
1 April 3, 2004; revised August 1, 2004

Designing with L-Systems, Part 4:

Articulated L-Systems

Variables and Constants

L-Systems [1] have no concept of characters
that play different roles. Most rewriting systems
distinguish between variables and constants. Vari-
ables have associated replacement strings; con-
stants do not and just stand for themselves.

In an L-system, if there is no rule for a charac-
ter, it is replaced by itself. In practical terms, it's a
constant.

Articulated L-Systems distinguish between
variables and constants. The mechanism for re-
writing and producing successive generation re-
mains the same. The only difference is in the clas-
sification of characters. In articulated L-Systems,
characters are divided into two classes as described
above: constants and variables.

This L-System from the article on using L-
Systems to produce graphic images [2] illustrates
the difference:

seed: X

rules: X ➛ F–[[X]+X]+F[+FX]–X

F ➛ FF

Here X and F are variables, while –, +, [, and] are
constants.

To help distinguish variables from constants
in examples that follow, uppercase letters are used
for variables and all other characters are constants.
This typographic distinction is just a matter of
convenience; there is nothing fundamental about
it.

Constants are just what their name implies.
They are not replaced in rewriting (which is a more
useful idea than the one that they are replaced by
themselves).

Defined and Undefined Variables

Variables in turn are divided into two classes:
defined and undefined. A defined variable is one
for which there is a rewriting rule. An undefined
variable is one that appears in an L-System but for
which there is no rewriting rule. During rewriting,
undefined variables are treated like constants, but
they play a different conceptual role.

Previous examples of L-Systems have had no
undefined variables. An undefined variable can
serve two purposes. One is as a placeholder for a
long constant string. An example is

seed: S

rules: S ➛ STS

Here, T is an undefined variable. Successive gen-
erations are

S
STS
STSTSTS
STSTSTSTSTSTSTS
 …

If T had been given the rule

T ➛ abcbbca

the third generation would have 42 more charac-
ters.

Undefined variables used as placeholders
need not be added to L-Systems; values for them
can be provided during interpretation.

Base L-Systems

Another use for undefined variables is in
designing base L-Systems that can be supplemented
by definitions for undefined variables.

Consider the previous L-System supple-
mented by a definition for T:

seed: S

rules: S ➛ STS

T ➛ aSb

Successive generations are:

S
STS
STSaSbSTS
STSaSbSTSaSTSbSTSaSbSTS

 …

On the other hand, with a different definition
for T, as in

seed: S

rules: S ➛ STS

2 April 3, 2004; revised August 1, 2004

References

1. Designing with L-Systems, Part 1: String Rewriting Systems, 2004:
 http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls01.pdf

2. Designing with L-Systems, Part 2: A Side Trip to Graphics, 2004:
 http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls04.pdf

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2004 Ralph E. Griswold

T ➛ SabS

successive generations are

S
STS
STSSabSSTS
STSSabSSTSSTSabSTSSTSSabSSTS

 …

Although the generations of these two L-
Systems are different, they both reflect the com-
mon part of their base L-System.

Base L-Systems can be used as a tool for
designing L-Systems incrementally by giving them
variable definitions..

Ralph E. Griswold
http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls01.pdf

Ralph E. Griswold
http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls04.pdf

http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls01.pdf
http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls04.pdf

