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Abstract
Dynamic taint analysis and symbolic execution find many
important applications in security-related program analyses.
However, current techniques for such analyses do not take
proper account of control transfers due to exceptions. As a
result, they can fail to account for implicit flows arising from
exception-based control transfers, leading to loss of precision
and potential false negatives in analysis results. While the
idea of using exceptions for obfuscating (unconditional) con-
trol transfers is well known, we are not aware of any prior
work discussing the use of exceptions to implement condi-
tional control transfers and implicit information flows. This
paper demonstrates the problems that can arise in existing
dynamic taint analysis and symbolic execution systems due
to exception-based implicit information flows and proposes
a generic architecture-agnostic solution for reasoning about
the behavior of code using user-defined exception handlers.
Experimental results from a prototype implementation in-
dicate that the ideas described produce better results than
current state-of-the-art systems.

1. INTRODUCTION
Dynamic taint analysis and symbolic execution find nu-

merous applications in privacy- and security-related program
analyses. Dynamic taint analysis involves tracking certain
data (the tainted values) through the execution of the pro-
gram; symbolic execution generates path constraints that
express the logic of the computation along an execution path.
The two techniques can be combined to reason about how in-
put values influence the execution path taken by the program,
and thereby identify alternative inputs that can cause a dif-
ferent execution path to be taken. This approach has been
applied to a wide variety security and software testing appli-
cations, e.g., test case and exploit generation [7, 8, 14,24,46],
vulnerability detection [9, 10,16], and multi-path exploration
during dynamic analysis of malware code [2, 3, 6, 35,36].

Given the numerous security-related applications of dy-
namic taint analysis and symbolic execution, it is important

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CODASPY ’17, March 22–24, 2017, Scottsdale, AZ, USA.
c© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029826

to understand any potential shortcomings of current tech-
niques and devise solutions to mitigate their weaknesses; a
failure to do so can potentially lead to flawed conclusions
about the software we analyze, e.g., leave application vulner-
abilities unidentified or malware execution paths unexplored.
Previous studies have discussed some of the limitations of
dynamic taint analysis [13,44] and symbolic execution [48,56].
These works all involve “normal” executions where the exe-
cution path is (at least in principle) available for inspection.
This paper focuses on a different kind of control flow con-
struct, namely, exception-based control transfers, where the
execution path is not explicit and which can be significantly
harder to analyze than conventional control transfers.

It turns out that exception-based control transfers—which
are well-known as an obfuscation mechanism and have been
widely used in malicious code—can be used to realize implicit
information flows in ways that are not detected by any of
the existing state-of-the-art dynamic analysis tools we tested
including KLEE [7], S2E [16], FuzzBall [4] and angr [49].
The problem arises both for dynamic taint analysis and
for symbolic execution. This is because currently, implicit
information flow detection and symbolic execution techniques
rely on information about the execution path and control
flow of the program to reason about alternative execution
paths. For instance, dynamic taint analysis approaches (e.g.
[17,29]) use program’s control flow graph (CFG) to determine
whether a dataflow is implicit, i.e., occurs through a control
transfer. Similarly in symbolic execution, the analysis relies
on syntactic characteristics such as instruction opcodes to
identify jump instructions and thereby determine branch
conditions and path constraints.

On the other hand, operating systems provide powerful low-
level mechanisms, namely, exceptions, that allow programs
to deal with unexpected situations. These are hardware or
software faults (e.g. memory access violation) that cause
execution to be transferred to exception handlers that take
appropriate action. The handlers may be custom routines im-
plemented within an application or default handlers provided
by the operating system, and the details of the exception-
handling mechanism may depend on the underlying operating
system, but at the end, they all have the common behavior
of transferring the control of application to a handler that
is responsible for handling the occurred exception or fault.
The control flow behavior of a program can be obfuscated by
using deliberately-induced exceptions to cause execution to
be transferred to the handler code as part of the program’s
“normal” execution [31,40,57]. The simplest manifestation of
this idea uses exceptions to implement unconditional jumps
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to the handler code; however, it is straightforward to extend
this idea such that the exception is raised only under spe-
cific conditions, thereby realizing exception-based conditional
control transfers.

Current techniques for dynamic taint analysis and symbolic
execution only take into account normal control transfers
and do not consider control transfers due to exceptions. This
means that an attacker can exploit the exception mechanism
to implement arbitrary control transfers and thereby real-
ize implicit information flows that are not detected using
existing analysis techniques. This represents a significant
shortcoming of such analyses. Furthermore, fixing the prob-
lem is not straightforward because identifying the potential
control transfer—i.e., the locations where exceptions can be
raised and those where they may be handled—is not always
straightforward. We have observed such information flows in
existing exploit code. While symbolic execution has a num-
ber of challenges, such as path explosion, constraint solving,
system calls etc., these have been previously discussed in the
literature [11,45] and so are not pursued further here. This
paper focuses on a different kind of challenge for symbolic
execution that has not been previously studied in detail in
the research literature.

This paper proposes a solution to excpetion-based control
transers by taking into account the possiblity of a control
transfer due to exceptions where the application code contains
user-defined exception handlers. In particular, it makes the
following contributions:

• It demonstrates the challenges that arise in current dy-
namic taint analysis and symbolic execution techniques
when dealing with exception-based information flow.

• It proposes a generic architecture-agnostic solution for
both dynamic taint analysis and symbolic execution
to address the shortcomings and hence improves the
accuracy and robustness of the analyses.

• It describes a prototype implementation that outper-
forms the state-of-the-art systems for symbolic execu-
tion and dynamic taint analysis if applied against real
mal-intended code as well as sample test programs that
use exception-based obfuscation techniques.

The remainder of the paper is organized as follows: section
2 discusses motivations and background on dynamic taint
analysis and symbolic execution. Section 3 demonstrates the
problem in more detail and discusses our ideas to solve this
problem followed by our prototype implementation details
in section 4. Our evaluation results are presented in section
5. Previous and related works discussed in section 6 and the
paper concludes in section 7.

2. BACKGROUND AND MOTIVATING EX-
AMPLE

2.1 Signals
Signals (exceptions) serve to notify processes of an event

or a software or hardware fault. There are two types of
signals: synchronous and asynchronous. A synchronous
signal typically results from an error in executing an instruc-
tion, e.g., “illegal instruction” (SIGILL) or “illegal memory
access” (SIGSEGV). Asynchronous signals are delivered asyn-
chronously and do not depend on the execution context, e.g.,

SIGSTOP, which stops execution of the receiving process, or
SIGKILL, which terminates it. Modern operating systems
provide APIs to user applications to overwrite default excep-
tion handler routines with their own code. When a signal is
delivered to the process, control is transferred to the handler
code. This gives the processes flexibility to provide their own
routines to recover or clean up after unrecoverable faults.
For instance, Windows uses a mechanism called Structured
Exception Handling (SEH) and Linux uses Signals. Despite
different implementation details, the high-level concepts are
similar between different operating systems.

Synchronous signals are triggered in the course of execution
of instructions if the hardware or the operating system is
not able to successfully execute the instruction. Such errors
are usually severe enough that the execution of the process
that caused the fault can not be continued. This type of
exceptions are common among different operating systems.
Asynchronous signals, on the other hand, are specific to
the Unix/Linux operating systems and can interrupt the
execution of a process at any instructions. These signals
are primarily used for synchronization purposes between
different or parent/child processes. Since each category is
fundamentally different from the other, we have different
solutions for each of these types of events in the programs
that are discussed in the rest of this section.

2.2 A Motivating Example
The mechanism allowing users to define their own signal

handlers can be misused by attackers to obfuscate branch
points in the code to confuse analysis. Figure 1 shows two
sample programs using this technique to implicitly propa-
gate sensitive data (Figure 1a), and to redirect the flow of
execution on certain environments (Figure 1b).

Synchronous Signals.
The code in 1(a) sets handlers for both SIGSEGV and SIGFPE

signals where the former is raised by OS and sent to the
process on memory access violations and the latter is raised
in case of arithmetic errors such as divide by zero. After
copying the sensitive data to secret value at line 13, the
code intentionally dereferences a NULL pointer which raises
a SIGSEGV and so transfers control to segv_handler. After
the segv_handler function returns, the control transfers to
the instruction that originally generated the fault and since
the problem has not been fixed, the operating system raises
another SIGSEGV signal and so on. This continues until
variable c equals zero meaning that variable public is equal
to secret at line 7. At this point, the division operation
line 8 generates an arithmetic fault (divide by zero) which
then transfers the control to the fpe_handler. Doing so,
the attacker is able to copy the secret value into another
variable without any explicit or direct data flow or implicit
flow since the control transfer edges are not part of the static
CFG of the program.

Asynchronous Signals.
Figure 1(b) shows a timing technique that is quite fre-

quently used by malicious codes simply as a timeout mecha-
nism. Figure 1(b) shows a variation of the technique where
the signal mechanism can be used as an anti-analysis tech-
nique. The process sets a handler for SIGALRM signal at line
6 where the handler code changes the function pointer foo

to point to some malicious code. Line 7 registers a wake up



1: int public, secret;
2: void fpe_handler(){
3: /* public is equal

to secret here! */
4: }
5: void segv_handler(){
6: public++;
7: int c = secret-public;
8: c = c/c;
9: }
10: int main(){
11: signal(SIGFPE, fpe_handler);
12: signal(SIGSEGV, segv_handler);
13: secret = get_secret();
14: char *p = NULL
15: *p++;
16: }

/* foo is a function pointer */
1: foo = /* some malicious code */
2: void alarm_handler(){
3: foo = /* some benign code */
4: }
5: int main(){
6: signal(SIGALRM, alarm_handler);
7: alarm(1);
8: for (int i=0; i < THRESHOLD; i++){

/* an empty loop that takes more than
1 second in a hostile environment */

9: }
10: alarm(0);
11: foo();
12: }

(a) Using synchronous signals for implicit flow (b) Using asynchronous signals to obfuscate control transfers

Figure 1: Branch obfuscation using signals

call being delivered to the process by the operating system
in one second. There is second call to alarm system call (line
11) which clears pending alarm signals, if there is any, and
does not have any effect if the signal is already delivered.
This means if the code at lines 8− 9 is executed before the
signal arrives, i.e. in less than a second, the process con-
tinues and the handler is never executed. Otherwise, the
delivered signal causes the exception handler to be called
which changes the behaviour of the code. An attacker can
put a code in lines 8− 9 that takes less than one second to
execute on normal hosts, and takes more than one second in
an analysis environment or a “hostile” machine. This results
in the malicious part not being executed if the code is being
monitored. This behavior is similar to timing attacks used
in malicious codes to detect analysis environments and evade
detection [32,42]. Similar to the code in Figure 1(a), there is
no obvious control flow edge in the code to guide the symbolic
execution to different execution paths. In fact, being able to
automatically handle this case is even more subtle than the
previous example since the SIGALRM is raised asynchronously
by the operating system meaning that the possible control
transfer edge to alarm_handler function could be anywhere
between the two alarm system calls. At what point in the
execution the process receives the signal depends on many
variables (with CPU cycles being the most important one)
making the problem non-trivially hard.

2.3 Dynamic Taint Analysis
Dynamic taint analysis involves tracking the flow of certain

marked (tainted) data throughout the program execution.
This analysis has numerous applications in different areas
such as in program debugging and software testing and ap-
plication security. In the context of security, dynamic taint
analysis has led to many successful implementation of se-
curity tools that protect applications against a wide range
of attacks including buffer overruns [30, 38], SQL injection
attacks [25,39] and formatted string attacks [38,41].

A potential problem for dynamic taint analysis is that
of under-tainting caused by not propagating taint through
control dependencies. Basically a tainted control transfer
results in different execution paths depending on the tainted
data which will lead to different data flow equations. To
address this problem, researches have tried to combine dy-
namic data flow analysis with static control flow graphs and

propagate taint along the control flow edges [17, 29]. The
problem with these approaches is that a static CFG does not
capture possible dynamic execution paths that are cause by
unexpected events and errors. As showed earlier, this could
cause imprecision for the analysis that are sensitive to control
flow information, including dynamic taint analysis, and can
be used by attackers to evade currently used techniques.

2.4 Symbolic Execution
Symbolic execution consists of executing programs on sym-

bolic variables rather than concrete data which allows the
analysis to represent the program in terms of logical and
arithmetic formulas. Combined with dynamic taint analysis,
symbolic execution can represent program execution path
with formulas and constraints when the inputs to the program
are marked as symbolic. Using an SMT solver (e.g. [20, 22]),
one can solve the path constraints to find alternative input
values that cause different paths to be executed. This turns
out to be useful for numerous security applications such as
automatic vulnerability and exploit generation [7, 14] and
malware analysis [6, 36]. However, vanilla symbolic execu-
tion relies on explicit control flow constructs that might be
obscured or obfuscated when dealing with malicious codes
as shown in Figure 1(b). Yadegari et. al. [56] mentions
some of the challenges of symbolic execution when applied to
obfuscated code. In this paper we are showing some other ob-
fuscation techniques that use irregular control flow transfers
and are already being used in malicious or even legitimate
programs causing problems for symbolic execution.

3. ANALYZING EXECPTION BEHAVIOR
This section discusses our proposed solution to address

the analysis problems arising from exception-based control
transfers.

3.1 Synchronous Events
As discussed previously, to be able to detect implicit infor-

mation flow propagation, dynamic taint analysis relies on the
static CFG of the program to propagate tainted data along
control transfer edges in the CFG. If a location (variable) x
is defined by an instruction J that is control dependent on a
control transfer instruction I, then x inherits the taint marks
of the variable(s) used by the control transfer instruction I;



Schwartz et al. refer to this as control-flow taint [45]. Cor-
rect handling of control-flow taint requires a static CFG that
reflects the possible control transfers of the program. A key
problem in dealing with exception-based control transfers is
that CFGs constructed using conventional techniques typi-
cally do not account for exception-based control transfers,
potentially leading to under-tainting.

3.1.1 Control Flow Graph Augmentation
A natural approach to fixing the problem of missing control

flow edges in the static CFG of the program would be to
insert additional edges corresponding to exception-based
control transfers. However, a naive solution that statically
includes every possible exception-based control transfer edge,
from any instruction or statement that can possibly raise
an exception, can become so large and cluttered as to be
unusable.

Our solution charts a middle ground where we augment
a conventional static CFG with additional control transfer
edges that are added at runtime as the program executes
and more information is available. We add control transfers
from instructions that potentially can raise exceptions to
the appropriate exception handler. Given a program P and
input x̄, we do this as follows. Here, S is a mapping that
maps different exceptions to (the address of) the handlers
that have been registered for them.
1. Static analysis phase:
Construct the static CFG for P .
2. Dynamic analysis phase:

1. Initialize the exception-handler mapping S to ∅.

2. Execute P on the given input x̄. For each instruction
I of this execution, do:

(a) If I is a call to register an exception handler H
at address AH for an exception e, update the
exception-handler mapping S to map the excep-
tion e to AH .

(b) Otherwise: for each exception e for which a han-
dler is known to exist in S, use symbolic execution
to determine whether there exists an input that
can cause instruction I to raise exception e. If
there exists such an input, add a control flow edge
from I to the handler S[e].

Identifying whether an instruction raises an exception or not
needs run-time information, such as virtual memory pages
associated to the process, that are not available statically.
Hence the static CFG needs to be modified or augmented at
run-time to contain necessary control flow information that
are not available otherwise.

Figure 2 shows this transformation on the CFG of the
sample code in Figure 1(a). Figure 2(a) shows the original
CFG that is built using standard definitions of control flow
graph constructions. It can be seen from the CFG, all three
functions are isolated and there is no explicit control transfer
edge between them. This is because there is not a control
flow statement that targets another function from anyone
else. This is also true for the machine code generated by
the compiler and there is not explicit control flow edge be-
tween functions in the compiled code as well. However, as
shown in Figure 2(b), there are control transfers between
different functions at run-time. The reason is that functions

segv_handler and fpe_handler are registered as signal han-
dlers for SIGSEGV and SIGFPE signals respectively which cause
the control flow being transferred to these functions, should
there be any memory or arithmetic errors. The control flow
edge from main to segv_handler is because a NULL pointer
dereference at *p++ statement in the main function where
the control returns back to the same statement after it exe-
cutes. Similarly, there is a control flow edge from statement
c = c/c in the segv handler function to fpe_handler that
is due to a division by zero if variable secret is equal to
the public in the segv_handler function. In fact, this logic
implements a loop without any explicit control transfer state-
ment where the code in function segv_handler is executed
until the variable secret is copied to public and then exits
to fpe_handler function.

After creating the augmented CFG, it needs to be analyzed
to produce post-dominator information necessary for dynamic
taint analysis. Basically, those non-control flow instructions
that have an outgoing edge to an exception handler can
be treated as conditional jumps for the purpose of control
dependence and post-dominator analyses. The following
section discusses how we identify the instructions that have
a control flow edge to exception handlers.

3.1.2 Determining Control Flow Edges
As noted earlier, a challenge in identifying the possible

control transfer edges from instructions to their intended
exception or signal handlers is that this requires specific
run-time information that is not available statically. For
synchronous signals, we use symbolic execution to determine
the possibility of an exception during the course of an in-
struction’s execution. This is done by constructing the path
constraint along the execution path and sending appropriate
queries to the SMT solver on instructions that can potentially
raise exceptions. The idea is similar to those using symbolic
execution for automatic fault detection [9] and exploit gener-
ation [7, 14]. The following example describes the idea more
clearly.

Example 3.1. Consider the following code fragment:

1 r0 := input()
2 r1 := r0 − 10
3 r2 := r0 − 20
4 r3 := r1/r1
5 if r0 > 20:
6 r3 := r2/r2

Instruction 1 gets an input value and copies it to the
register r0 and instructions 2 and 3 calculate r0 − 10 and
r0 − 20 in r1 and r2 respectively. Instruction 4 performs
a division operation which can raise an exception if the
divisor (r1) is zero. Knowing the symbolic expression for
r1, expression r1 == 0 is satisfiable for inputs equal to
10, instruction 4 can raise an exception and, if there is a
handler registered for divide-by-zero exception, a control
flow edge should be added from instruction 4 to the the
handler function. Similarly for instruction 6, inputs of 20 can
cause an exception to be raised but since the path constraint
mandates r0 > 20 and so r2 > 0, the formula r2 == 0 is not
satisfiable and the instruction is immune to divide-by-zero
exceptions.

In the symbolic execution engine we have implemented
three major synchronous exceptions that are commonly used



(a) Static CFG (b) Static CFG augmented with control flow edges to signal handlers

Figure 2: Static and augmented static CFGs for the code in Figure 1(a)

to obfuscate normal control flow in malicious codes and/or
in binary packer tools [21]. Our symbolic execution engine
constructs appropriate constraints for synchronous excep-
tions that have a user exception handler registered for it. As
mentioned earlier, we are interested in finding exceptions
that are triggered based on some tainted or symbolic con-
dition or value. For this purpose, the symbolic execution
first checks whether a particular instruction has the desired
characteristics, and then builds a formula to represent the
exception and sends it to the SMT solver to check its satisfia-
bility. A few of the most important exceptions and how they
are handled by the symbolic execution engine are as follows:

• SIGSEGV : This exception is caused by memory access
violations such as accessing a memory location that is
not available to the process. For memory pointers that
are tainted, the symbolic execution engine constructs
a constraint that checks whether the symbolic pointer
can point anywhere that is not a legal memory address
at that point in the program. If the constraint is
satisfiable, the constraint solver finds an input that will
cause the pointer to point to an illegal address that if
fed into the program and transfers control to the signal
handler for SIGSEGV

• SIGFPE : This exception is raised in case of arithmetic
errors such as divide by zero. In case of a divide in-
struction, the symbolic execution engine constructs a
constraint that checks whether the dividend used in
the instruction can be zero based on some inputs, if
the dividend is symbolic. If such an input exists, it will
report it to the user.

• SIGILL : This exception is raised when an instruction
opcode is not recognizable by the CPU. If in the execu-
tion of the program, an instruction is being overwritten
with a symbolic value [56], the symbolic execution
engine constructs a constraint to check whether the
opcode that is being written can be illegal based on
some input.

Using symbolic execution to identify exception-based con-
trol transfers has two advantages. First, the analysis can find
alternative inputs to trigger alternative execution paths in the
code other than those paths existed because of normal control
flow structure such as condition jumps. One important ap-
plication of this is in the analysis of malicious or obfuscated
code that hide their control flow through exception-based

control transfers. Secondly, the alternative paths that are
found can be used towards implicit information flow detec-
tion that otherwise was not possible to detect because of
missing control transfer edges in the static CFG.

3.2 Asynchronous Events
Asynchronous signals are those that are not a direct result

of the execution of an instruction, but rather are generated by
some external sources and delivered to the process through
the operating system (e.g. Figure 1(b)). Asynchronous
signals are more challenging than synchronous ones to handle
and can cause inaccuracies in both symbolic execution and
dynamic taint analysis because the time an exception handled
by the program receving it may change the execution path
and/or the data flow equations.

Similar to CFG augmentation for synchronous exceptions
discussed in Section 3.1, we use the augmentation technique
for unexpected control transfers caused by asynchronous
signals. The only difference here is that since there is no
fixed point in the code where the control diverges from
the main execution thread, we need to analyze different
possibilities and account for different situations. Of course
the first non-trivial solution is to add a new control flow edge
following every instruction in the main execution trace where
there is a possibility of control divergence, but this imposes
unnecessary computational complexity to the analysis.

To handle asynchronous signals, in general, we need to take
into account the side effects of executing the handler code.
Figure 3 tries to visualize this situation where as opposed
to synchronous signals in which the control flow edge is at a
fixed location (in the code), for asynchronous signals, control
transfer points are determined by the possible locations that
might be impacted by executing the handler function. As
shown in Figure 3(a), variable X is defined globally where
it can be accessed from both the main code and the signal
handler. Suppose that the gray box in the main code is
where a signal can be delivered to the process meaning that
the control could be transferred to the signal handler at any
point in the gray area. The variable X is accessed multiple
times in the gray area, while the signal handler function
modifies the variable X. Modification to X may have impact
on the main code where X is used, i.e. points where there is
an edge to the handler in Figure 3(b). Figure 3(b) shows the
augmented CFG for the code and handler of Figure 3(a).

To handle asynchronous signals we are not necessarily
proposing to use symbolic execution to identify alternative



(a) Static CFG of the code. The grey box in the main code appears

as a single basic block
(b) Augmented CFG for asynchronous signal handler

Figure 3: CFG Augmentation for asynchronous signal handler

execution paths caused by signals. Although symbolic execu-
tion can be helpful in some cases, such as when the argument
to the kill function (that is used to send arbitrary signals to
processes) is symbolic. This results in activation of different
functions in the receiving process when there are different
handlers registered for different signals, and symbolic execu-
tion can be used to help identifying those inputs that lead
to different handlers being called in the execution. As men-
tioned earlier, asynchronous signals are generally generated
externally which are then delivered to the process. However
for an attacker to exploit these mechanisms provided by the
OS, they need to arrange for the signals to be delivered to
the process somehow, perhaps by forking multiple threads
and have the threads to communicate with each other with
signals and this arrangement that is necessary for an at-
tack to succeed, makes the attack detectable and perhaps
predictable.

The code example that are shown in this section for use
SIGALRM signal as to show how to use asynchronous signals
for control transfer purposes, however the idea that is dis-
cussed as a proposed solution is generalizable to the other
types of asynchronous signals. Examples of other signals are
those that are used for inter-process communications such
as SIGCHILD that is raised when a forked child of a process
dies or SIGUSR1 that is left for user defined handlers.

3.3 Attack Model
As with other techniques that rely on symbolic execution

and SMT solvers, our approach is limited by the theoretical
boundaries of SMT solvers [48,53]. An attacker can also add
complexity to the code in order to add complexity to the
path constraints. This can increase the processing time for
the back-end SMT solver to check satisfiability of the path
condition. A related attack is to use code that produces too
much work for the analysis. For example by using opaque
symbolic memory pointers (symbolic pointers that are not
unsatisfiable), the analysis needs to send a lot of queries
to the SMT solver which slows down the analysis [56]. In

order to reduce the effects of these types of attacks, we have
incorporated a chaching mechanism built in to our prototype
implementation that reduces the number of queries sent to
the solver significantly, limitting the possibility of these types
of attacks (see Sections and ). However, note that in the
context of identifying the possible exception-based control-
flow behaviors of a program, the back-end SMT solver is used
only for those exceptions for which exception handlers have
been registered during execution and for those instructions
that can give rise to such exceptions, not for all executed
instructions.

4. IMPLEMENTATION
We have implemented a prototype system based on Intel

PIN tool [34] which is a dynamic binary instrumentation
tool. Our system works on the binary level and so we do
not need access to the source code. The analysis is based
on two main components: 1) dynamic taint analysis; and
2) symbolic execution. Our dynamic taint analysis engine
takes the approach used in [55]. Our taint analysis uses
bit-level granularity for taint taint propagation by using
generic taint labels for inputs to the program. Our symbolic
execution engine is a layer on top of the taint analysis engine
which interfaces with STP [23] SMT library to solve symbolic
expressions. We have implemented concolic testing that runs
the input program with the given inputs and analyses the
execution trace that is observed along the execution path.
Both taint analysis and symbolic execution analyses are done
on the X86 instruction set.

For dynamic taint analysis, we use objdump tool on Linux
to produce disassembly and create CFG of the disassembled
code. The post-dominator information then is extracted by
analyzing the CFG which specifies post-dominators for condi-
tional branches in the code. For signal handlers, however, we
use PIN APIs to intercept user’s registered signal handlers to
analyze them. Our current implementation does not analyze
the handler code statically because static analysis of binary
code is hard in general and does not always guarantee cor-



rect results [33] due to code obfuscation or self-modification
that are common among malware code. We instead take
a dynamic approach where the handlers are intercepted at
run-time and capture the implicit flow by marking those data
flows that are tainted because of the exception-based control
transfers. We realize that with this approach it is possible
to miss some opportunities for symbolic execution, but the
alternative assumption that we make here is quite realistic
as we have observed in our evaluations with malicious codes.

To find specific user handlers that are registered by the
user code, the tool intercepts the calls to sigaction and
signal system calls that are used to register user handlers
for given signals. Using the addresses of the signal handlers
that are registered by the user, we are able to augment the
static CFG and add explicit control flow edges whereever
the symbolic execution engine finds a satisfiable input that
would cause an instruction to raise a particular exception.

4.1 Symbolic Pointer Caching
A naive implementation of the ideas described above would

query the SMT solver at every runtime memory reference.
Since programs can have a large number of memory refer-
ences, and the cost of querying an SMT solver can be quite
large, this would result in unacceptably high runtime over-
heads. To mitigate this problem, we use a symbolic pointer
caching mechanism that reuses the results of prior queries to
the SMT solver where this is guaranteed to be sound, thereby
reducing the number of queries to the solver.

In the x86 architecture, the most general form of an address
computation involves two integer constants and two registers
(the base and index registers) as follows:1

address = baseReg+scale×indexReg+displacement .

We refer to this as an address expression. A pointer is
marked as symbolic if, in its address expression, either the
base register or index register is symbolic; the symbolic term
of such a pointer is baseReg if the base register is symbolic
and scale × indexReg if the index register is symbolic. All
other terms can be considered as constant terms. If such a
pointer is used to trigger a SIGSEGV, then at least one of the
possible addresses that can be generated by the pointer must
illegally reference a page in memory. Thus, by checking to see
if a symbolic pointer can access an invalid page in memory it
can be determined if the program will conditionally trigger
a SIGSEGV. By taking advantage of the fact that an entire
page will be marked as invalid, not just a particular memory
location, we can cache and reuse results from previous queries
sent to the solver.

Consider two pointers A and B. If the address expressions
for A and B have the exact same symbolic and constant
terms, then obviously they will access memory the exact
same way. Thus we know that if it is possible for pointer
A to illegally access a page in memory, then it must be
possible for B to make an illegal access as well. Now let
pointers A and B share the same symbolic terms, but not
the same constant terms. Since the symbolic terms are the
same, we know that for every memory location A can access,
there must exist a corresponding memory location that B
can access at some displacement d away, for some constant
d. It is therefore possible that the displacement by d can

1The x86 architecture supports a number of other addressing
modes that can be seen as special cases of that described
here.

cause B to access pages that A did not, meaning that we
can no longer reason about B from A. If, however, d is
less than the size of a memory page (typically 4096 bytes)
then B’s corresponding access must either fall on the same
page as A’s, or on one of the adjacent pages. As a result, a
third pointer C, which has the same symbolic terms as A
and B but a displacement which places it between A and
B, must only be able to access pages in memory that could
be accessed by A or B. To that end, if both of them can
only access memory pages legally, then C can only access
pages legally. Likewise if both A and B can access a page
illegally, then C must also be able illegally access a page.
However, C cannot be reasoned about if A and B disagree
since there would be an unknown boundary between A and B
that determines C’s state based on where it lies in relation to
that boundary. With this information, a caching mechanism
can be constructed. Whenever a symbolic pointer must
be checked, we can construct and check a second symbolic
pointer with the same symbolic terms and an offset less than
a page. If the decisions from the solver for these two pointers
agree, we can save the result for future reuse.

The cache has two parts: a storage mechanism capable of
holding pointers whose solver decisions can be reused and; an
invalidation mechanism to discard pointers whose symbolic
terms have been changed. For the storage portion, we use
a structure that maps a symbolic value to a list of entries
whose pointers use that value. If the entries corresponding
to a particular symbolic value need to be invalidated, the
list corresponding to the value can simply be cleared. This
means that to find a symbolic pointer, we have to check that
all symbolic values used by the pointer can locate an entry
in the cache. If an entry is not found, then that symbolic
value must have been invalidated and any entries found are
dirty. We use this structure because it makes invalidation,
which occurs more frequently than searches, fast and easy.

To maintain the pointer validity requirements placed upon
the cache, a strict set of rules is used to determine when
to remove a pointer from the cache. If a symbolic pointer
has an entry in the cache, the symbolic values it uses can
only be modified by additions and subtractions of constants
with no other symbolic operands. This guarantees that the
symbolic terms of the pointer are the same when a cache
entry is reused. If a symbolic value with entries in the cache
is modified in any other way, all entries that use the value
are removed from the cache. Additionally, if the program
modifies the protection of any page in memory, the entire
cache is flushed since it is not known which, if any, of the
cache entries are affected.

To improve the performance of the cache, a few additional
features are built in as well. The first is the ability to track
symbolic operands if they are moved. Programs often tem-
porarily store the operands needed for a pointer in registers,
then once they have completed their memory access will
either replace them or move them back to memory. We track
the movement of the symbolic values to ensure that we can
recognize when two symbolic pointers are the same without
having to perform an expensive comparison between the con-
straints. A second optimization involves symbolic pointers in
loops. Very often, the same symbolic pointer is used within
a loop whose termination condition is based on a symbolic
value. Since each iteration of the loop changes the path con-
straint to code in the loop body, a straightforward approach
to cache management would invalidate cache entries that use



the symbolic value, since any change to the path constraint
potentially implies a change to the symbolic value as well.
This would cause a large number of cache misses within loop.
However, a conditional can only further constrain a symbolic
value and therefore a symbolic pointer. Thus, if a pointer can
only make legal memory accesses, another pointer that can
only access a subset of the same memory locations can also
only access legal locations. If, on the other hand, a pointer
can access an illegal location, it is possible that after being
constrained the same pointer can only access legal locations.
Therefore, the cache is only used for symbolic pointers that
can only access valid memory regions and therefore cannot
cause a SIGSEGV. Since the number of symbolic pointers
that can access invalid memory regions are in the minority
and many of them would be invalidated by a conditional
anyway, this decision does not have a large impact on the
hit rate of the cache.

5. EXPERIMENTAL EVALUATIONS
We evaluated our prototype tool against a variety of differ-

ent test programs and malicious codes and we compared our
results with current state-of-the-art available tools in both
dynamic taint analysis and symbolic execution. The samples
were all run on a Linux virtual machine running Ubuntu
14.04 which was given 8 processors and 8 GB of ram.

5.1 Dynamic Taint Analysis
For dynamic taint analysis we used two sets of programs

for the evaluations:

• The first set consists of three sample test programs
that use exception-based control transfers to obfuscate
the branch points in the program. All three programs
define exception handlers that will redirect the control,
and have some input value that is used to conditionally
trigger the exception. Additionally, all three samples
propagate some tainted data in the handlers to resem-
ble the idea of implicit information flow. These three
programs are:

1. invalid-memory uses user input to create a memory
pointer that is a valid memory address if the in-
put satisfies some conditions, otherwise an invalid
pointer.

2. invalid-opcode overwrites nop instructions in the
code by an invalid opcode if the user input does
not satisfy the conditions resulting in a SIGILL in
the code.

3. divide-by-0 performs a division where the dividend
is computed from input. The dividend is zero for
inputs not satisfying the condition and non-zero
otherwise.

• The second set consists of two exploit codes writ-
ten in C that have behaviors similar to what is de-
scribed in this paper. These are proof-of-concept ex-
ploits that are written for different vulnerabilities and
are publicly available through web-sites such as http:
//www.exploit-db.com. The samples overwrite signal
handlers for particular signals. The exploits are men-
tioned by their corresponding CVEs:

1. CVE-2004-1235 exploits a race condition in load_

elf_library and binfmt_aout function calls that

exists in some Linux kernel versions, allowing an
attacker to execute arbitrary code by manipulating
the VMA descriptor. The exploit sets handler for
SIGALRM signal and uses it to redirect control flow
to propagate data.

2. CVE-2005-0736 exploits an integer overflow in
sys_epoll_wait for some Linux kernels allowing
an attacker to overwrite kernel memory with a
large number of events. This sample also sets
exception handlers for different signals that guide
the execution in case of an unexpected event.

We found Dytan [17] the only dynamic taint analysis sys-
tem that was available publicly and implements implicit
taint propagation through control flow edges. For the test-
cases that contained some form of implicit taint propagation
through the signal handlers, we ran experiments with Dy-
tan and our tool and the results are presented in Table 1.
Dytan failed on all the test-cases while our tool was able
to successfully identify the implicit flows caused by signal
handlers, while the second exploit uses the handler to handle
possible memory faults by setting variables that will eventu-
ally change the control flow of the code executed afterwards.
We have identified these instances as implicit flow since the
control flow caused by exceptions are implicitly used to set
variables that consequently affect the flow of execution.

Dynamic Taint Analysis
Programs Dytan Our System
invalid-memory × X
invalid-opcode × X
divide-by-0 × X

CVE-2004-1235 × X
CVE-2005-0736 × X

Table 1: Dynamic taint analysis results

5.2 Symbolic Execution
We evaluated our prototype against different malicious

programs procured from vxheaven2 and compared our results
against current state-of-the-art symbolic execution tools.

To evaluate the symbolic execution engines, we started
with a base set of the following Linux malware:

1. Caline is a simple linux virus that infects ELF files
resulting in a simple message being placed in the binary.

2. w00lien that has various malicious capabilities, such as
spawning a shell for remote connections, self-encryption
and file infection.

3. lacrimae is a malware mutation engine which reads in
an ELF file and writes back a mutated version of the
binary.

4. rapeme is a RPM archive infector virus. It finds and
infects an RPM file with a malicious payload and then
recomposes the infected code into an RPM.

5. kaiowas11 is a proof-of-concept showing run-time bi-
nary encryption/decryption.

2http://www.vxheaven.org

http://www.exploit-db.com
http://www.exploit-db.com
http://www.vxheaven.org


For each of the malware sources, we selected a conditional
or a set of conditionals in the malicious program that an
analysis tool needed to explore in order to discover all of the
behavior the malware could exhibit. The selected statements
were typically conditionals important to the integrity of the
malicious algorithm, or used for anti-analysis. For each
sample, we then created two more samples by transforming
the conditionals into an equivalent statement that instead
branched using conditional exceptions by moving the code
for true branch into the signal handler function registered
for that particular signal. The first obfuscated sample uses
an asynchronous conditional exception using alarm signal
(similar to Example 1(b)) while the second sample uses illegal
instruction exception (SIGILL). For samples using illegal
instruction, the conditional code is transformed to a call to
a buffer that contains illegal instructions, however the buffer
is overwritten by nops if the condition is evaluated to false.
This results in the execution to continue the false branch
in case the condition is not met, otherwise the control is
transformed to the exception handler that contains the code
for true branch.

In order to evaluate our ideas against state-of-the-art sym-
bolic execution engines, we picked a handful of available
symbolic execution engines and compared their results with
ours. The symbolic execution engines that we used are
KLEE [7], S2E [16], FuzzBall [4] and angr [49]. KLEE and
S2E are automated test-case generation symbolic execution
engines that maximize the code coverage, and FuzzBall and
angr are symbolic execution frameworks. KLEE needs to
have access to source code while the others work at the bi-
nary level. Test-cases were annotated to introduce symbolic
variables for KLEE and S2E. FuzzBall and angr however
accepts arguments which instructs the tool to mark inputs,
memory locations or registers as symbolic at certain point in
the execution.

The results are summarized in table 2. All of the tools
were able to discover all of the targeted paths in the original
unmodified programs. The number of paths (based on the
conditional statements that we targeted for our obfuscation)
is reported under the second column. The only error that
we observed was that in the rapeme test, angr discovered 4
additional paths that were technically impossible to execute.
Once the conditional exceptions were inserted, however, the
state-of-the-art competition had difficulty discovering the
alternative paths. The next 5 columns show the number of
paths discovered by the tools in the test programs obfuscated
using ALARM signal, and the remaining 5 columns show the
same results for the test programs obfuscated using illegal
instruction.

Only one of the state-of-the-art competition tools was able
to successfully handle the asynchronous alarm signal. Neither
angr nor KLEE supported calls to alarm with symbolic
argument, so to allow these two engines to progress past the
alarm call we had to hook the calls to alarm (and sleep

for FuzzBall) and return the appropriate value. This allows
them to explore the false path, but since neither of them
know anything about the semantics of the alarm call in this
case, they cannot properly explore all guarded paths. KLEE,
on the other hand, has 3 different versions of libc that can
be used to emulate the library functions. We tried running
the samples on all versions of libc available, but none of
them handled the alarm call so that the true path would
be discovered. S2E was the only engine that handled the

asynchronous exception guard correctly. We believe that this
is because S2E has access to code in the kernel and in user
mode. With this, we believe it was able to observe how the
alarm signal is triggered by the kernel and thereby could
produce the correct results.

None of the other tools were able to handle the synchronous
illegal instruction exception. KLEE only works on the C
source code, and so it is unable to handle programs that
modify their own binary like we did in this example. The
other tools, on the other hand, do have the ability to handle
self-modifying code. None of them, however, knew how to
handle an illegal instruction. Rather, they all reported an
error and exited the analysis. To overcome this, we had to use
facilities built into the engines to nop an illegal instruction if
one is encountered. This allowed execution to continue past
the illegal instruction and always discover one path of the
conditional statement. None of them, however, were about to
reason about other instructions that could have been written
into the buffer to cause alternative behavior. Our tool handles
illegal instructions by keeping track of the instruction bytes
that are modified using a symbolic value. When encountered
with an illegal instruction, our tool constructs a symbolic
expression involving the path constraint and asks the SMT
solver if the expression can be solved so that the instruction
can be a nop. If solvable, the results from the SMT solver
can be used to determine the necessary input that could
cause the alternative path to be taken.

5.3 Performance

5.3.1 Overhead
Table 3 shows the running time of each obfuscated sample

versus the analysis time of our system and FuzzBall. All
the times are in seconds and for our system, the analysis
time includes both dynamic taint analysis and symbolic
execution. The samples on the row numbered with 1 are
obfuscated using alarm while the samples on row labeled
with 2 are obfuscated using illegal instruction. To do a fair
comparison, we have only compared our system to FuzzBall
since it’s behaviour is closest to that of our system. FuzzBall
automatically discovers alternative execution paths if it finds
any symbolic conditional statements in the code, but since it
does not handle the obfuscated conditionals in our samples,
it only analyzes the execution path based on the given input.
This is similar to the behaviour of our tool since our tool
does not automatically execute the alternative paths but
reports any possible input value that would trigger them. As
it can be seen from the table, the performance of our tool is
generally better than FuzzBall and the overall analysis time
remains in reasonable ranges.

5.3.2 Caching Improvements
To measure the efficacy of caching, we ran our tool on a

modified version of Md5 from http://people.csail.mit.edu/
rivest/Md5.c since it is both computation and memory in-
tensive. We chose Md5 simply because our test cases do not
cause a lot of interactions with the SMT solver. The original
program was modified with a simple SIGSEGV handler and
calls to force our prototype to generate many tainted pointers
for some of the operations. We ran the program on three
different input files as shown in Table 4. The first column in
Table 4 shows the CPU time required to process the input file
without analysis, while the second column shows the analysis

http://people.csail.mit.edu/rivest/Md5.c
http://people.csail.mit.edu/rivest/Md5.c


# of paths Number of discovered paths in obfuscated samples
in original Obfuscated using alarm Obfuscated using illegal instruction

Programs code KLEE FuzzBall angr S2E Our System KLEE FuzzBall angr S2E Our System

Caline 2 1 1 1 1 2 N/A 1 1 1 2
w00lien 2 1 1 1 2 2 N/A 1 1 1 2
lacrimae 2 1 1 1 2 2 N/A 1 1 1 2
rapeme 4 1 1 1 4 4 N/A 1 1 1 4
kaiowas11 2 1 1 1 2 2 N/A 1 1 1 2

Table 2: Symbolic execution results

Normal Analysis Total Query No. Cache Cache
Workload Exec. Time (s) Exec. Time (s) Time (s) Queries Hits Misses

4GB 0.065 157.633 3.346 268562 268496 66
1.5GB 0.023 54.420 2.808 90955 90889 66
75MB 0.004 6.624 2.646 4661 4595 66

Table 4: Caching performance of our prototype tool for different workloads on MD5

Execution times (s)
Programs Original FuzzBall Our System

1

Caline 1.002 2.522 1.838
w00lien 1.166 2.539 2.019
lacrimae 1.000 2.588 2.174
rapeme 2.048 18.763 4.909
kaiowas11 1.001 5.392 1.791

2

Caline 0.002 4.151 1.014
w00lien 0.093 4.336 0.831
lacrimae 0.002 4.551 0.638
rapeme 0.046 71.315 2.723
kaiowas11 0.001 18.173 0.796

Table 3: Cost analysis of our prototype tool

time. Third column shows the time spent in the solver in
seconds, and the rest of the columns show the number of
queries that our tool encountered during the analysis, num-
ber of queries that were found in cache and the number of
queries which needed to be sent to the solver. Under these
workloads, cache hit rate is generally above 98% suggesting
that the caching mechanism provides a lot of benefit when a
pointer repeatedly accesses the same page(s) (e.g. in a loop).
As the number of hits decreases, it can be seen that the time
spent in the solver increases, so if there are a lot of misses
in the cache, the solver will require a large portion of the
runtime.

6. RELATED WORK
Many researchers have investigated symbolic code execu-

tion; see the survey by Schwartz et al. [45]. An important
application of this approach is in analysis of malicious and/or
obfuscated code [1,3,6,18,36,47,58,59]. However, these works
generally do not explicitly address the challenges that arise
in analyzing obfuscated code, which is especially prevalent
in malware. Yadegari and Debray discuss approaches to
symbolic analysis of obfuscated code [56], but this does not
consider exception-based control transfers.

Our approach to find exception-based control trnasfers are

similar to those used in existing systems such as KLEE, S2E
or Mayhem. These systems use symbolic execution to guide
the execution of the program under the analysis and find
different combination of inputs that cause the program to
crash [7,9] which then can be combined with other reasonings
to automatically generate exploits [14]. This is different from
our work that recognizes program faults as an obfuscation
technique to obscure control flow transfers. [19] discusses
the execution of enabled interrupts in analyzing firmware
code but their approach is limitted to small binaries that are
written in C and thus require source code. Their approach is
not applicable to native large applications and easily results
in state explosion.

The use of exceptions to obfuscate control flow is well
known [40]. Malware have long used a simple instance of
this approach to obfuscate direct unconditional jumps, by
constructing and dereferencng a null pointer. In commonly
encountered malware, this obfuscation is typically used to
bypass ordinary anti-virus detectors rather than to propagate
information through implicit flows. However, it is straight-
forward to modify this code to use exception-based control
transfers to hinder dynamic taint propagation and symbolic
execution.

A number of researchers have described security-related ap-
plications of dynamic taint analysis [26,27,29,38,54]. Clause
et al [17], Schwartz et al. [45], Song et al. [52] and Nether-
cote et al. [37] discuss general frameworks for dynamic taint
analysis, but do not address issues arising from implicit flows
in obfuscated code, and exception-based control transfers in
particular. The problems arising from dynamic taint analysis
of code containing implicit information flows is discussed by
Cavallarro et al. [12].

A number of researchers have looked into the problem of
analysis of exception-handling behavior of programs. This
work typically focuses on explicit exception-management
mechanisms (throw-catch statements) at the source code
level [5, 15,28,43,50,51]. We are not aware of any work on
reasoning about exception behavior at the binary level.

7. CONCLUSIONS
While dynamic taint analysis and symbolic execution have



a number of important applications in security-related pro-
gram analyses, existing techniques for these analyses have
trouble dealing with many of the code obfuscations employed
by malicious programs. A particular example of this is the
use of exceptions to obfuscate control transfers. This pa-
per discusses the problems that dynamic taint analysis and
symbolic execution systems can encounter when analyzing
programs containing implicit information flows arising from
exception-based control transfers. We propose a generic
solution for code where such exceptions are handled via user-
defined exception handlers. Experimental results using a
prototype implementation show that our approach yields
better results than existing analysis techniques.
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