
Incremental Forwarding Table Aggregation
Yaoqing Liu

yliu6@memphis.edu
Xin Zhao Kyuhan Nam

{zhaox,airkh}@email.arizona.edu
Lan Wang

lanwang@memphis.edu
Beichuan Zhang

bzhang@arizona.edu

Abstract— The global routing table size has been increasing
rapidly, outpacing the upgrade cycle of router hardware. Recently
aggregating the Forwarding Information Base (FIB) emergesas
a promising solution since it reduces FIB size significantlyin the
short term and it is compatible with any long-term architectural
solutions. Because FIB entries change dynamically with routing
updates, an important component of any FIB aggregation scheme
is to handle routing updates efficiently while shrinking FIB size as
much as possible. In this paper, we first propose two incremental
FIB aggregation algorithms based on the ORTC scheme. We then
quantify the tradeoffs of the proposed algorithms, which will help
operators choose the algorithms best suited for their networks.

I. I NTRODUCTION

The global Internet routing table has been growing at an
alarming rate [8], which appears to outpace the increase in
memory size, especially for the special type of memory used
in router line cards for fast lookup. Moreover, it forces ISPs to
upgrade router hardware at a faster pace, which not only causes
higher operational cost to the ISPs, but also makes issues such
as power consumption and lookup speed more prominent.

A promising solution to the routing table size problem is FIB
aggregation, which combines multiple entries in the forwarding
table (FIB) without changing the next hops for data forwarding.
This approach is particularly appealing because it can be done
by a software upgrade at a router and its impact is limited within
the router. It does not require changes to routing protocolsor
router hardware, nor does it affect multi-homing, traffic engi-
neering, or other network-wide operations. FIB aggregation is a
local solution that can be quickly implemented and deployedin
the short-term. In the long run, it can co-exist and complement
architectural solutions.

The feasibility of FIB aggregation depends on the solution
to one critical issue –how to designincremental FIB ag-
gregation schemesto efficiently handle routing changes, while
reducing FIB size and maintaining correct forwarding behavior.
In fact, several router vendors have raised their concern for
the overhead of handle routing updates when we discussed
FIB aggregation with them. In the simplest approach, one can
re-aggregate the FIB from scratch after each routing update.
However, routing updates may arrive rapidly under certain
conditions. If every update triggers a full aggregation, the
computation overhead would be extremely high and the route
processor may not be able to process all the routing updates in
time. Therefore, any practical FIB aggregation scheme must
be able to perform“incremental update handling”. More
specifically, an ideal algorithm should limit its computation to
only those FIB entries impacted by each routing update, thus
shortening the route processing time and FIB update time.

Fig. 1. RIB and FIB

Several FIB aggregation algorithms have been proposed,
including Optimal Routing Table Constructor (ORTC) [5],
Suri et al. ’s scheme [9], and our own Level-1 to Level-4
aggregation [11]. However, incremental FIB aggregation has
not been studied in depth in the previous work.

In this paper, we add update handling capability to ORTC [5]
to make it an incremental FIB aggregation scheme. More
specifically, we propose two update handling algorithms for
ORTC, one optimizing the FIB size and the other with a short
computation time. We then quantify the pros and cons of the
proposed update handling algorithms, which will help operators
choose the right algorithms best suited for their networks.

We organize the paper as follows. Section II defines some
basic terminology and Section III discusses related work. We
describe the original ORTC algorithm in Section IV and our
proposed incremental FIB aggregation algorithms in Section V.
We present our evaluation methodology and results in Sec-
tion VI – VIII. Section IX concludes the paper.

II. BACKGROUND

An IP address prefixsummarizes all the IP addresses that
share some common bits at the beginning. We use the notation
a/l to represent those addresses whose firstl bits are equal
to a. For example,141/8 represents all the addresses from
141.0.0.0 to 141.255.255.255. In particular,0/0 represents all
IP addresses. Given two prefixesp = a/l and p′ = a′/l′, if
a′ = a{0, 1}+ and l′ > l, we refer top′ as a more specific or
longer prefix ofp.

A Routing Information Base (RIB) is the repository in
which all IP routing information is stored (Figure 1). For each
address prefix, there may be multiple available routes and one
or several best routes. Routes may be added or deleted in
response to routing updates and the best route(s) will be re-
calculated.

A Forwarding Information Base (FIB) is derived from a
RIB but stored in line cards for fast lookup (Figure 1). Line
cards usually uses memory with high access speed, which is
more expensive than normal memory. A FIB (F) is comprised
of a set of forwarding entries,i.e., F = {(p, h)}, whereh is a
set of nexthop addresses for forwarding packets to any address
in prefixp. We further definenexthop(F, p) to be the nexthops
for prefix p according toF .

Given an IP addressd and a FIBF , an address prefixp =
a/l ∈ F is the Longest Prefix Match (LPM) for d, i.e.p =
LPM(F, d), if and only if the following conditions hold: (1)
d = a{0, 1}∗, and (2)∀p′ = a′/l′ ∈ F , if d = a′{0, 1}∗, then
l′ < l. We definenexthop(F, d) = nexthop(F, LPM(F, d)).
It is possible thatd does not have any match in the FIB, which
meansLPM(F, d) = ∅ and packets tod will be dropped.

The most important requirement for FIB aggregation is
to ensure “forwarding correctness”,i.e., an aggregated FIB
should not change the paths that packets take to reach their
destinations. We formally define this requirement below.

Given a FIBF , another FIBF ′ satisfiesStrong Forwarding
Correctnesswith respect toF if and only if the follow-
ing conditions hold: (1) any non-routable address inF will
remain non-routable inF ′, i.e., if LPM(F, d) = ∅, then
LPM(F ′, d) = ∅; (2) the nexthop of any routable address
in F will remain the same inF ′, i.e., if LPM(F, d) 6= ∅,
nexthop(F ′, d) = nexthop(F, d). If we require only the
second condition to hold,F ′ is said to satisfyWeak Forwarding
Correctnesswith respect toF . Note that, in this case, a non-
routable address inF could become routable inF ′, resulting
in extra routable space.

III. R ELATED WORK

Several long-term routing scalability solutions have been
proposed in the IRTF Routing Research Group. For example,
LISP[6], APT[7], and Ivip[10] use Map-and-Encap to separate
edge prefixes from the Internet core. However, implementing
these proposals requires changing the routing architecture and
modifying protocols. In contrast, FIB aggregation is a local
solution. It can be implemented via software upgrade and
deployed by individual ISPs and routers. It also complements
the long-term solutions.

In [5], Draveset al.designed an algorithm that aggregates
a FIB to the furthest extent without introducing extra routable
space,i.e., ORTC is the optimal algorithm under the strong
forwarding correctness requirement. Suriet al.extended the
ORTC work by considering each routing table entry as a 3-
tuple (src, dest, action) [9]. They used dynamic programming to
optimize the routing table size. Herrin [2] suggested yet another
aggregation algorithm which may introduce extra routable
space. Extra routable space is the address space that is not
routable in the original FIB but routable in the aggregated FIB.
In [11], we designed four levels of FIB aggregation, each level
with higher aggregation ratio but also higher algorithmic com-
plexity. By exploiting the tradeoff between extra routablespace
and aggregation ratio, our Level-4A algorithm can compress
FIBs more than ORTC does.

Previous FIB aggregation algorithms, with the exception
of ours, do not handle dynamic routing updates efficiently.
Although we did introduce an incremental update algorithm
in [11], we did not do a thorough investigation. In this paper,
we study different approaches to converting a static FIB ag-
gregation scheme to an incremental one. To this end, we use
ORTC as an example, since it clearly illustrates the tradeoffs.

IV. FIB A GGREGATION USINGORTC

Routing tables are usually stored in a tree-like data structure,
such as a Patricia Trie [1] or an M-trie [4], with the0/0 prefix
at the root and the most specific prefixes at the leaf level.
By augmenting the tree nodes with a few additional fields, a
FIB aggregation algorithm can traverse the tree to produce the
aggregated FIB.

Draves et al.proposed the Optimal Routing Table Con-
structor (ORTC) algorithm [5], which minimizes FIB size
while achieving strong forwarding correctness. Their original
algorithm was based on a Binary Tree data structure. We
implemented it using a Patricia Trie, which is more memory
efficient and more commonly used for storing routing tables.

A. Original ORTC Algorithm

The original ORTC algorithm assumes that the routing table
is stored in a binary tree. It traverses the tree three times to
produce the optimal FIB (Figure 2). The first two tree passes
may be combined into one step in an implementation.

The first tree pass (Figure 2(b)) expands the tree so that
every node has zero or two children. Each expanded leaf node
has the same next hop as that of its nearest ancestor (the
ancestor has to be a real prefix in the routing table). This
expansion “de-aggregates” the routing table – the routing table
is now composed of only the most specific prefixes (i.e., leaf
nodes) and their nexthop information, which is an important
preparation for the next two passes.

The second pass (Figure 2(c)) is a bottom-up process that
calculates the most prevalent next hops at every level of the
routing table. If two children share one or more common next
hops, their common nexthops will be stored at the parent node
as the parent’s candidate nexthop set. Otherwise, the unionof
the children’s nexthops will be stored at the parent node as
the parent’s candidate nexthop set. In other words, suppose
l and r are two children of the parentp, then p’s candidate
nexthop set is computed by either UNION(l, r) if it is not empty
or INTERSECTION(l, r) operations otherwise. This process
repeats up to the root of the tree.

The third pass (Figure 2(d)) is a top-down process in which
each node selects one nexthop from the candidate nexthop set
computed by the second pass. An important rule for this step
is that, whenever its parent’s nexthop appears in its candidate
nexthop set, a node will choose its parent’s nexthop as its own
nexthop so that its information does not have to be installed
in the FIB. However, if the parent’s nexthop is not a member
of the node’s candidate nexthop set, a nexthop will be selected
randomly from the candidate nexthop set and the node will be

(a) Initial Tree (b) Pass 1 (c) Pass 2 (d) Pass 3 (e) Prefixes in FIB

Fig. 2. ORTC Algorithm (The initial routing table has 4 prefixes, with their nexthop addresses shown in each node. The aggregated FIB has 3 prefixes.)

tagged asIN FIB. After this step, all the nodes with the tag
IN FIB will be placed into the FIB.

B. Patricia Trie Implementation

Following other open source router implementations (e.g.,
gated and MRTD), we used Patricia Trie [1] to implement our
algorithms. A Patricia Trie is a binary tree, but it does not
require children’s prefixes to be longer than their parents’by
exactly one. As such, it can reduce memory consumption by
eliminating internal nodes whenever possible. For example, in
order to store the prefixes 0/0 and 001/3, a regular binary tree
needs four nodes including two internal nodes 0/1 and 00/2,
while a Patricia Trie does not require the two internal nodes.
For each tree node, we store itsoriginal nexthop, node type,
candidate nexthop set, selected nexthop, as well as fields used
in tree traversal.

In a binary-tree implementation, the tree is first expanded
and then the children’s nexthops are merged to calculate their
parents’ candidate nexthop set. This is much more challenging
to implement correctly in a Patricia Trie, as we need to avoid
creating internal nodes to the extent possible (otherwise it
becomes a binary tree). We have found ways to merge nex-
thops correctly without creating internal nodes, when children’s
prefixes are longer than their parent’s by more than one. We
also postpone expanding the tree until the third pass, so that
we only create those leaf nodes that will be in the FIB. For
brevity, we do not present the details in this paper.

V. ORTC-BASED INCREMENTAL FIB AGGREGATION

The incremental update handling capability is missing from
the original ORTC work but important to router operations in
practice. We designed two such algorithms for ORTC. Both
of our update handling algorithms ensure strong forwarding
correctness. The first one aims to reduce the amount of time
for the route processor to process the routing message and
update the FIB at each line card. We call it the “Minimal Time”
scheme. The second one maintains the optimal aggregated FIB
size, which we call the “Optimal Size” scheme.

There are several common operations used by these two
schemes. Below we first define these operations, and then use
them to describe the algorithm for each scheme.

• updateDescendantsCandidate(p): starting from the bottom
of the sub-trie rooted atp, update all descendant prefixes’
candidate nexthop sets. This is the same as the second pass
of ORTC, except that it stops at the prefixp.

• updateAffectedAncestors(p): starting from the parent of
prefix p, update all ancestor prefixes’ candidate nexthop
set as done in the second pass of ORTC until reaching an
ancestor prefix whose candidate nexthop set is the same
as before. The last ancestor updated will be returned from
this function, we usePA to refer to the returned ancestor
node.

• updatePrefix(p): update prefixp’s candidate nexthops as
done in the second pass of ORTC.

• updateDescendantsSelected(p): starting from prefix p,
compute selected nexthop for each prefix in the sub-trie,
as done in the third pass of ORTC.

With the above basic operations, we first describe the update
procedure for an unaggregated FIB and then describe the two
update handling algorithms for an FIB aggregated using ORTC.

A. Unaggregated FIB update Scheme

Unaggregated FIB update scheme runs the normal update
operations, e.g. add, update and withdraw, on the original FIB
table without any aggregation for each coming update message.
Upon receiving an announcement ofp, the router will look up
the FIB table to check ifp exists in the FIB. If so, then update
the next hop according to the announcement; Otherwise, add a
new prefix with the corresponding next hop into the FIB table.
Upon receiving a withdrawal ofp, the router will look up the
corresponding prefix from its FIB table, then remove this prefix
with its next hop. This scheme is used in current routers, and
can always guarantee the forwarding correctness.

B. Minimal Time Scheme

This scheme essentially reruns the ORTC algorithm on
the subtree rooted at the prefix being updated, even though
there may be more aggregation opportunities above the prefix.
Therefore, this scheme will not optimize the FIB size, but rather
it aims to achieve a good balance between processing time and
FIB size.

Upon receiving an announcement of prefixp, if p does
not exist, thenp is inserted into the RIB, otherwisep’s
information is updated if necessary. This is followed by calling
updateDescendantsCandidate(p), updatePrefix(p), and updat-
eDescendantsSelected(p)to re-aggregate the subtree rooted at
p (see an example in Figure 3).

Upon receiving a withdrawal of prefixp, the prefix is
removed from FIB if it is IN FIB. Note that we do not
remove the prefix from the RIB, but instead label it as aFAKE
node, since it may be re-announced later. Then its original

Fig. 3. Minimal Time Scheme Example. The number in each square is the
nexthop for that address prefix. First, a new prefix with the nexthop 3 is inserted
into the routing table, so there are a total of 4 prefixes in thetree. Then, we
expand the subtree rooted at the new prefix and re-calculate the candidate
nexthop sets for each node on the subtree. This is followed byselection of the
nexthop. The final result is that the same four prefixes remainon the tree even
though two of them are aggregatable.

Fig. 4. Optimal Size Scheme Example. First, a new prefix with the nexthop
3 is inserted into the routing table, so there are a total of four prefixes in the
tree. Then, we expand the subtree rooted at the new prefix and re-calculate the
candidate nexthop sets from the leaf nodes under the new prefix towards the
root (tree expansion is done when necessary). This is followed by selection
of the nexthop from the highest level node whose candidate nexthop set has
changed. The final result is that only three prefixes remain onthe tree.

nexthop is updated to be the same as its nearest ancestor’s
original nexthop. We then useupdateDescendantsCandidate(p),
updatePrefix(p), updateDescendantsSelected(p)to update the
subtree rooted atp.

C. Optimal Size Scheme

This scheme needs to produce exactly the same result as run-
ning the ORTC full aggregation algorithm. However, in orderto
reduce computation time, it must restrict the tree traversals to
only those nodes whose state will likely change (otherwise,
this is not incrementalupdate handling). More specifically,
starting from the prefix being modified, we recalculate the
candidate nexthop set of its ancestors until reaching a node
whose candidate nexthop set does not change. We then re-
aggregate the subtree rooted at this node. The detailed algorithm
is similar to the previous one, so we only highlight their
differences below.

For either an announcement or withdrawal ofp, instead
of calling updateDescendantsSelected(p), we use updateAf-
fectedAncestors(p)andupdateDescendantsSelected(PA), where
PA is returned by the previous operation (see an example in

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30 35

A
gg

re
ga

tio
n

R
at

io

Router ID

Level-2
ORTC

Fig. 5. Aggregation Ratio (ORTC vs. Level-2)

Figure 4). This ensures that we update those ancestors ofp
whose optimal nexthops (for the purpose of aggregation) are
affected by this routing update. All the other operations are the
same as those in the Minimal Time Scheme.

VI. PERFORMANCEMETRICS

We use the following metrics to compare different algorithms
(in the following definitions,F andF ′ are the original FIB and
aggregated FIB respectively):

a) Aggregation Ratio (r): the ratio between the aggre-
gated FIB size and the original FIB size,i.e., r = |F ′|/|F |. A
smaller aggregation ratio means more reduction in FIB size.

b) Computation Time (c): the time cost for aggregating
the initial FIB (c1) and that for updating the aggregated FIB
(c2). One may think that a route processor will inevitably
be slowed down by the computation associated with FIB
aggregation, but a good news is that an aggregated FIB may
require less time to update than an unaggregated FIB [11].

VII. E VALUATION OF ORIGINAL ORTC ALGORITHM

Today a typical BGP routing table has hundreds of thousands
of entries. Some routers in large ISPs even have more than one
million entries including both BGP and IGP routes. The DFZ
routing tables have grown by several orders of magnitude since
ORTC was originally proposed in 1999. Therefore, we first
need to evaluate the feasibility of the basic ORTC algorithm.

We obtained BGP routing tables from 36 peers at the route-
views.oregon-ix.net collector of the RouteViews project [3].
We then extracted the prefixes and their nexthop ASs from
the routing tables. Note that we cannot directly obtain the
IP nexthop address from the BGP routing tables. However,
we have used private data containing both routing tables and
forwarding tables from a Tier-1 ISP to verify this methodology
and found that the results do not differ much when we use the
nexthop AS in place of the IP nexthop. More justification of
our methodology can be found in our earlier paper [11].

Our evaluation has been done on a Linux machine with an
Intel Core 2 Quad 2.83GHz CPU. One router vendor told us
that their routers’ CPU processing power is similar to that of
high-end laptops. Therefore, our computation time resultsare
reasonable indicators of how long it will take the routers to
perform the aggregation.

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

T
im

e
(m

s)

Router ID

Level-2
ORTC

Fig. 6. Computation Time (ORTC vs. Level-2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2001 2002 2003 2004 2005 2006 2007 2008

M
ed

ia
n

A
gg

re
ga

tio
n

R
at

io

Year

Level-2
ORTC

Fig. 7. Median Aggregation Ratio over Time (ORTC vs. Level-2)

Figure 5 shows the aggregation ratio of ORTC when it is
applied to the routing tables collected on Dec. 31, 2008. One
can observe that the aggregation ratio varies from0.15 to 0.42,
with a median of0.39. In other words, the aggregated FIB
size can be 15% to 42% of the original FIB size. The specific
aggregation ratio depends on how many different nexthops
that a router has and how the nexthops are distributed among
the prefixes. In general, routers with fewer nexthops have
better aggregation ratios. For reference, we also include the
aggregation ratio of our Level-2 algorithm [11], which ensures
strong forwarding correctness as ORTC does. The Level-2
aggregation ratio ranges from0.23 to 0.50 with a median of
0.48. As expected, ORTC has better aggregation ratios than
Level-2, since the former optimizes the FIB size.

On the other hand, Figure 6 shows that the Level-2 algo-
rithm’s computation time is between64ms and 76ms with a
median of71ms, while ORTC requires196ms to 211ms with
a median of202ms to finish a full aggregation process. In other
words, the Level-2 algorithm is two times faster than ORTC.
This is mainly because the former traverses the routing table
only once, while the latter requires at least two passes.

Finally, as shown in Figure 7, the median aggregation ratio
of ORTC has decreased from 0.5 in 2001 to below 0.4 in 2008
and the Level-2 algorithm exhibits a similar trend, suggesting
that the forwarding tables have become more amenable to
aggregation over time. This may be due to the increasingly pop-
ular practices of traffic engineering and multi-homing, which
typically introduce more covered prefixes.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

F
IB

 s
iz

e

Number of Updates

Optimal Size
Minimal Time

Fig. 8. FIB Size under Incremental FIB Aggregation Schemes over One Month
for Router 4.68.1.166

 0

 20

 40

 60

 80

 100

 120

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

C
om

pu
ta

tio
n

T
im

e
(s

)

Number of Updates

Optimal Size
Minimal Time

Unaggregated FIB

Fig. 9. Cumulative Computation Time of Incremental FIB Aggregation
Schemes over One Month for Router 4.68.1.166

VIII. E VALUATION OF ORTC-BASED INCREMENTAL FIB
AGGREGATION

We evaluated the two proposed update handling schemes
using BGP tables and updates collected by RouteViews in
December 2008. The number of BGP updates from a router
ranges from a few million to tens of millions in this month. We
present the results for the router 4.68.1.166, which is located
in the Tier-1 ISP Level-3 Communications. The other routers
have similar results.

Figure 8 shows how the FIB size changes over the one-month
period for the peer 4.68.1.166. The unaggregated FIB size was
267, 108 on Dec. 1, 2008 and270, 927 on Dec. 31, 2008. The
ORTC full aggregation algorithm reduces the initial FIB size
to 114, 733, representing an aggregation ratio of0.43. After
processing7, 254, 478 BGP updates, the Optimal Size scheme
achieves a FIB size of116, 041 (the bottom curve), maintaining
the aggregation ratio of0.43. In contrast, with the Minimal
Time scheme, the FIB size increases to131, 210 (the top curve),
i.e., 13% larger than that of the Optimal Size scheme.

If the FIB size increases continuously under the Minimal
Time scheme, it may exceed the memory size on a line card.
One solution is to perform a full aggregation whenever the
FIB size reaches a certain threshold. For example, if we set the
threshold to 130,000, then this particular router’s FIB needs to
be re-aggregated in 20 to 30 days. The threshold value depends
on the actual memory size on the line cards.

As shown in Figure 9, the computation time of the Optimal
Size scheme is103s for processing the7.25 million updates

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

T
im

e
(s

)

Router ID

Optimal Size
Minimal Time

Fig. 10. Computation Time of Incremental FIB Aggregation Schemes for All
Routers

(the top curve), which means14µs per update. It is orders of
magnitude faster than rerunning the full aggregation scheme,
which would take200ms per update. On the other hand, the
Minimal Time scheme takes only13s to process all the updates
(the middle curve),i.e., 1.8µs per update.It is seven times
faster than the Optimal Size scheme. Moreover, this scheme
only takes5s more than the Unaggregated FIB scheme (the
bottom curve), which is the normal update scheme for FIB
without any aggregation applied, for the total7.25 million
updates. Namely, the Minimal Time scheme with aggregation
only takes about0.7µs longer than current update mechanism
without aggregation per update.

As for the computational complexity and memory usage in
the worst case, we need to consider how many nodes each
scheme would traverse. In the Minimal Time scheme, if the
routing update is for a prefix located at the root node, we need
to update all the tree nodes beneath the root node, which is the
entire tree. This incurs the same overhead as the original ORTC
(two tree passes). However, this worst case only happens when
the updated prefix is located at the root. In the Optimal Size
scheme, the worst case may happen even when the prefix in
question is not at the root – we need to update its ancestors
until reaching one that is not affected by the change and
this process may ultimately reach the root node in the worst
case. In practice, the actual computation time and memory
usage depend on the specific routing updates and the FIB. For
reference, Figure 10 shows the processing time of all the 36
routers’ updates in Dec. 2008. Minimal Time scheme typically
takes about tens of seconds, while Optimal Size scheme takes
hundreds of seconds in general.

Because FIB updates require real-time processing so that
traffic can be forwarded to the correct nexthop, these results
suggest that the Minimal Time scheme may be more preferable
in a real network setting, although it requires a slightly larger
FIB memory.

IX. CONCLUSIONS

As the Internet keeps growing rapidly, routers are facing a
tough task: forwarding huge amount of traffic at line rate and
still operates within their memory limit. FIB aggregation is
a promising solution to the problem of increasing table size,
but any FIB aggregation scheme must run fast enough not

to slow down packet forwarding. ORTC is a FIB aggregation
algorithm that gives the minimum table size possible under
strong forwarding correctness, but it takes about 200ms to run,
which is way too long for real operation, especially when there
are many routing changes. In this paper, we have designed two
algorithms that can incrementally update the aggregated FIB
table upon a routing change. These algorithms take 14µs or
1.8µs per update, dramatically reducing the processing time
and making FIB aggregation practical for real operation.

We also compare ORTC’s performance with a simple ag-
gregation algorithm (Level-2), and quantify performance dif-
ference between the two ORTC update handling algorithms.
The results illustrate that FIB aggregation is a typical tradeoff
between memory requirement and processing cycles. ORTC
achieves the minimum table size possible under strong forward-
ing correctness. Compared with the simple Level-2 algorithm,
ORTC compresses the table about 10% more, but takes al-
most 3 times longer. Between the two ORTC update handling
algorithms, one maintains minimum table size all the time,
another trades about 13% table size for a speedup of 7 times.
Network operators will be the one to decide which tradeoff
to make depending on their router configurations and network
requirement, and our results provide quantitative information to
help the decision making.

ACKNOWLEDGMENTS

This work was supported by NSF Grants 0721645 and
0721863. We thank Richard Draves for sharing his ORTC code,
as well as the anonymous reviewers for their feedback.

REFERENCES

[1] Net-Patricia Perl Module. http://search.cpan.org/dist/Net-Patricia/.
[2] Opportunistic Topological Aggregation in the RIB-FIB Calculation? http:

//www.ops.ietf.org/lists/rrg/2008/threads.html#01880.
[3] Advanced Network Technology Center and University of Oregon. The

RouteViews project. http://www.routeviews.org/.
[4] S. Ahmand and R. Mahapatra. M-trie: an efficient approachto on-chip

logic minimization. In Proc. IEEE/ACM International conference on
Computer-aided design, 2004.

[5] R. Draves, C. King, S. Venkatachary, and B. D. Zill. Constructing Optimal
IP Routing Tables. InProc. IEEE INFOCOM, 1999.

[6] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Sep-
aration Protocol (LISP). Work in Progress, http://tools.ietf.org/html/
draft-farinacci-lisp-12, Mar. 2009.

[7] D. Jen, M. Meisel, D. Massey, L. Wang, B. Zhang, and L. Zhang. APT:
A Practical Tunneling Architecture for Routing Scalability. Technical
Report 080004, UCLA, 2008.

[8] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on
Routing and Addressing.RFC 4984, 2007.

[9] S. Suri, T. Sandholm, and P. Warkhede. Compressing Two-Dimensional
Routing Tables.Algorithmica, 35:287–300, 2003.

[10] R. Whittle. Ivip (Internet Vastly Improved Plumbing) Architecture. draft-
whittle-ivip-arch-02, August 2008.

[11] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the Aggregatability of
Router Forwarding Tables. InProc. IEEE INFOCOM, 2010.

