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ABSTRACT
Joins are among the most frequently executed operations. Sev-
eral fast join algorithms have been developed and extensively
studied; these can be categorized as sort-merge, hash-based,
and index-based algorithms. While all three types of algo-
rithms exhibit excellent performance over most data, amelio-
rating the performance degradation in the presence of skew
has been investigated only for hash-based algorithms. How-
ever, for sort-merge join, even a small amount of skew present
in realistic data can result in a significant performance hit on a
commercial DBMS. This paper examines the negative ramifi-
cations of skew in sort-merge join and proposes several refine-
ments that deal effectively with data skew. Experiments show
that some of these algorithms also impose virtually no penalty
in the absence of data skew and are thus suitable for replacing
existing sort-merge implementations. We also show how sort-
merge band join performance is significantly enhanced with
these refinements.

1. INTRODUCTION
Because joins are so frequently used in relational queries

and because joins are so expensive, much effort has gone into
developing efficient join algorithms. The simple nested-loop
join is applicable in all cases, but imposes quadratic perfor-
mance. For equijoins, sort-merge join was found to be much
more effective, with excellent performance over a wide range
of relation sizes, given adequate main memory. Later, re-
searchers became interested in hash-based join algorithms and
it has been shown that in many situations, hash-based algo-
rithms perform better than sort-based algorithms. However,
there exist cases in which the performance of hash-based joins
falls short. If there are several relations that will participate in
multiple joins, the “interesting order” will often determine that
sort-based join is better, to enable the joins to run in a pipeline
fashion [18], because the output of sort-merge join is sorted,
thereby possibly obviating the need for sorting in subsequent
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sort-merge joins. Graefe has exposed many dualities between
the two types of algorithms and shown that their costs differ
mostly by percentages [6, 7]. Most DBMSs now include both
sort- and hash-based as well as nested-loop and index-based
join algorithms.

The distribution of the input data values can have a dramatic
impact on the performance of both sort- and hash-based algo-
rithms. The term “skew” involves several related but different
effects. The most fundamental distinction is that between par-
tition skew and intrinsic skew [20].

Partition skewis of concern in hash-based join. In the first
step of hash join, some buckets may contain more tuples than
other buckets due to an interaction between the distribution of
attribute values and the hashing function itself. When this dis-
parity becomes large, the bucket no longer fits in main memory
and hash-based join degrades into nested-loop join. Partition
skew originates in the hash function chosen by the optimizer.
Several papers have proposed ways to deal with partition skew
in hash-based join [3, 9, 10, 17, 20].

Intrinsic skewoccurs when attributes are not distributed uni-
formly; it has also been calledattribute value skew[20]. In-
trinsic skew impacts the performance of both hash- and sort-
based joins. Sort-merge join works best when the join attributes
are the primary key of both relations. This ensures that there
are no duplicates present, so that a tuple in the left-hand re-
lation will join with at most one tuple in the right-hand rela-
tion, avoiding intrinsic skew. When an equi-join is performed
over non-key attributes, intrinsic skew is generally present. In-
equality predicates, such as found inband join(to be discussed
in detail later), intemporal join[19] and temporal Cartesian
product [22], and inmulti-predicate merge join[21] andEE-
Join andEA-Join [14] proposed for queries on XML data, ex-
acerbate the problem.

The general advice is to use sort-merge join in the presence
of significant intrinsic skew, because bucket overflow in hash
join is so expensive. However, we are aware of no paper ei-
ther on the impact of intrinsic skew on the performance of
(centralized) sort-merge join, nor on ways to deal with such
skew. In fact, the classical sort-merge algorithm presented in
many database textbooks yields incorrect results in the pres-
ence of intrinsic skew. While the sort-merge implementations
in commercial systems yield correct results, we’ll see shortly
that even a small amount of intrinsic skew present in realistic
data can result in a significant performance hit.

In this paper we provide a variety of algorithms that cor-
rectly and efficiently contend with intrinsic skew in sort-merge



join. For the remainder, the term “skew” will denote intrin-
sic skew and “join” will refer to sort-merge join (also called
merge-join or sort-join, in several variants). We first demon-
strate the high cost of intrinsic skew on a commercial system
on actual data; the rest of this paper shows how to reduce al-
most completely this performance penalty. Section 3 identifies
the three problems that skew presents to sort-merge join and
shows how two of these problems can be solved. Section 4 is
the core of this paper, proposing eight variants of sort-merge
join, all operating correctly in the presence of all three types
of skew. The following section compares the performance of
these algorithms. Section 6 shows how the algorithms per-
form for band joins [2], in which substantial skew is invariably
present. Finally, Section 7 concludes with a recommended re-
placement for the traditional sort-merge join algorithm.

2. THE COST OF INTRINSIC SKEW
It may be surprising that anything new can be said about the

venerable sort-merge join. The problem of intrinsic skew in
sort-merge join is almost certainly known by vendors, though
there is little in the extant literature about this problem. Our
discussions with vendors indicate that some DBMSs fall back
to nested loop when problematic skew is encountered, or shift
tuples up in memory so that more tuples can be read, which
allows greater skew to be accommodated, but doesn’t solve the
full problem (we examine shifting tuples in Section 4.3). Such
approaches can impose a significant performance penalty, as
we now illustrate.

We used an actual data set from the University Information
System (UIS), a major research university’s personnel database.
Specifically, we used theIncumbents table, which includes
information on job assignments for University employees. The
size of the table is 7.8MB and has the following schema.
Incumbents (SSN, PCN, start date, end date,

pay hourly rate, incum fte, obj code,
track code)

Two queries on this table are shown in Figure 1.Q1pairs rows
that have the same key.Q2pairs those employees that have the
samepay hourly rate during the same time period. The
primary key ofIncumbents is (SSN, PCN, start date ),
which implies that there is no skew present inQ1. However,
intrinsic skew does impactQ2. 96.4% tuples have unique
pay hourly rate values. The remaining 3.6% tuples have
duplicate values for this attribute. This small amount of skew
turns out to decrease the performance of the join significantly.

The DBMS uses sort-merge join for these two queries. We
measured both the elapsed time and the number of physical
reads performed by just the merge step of each query, by sep-
arating out the time and number of physical reads for sorting.
We varied the memory allocated for merging from the default
size (64KB) defined by this DBMS to a much larger 1MB.

While the execution time to sort depends heavily on the size
of main memory, the merge phase should be linear in the car-
dinality of the resulting table and independent of the size of
main memory. The result size ofQ2 is only 1.5% larger than
the result size ofQ1, and soQ1 andQ2 should behave simi-
larly. However, as shown in Figure 2, the performance of the
merge step for this commercial DBMS degrades greatly in the
presence of skew, especially when the size of memory is small.
For 64KB of memory (the default size), the count of physical

Q1:
select i1.SSN, i1.pay hourly rate, i2.SSN
from incumbents i1, incumbents i2
where i1.SSN = i2.SSN
and i1.PCN = i2.PCN
and i1.start date = i2.start date

(a)

Q2:
select i1.SSN, i1.pay hourly rate, i2.SSN
from incumbents i1, incumbents i2
where i1.pay hourly rate=i2.pay hourly rate
and ((i1.start date >= i2.start date

and i1.end date <= i2.end date)
or (i1.start date > i2.start date

and i1.end date > i2.end date
and i1.start date < i2.end date)

or (i1.start date < i2.start date
and i1.end date < i2.end date
and i2.start date < i1.end date)

or (i1.start date <= i2.start date
and i1.end date >= i2.end date))

(b)

Figure 1: Two queries used to examine the performance of
commercial DBMS

reads ofQ2 is almost three times that ofQ1. The difference
between the elapsed time is even larger, five times, due to the
prevalence of the random reads that are involved when skew is
improperly handled, as we will discuss shortly.

We’ve heard informally that some commercial sort-merge
algorithms are variants of the R-1 approach we introduce be-
low; our simulation studies for R-1 exhibit performance results
similar to that shown in Figure 2. However, as we show, R-1
and its multi-run variant R-n are not competitive in perfor-
mance when compared to the other algorithms we propose. In
any case, the present paper is the first to carefully examine pre-
cisely when skew becomes a problem in sort-merge join, the
first to present specific algorithms to address these problems
and the first to analyze the performance implications of these
approaches. We feel that our recommended replacement could
ensure a more accurate analysis of algorithms in the literature
that are based on sort-merge join and could enhance the per-
formance of commercial sort-merge join implementations on
realistic data.

3. PRELIMINARIES
The join algebraic operator takes two input relations, of ar-

ity m andn, and produces a single resulting relation. A wide
variety of joins have been defined, including equijoins, nat-
ural joins, semi-joins, outer joins and composition [16]. We
consider the general case in which the join outputs all the at-
tributes (hence, the arity of the result ism + n). We assume
that the join has an explicit predicate containing at least one
equality test between attributes of the two underlying relations
(these attributes are termedequijoin attributes: EA); sort-
merge join is applicable only in the presence of such equi-
join attributes. We term the (optional) remainder of the join
predicate thesupplemental predicate(SP ), which can involve
equality comparisons between attributes of one of the input
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Figure 2: Performance of merge in sort-merge join in a commercial DBMS

relations, either with themselves or with constants, as well as
inequality comparisons and function invocations. The supple-
mental predicate can significantly reduce the size of the result-
ing relation, especially if the equijoin attributes do not consti-
tute a primary key of either of the underlying relations.

The traditional sort-merge algorithm is usually shown as in
Figure 3(a), in whichpL is a pointer into relationL and sim-
ilarly with pR, each ranging from 1 to the cardinality of the
relation;L[pL] is the tuple at positionpL; andL[pL](EA)
are the value(s) of the equijoin attribute(s) of that tuple. In
this algorithm, the sequence of attributes on which the sort is
applied is not important. (From now on, we assume a single
equi-join attribute.) Sort-merge join preserves the sort order
of the inputs, a useful property to exploit in the presence of
multiple joins.

In this context,skewis simply the presence of multiple tu-
ples inL or R with identical values for the equijoin attribute.
These tuples, collectively called avalue packet[5, 12] for each
such value, are contiguous in the input relations after they are
sorted. So an equivalent definition of skew is the presence of
a value packet containing more than one tuple. The traditional
algorithm must be modified to backtrack, yielding the algo-
rithm in Figure 3(b). This algorithm effectively applies nested
loop (cf. the nested repeats) on the tuples in value packets it
encounters, applying the supplemental predicate, if present, to
each pair of tuples, one from each value packet.pR records
where the value packet starts inR; pR2 iterates over the value
packet.

This algorithm as presented in Figure 3(b) istuple-oriented:
the input relations are treated as in-memory arrays of tuples.
Join implementations are almost alwaysblock-based, in which
a block (or several blocks) of tuples is read into main memory,
to be processed and then replaced with successive blocks read
from disk. The algorithm in the figure can be rendered block-
based by simply inserting block reads (to an in-memory array,
eitherBL orBR, of sizeB tuples) whenever a pointer is in-
dexed out of the in-memory block, as shown with new code
for advancein Figure 3(c) and changing references ofL to
BL and ofR toBR.

This is where most presentations of sort-merge move on to
a complexity analysis of the algorithm. Unfortunately, making
this straightforward change breaks the algorithm when skew is
present. There are three types of skew:

1. skew occurring only in the left-hand side (LHS) relation,

2. skew occurring only in the RHS relation, or

3. skew occurring in both the LHS and RHS relations.

The problem arises when a value packet crosses a buffer bound-
ary. (A value packet entirely contained in a buffer presents no
problem.) These three cases are shown in Figure 4. In this
figure, each rectangle denotes a buffer’s worth of tuples.A de-
notes a value packet with an equijoin attribute value ofA; sim-
ilarly, B denotes a value packet with an equijoin attribute value
of B. The arrows in the figure denoting the reading pointer
(pL or pR) into the buffer.

Graefe mentioned the skew problem and indicated that one
of two merging scans must be backed up when both inputs
contain duplicates of a join attribute value and when the spe-
cific one-to-one match operation requires that all matches be
found [5]. Mishra and Eich also address this problem: if the
join attributes are not the primary key attributes, several tuples
with the same attribute value may exist [16]. This necessitates
several passes over the same set of tuples of the inner relation.
So whenever a duplicate LHS value is encountered, they state
that it is necessary to backtrack to the previous starting point in
the RHS relation, but don’t provide any details. The only algo-
rithm for handling skew in a block-oriented environment that
we have found is in the book by Garcia-Molina et al., which
we will consider further in Section 4.4.

We now consider in detail how to contend with these three
sources of skew. The first case of skew, which we termLHS
skew, presents no problem, as the buffer boundary is encoun-
tered in the outer loop. The subsequent blocks of the LHS are
read in and the join continues with the same value packet in
the RHS. Skew in the RHS (either alone, termedRHS skew,
or in conjunction with LHS skew, termeddual skew) does
cause problems, because the buffer boundary is encountered
within the inner loop. In the presence of RHS skew, subse-
quent blocks of the RHS are read in while the right-hand value
packet is being joined with the first tuple of the left-hand value
packet, which renders the previous buffer inaccessible for join-
ing with the remaining tuples in the value packet in the LHS.
The right-hand pointer can only be moved back to the start of
the buffer, so subsequent tuples in the left-hand value packet
will only be joined with the second portion of the right-hand
value packet.



Traditional Sort-Merge Join :
Sort relation L on the attribute EA
Sort relation R on the attribute EA
pL 1

pR 1

repeat until pL = L.length or pR = R.length
if L[pL](EA) = R[pR](EA)

if SP (L[pL]; R[pR]) output(L[pL] Æ R[pR])
advance pR

else ifL[pL](EA) > R[pR](EA)

advance pR
else // L[pL](EA) < R[pR](EA)

advance pL

Advance pL :
pL pL+ 1

(a)

Traditional Sort-Merge Join With Skew:
Sort relation L on the attribute EA
Sort relation R on the attribute EA
pL 1

pR 1

repeat until pL = L.length or pR = R.length
if L[pL](EA) = R[pR](EA)

pR2 pR

repeat
if SP (L[pL]; R[pR2]) output(L[pL] ÆR[pR2])
advance pR2

until L[pL](EA) 6= R[pR2](EA)

or pR2 = R.length
advance pL

else ifL[pL](EA) > R[pR](EA)

advance pR
else // L[pL](EA) < R[pR](EA)

advance pL

(b)

Advance pL :
pL pL+ 1

if pL = B + 1

read next block of L into BL
pL 1

(c)

Figure 3: Traditional sort-merge join algorithms, origi-
nal (a) and accommodating skew (b), and rendering sort-
merge join block-based (c)

This implies that if skew is known to be absent from one of
the underlying relations, for example if the equijoin attributes
form a primary key of a relation, then that relation should be
placed as the RHS of the join, which is always possible due
to the commutativity of join, though that swap may have im-
plications to the efficiency both of the join in question and
other joins in the query. Doing so, however, doesn’t solve the

A
B

Case 2 Case 3

LHS RHS LHS RHS

A A A

A

B

A

B
A

Case 1

LHS RHS

A
B

A

A

Figure 4: Types of skew in sort-merge join

problem in the general case; we still need a join method that
can accommodate skew, especially as often the reason sort-
merge join is considered in the first place is that the skew that
is present argued against adopting hash join.

There is one additional complication that will become rel-
evant. Recall that sort-merge join uses a disk-based sorting
phase that starts by generating many small fully-sortedruns,
merging these into longer runs until a single run is obtained
(this is done for the left-hand side and right-hand side inde-
pendently). Each step of the sort phase reads and writes the
entire relation. The merge phase then scans the totally-sorted
left and right-hand relations to produce the output relation.

A common optimization is to stop the sorting phase one
step early, when there are a small number of fully sorted runs.
The final step is done in parallel with the merge phase of the
join, thereby avoiding one read and one write scan. Our algo-
rithms with multiple runs described in the following sections
are based on this optimization. This impacts how dual skew is
accommodated.

In our implementation, each run is accorded one buffer in
main memory, with the size of thisrun bufferdependent on the
amount of available main memory and the size of the relation.
In our description, the term ”buffer” denotes ”run buffer”. To
simplify the implementation, multiple blocks that can fit in one
buffer are read into memory at one time unless we explicitly
mention otherwise.

The equijoin predicate may consist of multiple equality con-
ditions that require the value of several columns to be equal.
The query optimizer might choose to merge the relations on
only some of the equality columns, with the remaining equal-
ity columns in the residual predicate processed in the inner
loop of the merge algorithm. One possible reason is the pres-
ence of convenient indexes in the database on these particular
columns. Our algorithms apply in this situation especially be-
cause skew is likely to appear on the merge columns. From
this point on, the term ”equijoin attribute(s)” denotes the at-
tribute(s) on which the input relation is sorted and merged,
separate from the residual predicate.

4. CONTENDING WITH SKEWED DATA
The goals of the new algorithms are to incur no disk over-

head under low skew and perform efficiently under heavy skew.

4.1 Reread with One Run (R-1) and with
Multiple Runs (R-n)

R-1 is a simple extension of Figure 3(b)+Figure 3(c), in
which a block of the RHS are reread whenever a reference
is made to a tuple in a block that was previously replaced with
a subsequent block (during the advancing ofpR2). This al-



gorithm exploits the presence of only two runs to be merged,
one each from the LHS and the RHS. The down side is that an
extra pass is needed to produce a single run for the right hand
side.

To accommodate RHS and dual skew, the R-1 algorithm
reads blocks when necessary (when a pointer is incremented
past the end of a buffer) and rereads blocks of the RHS when
pR is reset to the beginning of a value packet, an event termed
a hiccup. The hiccup comes in the middle of the algorithm,
when the disk block of RHS that started the value packet is
reread (pR2 pR).

R-1 can be considered to be the minimal extension of the
standard sort-merge join that correctly deals with all three kinds
of intrinsic skew. As we’ll see later in the paper, the perfor-
mance of this algorithm degrades very quickly in the presence
of skew.

R-n is a variant that supports multiple runs on the right-
hand side, with rereading on a per-run basis. (The “n” simply
means “multiple runs’,” as contrasted with a single run on each
side.) The difference between single run and multiple runs is,
when multiple runs are deployed, the final merge of the sort
phase is done during joining phase. With multiple runs, the
rereading process becomes more complex. For each RHS run,
we record the backup pointer (pR2 in Figure 3(b)). Every
time we increment the LHS pointer, we check the recorded
information to see whether it is necessary for each RHS to
reread the block containing the initial tuple of the value-packet
(the runs for which the value packet does not entirely fit in the
run’s block will have to be reread) and the subsequent blocks.
If there is no skew, we still need to check this information,
which represents CPU overhead. Skew will probably generate
more random reads, since the skewed data is likely to be spread
across several runs.

If the inner relation is an intermediate result, and thus it
is not easy to rewind within it, the intermediate result can be
written out in a temporary file or can be materialized as a B-
tree index. The algorithms proposed in this section and in
the following sections can be applied to either of the cases.
Another variant of join utilizes iterators to supply tuples from
left or right arguments [5]. Although the implementation of
iterators generally doesn’t allow rewinding to the previous tu-
ples, in Section 4.4 we will see an approach which works di-
rectly with an iterator.

4.2 Block-based Reread (BR-1 and BR-n)
While R-1 and R-n were block-based in terms of their non-

skew portion, they are both tuple-based in terms of their reread-
ing: a hiccup occurs for the second and successive tuples in the
LHS value packet. We now present two further refinements
(BR-1 and BR-n) that are entirely block-based.

The discussion in Section 3 differentiated RHS and dual
skew. To address the simpler of the two, RHS skew, we break
the nested loop into two parts, joining the left value packet
with the portion of the right value packet in the buffer before
moving on to the next right-hand buffer. To distinguish be-
tween cases 2 and 3 (RHS skew and dual skew), we adopt a
prediction rule: dual skew is present if the value of the last
tuple in the left buffer matches (for the equijoin attribute) that
of the value of the last tuple of the right buffer.

In BR-1, shown in Figure 5, the LHS and RHS in-memory
buffers are denoted byBL andBR, respectively, with a buffer

size ofB tuples.pL, pR andpR2 range from 1 toB, pointing
into the main-memory buffer ofL or R. pR2 points to the
first tuple in the main-memory portion of the value packet for
the RHS;pL andpR range over the value packets of LHS and
RHS. The innermost nested loops ensure that the left value
packet is joined with the portion of the right value packet in
the buffer before moving on to the next right-hand block.

BR-n avoids the last run merge by storing information about
the state of each LHS run. The idea is the same as BR-1; the
algorithm is similar but more complex. Since a value packet
can be distributed across buffers in multiple runs in both sides,
to make sure each LHS block joins with each RHS block ex-
actly once, the algorithm has to remember with which block
each LHS run has finished joining.

A note on the implementation: the prediction rule requires
that we look at the last record in the buffer. This is easy
for fixed-length records, but more difficult for variable-length
records. To avoid the CPU overhead needed to search from the
first record to the last record in the buffer, the offset of the last
record can be recorded in each buffer when writing out the run
in the sort phase.

BR-n handles hiccups on a buffer basis, across many runs.
Even with this optimization, hiccups are still quite expensive,
as we’ll see in Section 5. The next four algorithms attempt to
avoid hiccups in the presence of skew.

4.3 Block-based Reread with Smart Use of
Memory (BR-S-n)

Although BR-n avoids hiccups in the presence of RHS skew,
it has to reread the blocks in a run buffer when it encounters
dual skew. To address dual skew with less rereading, we can
make better use of the main memory buffer.

BR-S-n handles hiccups on a single-block basis. As illus-
trated in Figure 6, when the end of the RHS buffer is encoun-
tered and dual skew is detected, we clearly know that all the
blocks preceding the current value packet have been joined
and need not be kept in the memory. Thus, these blocks can
be discarded and their space can be used to hold the tuples in
the current value packet that resides in the successive blocks.
This involves shifting the current value packet, which resides
at the very bottom of the buffer in main memory, to the top of
the buffer, then reading in more of the value packet into the
free area below. From our previous analysis, the buffer should
be relatively large; in most cases, we can accommodate all the
skewed data in one buffer and thus avoid rereading altogether.

In the extreme situation that the size of skewed data exceeds
the buffer size, the reread can’t be avoided. But we are care-
ful to reread from the block that contains the starting tuple of
the value packet, so that the blocks preceding the most recent
value packet are not reread: only the most recent value packet
and subsequent blocks need to be reread. One potential disad-
vantage of BR-S-n is it partially loads a buffer into memory in-
stead of loading blocks for a whole buffer at one time. There-
fore, it may change some sequential reads to random reads.

4.4 Spooled Cache (SC-1)
In their book, Garcia-Molina et al. [93] recommend in the

case of skewed input that main-memory use for other aspects
of the algorithm be reduced, thus making available a poten-
tially large number of blocks to hold the tuples in a given value
packet. Subsequent blocks of both the LHS and RHS value



Block-based Sort-Merge Join :
Sort relation L on the attribute EA
Sort relation R on the attribute EA
read blocks for one buffer of L into BL
pL 1

read blocks for one buffer of R into BR
pR 1

repeat until finished with L
pR2 ?

repeat until finished with R
if BL[pL](EA) < BR[pR](EA)

break
else ifBL[pL](EA) > BR[pR](EA)

advance pR
else // match

if pR2 = ?

pR2 pR // remember start of
// value packet

if SP (BL[pL]; BR[pR])

output(BL[pL] ÆBR[pR])
if pR 6= B // end of RHS buffer

advance pR
else
pred (BL[B](EA) = BR[B](EA))

repeat until no matching tuple exists in RHS
// finish off value packet

join all the matching tuples in BL and BR
read the next blocks for one buffer of RHS

if pred // dual skew
advance pL // to next buffer of LHS
pR pR2 // restore RHS pointer

else // RHS skew only
advance pL // to new value packet
advance pR // to new value packet
pR2 ?

if pR2 6= ?

pR pR2

advance pL

Figure 5: Block-based reread with one run, BR-1

A A

A
BA

Old Buffer 1

New Buffer 1

LHS RHS

Figure 6: Smart use of block space

packets are read in, replacing blocks already scanned. If the
value packet still doesn’t fit in main memory, nested loop on
the tuples in the value packet is required.

As they note, this algorithm is difficult to generalize to mul-
tiple runs. However, no details were presented, nor a perfor-
mance study. Here we present a related approach that we ex-
tend in the next section to support multiple runs.

The basic idea is to reserve a buffer in main memory, termed
the join-condition cache, to hold the skewed tuples. Specifi-
cally, the join-condition cache holds tuples from the RHS that
satisfy the join condition and have not yet been completely
joined with tuples from the corresponding value packet in the
LHS. The size of the cache can be specified before the join,
or it can be expanded incrementally within the join. However,
there always exists the possibility that the cache may overflow.
At the cache’s overflow point, we have to make a decision: ei-
ther spool the cache data to the disk or use rereading to prevent
the cache from overflowing. Here, we adopt the first approach;
in Section 4.6, we will adapt the algorithm to ensure the cache
never overflows, by rereading. We consider the one-run vari-
ant here; the next section generalizes this spooled cache ap-
proach to multiple runs. In both sections, the spooled cache
avoids rereading the previous blocks, and therefore works with
an iterator.

We need to handle both RHS and dual skew with the cache
(as before, LHS skew is trivially handled). We adapt the pre-
diction rule to introduce another rule which will be helpful for
block-based execution.

1. Prediction rule— If we find that the RHS buffer con-
tains the skewed data, then before moving the skewed
data into the cache for joining with future tuples, we
check the last tuple in LHS buffer to determine if dual
skew is present. If so, we need to store the RHS skewed
data in the cache. Otherwise, we avoid this overhead by
joining all the RHS skewed data with all the correspond-
ing LHS tuples.

2. Join before caching rule— Before we put the RHS skew-
ed tuples into the cache, we always join them with the
corresponding LHS tuples. Thus we know exactly which
LHS tuples the cached tuples have already been joined
with. This rule saves a lot of bookkeeping work, which
makes the algorithm’s logic easier to understand.

This approach ensures the following invariant.

Invariant: tuples in the cache have been joined with
all tuples in previously-read LHS buffers

Using the cache and these rules, we can optimize the algorithm
in the following ways.

� When we hit the end of the RHS buffer, join all the tu-
ples in RHS buffer with corresponding LHS tuples.

� After the buffer join listed above, we decide whether we
should put the RHS skewed tuples into the cache, using
the modified prediction rule. This avoids unnecessary
movement of tuples into the cache.

� Each time we read in a new LHS buffer, we should first
join all the tuples in the cache with the tuples in the just-
read LHS buffer.



Algorithm SC-1 :
Spooled Join-Condition Cache with One Run

Sort relation L on the attribute EA
Sort relation R on the attribute EA
Merge L so that it has only one run
read the blocks for one buffer of L into BL
pL 1

read the blocks for one buffer of R into BR
pR 1

repeat until finished reading L
pR2 ?

repeat until finished reading R
if BL[pL](EA) < BR[pR](EA)

break // the repeat loop
elseifBL[pL](EA) > BR[pR](EA)

advance pR
continue // the repeat loop

else
if this is the first matching tuple for BL[pL](EA)
pR2 pR // remember start of

// value packet
if SP (BL[pL]; BR[pR])

output(BL[pL] Æ BR[pR])
if pR 6= B

pR pR+ 1

else // end of R buffer
purge the join-condition cache
join all the corresponding tuples in BL and BR
if prediction on BL

move skewed tuples into cache
advance pR
pR2 pR // modify start position of

// value packet
if pR2 6= ?

pR pR2 // restore RHS reading pointer
advance pL
if pL = 1 // new L buffer

join the join-condition cache with all the tuples
in L’s new buffer

Figure 7: Spooled cache algorithm, SC-1

The SC-1 algorithm is shown in Figure 7.
A similar approach was used in the tree-merge structure join

algorithm [1], in which the nodes in a current sweep (analo-
gous to our value packet) are stored in a temporary SHORE
file, whose pages are written to and from disk by the SHORE
buffer manager. Our appoach uses the prediction rule to de-
termine whether to put tuples into the cache and exerts more
careful control over the cache.

4.5 Spooled Cache on Multiple Runs (SC-n)
SC-1 assumes that the LHS is only one run, which requires

an additional pass to merge the LHS runs before the merge step
of the join. Here we present a revised algorithm, SC-n, which

accommodates several LHS runs, while maintaining excellent
performance in most situations.

Managing several LHS runs with the prediction rule be-
comes more difficult, because if any of the LHS runs fail the
test, we have to expand the cache. This situation is shown in
Figure 8. In the figure, even though Run1 and Run3 satisfy
the prediction test, we still need to put the RHS tuples in the
value packet into the cache, because Run2 needs to read in
new tuples (because the boundary between buffers in Run2 in-
conveniently occurs within a value packet), which means that
it has just encountered dual skew.

RHS

A

A

A BRun1:

A BRun3:

LHS

ARun2: A

Still need to cache
the RHS tuples

Figure 8: Several runs versus only one run?

To transition to multiple runs, we must keep track of the
state of each LHS run. If there aren LHS runs, we create an
array (actually, a bit vector) of sizen to record the status of
each run, with the following two values.

� complete: indicates that the tuples in this run have been
joined withall the tuples in the cache

� pending: indicates that the tuples in this run havenot
been joined withany tuples in the cache

Initially, all the runs’ status are set tocomplete, since there are
no tuples in the cache at the beginning. We need to ensure the
following invariant.

New Invariant: complete runs have been joined withall
the tuples in the cache, whilepending
runs have been joined withno tuples in the
cache

With this invariant in mind, we make the following revisions
on the algorithm SC-1 to get the new algorithm.

When any RHS run reaches the end of a buffer (correspond-
ing to the last statement inside the inner loop in Figure 7), the
prediction rule is used to check whether we should move the
RHS tuples into the cache. If there is no need to expand the
cache, tuples in current RHS run are joined with tuples in each
LHS run. Otherwise, tuples in current RHS run are only joined
with tuples incompleteLHS runs and the applicable RHS tu-
ples are moved into the cache.

When any LHS run reaches the end of one buffer (corre-
sponding to the lastif statement in Figure 7), the algorithm
checks the status of this run. If this run is acompleterun, just
load the subsequent blocks for this run and change this run’s
status topending. If instead this run is apending run, the al-
gorithm joins all thepending LHS runs with the tuples in the
cache and changes the status of all the LHS runs tocomplete.
Then, the subsequent blocks are loaded and the run’s status is
changed topending.



In this algorithm, purging the cache becomes a little more
complex than in SC-1, where we simply set the cache to empty
when we encounter a new RHS value packet. When there are
multiple LHS runs, there exists the possibility that there are
other runs which may join with tuples being purged from the
cache, as shown in Figure 9. This figure shows two value pack-
ets, with valuesA andB. The dotted lines show that tuples
from theA value packet from Run1 and Run2 of the LHS have
been joined with all the tuples in the cache. The first tuple of
theB value packet has just been encountered in Run1 of the
LHS. When we reach the end of the second buffer in the RHS
run and we find that the value packet has changed (since it is
associated with B values, but the cache contains A values), we
purge the cache. But these tuples in the cache have not yet
been joined with the value packet(s) in (pending) LHS runs.
So before purging the cache, we need to join the cache with
corresponding tuples in the pending runs, thereby converting
them tocompleteruns.

RHS

A

A

Run1:

LHS

Run2: AA B

AA B

ACache:

B

Figure 9: Purging the cache with multiple runs

4.6 Block-based Reread with a Non-Spooled
Cache (BR-NC-n)

Algorithm R-n (cf. Section 4.1) avoids the overhead of cache
maintenance. However, for low skew, this version may cause
more disk I/O than algorithm SC-n, which imposes no I/O if
the cache can hold all of the skewed data from a value packet.
This last algorithm, BR-NC-n, attempts to combine the best
features of both the spooled cache and rereading by using a
small cache that can deal with low skew in the data distribu-
tion. This cache never spools. If cache fills up, we record the
cache overflow point and start rereading from that point. Be-
cause the cache never reaches the disk, it would not form a
new hot point. This is the most complex algorithm of the ones
we propose.

5. EVALUATION AND COMPARISON
Among the algorithms we proposed in the previous section,

we implemented R-n, BR-n, BR-S-n, SC-1, SC-n and BR-
NC-n. We did not implement the simpler R-1 algorithm be-
cause preliminary experiments with SC-1 indicated that the
additional pass to produce one run of the LHS extracted a high
penalty, rendering that algorithm noncompetitive. The results
of all the algorithms for the different input relations were com-
pared to ensure that they were identical.

The experiments were developed and executed using the
TIMEIT system [11], a software package supporting the pro-
totyping of database components. Some parameters are fixed
for all the experiments. They are shown in Table 1(a). The

cache size for those algorithms that use a cache was set at 3%
of the available main memory. In all test cases, the generated
relations were randomly ordered, and the join algorithms were
run with a cold main memory.

Parameter Value
memory size 1MB/16MB
cache size 32KB/512KB

output buffer size 32KB
block size 1KB
tuple size 128 bytes

join attribute 4 bytes
(a)

Metric Conversion
sequential I/O cost 1 msec
random I/O cost 10 msec
attribute compare 20 nsec

pointer swap 60 nsec
tuple move 640 nsec

(b)

Table 1: System characteristics (a) and cost metrics (b)

TIMEIT collects a variety of metrics, shown in Table 1(b);
both main memory operations and disk I/O operations were
measured. TIMEIT then combines these into a single metric of
elapsed time in seconds using the identified weights, thereby
not tying the measurements to the underlying processor. We
emphasize that this is a computed metric, not actual wall clock
time, and so does not capture all of the subtle differences of
the algorithms. However, such an approach allows us to un-
derstand exactly how each of these metrics is affected by the
parameters and by the algorithms.

5.1 Experiments
Data skew is the presence of a repeated value in the equi-

joined attribute. Skew can be realized in a variety of ways. At
one end of the spectrum issmooth skew, in which some num-
ber of tuples have a single duplicate. In smooth skew, some
value sets contain two tuples, with the rest containing exactly
one tuple. At the other end of the spectrum ischunky skew(us-
ing a peanut butter metaphor), in which a single attribute value
is duplicated many times, thus effecting a very large value set.
We examine the performance of the various algorithms under
these two kinds of skew.

5.1.1 Smooth Skew
In this experiment, we fixed the memory size (16MB) and

cache size (512KB). A series of relations were generated with
a fixed size of 128MB and with increasing skew on the join
attribute, from 1% to 25%. A relation has 1% smooth skew
when 1% of the tuples in the relation have one duplicate value
on the join attribute and 98% of the tuples have no duplicates.
We examined self-joins to ensure that the LHS and RHS have
the same degree of skew. The results are shown in Figure 10.
Note that the y-axis starts at 1050 seconds to emphasize the
difference between the algorithms, which is less than that for
chunky skew. At large skew, the difference between the slow-
est (R-n) and fastest (SC-n) is 11% of the fastest time.

The graph shows the performance of the algorithms fall into
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Figure 10: Fixed relation size (128MB) with smooth skew

three groups. R-n has the highest cost. BR-n exhibits a lower
cost than R-n but is worse than all the other algorithms, which
constitute the third group. The difference between these groups
increases along with the increasing skew percentage. The more
skew in the relations, the higher probability that the skew ap-
pears at the boundary of buffers and the more hiccups and thus
disk reads for R-n. BR-n has less rereading than R-n due to its
block-based rereading. As for BR-S-n, SC-n and BR-NC-n,
there are at most two tuples in the value set at any time. The
cache never overflows and there is no rereading. No extra I/O
overhead is caused by smooth skew. Therefore, these three
algorithms behave similarly and show the best performance.

5.1.2 Chunky Skew
At first, we tried to use large memory and larger relations.

However, for one test case, the program for R-n didn’t com-
plete after 30 hours. The test case joined a 256MB relation
with a 32MB relation using 16MB memory. Both of the rela-
tions have 1% chunky skew. A relation has 1% chunky skew
when only one value of the join attribute repeats and the num-
ber of duplicates is 1% of the total number of the tuples in the
relation. The number of skewed tuples in the LHS relation is
about 20000. Since skew appears in RHS relation, the skewed
tuple must be distributed at least in two buffers. That means
at least the blocks in two buffers were read 20000 times. In
this case, the buffer size is about 0.8MB. This indicates 32GB
extra reads and joins, which is 1000 times the size of the RHS
relation(!). We conclude that the performance of tuple-based
reread degrades significantly with the increase of the number
of skewed tuples. A large data set with a small percentage of
chunky skew renders tuple-based reread impractical.

Therefore, we decide to use a small memory (1MB) with
small data set to compare our algorithm and tuple-based reread.
Since the memory is small, we chose a smaller cache (32KB)
than in smooth skew (that is, 3% of main memory). We fixed
the RHS size at 16MB. The LHS size varies from 1MB to
16MB. The relations on both sides have 1% skew on their join
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Figure 11: Varying relation size with chunky skew of 1%

attribute. The results are shown in Figure 11.
R-n behaves terribly when the LHS size increases, because

the absolute number of skewed tuples increases when the rela-
tion size increases. In fact, it is more than three times slower
than the other algorithms. The number of skewed tuples deter-
mines the number of hiccups. We counted the number of hic-
cups in all the experiments. According to our data, the num-
ber of hiccups in R-n surpasses 13000 when the LHS reaches
16MB. For the same relation size, BR-n only exhibits 110 hic-
cups due to the block-based rereading. The cost of SC-n and
BR-NC-n are almost identical to BR-n, because chunky skew
can cause the cache to overflow, which also causes disk op-
erations. From the results, we conclude that the overhead of
cache overflow is almost identical to the overhead of block-
based rereading.

We found when we examined higher chunky skew levels
that SC-n had somewhat worse performance than BR-NC-n,
due to the random writes to spool the cache, which are not nec-
essary for the rereading algorithms. However, large chunky
skew levels are rare in practice, because of the very large re-
sulting relation size (approximating Cartesian product sizes).

As we expected, BR-S-n is better than BR-n since it avoids
rereading (in our test case, the size of skewed data is less than
the buffer size). BR-S-n has the similar performance to SC-n

and BR-NC-n, because BR-S-n essentially uses the RHS run
buffer as a cache when skew is present. Therefore, BR-S-n

emits the least number of reads. However, if one buffer can’t
hold the value set, SC-nwith a larger cache will perform better
than BR-S-n.

5.1.3 No Skew
A critical question is how much extra cost our algorithms

impose when there is no skew present. In this experiment, we
use the same parameters as for smooth skew. We fixed the
RHS size at 128MB and let the LHS size vary from 16MB
to 128MB. All the relations have no skew. All the algorithms
have almost the same performance for each size of relation.



The results for the smallest (16MB with 128MB) and the largest
relation size (128MB with 128MB) are shown in Table 2. Ta-
ble 2 does not include the result data for BR-S-n because it
has exactly the same cost as BR-n. Our data shows that the
algorithms we proposed have at most 0.002% extra overhead
compared with R-n (which is the traditional sort-merge join
in the absence of skew). This is not difficult to explain. The
only overhead of BR-n and BR-S-n is to test the prediction
at the end of each buffer, which is a simple attribute com-
pare operation. As for SC-n, BR-NC-n and BR-S-n, they may
need to add one tuple into the cache or shift one tuple for each
buffer, which is a tuple move operation. These overheads are
all minor CPU-only costs (there are no additional I/O’s in the
absence of skew for any of the algorithms) and are extremely
low.

LHS Elapsed Time (sec)
size R-n BR-n BR-NC-n SC-n

16MB 447.5724 447.5733 447.5729 447.5913
128MB 805.5714 805.5787 805.5877 805.5785

Table 2: No Skew

5.2 Cache Size
For the above experiments, we used a 3% cache size: a

32KB cache for 1MB memory and a 512KB cache for 16MB
memory for the cache-based algorithms, SC-n and BR-NC-n.
The cache size is impacted only by the size of individual value
packets and so need be only as large as the biggest value packet.

For the smooth skew experiments, the largest value packet
was two tuples, and so any cache will be large enough. For the
chunky skew experiments, 1% skew represents a value packet
of 10KB (80 tuples) for a 1MB LHS up to 160KB (1280 tu-
ples) for a 16MB LHS. As such, it overflows at a LHS relation
of 4MB and indeed we see that in Figure 11. (The effect is
small because there is only one such value packet.)

Some vendors (such as Oracle) now support automatic mem-
ory management. Each relational operator (join, sort, aggre-
gation) can ask for more memory according to the situation
encountered at run-time. With this feature, the join algorithm
could use the maximum skew (which might be estimated from
attribute statistics) to set an appropriate cache size. If the
cache overflows, the operator can decide whether to increase
the cache size (if the unexpectedly large value packet occurs
early and is likely to happen again) or spool the cache (if the
large value packet occurs later and is likely to be spurious).
For small-footprint applications, it is best to use only a small
cache and spool that cache when necessary.

5.3 Summary
The results of the experiments show that in all cases of skew,

SC-n, BR-NC-n and BR-S-n have the best performance. All
the algorithms proposed in this paper perform much better than
the traditional sort-merge join algorithm, R-n. All the algo-
rithms we proposed have almost identical performance as tra-
ditional sort-merge join in the absence of skew. The effect of
cache overflow and block-based rereading are almost the same
under chunky skew since both cache and buffer share the space
of the fixed main memory.

Among the new algorithms we proposed, R-1 and R-n re-

tain the sort order of the outer input in the output result. The
block-based algorithms and the cache-based algorithms might
change the order of the outer input, due to the complexity of
multiple runs; however, the result remains sorted on the join
attribute. In all the cases, if there is only one run in each of the
input relations, the order of the input relations will be retained
completely in the result.

Now consider a multiway join instead of two-way join, for
example, a three-way join. If the three-way join merges the
relations on the same columns, a spooled cache approach can
be applied since the result is sorted on the merge columns.

6. BAND JOIN
We now consider a particular non-equijoin:band join [2].

A band join between relationsL andR on attributesL.A and
R.B is a join in which the join condition can be written as
L:A� c1 � R:B � L:A+ c2. Skew is more likely to hap-
pen in band join. Consider the query finding the salary of
the employees from the Accounting department and the aver-
age salary of all employees that entered the company at about
the same time. Assuming the unit of time is day and ”about
the same time” means a time difference less than 90 days, the
query can be expressed in SQL as follows.

select E1.Name, E1.salary, AVG(E2.salary)
from Emp as E1, Emp as E2
where E1.Dept = ’Accounting’

and E2.start >= E1.start - 90
and E2.start <= E1.start + 90
group by E1.Name

Such a query would be amenable to a band join, as the alterna-
tive would probably be nested loop. (We note in passing that
temporal joins [19] exhibit a very similar structure; much of
the following also applies to temporal joins.)

Consider a sort-merge join implementation of this band join.
For each tuple inE1, its value packet includes all the tuples
in E2 with the join value falling in the indicated range. This
implies large (non-disjoint) value packets and hence skew; and
in particular dual skew is more likely to happen. As hiccups
are expensive, this skew must be handled carefully.

6.1 Band Join Algorithms
The conventional join algorithms discussed in this paper are

appropriate for band join, with two changes. First, the pre-
diction rule should be changed to identify dual skew when the
value of the last tuple in RHS buffer falls within the band de-
fined by the value of the last tuple in LHS buffer.

The second change is a more sophisticated purging policy
for the algorithms with an auxiliary value-packet cache (SC-n

and BR-NC-n). In the equi-join algorithms discussed in Sec-
tion 4, purging an existing value packet in the cache is easy.
Because all the tuples in the value packet are point values, we
simply clear the cache (both the in-memory and spooled por-
tions). There is no overhead for this purging operation.

In a band join, because the RHS value packets are not dis-
joint, some of the tuples in the cache will be part of the next
value packet. So it is necessary to only purge the beginning un-
qualified tuples (termedgarbage collecting the cache), rather
than the entire cache contents. For example, if our join con-
dition is L:A � c1 � R:B � L:A + c2 and the current



(LHS) join value changes fromA to A + 1, we need to re-
move all the tuples in the cache with join attribute value less
than (A+1� c1) and reorganize the cache. A design decision
is when to garbage collect the cache. If we purge the cache
too often, this overhead can become significant. If we do not
purge the cache, the cache will become larger and the cost for
joining with the cache will become greater.

We modified the algorithms discussed in Section 4 to sup-
port band join. We eliminated from consideration BR-NC-n

because it is too complex. We are left with the three most
promising algorithms, SC-n, BR-S-n and BR-n, along with
the simplest, R-n. Since they are band join algorithms, we
call them BDSC-n, BDBR-S-n, BDBR-n and BDR-n respec-
tively. For BDSC-n, the cache is garbage collected when tu-
ples need to be added (this garbage collection can occur as the
cache is scanned).

6.2 Experiments for Band Join
As in Section 5.1, we did experiments for band join algo-

rithms on chunky skew, smooth skew and no skew. We discuss
the results for smooth skew and no skew.

For smooth skew, we use the same data and same parameters
as in Section 5.1.1. The constants defining the band arec1 = 0

andc2 = 1 respectively. Thus, the degree of skew is almost the
same as in Section 5.1.1. The results are shown in Figure 12.
From the plot, we see that the results are very similar to the
results of equi-join experiment. The results for chunky skew
can be found in the full version of the paper [15]. All the four
algorithms show the same relative performance as in equi-join.
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for band join

The new algorithms add virtually no extra cost to the tradi-
tional sort-merge join in the absence of skew. Specifically, we
used the same parameters and data set as in Section 5.1.3. For
the largest relation size, BDSC-n has 0.005% extra cost, while
BDBR-n and BDBR-S-n exhibit only 0.002% extra cost in the
absence of skew (Table 3).

Algorithm R-n BR-n BR-S-n SC-n
Time (sec) 805.4957 805.5099 805.5099 805.5369

Table 3: Band join without skew

7. CONCLUSIONS
While skew has been investigated in detail for hash-join,

there have been only general recommendations for how to han-
dle skew in sort-merge join. We showed that even a small
amount of dual skew can have a significant detrimental ef-
fect on the performance of a commercial DBMS on realistic
data. We proposed several variants of sort-merge join that
can accommodate intrinsic skew: Reread with one run (R-1),
Reread with multiple runs (R-n), Block-based Reread with
one run (BR-1) and for multiple runs (BR-n), Block-based
Reread with Smart use of memory (BR-S-n), Spooled Cache
for skewed data with one more pass on the LHS for one run
(SC-1) and for multiple runs (SC-n) and Block-based Reread
with a Non-spooled Cache on multiple runs (BR-NC-n).

We experimented with these algorithms on a variety of re-
lation sizes, for smooth skew, chunky skew and with varying
percentages of skew. All of the algorithms proposed here per-
form much better than the traditional sort-merge algorithm,
R-1 and its multi-run variant R-n, in the presence of chunky
skew. SC-n, BR-n, BR-S-n and BR-NC-n have almost the
same performance as traditional sort-merge in the absence of
skew.

We also looked at four variants that deal with skew for band
join. As before, the performance of BDR-n (the traditional
sort-merge join) is much worse than the new algorithms. All
three of the new algorithms also did well in the absence of
skew.

If it is known a priori that there is no skew on the right
hand side relation, for example, if no duplicates exist in the
sense of equality join, then the simpler join algorithm without
backup can be used in the situation. However, the overhead
of all the algorithms in the presence of no skew is so small
that we doubt that having a separate join algorithm is justifi-
able. Taking all of these experiments into account, SC-n has
slightly better performance and of the four competitive algo-
rithms (the other three being BR-n, BR-S-n and BR-NC-n) is
the easiest to implement. Hence, we recommend that the ex-
isting sort-merge join be replaced with SC-n, which exhibits
strikingly better performance in the presence of skew, for both
conventional and band joins, and exhibits virtually identical
performance as traditional sort-merge join in the absence of
skew.

We know some vendors use single-run algorithms rather
than multi-run algorithms for sort-merge join. Those vendors
can benefit from SC-1 which is the single-run counterpart for
SC-n. Concerning the cache size, our recommendation is to
use a cache with the same size as the (run) buffer.
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