has 511
distinct patterns; at the nextiteration, the origi-
nal pattern reappears; after this, there are no
new patterns.

Figure 7. Parity Rule Sequence

Figure 8 shows the pattern sequence that
results from applying the voter rule to the
pattern shown in Figure 2. In this case, there
are only three distinct patterns; the fourth is
the same as the second.
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Figure 8. Voter Rule Example

Figure 9 shows the beginning of the pattern
sequence for the 5-neighborhood parity rule
starting with a symmetric pattern. There are 511
distinct patterns in all, the 512th being the same
as the first.

Figure 9. Parity Rule with Symmetric Pattern

The voter rule, as in the previous example,
yields fewer distinct patterns starting with this
initial pattern, the seventh being the same as the
tirst. See Figure 10.

Figure 10. Voter Rule with Symmetric Pattern

An interesting way to explore the effects of a
rule is to start with a “seed”, a single black cell in
a field of white ones.

In such pattern sequences, it usually takes
some time for the seed to spread results to a
sufficient extent that useful patterns result. Fig-
ure 11 shows the pattern sequence for a single
seed and the 5-neighborhood parity rule. There
are 511 different patternsin all. The first eight are
shown in this Figure. Figure 12 shows four of the
more interesting patterns from the first 64.
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An apparently uninteresting 9-neighbor-
hood rule, called “1-0f-8”, is
o + C,=1if(NW. +N +NE +E +SE +
S,+SW, +5)=1
C.,, = C. otherwise

1

This rule, starting with a single seed, produces
a fascination fractal pattern. See Figure 13.

-
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Figure 12. Selections from First 64
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All patterns after the 10th are the same as the
10th.

Putting the seed off center illustrates the
effect of wraparound topology. See Figure 14.

Figure 14. Offset and Wraparound

The patterns in Figure 14 are the same as
those in Figure 13; they are just at different
positions on the torus.

Structural and Aesthetic Concerns

Many patterns produced by drawdown
automata are unsuitable for interlacement for
structural reasons. Notable examples are the
initial patterns in sequences starting with a
single seed. Other patterns simply are unat-
tractive.

Drawdown automata can produce thou-
sands of patterns quickly. Even with the rejec-
tion of obviously unsuitable patterns, the prob-
lem is one of excess. How can really good
patterns be found in seas of possibilities?

One approach is to start with a conven-
tional drawdown patternsuch as the oneshown
in Figure 2 and look for interesting examples
“of type”.

Another approach is to start with an at-
tractive and structurally sound symmetric
pattern and apply a symmetric rule (one, like
the parity rule, in which the result does not
depend on the actual positions of specificneigh-
bors). This avoids the problem with an over-
whelming cascade of chaotic patterns that may
result by starting with a pattern without much
structure and applying an asymmetric rule.

Size matters also. We've used 19 x 19
patterns in this article for presentation pur-
poses. Large patterns usually lead to longer
pattern sequences and allow more interesting
results, as illustrated by the large 1-of-8 pat-
tern shown at the end of this article.

Patterns need not be square, nor does
symmetry need to be of the “mirror” type, as
shown in the examples in this article, to pro-
duce attractive results. There is a world to
explore.

Resources

You can find a large number of cellular
automata programs on the Web, ranging from
freeware to commercial applications. Programs
for Windows, the Macintosh, and Linux are
plentiful. Some Web sites have applets that
allow you to experiment interactively.
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Some of cellular automata programs have
limited capabilities but are adequate for draw-
down explorations. Others are elaborate and
very capable, far exceeding the kinds of things
described in this article.

The Web also contains a large amount of
information on cellular automata, ranging from
introductory surveys to in-depth coverage of
specialized topics.

There are several books on cellular au-
tomata, and many recentbooks onrecreational
mathematics cover cellular automata to some
extent.

Gaylord and Nishidate [1] deal with cel-
lular automata in some detail but with an
emphasis on simulating physical systems us-
ing the symbolic mathematics program
Mathematica. Poundstone [2] provides exten-
sive conceptual background, but with a focus
the Game of Life. Toffoli and Margolis [3]
provide extensive coverage, including some
information of a technical nature. Wolfram [4]
contains an extensive collection of papers by
the leading current researcher in cellular au-
tomata. Although much of the material in this
book is technical, there are fascinating sections
for the layperson along with many drawings
and pictures that are inspirational in them-
selves.

In the many books on recreational math-
ematics, Gardner [5], Dewdney [6], and
Peterson [7] are accessible and stimulating.

To explore drawdown automata, how-
ever, all you need is a computer, Web access,
and an adventuresome spirit.

What's to Come?

This article only scratches the surface of
the topic of drawdown automata. Subsequent

articles will explore different neighborhoods
and rules in more depth, look at the properties
of pattern sequences, go on to different geom-
etries, and finally (?) explore color drawdowns.
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