Designing with L-Systems, Part 6: Generating T-Sequence Expressions

The article on creating graphic images from L-Systems [1] illustrated the power of interpretation in which characters are given meaning. For creating images, characters are interpreted as instructions for a drawing program.

The concept of interpretation is very general and very powerful. This article describes an interpretation that constructs t-sequence expressions [2-8].

This example illustrates the idea:

seed: S rules: $S \rightarrow pal(T)$ $T \rightarrow rpt(U,I)$

This is a terminating L-System [9] with only two generations:

pal(T) pal(rpt(U,I))

The interpretation of these strings, as the characters used suggest, is that pal is a function that produces a palindrome from its argument and rpt is a function that produces a repeat of its first argument a number of times specified by its second argument. Note that although p, a, l, r, and t, are individual constant characters in the L-System, pal and rpt can be treated as strings during interpretation.

If U is given the value [1, 2, 3, 4] and I the value 2 during interpretation, the result is

The L-System above could, of course, be derived from its final generation:

The value of using an L-System to characterize the patterns rather than just using the t-sequence expression it produces is that the components are represented in separate rules and hence easy to understand, while a t-sequence expression may be complicated and deeply nested, which is difficult for human beings (but not computer pro-

grams) to understand, and may be difficult to construct by hand.

The articles on t-sequences cast operations in an abstract operator notation using a variety of mathematical symbols and typographical devices.

For example, the expression from the example above,

pal(rpt(U,I))

is written in the abstract operator notation as

 $\cap (U \times i)$

The following correspondences between the abstract t-sequence notation and concrete L-System strings will be used in subsequence articles. Refer to the articles on t-sequences [2-8] for an explanation of the operations.

t-sequence operations		L-System strings	
	$S \mid T$	concatenation	cat(S,T)
	$S \times i$	repetition	rpt(S,I)
	$S \Rightarrow i$	extension	ext(S,I)
	$i \rightarrow j$	simple run	run(I,J)
	$\rightarrow S$	connected run	crun(S)
	S / T	disconnected run	drun(S,T)
	$\leftrightarrow S$	horizontal reflection	hor(S)
	\$ S	vertical reflection	vert(S)
	$\cap S$	palindrome formation	on pal(S)
	S @ T	motif along a path	motif(S,T)
	$S \equiv i$	modular reduction	mod(S,I)
	≠S	modular expansion	xmod(S)
	$S \sim T$	collation	coll(S,T)

Some t-sequence expressions have options; the ones used here have the default options.

Note: As of this writing, the series of articles on t-sequences is incomplete. As more articles are added, this table will be extended accordingly.

References

- 1. *Designing with L-Systems, Part 2: A Side Trip to Graphics*, 2004: http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls02.pdf
- 2. Ralph E. Griswold*T-Sequences, Part 2: Introduction,* 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts01.pdf
- 3. Ralph E. Griswold, T-Sequences, Part 2: Extension, 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts02.pdf
- 4. Ralph E. Griswold, T-Sequences, Part 3: Runs, 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts03.pdf
- 5. Ralph E. Griswold, T-Sequences, Part 4 Symmetries, 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts04.pdf
- 6. Ralph E. Griswold, T-Sequences, Part 5: Motifs Along Paths, 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts05.pdf
- 7. Ralph E. Griswold, T-Sequences, Part 6: Modular Operations, 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts06.pdf
- 8. Ralph E. Griswold, T-Sequences, Part 7: Collation, 2004: http://www.cs.arizona.edu/patterns/weaving/webdocs/gre_ts07.pdf
- 9. *Designing with L-Systems, Part 5: Termination,* 2004: http://cs.arizona.edu/patterns/weaving/webdocs/gre_ls05.pdf

Ralph E. Griswold Department of Computer Science The University of Arizona Tucson, Arizona

© 2004 Ralph E. Griswold