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Analysis of Weave Structures, Part 1: Introduction

Fabric analysis [1] can determine the struc-
ture of a fabric — its interlacement pattern.
Further analysis of the structure can provide
more information, including detection of pos-
sible errors in the analysis or in the weave
itself.

Representing Interlacement Patterns

In what follows, we’ll use binary arrays
[2, 3] to represent interlacement patterns, with
a 1 where the warp is on top and a 0 where the
weft is on top. Figure 1 shows a drawdown
from Oelsner [4] and Figure 2 shows the corre-
sponding binary array.

Figure 1. Drawdown

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1
1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0
0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1
1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0
0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

Figure 2. Binary Array

Finding the Unit Motif

The first step in the analysis of an inter-
lacement pattern is to determine its unit motif,

the smallest subpattern from which the entire
pattern can be constructed by repetition. All
subsequent analyses will be done on unit mo-
tifs — and depend for their usefulness on that.

In many cases, finding the unit motif can
be done by inspection, although it is easy to
make a mistake, particularly by identifying a
subpattern from which the entire structure can
be constructed by repetition but which is not
the smallest one.

The unit motif can be found by determin-
ing separately the shortest repeat lengths for
the rows and columns of the pattern.

Here we need to explain the nature of the
analysis methods we use. When done by hand,
tasks like finding repeats involve seeing pat-
terns and using various devices, like marking
positions, when that’s necessary. In this article,
we’ll describe how such tasks might be done
by a simple, straightforward computer pro-
gram. This approach often involves doing
things that a human being would not need to
do and which may seem silly and simple-
minded. Indeed, they are simple-minded —
but they also can be done very quickly by a
computer and without error. So, in this article
we’ll often think like a programmer, writing
down in words what would make up a pro-
gram.

Finding the repeat for rows and columns
is straightforward, if a bit tedious. Both proce-
dures are the same; we’ll refer to rows and
columns as lines.

1. Start with the first line of the binary array
for the pattern.

2. Form an initial segment by taking the first
binary digit from the beginning of the
line.

3. Repeat the initial segment to the length of
the line, discarding any run-over.

4. Compare the repeated segment to the line.

5. If the two match, the length of the initial
segment is the repeat length for the line
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and the process for the line is complete;
go to the next line and continue with Step
2.

6. Otherwise, if the length of the initial seg-
ment is less than the length of the line,
increase the length of the initial segment
by 1 and continue with Step 3.

7. If the length of the initial segment is the
length of the line, the width of the unit
motif is the length of the line and no other
lines need to be processed.

8. Otherwise, go to the next line if there is
one and continue with Step 2.

9. If there are no more lines, the process is
complete.

When done by hand, there are obvious
shortcuts to shorten the process. In the first
place, it should not be necessary to start with
an initial segment of length 1, since a repeat of
length one would be obvious and, of course,
should never occur in an interlacement pat-
tern. This procedure above could, in fact, start
with an initial segment of length 2. But if a
program is doing all the processing, it is wise
to take into account the possibility of lines
without interlacement. (Adequate program
testing would cover this case.) And don’t for-
get the possibility of extending the procedure
to profile block patterns.

Similarly, a repeat of length 2 would be
obvious and other lengths often can be skipped
because it is clear they will not work. But in
taking such obvious shortcuts, you are using
very sophisticated mechanisms — the human
mind and visual system, as well as experience
in using them. A computer program plods
instead.

Figure 3 shows the periods for the rows
and columns of the binary array of Figure 2.

          rows

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 4

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 8

1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 8

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 4

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 4

0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 8

0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 8

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 8

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 4

1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 8

1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 8

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 4

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 4

0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 8

0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 8

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 4

columns 8 8 8 8 8 4  8 4 8 4 8 8 8 8 8 8

Figure 3. Repeat Periods

When the repeat lengths of all rows have
been determined and if all are shorter than the
width of the pattern itself, the width of the unit
motif is the least common multiple (lcm) of the
lengths of all row repeats and similarly for the
column repeats.

The lcm of a list of integers is the smallest
integer that all divide evenly. For example, the
lcm of 2, 4, and 8 is 8, while the lcm 3 and 5 is 15.

For Figure 3, the row repeat lengths are 4
and 8, whose lcm is 8 and similarly for the
columns. Consequently the unit motif is 8 × 8.
Any 8 × 8 subpattern will do; we’ll use the one
starting at the upper left. See Figures 4 and 5.
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Figure 4. Unit Motif Drawdown

1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1
1 1 1 0 0 0 1 1
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0
0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 1

Figure 5. Unit Motif Array

Comment: There is a somewhat subtle is-
sue in determining repeats — whether or not
the pattern is composed of a full number of
repeats or if there are partial repeats at the
edges. The procedure above allows for the
latter possibility and is disguised in the re-
mark “discarding any run-over” in Step 3.

If the pattern is known to be an integral
number of repeats of a unit motif, only seg-
ment lengths that evenly divide the lengths of
lines need to be considered. For example, the
interlacement pattern in our example is 16 × 16.
Therefore, only lengths of 1, 2, 4, and 8 would
need be tried.

This situation considerably reduces the
number of cases that have to be tried and can
make a measurable difference in how long it
takes, especially for large patterns.

Indeed, it often is the case that the dimen-
sions of a pattern are integral numbers of the
dimensions of a unit motif. On the other hand,
assuming there may be partial repeats at the
edges is risky. For example, if a 12 × 12 pattern
has an apparent 8 × 8 unit motif, there is no way
to know for certain that the four rows and
columns beyond the presumed unit motif acci-
dentally match and the intention is to repeat a
12 × 12 unit motif. Here, the decision should be
made on the basis of external information and
experience.

Line Patterns

The rest of this article is concerned with
line patterns — patterns of 0s and 1s that occur
in the binary arrays for weave structures.

Lines can be viewed in two ways: as bit
patterns and as blocks of consecutive 0s and 1s.

 The first row of the unit motif for our
example has the bit pattern 10001000. The cor-
responding block-length pattern is 1 3 1 3 —
one 1, three 0s, one 1, three 0s. The underscores
distinguish 1-blocks from 0-blocks. This line
occurs twice among the rows.

The second row has the bit pattern
11000001 and the block-length pattern 2 5 1.
This line does not occur elsewhere among the
rows, but a circular permutation of it occurs in
row 6.

A circular permutation moves bits off one
end of a line and puts them on the other end.
For example, the circular permutation of
11000001 by 2 to the right produces 01110000,
where the underscores show the moved bits.
Permutations may be to the right (positive), to
the left (negative), or zero (no change). For
every negative permutation, there is a corre-
sponding positive permutation. For the ex-
ample above, permutation by –6 is the same as
permutation by 2: 11000001 becomes 01110000.
We will use only nonnegative permutation
amounts.

Circular permutations form the heart of
line analysis. Lines that are circular permuta-
tions of each other are considered structurally
equivalent, allowing many interlacement struc-
tures to be characterized by a few structurally
equivalent lines.

In order to deal with structurally equiva-
lent lines, we define a canonical form for lines —
a particular circular permutation that has spe-
cial properties and from which all other struc-
turally equivalent lines can be obtained.

The canonical form basically is the circu-
lar permutation that puts the most 1s at the left.
It can be determined by forming all the circular
permutations of a line (including by 0) and
sorting the results. The largest is the canonical
form.

For example, Figure 6 shows the circular
permutations of row 4 of our unit motif ex-
ample, and Figure 7 shows the results of sort-
ing, with the canonical form indicated by an
arrow.
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        amount
0 1 1 1 0 1 1 1 0
1 1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1 2
1 0 1 1 1 0 1 1 3
0 1 1 1 0 1 1 1 4
1 1 1 0 1 1 1 0 5
1 1 0 1 1 1 0 1 6
1 0 1 1 1 0 1 1 7

Figure 6. Circular Permutations of Row 4

1 1 1 0 1 1 1 0 ←
1 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
1 0 1 1 1 0 1 1
0 1 1 1 0 1 1 1
0 1 1 1 0 1 1 1

Figure 7. Sorted Permutations

Since the row consists of two repeats of a
length-4 pattern, each permuted row pattern
appears twice.

The canonical patterns for row 4 therefore
are

      bits blocks
11101110 3 1 3 1

There are altogether four different canoni-
cal row patterns:

A 10001000   1  3  1  3
B 11100000   3  5
C 11111000   5  3
D 11101110   3  1  3  1

There are two important properties of
canonical block-length patterns:

1. They always start with a 1-block and it is
the longest 1-block.

2. There are an even number of block-length
patterns, alternating between 1-blocks
and 0-blocks.

Exceptions to these rules occur for lines
that consist entirely of 0s or 1s. These do not
occur in real interlacement patterns, although
they may occur in block patterns. Such lines
are improper. They will be considered later.

Figure 8 shows the blocks for the rows of
the unit motif together with the amounts of
permutation.

         row         block  amount
1 1 0 0 0 1 0 0 0 A 0
2 1 1 0 0 0 0 0 1 B 7
3 1 1 1 0 0 0 1 1 C 6
4 0 1 1 1 0 1 1 1 D 1
5 1 0 0 0 1 0 0 0 A 0
6 0 0 0 1 1 1 0 0 B 3
7 0 0 1 1 1 1 1 0 C 2
8 0 1 1 1 0 1 1 1 D 1

Figure 8. Row Patterns

The row block-pattern sequence for the
rows is ABCDABCD and the permutation-
amount sequence is 07610321.

This characterization of the rows tells us
something about the interlacement. The first
four rows have the same canonical patterns as
the last four — that is, the block sequence is a
repeat of ABCD. In addition, blocks A and D
appear with the same rotation amounts, while
blocks B and C have different rotation amounts
in their two appearances.

There are three different canonical col-
umn patterns:

E 11101000   3  1  1  3
F 11100010   3  3  1  1
G 11001100   2  2  2  2

Note that these are all different from the ca-
nonical row patterns.

Figure 9 shows the blocks for the rows of
the unit motif with the amounts of permuta-
tion.

      column 1 2 3 4 5 6 7 8

1 0 0 0 1 0 0 0
1 1 0 0 0 0 0 1
1 1 1 0 0 0 1 1
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
0 0 0 1 1 1 0 0
0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 1

      block         E FGF E FGF
      amount 0 1 2 5 4 5 2 1

Figure 9. Column Patterns

Here again, the block sequence is a repeat.
Note that the permutation amounts, except for
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the first, form a palindromic sequence — one
that reads the same way forwards and back-
wards.

Figure 10 shows the complete line analy-
sis.

row         block  amount
1 1 0 0 0 1 0 0 0 A 0
2 1 1 0 0 0 0 0 1 B 7
3 1 1 1 0 0 0 1 1 C 6
4 0 1 1 1 0 1 1 1 D 1
5 1 0 0 0 1 0 0 0 A 0
6 0 0 0 1 1 1 0 0 B 3
7 0 0 1 1 1 1 1 0 C 2
8 0 1 1 1 0 1 1 1 D 1

      block         E FGF E FGF
      amount 0 1 2 5 4 5  2 1

Figure 10. Complete Line Analysis

Comments

This article introduces the basic concepts
for a kind of structure analysis that gives in-
sights and useful information for many kinds
of interlacements.

It works best for relatively simple inter-
lacement patterns that are geometrical in na-
ture, as many are.

Topics to come include the characteristics
of line analysis for certain kinds of weaves,
such as plain weave, twills, satins, basket
weaves, and so on. This will provide insight
into to the common properties of such weaves.

Another topic is detecting errors in inter-
lacement patterns. Do you see how that might
be done?

In a more formal vein, line analysis will be
used to detect interlacement patterns that are
equivalent in various ways.
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