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Table 2: Hypothesized Interact ions and Hypothesized Levels

The sixth group involves part -whole relat ionships, that is,
between the query component and the overall operat ional-
izat ion of thesame const ruct . I f thequery process dominates
theoverall, thecorrelat ion will behigh. I f query process does

not dominate, the correlat ion will be low. Query dominates

for user, system and IO requests. Query does not dominate

for major fault s, which means that either or both ut ility and
other cont ribute.

The seventh and final group involves implied relat ionships,
that is, between variables that share a common ancestor,
though there is no path between them. That said, we do

so only for query measures, as less is known about non-
query processes. Since there is no direct path, we expect

the st rength of the correlat ion to be smaller of the incoming
arcs from the common ancestor.

6. TESTING THE CAUSAL MODEL
Asment ioned, theseven group cont ribute45 expected cor-

relat ions. However, many involve the latent variable, num-
ber of IO requests, which by definit ion cannot be measured.
We have a remaining 27 correlat ions not involving the latent
variable. Our experiments provide a large amount of data

that can be used to test this model, which we do now. T hen,
in Sect ion 7, we will use this model to apport ion I/ O wait

t ime to the DBMS processes and other processes.

We tested the model in two phases. In the first , ex-
ploratory model analysis, we ran a correlat ion analysis on
a small port ion of the query runs. We then examined our
assumpt ions against the result s of this analysis, and revised

the model. The main changes suggested by this phase were

to separate considerat ion of the query process, which we felt

we understood much bet ter, from the non-query processes,
which we understand poorly. (Note that this paper is fo-
cused on measuring the query t ime, that is, the execut ion
t ime of just the query process.) The result is that a single
causal model was refined to the two-part model depicted in

Figure 3.
Another aspect highlighted by the exploratory analysis

was the role that major fault s play in the model. The num-
ber of major fault s generally is quite low, and almost non-
existent for the query process (which made sense in ret ro-
spect , as the query code will have been swapped in at the

beginning of the experiment and repeated executed).
The result to this point is a set of 27 correlat ions, each

with an expected level: low, medium, or high. There are

other interact ions that are not predicted by our model. We
then t ransit ioned to the confirmatory model analysis stage
of our test ing, in which we did a correlat ional analysis of all

36 query runs, followed by a comparison of the actual level
of correlat ion for each of the interact ions in quest ion with
their level predicted by our model, for each DBMS.

Step 1) Perform sanity checks 
Overall 
 # of Missing Queries           : queries not executed 

 # of Process Info Failures    : query executions that do not have process information 

 # of Unique Plan Violations : queries having different plans at the same cardinality  

 Query Executions (QEs) 
  % of DBMS Time Violations : pct. of QEs with (the total DBMS time) < (the total daemon process time) 

  % of Zero Query Time Violations: pct. of QEs % zero query time 

  % of No Query Process Violation(s) : pct. of QEs having no query process 

  % of Other Query Process Violation(s) : pct. of QEs having other query processes 

  % of Other Utility Process Violation(s) : pct. of QEs having other utility processes 

Query-at-Cardinalities (Q@Cs) 
  Excessive Variation in Query Time : pct. of Q@Cs with (std. of query time) > 20% × (avg. query time)  

  Strict Monotonicity Violations : pct. of a pair of Q@Cs with (the query time  at a lower cardinality) > (the 

query time at a higher cardinality)  

  Relaxed Monotonicity Violations : pct. of a pair of Q@Cs with (the query time at a lower cardinality – std. 

of the query time) > (the query time at a higher cardinality + std. of the query time) 

Step 2) Drop QEs  
(i) Failing to pass sanity checks 

(ii) Having a stopped or phantom process  

(iii) Having two times IOwait ticks bigger than median IOWait ticks > 0  

(iv) Having non-zero IOwait ticks from DB2 and non-zero IOwait ticks > 1% * (query user time) 

Step 3) Drop Q@Cs 
    (i) Having no identified query process 

    (ii) Having average measured time less than 20ms  

    (iii) Having less than valid six Qes 

Step 4) Calculate Query Times 
 

 

 

 

 

 

 
 

Step 5) Perform post-sanity checks 
  Excessive Variation in Query Time 

  Strict Monotonicity Violations 

  Relaxed Monotonicity Violations 

Taxonomy 

Future Work 

Testing the Causal Model 

Timing Protocol 
 Exploratory Analysis 

 Did correlational analysis on a small portion of the query runs 

 Examined our assumptions against the analysis results and resulted in the two-

part model through refinement  

 Resulted in a set of 27 correlations, each with an expected level : low (< 0.3), 

medium, or high (≥ 0.7) 

 Not involving the latent variable (# of IO requests) out of 45 expected 

correlations  

 Confirmatory Analysis 

 Found that the level predicted by our model either exactly matched that of the 

actual level  

 Produced only eleven that were of concern, none of which presents a serious 

challenge to the model for the 108 testable (27 interactions for each of four 

DBMSes) 

 Reduced these interactions of concern (to three) dramatically on the refined 

data through the timing protocol 
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 Varying measured time of ten executions of the below query on PostgreSQL 

 

 
  
   

 

   (ft_HT1 : variable table contains 177,700 tuples, each with four integers 

   ft_HT3 : fixed table with 2M rows, each with four integers) 

 

   

 How to measure in a more accurate and precise manner query execution time? 

 

 Timing protocol refinement by 

 Incorporating network delays for a remote disk 

 Utilizing block read and write statistics available from the DBMSes and bytes read 

and written from the O/S 

 Accommodating multiple disks, connected by a single or distinct channels, 

 Accommodating multiple processor cores 

 Accommodating phantom processes while eliminating their impact on the computed time 

 Extending PostgreSQL to clear its cache 

 Ensuring repeatability of file fragmentation 

 Supporting the Windows operating system, which has different per-process metrics, 

and thus might require an altered causal model and a different regression model and 

calculation of query time 

 Accommodating multiple disks 

 Measuring single transactions that incorporate multiple statements 

 Measuring a mix of transactions 

1 2 3 4 5 6 7 8 9 10 Avg Std Dev

T i memeas ( m sec) 6530 6571 8764 7961 8427 7829 8246 8506 8239 6991 7806 818

S U quer y ( t i ck s) 455 454 458 457 — 453 456 460 460 — 457 2.6

M a j F l t Q d bm s ( m sec) 0 0 0 0 — 0 0 0 0 — 0 0

I O w a i t meas ( t i ck s) 150 149 349 269 — 264 301 275 258 — 252 69.5

I O w a i t calc ( t i ck s) 74.9 75.9 76.1 74.1 — 74.3 74.6 73.3 75.1 — 74.8 0.9

T i m ecalc ( m sec) 5298.5 5298.9 5341.5 5310.7 — 5293.3 5305.9 5333.0 5311.1 — 5311.6 17.1

Table 10: Final computed t imes

The Tucson Protocol is quite general, applicable to most
versions of Unix that support / pr oc, and isalso applicable to
other operat ing domains in which measurements of mult iple
processes each doing computat ion and I/ O is needed. While
many of the specifics, such as clearing caches before execut -
ing a query, are well-known (though not well-documented),
this is the first general query evaluat ion t ime measurement
protocol to be art iculated.

In subsequent work we plan to refine this query t ime mea-
surement protocol to (a) incorporate network delays for a
remote disk (which necessitates clearing the network file
server cache for cold cache t imings), (b) ut ilize block read
and writ e stat ist ics available from the DBMSes and bytes
read and writ ten from the O/ S, (c) accommodate mult iple
disks, connected by a single or dist inct channels, (d) accom-
modate mult iple processor cores, (e) accommodate phantom
processes while eliminat ing their impact on the computed
t ime, (f ) extend PostgreSQL to clear it s cache, (g) ensure
repeatability of file fragmentat ion, (h) support the Windows
operat ing system, which has different per-process met rics,
and thus might require an altered causal model and a dif-
ferent regression model and calculat ion of query t ime, and
(i) accommodate mult iple disks. We also want to extend the
protocol to (a) measure single t ransact ions that incorporate
mult iple statements and (b) measure a mix of t ransact ions.
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            <Final (median) Timecalc: 5308.30 (msec)>  

1 2 3 4 5 6 7 8 9 10 Avg Std Dev

T i memeas (msec) 6530 6571 8764 7961 8427 7829 8246 8506 8239 6991 7806 818

Table 1: Measured t ime of ten execut ions of a query on PostgreSQL
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Figure 1: DBMS Time Taxonomy

long with the t ransact ion mix (rat io of read and update

t ransact ions) and the number of completed t ransact ions is

measured, yielding a measured transactions per minute. We

focus in this paper on measured query t ime. This could be
of a mix of t ransact ions, each with one or more queries and
updates, of a single t ransact ion, or of a single SQL statement
(query or update). We focus here on measuring the total
t ime of a single query. Some of these measurements can also

be made of cloud databases, in which the queries are run
over many dist ributed computers [4] or at a smaller scale,

on a local dist ributed system [5].
When measuring how much t ime an individual query run-

ning on a single server requires, one can look again at wall
clock t ime, which will include all the DBMS process(es), in-
cluding those not actually evaluat ing the query, as well as
operat ing system daemons and processes invoked by other
users. The TPC-H [13] benchmark runs a host of queries
over a prescribed database and measures total t ime for each,
as do the XBench [16] and τ Bench [15] benchmarks. Or one
can look more closely, rest rict ing oneself to just thoseDBMS
processes actually execut ing the query, or even to the t ime
required for JDBC interact ion, I / O, network, or CPU execu-
t ion. One can measure I/ O t ime, or obtain counts, such as
the number of blocks read or writ ten, perhaps different iat -
ing between random and sequent ial disk I/ O. One could also
study the pattern of accesses, including different iat ing syn-
chronous from asynchronous I/ O. For computat ion, one can
also measure t ime or counts (such as number of CPU t icks).
The same different iat ion applies to measuring network ac-
t ivity. JDBC act ivity is generally composed of network ac-
t ivity (if the SQL statement init iator is running off-server)
and computat ion. Finally, one can delve into the specifics of
the CPU performance of a DBMS, examining for example
processor cache effects [1] using profiling tools like Valgrind

and Callgrind [14], which provide inst ruct ion and cache hit
met rics. Counts are generally collected either through the
operat ing system or inst rumented DBMS or by running a
disk or cache simulat ion on the inst rumented DBMS [19].

The present paper will consider how to more accurately
and precisely measure the t ime required to execute a sin-
gle SQL statement , examining (a) overall wall clock t ime,
(b) overall DBMS process t ime, (c) CPU t ime, and (d) I/ O
t ime. For understanding DBMS behavior, wall clock t ime is
highly variable due to ext raneous operat ing system daemons
and user processes, which is why we focus in this paper on
the harder problem: finer-grained measurements of DBMS
process t ime and its CPU and I/ O components. (Doing so
can then provide insight into the addit ive effect of daemons
and user processes.) We will ext ract counts from the operat -
ing system but as we aremeasuring proprietary DBMSes, we
will not consider approaches that require that the DBMS it -
self be inst rumented. Thus, we do not consider CPU or I/ O
simulat ion to obtain detailed counts and measures of cache
performance nor of random versus sequent ial I/ O (we wi l l
consider overall I / O t ime). We do not focus on measuring
network t ime; instead, we reduce network t ime to the ab-
solute minimum by mount ing the disks on the server (not
using a network file server). We minimize JDBC act ivity by
returning a minimal result .

We show that it is possible to measure DBMS query pro-
cess I/ O and compute t imes, which when summed provides
a much more stable measure of DBMS processing than wall
clock t ime. This allows us to isolate the cont ribut ion of
DBMS query processing in terms of compute and I/ O t ime,
within the context of realist ic execut ion. By comparing
these measures to those of non-DBMS processes, we can
also characterize the cont ribut ions of those other processes,
thereby achieving a more comprehensive picture.

Scenario (e.g., Exhaust ive1 , OnePass2)
Experiment (query set (Q1-Q6),

data spec, scenario parameter(s))

DBMS (DB2, Oracle, PostgreSQL)

Machine (sodb6–sodb12)
Experiment Run (on a part icular date)

Query Instance (query number
within query set )

Query at Cardinali ty (10K–2M)

Q@C Execution (1–10)

Figure 2: Hierarchy of Query-at -Cardinality (Q@C) execu-
t ions

Indeed, our approach allows one to accurately measure all
of the shaded variables in Figure 1.

Such measurements can be an init ial step in broader stud-
ies, with these measures to be used as input to create more
efficient query evaluat ion algorithms, to refine the query op-
t imizer, such as its cost model (e.g., [7, 11]), to predict query
performance (e.g. [2, 6, 8]), to characterize workloads (e.g.,
[17]), or to do provisioning and capacity planning (e.g., [18]).

3. TERMINOLOGY
Figure 2 presents a simple representat ion of the st ructure

of our experiments, as a hierarchy of eight levels, ending at
a part icular query execut ion of a part icular query at a par-
t icular cardinality for the underlying table(s), as part of a

part icular experiment run started on a stated date and t ime

on a designated machine using a specified release of a spe-

cific DBMS, in the context of a specified experiment setup
(stat ing the set of queries, the characterist ics of the data,
and various other parameters), of a selected experiment sce-
nario.

As an example of this hierarchy, we previously presented

in Table 1 measurements of 10 Q@C Executions. For the
data in this table, we ut ilized the OnePass Scenario, an Ex-

periment specifying a second set (Q2) of 20 queries (out of
six such sets of queries), specifying data with a maximum
cardinality of 2M rows, decreasing by 10K rows at a t ime,
and specifying the scenario parameter of 10 execut ions per

Q@C. We ran this query on the PostgreSQL DBMS, on the
sodb10 machine, from an experiment run started January
20, 2012 at 3:31pm, for query number 17, thus ident ifying

a part icular query instance running on a variable table with
a cardinality of 1,770,000, and examining all ten Q@C exe-
cut ions. This paper concerns a total of 36 experiment runs,

each taking a few days to a week on a single machine, involv-
ing a total of 353,630 query execut ions (35,363 Q@Cs) over
the DB2, MySQL, Oracle, and PostgreSQL DBMSes run-
ning on the Linux operat ing system, totalling almost 3000

hours (4 months) of cumulat ive t ime.

4. MEASURING QUERY TIME
We now turn our at tent ion to the cent ral problem: mea-

suring in a defensible manner the execut ion of a Q@C: a
part icular query at a specified cardinality on a part icular
machine for a specified DBMS within the context of a par-
t icular scenario and experiment .

1Execut ing a plan at each cardinality as cardinality changes.
2Execut ing a plan only when the current plan is different
from the previous one as cardinality changes.

We execute in quick order, for a single query at a single

cardinality, a certain number of Q@C execut ions. In our

protocol, we execute each Q@C 10 t imes, which is sufficient
for t iming purposes. (As we’ll see, Step 3-(iii) of the pro-
tocol drops Q@Cs with fewer than 6 query execut ions after
many checks on these execut ions. This step retained 85%
of the Q@Cs, indicat ing that 10 is about the right number

of query execut ions to start with.) From various low-level
measurementsgathered during thesemult ipleexecut ions, we

then compute a query execut ion t ime for that Q@C.

4.1 Wall-Clock Query Time
The Linux kernel provides several system calls that return

the current t ime. (This method of measuring t ime is called

software monitoring; it “ is most suited for program-level
measurements” [10].) The major difference among these
funct ions is their measurement resolut ion. We use the Java
method cur r ent Ti meMi l l i s( ) which is based on the Linux

get t i meof day system call. As we will see, milliseconds is
actually a finer granularity than we will be able to achieve

in the end, given all that is going on in a DBMS query.
Table 1 given on the second page of this paper is a pure

cold cache measurement of query t ime using cur r ent Ti me-
Mi l l i s for 10 execut ions on PostgreSQL of the following
query.

SELECT t 0. i d3, t 1. i d2

FROM f t _HT3 t 3, f t _HT1 t 1, f t _HT3 t 2, f t _HT1 t 0

WHERE t 3. i d3=t 1. i d2 AND t 1. i d2=t 2. i d1
AND t 2. i d1=t 0. i d4

This query is on two tables. f t _HT1 (the variable table)
contains 177,000 tuples, each with four integers; f t _HT2 (one

of the constant tables) contains 2 million tuples, also each
with four integers.

In these measurements we have taken the following steps:

(a) stopped as many operat ing system daemons as possible,
(b) eliminated network delays by running the executor on
the same machine as the DBMS and by using a local disk,

(c) eliminated user interact ions by having theexecutor inter-
act with an external lab DBMS to obtain the queries to be
run and disallowing other user access, (d) ensured that the
exact same query plan was being executed, on exact ly the

same database content , in exact ly the same environment , to
achieve data and within-run repeatability, and (e) ensured

repeatability of I/ O by clearing the many caches involved.
Steps (a)–(c) improve accuracy while (d) and (e) address
precision.

Most machines now have mult iple cores, from 2 to 8 cores.
As we will see, it is very difficult to get precise measure-

ments for even a single core. Mult iple cores are more com-
plicated, as execut ion can cont inue as long as there are more

unblocked processes as there are cores. Otherwise, one or
more cores will be in an IOwait status for that t ick. So
we configure the Linux kernel to enable just one core, by
adding maxcpus=1 to the kernel arguments and verifying

with cat / pr oc/ cpui nf o. We applied this configurat ion to
all t he experimental machines. We note in passing that for
all the DBMSes we measured, their default configurat ion

limit s query evaluat ion to just one process, so this is not a
significant limitat ion, as for the great majority of the t ime
the DBMS query process was the only one execut ing on the

system.

 Wall-Clock Query Time Measurement 

 Measurement Steps 

(a)  Stopped as many OS daemons as possible 

(b)  Eliminated network delays 

(c)  Eliminated user interactions 

(d)  Ensured repeatability of environment 

(e)  Ensured repeatability of I/O 

( Steps (a)-(c) improve accuracy while (d) - (e) address precision.) 

 Per-Process Measures 

 minflt : # of minor page faults 

 majflt : # of major page faults 

 utime : # of ticks in which a process was running in user mode 

 stime : # of ticks in which a request from the process was being handled by OS  

 guest time : # of ticks in spent running a virtual CPU for a guest OS  

 Overall Measures 

 utime : # of ticks in which a user process was executing  

 user mode with low priority  

 stime : # of ticks in which the OS was servicing a system call or interrupt 

 idle time : # of ticks when the processor has nothing to do  

 IOwait time : # of ticks in which the system had no processes to run due to I/O waiting 

 irq : (interrupt requests) handled by the system 

 softirq : # of soft interrupt requests 

 steal time : # of ticks spent in other operating systems when running in a virtualized 

environment 

 processes : # of forks  

Query Time 

Independent Variable 

Wall-Clock Time DBMS Process(es) User Processes Daemons 

Dependent Variable 

Mix of Transactions Single Statement Single Transaction 

CPU Overall JDBC Network I/O 

Time 
Instruction 

Counts 
Cache 
Misses 

Request 
Counts 

Time 
Packet 
Counts 

Time 
Access 
Pattern 

Per 
Core 

Per 
Device 


