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Review

In the first of this series of articles [1], we
described Ada Dietz’s method of weave design
using powers of multivariate polynomials with
special properties: unit coefficients and all vari-
ables to the first power:

(a1 + a2 + … + an)k

In this article, we’ll consider other kinds of
polynomials and various operations on polynomi-
als.

Other Kinds of Multivariate Polynomials

Design sequences produced from Dietz poly-
nomials have a very regular, rigid form. Every
variable (representing, say, a block) appears in the
sequence in the same way.

Other kinds of polynomials give more varied
results. For example,

(a + 2b2 + 3c3)2

produces the design sequence

  aaabbabbabbabbacccacccacccacccacccacccbbbbbbbbbb
  bbbbbbbbcccbbcccbbcccbbcccbbcccbbcccbbcccbbcccbb
  cccbbcccbbcccbbcccccccccccccccccccccccccccccccccccc
  ccccccccccccccccccccc

Assigning a, b, and c to shafts 1, 2, and 3,
respectively, and with a direct tie-up, treadled as
drawn in, the drawdown pattern shown in Figure
1 results.

Figure 1. (a + 2b2 + 3c3)2

Raising a polynomial to a power is what gives
the design sequence richness and variety. Raising
to a power is, of course, multiplying a polynomial
by itself. Another possibility is to multiply differ-
ent polynomials together, as in

(a + 2b2 + 3c3) ¥ (3a2 + b3 + 2c)

which produces the design sequence

  aaaaaaaaaaabbaabbaabbaabbaabbaabbaacccaacccaaccc
  aacccaacccaacccaacccaacccaacccabbbabbbabbbacacaca
  cacacbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcccbbbccc
  bbbcccbbbcccbbbcccbbbcccbbbcccbbbcccbbbcccbbcbbc
  bbcbbcbbcbbcbbcbbcbbcbbcbbcbbcccccccccccccccccccc
  ccccccccccccccccccccccccccccccccccccccccccccccccccc
  cc

and the drawdown pattern shown in Figure 2.

Figure 2. (a + 2b2 + 3c3) ¥¥¥¥¥ (3a2 + b3 + 2c)

And, of course, polynomials can be added, as
in

(a + 3b2 + 2c2)2 + (4a2 + b3 + c3)

which produces the design sequence

  aaaaaaaaaaabbabbabbabbabbabbaccaccaccaccbbbbbbb
  bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcc
  bbccbbccbbccbbccbbccbbccbbccbbccbbccbbccbbcccccc
  cccccccccccccccccccccccc

and the drawdown pattern shown in Figure 3.
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Figure 3. (a + 3b2 + 2c2)2 + (4a2 + b3 + c3)

We also can subtract polynomials, as well as
allow negative coefficients. But this leads us into
new territory.

The Domain of Coefficients

So far, all the coefficients have been positive
integers. But negative coefficients, as in

(a – b + c)2  ¥ (a – c + 2d)3

are natural, as is the subtraction of polynomials, as
in

(a + 3b2 + 2c2)2 – (4a2 + b3 + c3)

If there are negative terms, two new things
may happen when the polynomial is multiplied
out: (1) terms may be cancelled out by subtraction,
and (2) there may be negative coefficients.

The cancellation of terms may be used to
shorten strings produced by repetition. For ex-
ample,

(a + b)2 – ab = a2 + ab + b2  Æ aaabbb

If there are negative coefficients, the question
is how to interpret them in the concatenation step.
There is no inverse to concatenation like subtrac-
tion is to addition. One option is to discard terms
with negative coefficients. Another is to ignore the
signs in the concatenation step, which is equiva-
lent to using the absolute values of coefficients.

Neither of these alternatives makes any sense
mathematically, but more important, they do not
add anything to design possibilities. Instead, there
is an opportunity here to add an additional degree
of control in the construction of design sequences
— if a coefficient is negative, reverse the subse-

quent sequence of variables before repeating it; the
sign of a term determines the direction. For ex-
ample,

a2 – 3ab + b2 Æ aababababb

Of course, reversal makes no sense math-
ematically either, since

3ab – 3ab = 0 Æ  [nothing]

while

3ab – 3ab Æ abababbababa

But we are not “doing” mathematics. We’re using
mathematics as a basis for artistic design. Why not
have a little nonsense?

Why restrict coefficients to integers? Why not
fractions? But in producing design sequences, what
are we to make of fractional coefficients in the
concatenation step? One way would be to take
their integer part, so that

 Æ 0

and

 Æ 1

An alternative that enriches design potential
is to consider a fractional repetition as producing a
corresponding fraction of the string of variables
being repeated. Examples are

ab  Æ  a

– ab  Æ  b

ab Æ aba

If a fraction of a string of variables doesn’t
come out even, we can take just as many as it
encompasses, as in

aaabb Æ aa

And why not admit all real numbers, so that

abcde ª 1.414abcde Æ abcdeab

and
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pabcde ª 3.1416abcdefgh Æ
   abcdefghabcdefghabcdefgha

Operations on Polynomials

So far we’ve only considered the addition,
subtraction, and multiplication of polynomials.
There are two other “elementary” operations on
polynomials: Division and modular reduction.

Division
The division of two multivariate polynomials

is carried out with respect to one variable, the other
variables being treats as constants. If n(a) and d(a)
are two polynomials in a and d(a) π 0, then there is
a unique representation

where q(a) is the quotient polynomial and r(a) is the
remainder polynomial, and the degree of r(a) in a
is less than the degree of a in n(a).

Polynomial division is not difficult and is
much like long division. Consider this simple ex-
ample:

Therefore, putting terms in order, q(a) = a2 – ab + 3b2

and r(a) =  – 3b3 + bc3.
To see what may happen in design, consider

the Dietz polynomial (a + b + c)3 divided by a + 2b.
In this case the quotient and remainder polynomi-
als are

q(a) = a2 + 2ab + 3ac + b2 + 3c2

r(a) = –b3 + 3b2c – 3bc2 + c3

The drawdown patterns for this Dietz polyno-
mial and the quotient and remainder are shown in
Figures 4-6.

Figure 4. (a + b  + c )3

Figure 5.  Quotient of (a + b  + c )3 / (a + 2b)

Figure 6. Remainder of (a + b  + c )3 / (a + 2b)

Modular Reduction
Modular reduction of a polynomial by a con-

stant is simple: The coefficients of individual terms
are take modulo the constant. Consider, for ex-
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ample, the example of adding two polynomials
given earlier

(a + 3b2 + 2c2)2 + (4a2 + b3 + c3)

When multiplied out, the result is

5a2 + 6ab2 + 4ac2 + 4b3 + 9b4 + 12b2c2 + 4c3 + 4c4

and the design polynomial is made up from the
terms as follows

5a2 aaaaaaaaaa
6ab2 abbabbabbabbabbabb
4ac2 accaccaccacc
4b3 bbbbbbbbbbbb
9b4 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

12b2c2 bbccbbccbbccbbccbbccbbccbbccbbccbbccbbccbbccbbcc
4c3 cccccccccccc
4c4 cccccccccccccccc

Concatenation gives

  aaaaaaaaaaabbabbabbabbabbabbaccaccaccaccbbbbbbb
  bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbccb
  bccbbccbbccbbccbbccbbccbbccbbccbbccbbccbbcccccccc
  cccccccccccccccccccccc

Now consider this polynomial modulo 8:

5a2 + 6ab2 + 4ac2 + 4b3 + b4 + 4b2c2 + 4c3 + 4c4

Only the coefficients 9 and 12 are affected, the other
being less than 8. The terms for the design polyno-
mial now are

5a2 aaaaaaaaaa
6ab2 abbabbabbabbabbabb
4ac2 accaccaccacc
4b3 bbbbbbbbbbbb
b4 bbbb

4b2c2 bbccbbccbbccbbcc
4c3 cccccccccccc
4c4 cccccccccccccccc

and the design polynomial is:

  aaaaaaaaaaabbabbabbabbabbabbaccaccaccaccbbbbbbb
  bbbbbbbbbbbccbbccbbccbbcccccccccccccccccccccccccc
  cccc

The resulting drawdown pattern is shown in Fig-
ure 7.

Figure 7. ((a + 3b2 + 2c2)2 + (4a2 + b3 + c3)) ∫∫∫∫∫ 8

Modular reduction is a way of shortening
otherwise overly long design sequences and thus
provides interesting design possibilities.

When performing modular reduction on a
polynomial, there is no affect unless the modulus
is less than one of the coefficients. For example,
moduli 12 and greater have no affect on the poly-
nomial in the example above. When the modulus is
the same as a coefficient, the term vanishes and
makes no contribution to the design sequence.

As the modulus decreases, the maximum pos-
sible polynomial coefficient value decreases, short-
ening the design sequence. Little is left for modu-
lus 2. See Appendix A.

A variety of other operations can be performed
on multivariate polynomials to produce new poly-
nomials. Differentiation and integration – deriva-
tives and integrals — are the most obvious possi-
bilities.
Differentiation

Differentiation is performed with respect to a
specified variable and reduces the power of the
polynomial in that variable.

The partial derivative with respect to one vari-
able treats other variables as constants. The partial
derivative of a polynomial p with respect to the
variable a, which is denoted by ∂(p)/∂a,  requires
application of only a few simple rules:
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∂an/∂a = nan–1

∂(p + q)/∂a = ∂p/∂a + ∂q/∂a
∂k/∂a = 0

where k is a constant (indicated by roman type
style rather than italic style); that is, a term not
containing a. This includes bc, for example.

For example, if

p = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4

then

∂p/∂a = 5a4 + 20a3b + 30a2b2 + 20ab3 + 5b4

and

∂p/∂b = 5a4 + 20a3b + 30a2b2 + 20ab3

The derivative of a polynomial can, of course,
be differentiated. The second derivative of p with
respect to a

∂(∂p/∂a)/∂a

is abbreviated as

∂2p/∂a2

and so on. For example,

∂p2/∂a2 = 20a3 + 60a2b + 60ab2 + 20b3

and

∂3p/∂a3 = 60a2 + 120ab + 60b2

If differentiation continues with the same vari-
able, the powers in the variable decrease, terms
without an instance of the variable of differentia-
tion vanish, and the result eventually becomes a
constant, which does not yield a design sequence.
See Appendix A.

Integration
Indefinite integration of an expression p with

respect to a variable a, denoted by Úpdx, is the
(approximate) inverse of differentiation. It is ap-
proximate because

∂k/∂a = 0

regardless of the value of k. For example,

∂(a2 + 5)/∂a = 2a

and

∂(a2 + 101)/∂a = 2a

Therefore

Ú2ada = a2 + k

but k can have any value. This indeterminate k is
called the constant of integration.

The constant of integration makes a difference
in subsequent integrations, as in

ÚÚ2a(da)2 = Ú(a2 + k)da = a3 + ka + j

and then

ÚÚÚ2a(da)3 = ÚÚ(a2 + k) (da)2= Ú( a3 + ka + j)da

            = a4 + ka2 + ja + i

and so on.
In constructing design polynomials using in-

tegration, this problem could be handled in several
ways. One is to take all constants of integration to
be 0, in which case we have

Úada= a2

ÚÚa(da)2 = a3

ÚÚÚa(da)3 = a4

Another  way is to take constants of integra-
tion to be parameters of the result, producing
different polynomials depending on the values
assigned to these constants. This opens the door to
many possibilities but also increases the complex-
ity of the problem. We’ll take the constants of
integration to be zero for the examples here.

If the constants of integration are taken to be
zero and integration is repeatedly applied with the
same variable of integration, the powers of the
variable increase correspondingly but the coeffi-
cients become smaller and smaller until eventually
the design sequence becomes empty. This happens
very quickly for Dietz polynomials, which have
unit coefficients. See Appendix C.
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Conclusions

We have just touched on the possibilities for
design based on multivariate polynomials and
operations on them.

Any one of the subjects mentioned here could
be extended into a substantial studt on its own.

One question, of course, is why? The now trite
answer is because they are there. A better question,
for which there is no present answer, is how poly-
nomial structure is related to the visual interest
and attractiveness of weaves based on their design
sequences. A bit of mysticism may help here —
numerology has its uses.
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((a + 3b2 + 2c2)2 + (4a2 + b3 + c3))

mod 12

mod 11

mod 10

mod 9

mod 8

Appendix A — Modular Reduction



8 September 30, 2001; last modified December 3, 2002

mod 7

mod 6

mod 5

mod 4

mod 3

mod 2
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(a + b + c)4 = a4 + 4a3b + 4ac3  + 6a2b2 + 12a2bc + 6a2c2 + 4ab3 + 12ab2c + 12abc2 + 4bc3 + b4 + 4b3c + 6b2c2 + c4

aaaaaaabaaabaaabaaabaaacaaacaaacaaacaabbaabbaabbaabbaabbaabbaabcaabcaabcaabcaabcaabcaabcaabcaabcaabcaabcaabcaa
ccaaccaaccaaccaaccaaccabbbabbbabbbabbbabbcabbcabbcabbcabbcabbcabbcabbcabbcabbcabbcabbcabccabccabccabccabccabcca
bccabccabccabccabccabccacccacccacccacccbbbbbbbcbbbcbbbcbbbcbbccbbccbbccbbccbbccbbccbcccbcccbcccbccccccc

∂((a + b + c)4)/∂a =  4a3 + 12a2b + 12a2c + 12ab2 + 24abc + 12ac2 + 4b3 + 12b2c + 12bc2 +4c3

aaaaaaaaaaaaaabaabaabaabaabaabaabaabaabaabaabaabaacaacaacaacaacaacaacaacaacaacaacaacabbabbabbabbabbabbabbabbab
babbabbabbabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcaccaccaccaccaccaccaccaccaccacc
accaccbbbbbbbbbbbbbbcbbcbbcbbcbbcbbcbbcbbcbbcbbcbbcbbcbccbccbccbccbccbccbccbccbccbccbccbcccccccccccccc

∂2((a + b + c)4)/(∂a)2 = 12a2 + 24ab + 24ac + 12b2  + 24bc + 12c2

aaaaaaaaaaaaaaaaaaaaaaaaababababababababababababababababababababababababacacacacacacacacacacacacacacacacacacac
acacacacacbbbbbbbbbbbbbbbbbbbbbbbbbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbcbccccccccccccccccccccccccc

∂3((a + b + c)4)/(∂a)3 = 24a + 24b + 24c

aaaaaaaaaaaaaaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbcccccccccccccccccccccccc

∂4((a + b + c)4)/(∂a)4 = 24

(a + b + c)4 ∂((a + b + c)4)/∂a ∂2((a + b + c)4)/∂a2  ∂3((a + b + c)4)/∂a3

Appendix B — Differentiation
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(a + b + c)4 = a4 + 4a3b + 4ac3  + 6a2b2 + 12a2bc + 6a2c2 + 4ab3 + 12ab2c + 12abc2 + 4bc3 + b4 + 4b3c + 6b2c2 + c4

aaaaaaabaaabaaabaaabaaacaaacaaacaaacaabbaabbaabbaabbaabbaabbaabcaabcaabcaabcaabcaabcaabcaabcaabcaabcaabcaabcaa
ccaaccaaccaaccaaccaaccabbbabbbabbbabbbabbcabbcabbcabbcabbcabbcabbcabbcabbcabbcabbcabbcabccabccabccabccabccabcca
bccabccabccabccabccabccacccacccacccacccbbbbbbbcbbbcbbbcbbbcbbccbbccbbccbbccbbccbbccbcccbcccbcccbccccccc

Ú(a + b + c)4da =  0.2a5 + a4b + a4c + 2a3b2 + 4a3bc + 2a3c2 + 2a2b3 + 6a2b2c + 6a2bc2 + 2a2c3

aaaaabaaaacaaabbaaabbaaabcaaabcaaabcaaabcaaaccaaaccaabbbaabbbaabbcaabbcaabbcaabbcaabbcaabbcaabccaabccaabccaabc
caabccaabccaacccaaccc

ÚÚ(a + b + c)4da2 ª 0.033a6 + 0.2a5b + 0.2a5c + 0.5a4b2 + a4bc + 0.5a4c2 + 0.667a3b3 + 2a3b2c + 2a3bc2 + 0.667a3c3

aaaaaaaaabcaaaaaabaaabbcaaabbcaaabccaaabccaaac

ÚÚÚ(a + b + c)4da3 ª 0.005a7 + 0.033a6b + 0.033a6c + 0.1a5b2 + 0.2a5bc + 0.1a5c2 + 0.167a4b3 + 0.5a4b2c +

0.5a4bc2 + 0.167a4c3

aaaaaaaaa

ÚÚÚÚ(a + b + c)4da4 ª 0.001a8 + 0.005a7b + 0.005a7c + 0.017a6b2 + 0.033a6bc + 0.017a6c2 + 0.033a5b4 + 0.1a5b2c + 0.1a5bc2 +
 0.033a5c3

(a + b + c)4 Ú(a + b + c)4da ÚÚ(a + b + c)4da2 ÚÚÚ(a + b + c)4da3

Appendix C — Integration


