
DRAGOON: An Information Accountability System

for High-Performance Databases

Kyriacos E. Pavlou 1 and Richard T. Snodgrass 2

Department of Computer Science, The University of Arizona

P.O. Box 210077, Tucson, AZ 85721–0077, USA
1
kpavlou@cs.arizona.edu
2
rts@cs.arizona.edu

Abstract—Regulations and societal expectations have recently
emphasized the need to mediate access to valuable databases,
even access by insiders. Fraud occurs when a person, often
an insider, tries to hide illegal activity. Companies would like
to be assured that such tampering has not occurred, or if it
does, that it will be quickly discovered and used to identify
the perpetrator. At one end of the compliance spectrum lies the
approach of restricting access to information and on the other that
of information accountability. We focus on effecting information
accountability of data stored in high-performance databases.

The demonstrated work ensures appropriate use and thus end-
to-end accountability of database information via a continuous
assurance technology based on cryptographic hashing techniques.
A prototype tamper detection and forensic analysis system named
DRAGOON was designed and implemented to determine when
tampering(s) occurred and what data were tampered with.
DRAGOON is scalable, customizable, and intuitive.

This work will show that information accountability is a viable
alternative to information restriction for ensuring the correct
storage, use, and maintenance of databases on extant DBMSes.

I. INTRODUCTION

Corporate abuses by Enron and WorldCom have given

rise to recent regulations which require many corporations to

ensure trustworthy long-term retention of their routine business

documents. The US alone has over 10,000 regulations [1]

that mandate how business data should be managed [2], [3],

including the Health Insurance Portability and Accountability

Act: HIPAA [4], the Sarbanes-Oxley Act [5], the 1997 U.S.

Food and Drug Administration (FDA) regulation “21 CFR Part

11” [6], and other laws requiring audit logs [1].

A challenging threat is the existence of insiders who work

actively to defraud both the company and the clients. The

aforementioned laws as well as widespread coverage of collu-

sion between auditors and the companies they audit resulted

in increased interest within the file systems and database

communities about built-in mechanisms to detect and prevent

tampering, even in the presence of insider threats.

Compliant records are those required by myriad laws and

regulations to follow certain “processes by which they are

created, stored, accessed, maintained, and retained” [1]. It

is common to use Write-Once-Read-Many (WORM) storage

devices to preserve such records [7]. The original record is

stored on a write-once optical disk. As the record is modified,

all subsequent versions are also captured and stored, with

metadata recording the timestamp, optical disk, filename, and

other information on the record and its versions. But these

solutions do not work with high-performance databases.

This way of ensuring record compliance can be described

as information restriction which entails rendering retained

records immutable and controlling access to them. The means

of addressing security and compliance can be viewed as a

spectrum. If information restriction lies at one end of the

spectrum, the question which inevitably arises is, what lies

at the other end? Weitzner et al. argue that access control

and cryptography are not capable of protecting information

privacy and that there is a true dearth of mechanisms for

effectively addressing information leaks. They propose as an

alternative that information accountability “must become a

primary means through which society addresses appropriate

use” [8]. Information accountability, in this context, states that

information should be transparent so as to easily determine

whether a particular use is appropriate under a given set

of rules.

We assert that a shift towards information accountability

presents valuable advantages over information restriction in

the particular area of correct storage, use, and maintenance

of databases. An information accountability approach to

database security is cheaper, can deal with restriction failure,

can render complex security problems tractable, and can

protect against a variety of threats including insider threats.

Information accountability has been tried and tested suc-

cessfully since ancient times [9]. It has been applied in modern

times and in many varied areas including the Fair Credit

Reporting Act of 1970 [10]. Under this act strict rules are

imposed not on the collection of data or their analysis but

on the way the data or the result of the analysis (e.g., credit

reports) can be used.

Lest a conclusion be drawn that accountability is only

appropriate for information with a low associated risk, we

offer as an example the widespread use of simple wire-loops

as tamper-indicating seals for nuclear safeguarding [9].

As part of our current research, in which we are working

to show that information accountability can effectively guar-

antee no unauthorized modifications—insertions, deletions,

Database
(including
Audit Log)

Secure
Master

Database

τBerkeleyDB

Secure Site

transactions

transactions

modified

tuples

hash
value

notary IDhash value
+ notary ID

rehash

notary ID

new hash value

+ notary ID

result

CSO GUI

DBA GUI

CSI GUI

User

Application

Notarizer

EDNS

Validator

result

MySQL

Fig. 1. DRAGOON Architecture, Normal Processing, and Tamper Detection.

updates—in high-performance databases, we have designed

and implemented a prototype system called DRAGOON which

provides tamper detection and forensic analysis capabilities.

DRAGOON employs continuous assurance technology, de-

fined as “technology-enabled auditing which produces audit

results simultaneously with, or a short period of time after, the

occurrence of relevant events” [11], to achieve a meaningful

operationalization of information accountability.

II. THE DRAGOON SYSTEM

Within the domain of cryptographic hashing techniques

used to achieve information accountability in databases, our

research group removed the assumption that the system

could keep a secret key that would not be seen by insid-

ers. We proposed an innovative approach in which using

cryptographically-strong one-way hash functions allows us to

prevent an intruder, including an auditor or an employee or

even an unknown bug within the DBMS itself, from silently

corrupting the audit log [12].

DRAGOON (Database foRensic Analysis safeGuard Of ari-

zONa), a prototype auditing system, was implemented using

the above approach as its basis. It has been expanded to

include forensic analysis and to be highly customizable in

terms of offering a tunable trade-off between level of security

and monetary cost. It is lightweight and scalable and is able to

adequately address aspects of information accountability even

in the presence of insider threats.

A. System Architecture and Tamper Detection

DRAGOON’s architecture along with the flow of information

during normal processing and tamper detection are illustrated

in Figure 1.

A user application performs transactions on the monitored

database, each of which insert, delete, and update rows of the

current state. Behind the scenes, τBerkeleyDB (an extension

of BerkeleyDB with transaction-time support) maintains the

audit log by rendering a specified relation as a transaction-time

table. On each modification of a tuple, the DBMS is responsi-

ble for hashing the tuples. (The flow of information described

is shown with magenta solid arrows.) When a transaction

commits, the DBMS obtains a timestamp and computes a

cryptographically strong one-way hash function of the tuple

data and the timestamp. The hash values obtained from the

different transactions are cumulatively hashed and thus linked

with each other in order to create a hash chain which at each

time instant represents all the data in the database. This chain

is termed the total hash chain.

A module called a notarizer periodically sends that hash

value, as a digital document, to an external digital notarization

service (EDNS) such as Surety (www.surety.com), which

notarizes the hash and returns a notary ID. The notary ID

along with the initially computed hash values are stored in

a separate smaller MySQL-managed database. (The flow of

information described is shown with red dotted arrows.) This

database, termed the secure master database, is assumed to

exist in a secure site which is in a different physical location

from the monitored database [13].

Figure 1 also shows how tamper detection is achieved.

At a later point in time an application called the validator

initiates a scan of the entire database and hashes the scanned

data along with the timestamp of each tuple. The validator

retrieves the previously stored (during notarization) notary ID

from the secure master database and sends the information to

the EDNS (information flow shown with blue dotted-dashed

arrows). The EDNS then locates the notarized document/hash

using the provided notary ID and checks if the old and the new

hash values are consistent. If not, then the monitored database

has been compromised. The validator stores the validation

result in the secure master database (information flow shown

with thicker green solid arrows). The computation of the total

chain, together with the periodic notarizations and validations

comprise the normal processing execution phase of the system.

The system in its current form is scalable since it can

support multiple databases managed by the same DBMS, using

the same tamper detection and forensic analysis infrastructure.

Moreover, it can be scaled to support databases managed by

different DBMSes. The performance of the prototype has been

evaluated elsewhere [12]. The effect of number of transactions,

the transaction and tuple sizes was studied. The maximum

overhead observed was 15% but only for small tuples (10

bytes)—this overhead diminishes as the tuple size increases.

B. DRAGOON Interface

DRAGOON provides graphical interfaces between the com-

ponents of the architecture and the company’s Chief Security

Officer (CSO) who states enterprise-wide security policies,

the database administrators (DBA) who are responsible for

specific database(s), and one or more crime scene investiga-

tors (CSI) who investigate tampering and other corruptions.

Figure 1 shows how the three GUIs interact with the MySQL

secure master database which, in addition to the hash values

and notary IDs, stores the system configuration. Specifically,

the CSO GUI is used to assign DBA and CSI roles to

employees, designate which databases are monitored, and

along with the DBA GUI, set how often notarizations and

validations occur.

For example, Figure 2 shows the “Policies” tab of the CSO

GUI. The CSO can use this to set the minimum forensic

analysis algorithm that all monitored databases must support—

in this case the Monochromatic Forensic Analysis Algorithm.

She can also configure the system so that notarizations happen

every two days (Max Detection Resolution Interval) while

validations occur every three notarizations (i.e., every six

days). Finally, the unit cost for each notarization and validation

can be customized (here both are set to 10 cents) since

each interaction with the EDNS costs real money. (A cost

model for this has been developed and incorporated into

DRAGOON [14].)

Fig. 2. The Policies Tab in the CSO GUI.

If we determine during validation that the monitored

database has been compromised the CSI GUI initiates the

forensic analysis phase which utilizes the forensic analysis

algorithms. The results of the forensic analysis are reported

back to the CSI and displayed in a graphical manner.

C. Forensic Analysis

We have also designed a series of forensic analysis al-

gorithms of increasing complexity that allow an analyst to

put tight bounds on the “where” and “when” of a detected

tampering [15], [14], [16].

Figure 3 shows a corruption diagram which is a graphical

representation of the tampering(s) (denoted by CE for “cor-

ruption event”) in terms of the temporal-spatial dimensions of

a database. The diagonal line represents the cumulative total

hash chain with notarizations (NE) and validations (VE) occur-

ring every two and six days respectively (and according to the

CSO GUI settings). The y-axis represents clock time while the

x-axis measures transaction commit time (which can provide

an indirect means of characterizing the “where”). In basic

forensic analysis (Monochromatic Algorithm), once tampering

is detected, the algorithm revisits previously notarized parts

of the hash chain and validates them. This gradually restricts

the set of data where the tampering occurred (“where”). The

time interval between a successful and a failed validation puts

bounds on the time of tampering (“when”). The shaded area

6 days

CE

When

Where

 Failure (FVF)
First Validation

NE0

.

16

NE
1

NE
2

NE
3

NE
4

NE
5

NE
10

NE
11

VE
4NE

12

NE7

VE2
NE6

NE
8

VE3
NE9

VE1

22

18

24

2 days

Fig. 3. Corruption Diagram for Monochromatic Algorithm.

represents the spatial and temporal bounds of the corruption.

This shaded area is the result of forensic analysis and is

displayed in a similar way by the CSI GUI. More sophisticated

algorithms (e.g., the a3D Algorithm) employ more hash chains

in order to make the bounds even tighter.

III. DEMONSTRATION

The DRAGOON demonstration will be framed in terms of

a real-world scenario formulated in a corporate setting. In

general, interactive parts will be interleaved with expository

interludes which will explain the system details and theory

behind what is being demonstrated.

The demo will begin with a brief discussion of the concept

of information accountability along with motivating examples

(e.g., Egyptian bullae, HIPAA, Creative Commons licensing).

This will be followed by the introduction of the real-world

scenario featuring a company which requires an enterprise-

wide solution for guaranteeing the appropriate use of its

relational data stored across various databases. The objectives

of the solution sought will be clearly delineated.

Volunteers from the audience will be asked to play the

roles of the CSO, DBA, CSI, and adversary. The DRAGOON

system interface will then be introduced and using the GUIs,

the volunteers will be added as employees to the company.

Using the CSO GUI we will formally assign DBA and CSI

duties to the employees.

The next step will be to discuss the basic architecture and

tamper detection protocol of DRAGOON as shown in Figure 1.

We will describe how the modified tuples are hashed and how

the total hash chain is created and maintained. Moreover, we

will cover the protocol governing notarization of the current

hash value of the total chain, as well as how validation of the

database is initiated and executed.

The CSO will then decide which of the existing databases in

the company will be monitored and a global minimum security

policies for all monitored databases will be set. Using the DBA

GUI, adjustments will be made to the global policies to better

suit the particular database administered by the DBA. We

will demo monitored databases differing in their notarization

and validation frequencies, notarization/validation unit costs,

as well as forensic analysis algorithms used. In particular,

two such algorithms will be demonstrated: the Monochromatic

Algorithm and the more complex a3D Algorithm.

The notarization server (EDNS) will be started along with

the considered database. The database will be processing

transactions, performing the hashing of modified tuples, with

the resulting hash values periodically being notarized and

validated. Visual cues attesting to these will be provided.

The adversary will then tamper the database using a script.

The contents of the database will be examined to verify the

unauthorized change. The first validation after tampering will

fail and alert the CSO, DBA, and CSI that the database has

been compromised.

The forensic analysis phase will then be described with

special emphasis on how the algorithms work. Both the

Monochromatic and a3D algorithms will be analyzed. We

will use animated corruption diagrams similar to the one in

Figure 3 to facilitate the discussion. These corruption diagrams

will be compared to the ones generated by the CSI GUI in

order to see how the theoretical spatial and temporal bounds

on the tampering compare to the ones resulting from forensic

analysis. Furthermore, the bounds on the tampering in CSI-

generated corruption diagrams will be compared between

monitored databases using different notarization/validation and

algorithm policies in order to see the effect of the policies on

the tightness of the bounds.

The overall cost of normal processing and forensic analysis

will also be compared between monitored databases in order

to demonstrate the balance between higher level of security

(better bounds on the tampering) and monetary cost.

If time permits, we will discuss how multiple tamperings

in a single database can be detected and how other types of

tampering, like timestamp and schema corruption, can give

rise to more complex issues.

IV. CONTRIBUTIONS

DRAGOON provides guarantees against insider threats, scal-

ability, forensic analysis tools, and can be extended to an

enterprise-wide solution. Hence, it is valuable and applicable

to a variety of sectors. For example, these features can help

ensure record compliance for financial and medical institu-

tions. They can serve as an unbiased witness to any type

of database storing sensitive information. These may include

court-submitted data from police databases or biological re-

search results. The unbiased witness can be of particular use

to bioscience labs because it can ensure non-deviation from

protocols thus providing a certain type of provenance for their

final results.

The developed system does not just protect data but also

through continuous assurance is able to detect corruption

shortly after tampering as well as automate to a great extent the

work required in the aftermath of a database corruption. This

saves both time and money for those affected. The techniques

also highlight the advantages over approaches relying heavily

on information restriction through either hardware which can

have prohibitive costs for small institutions, have a limited

shelf-life and are relatively complex; or cryptography which

does not adequately offer remedies after a leak.

V. CONCLUSION

A prototype audit system named DRAGOON was designed

and implemented with tamper detection and forensic analysis

capabilities. DRAGOON is highly customizable in terms of

offering a tunable trade-off between level of security and

monetary cost. It is scalable and is able to adequately address

aspects of information accountability even in view of insider

threats.

ACKNOWLEDGMENT

The authors would like to thank Peter Downey, Yifeng

Li, Nirav Merchant, Soumyadeb Mitra, Radu Sion, Joseph

Watkins, and Marianne Winslett for providing valuable feed-

back. NSF grants IIS-0415101, IIS-0803229, and a grant from

Surety, LLC provided partial support for this work.

REFERENCES

[1] P. A. Gerr, B. Babineau, and P. C. Gordon, “Compliance: The effect on
information management and the storage industry,” Enterprise Storage
Group, Research Report, May 2003.

[2] C. C. Chan, H. Lam, Y. C. Lee, and X. Zhang, Analytical Method

Validation and Instrument Performance Verification. Wiley-IEEE, 2004.
[3] G. Wingate, Ed., Computer systems validation: Quality Assurance,

Risk Management, and Regulatory Compliance for Pharmaceutical and

Healthcare Companies. Informa Health Care, 2003.
[4] U.S. Department of Health & Human Services. (2006) The Health

Insurance Portability and Accountability Act (HIPAA). [Online].
Available: http://www.cms.gov/HIPAAGenInfo/

[5] “U.S. Public Law No. 107–204, 116 Stat. 745. The Public Company
Accounting Reform and Investor Protection Act,” 2002.

[6] F.D.A. (2003) Title 21 Code of Federal Regulations (21 CFR Part
11) Electronic Records; Electronic Signatures. [Online]. Available:
http://www.fda.gov/ICECI/EnforcementActions/default.htm

[7] Q. Zhu and W. W. Hsu, “Fossilized index: The linchpin of trustworthy
non-alterable electronic records,” in Proc. ACM SIGMOD’05, 2005, pp.
395–406.

[8] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,
and G. J. Sussman, “Information accountability,” Communications of the

ACM, vol. 51, no. 6, pp. 82–87, June 2008.
[9] R. G. Johnston, “Tamper-indicating seals,” American Scientist, vol. 94,

no. 6, pp. 515–524, Nov–Dec 2006.
[10] 15 U.S.C.1681. (1970) Fair Credit Report Act. [Online]. Available:

http://www.law.cornell.edu/uscode/15/usc sup 01 15 10 41 20 III.html
[11] M. Alles, A. Kogan, and M. Vasarhelyi, “Black box logging and ter-

tiary monitoring of continuous assurance systems,” Information Systems

Control Journal, vol. 1, 2003.
[12] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper detection in audit

logs,” in Proc. VLDB’04, September 2004, pp. 504–515.
[13] M. Malmgren. (2007) An infrastructure for database

tamper detection and forensic analysis. [Online]. Available:
http://www.cs.arizona.edu/projects/tau/tbdb/MelindaMalmgrenThesis.pdf

[14] K. E. Pavlou and R. T. Snodgrass, “Forensic analysis of database
tampering,” ACM Transactions on Database Systems, vol. 33, no. 4,
pp. 30:1–30:47, November 2008.

[15] ——, “Forensic analysis of database tampering,” in Proc. ACM

SIGMOD’06, June 2006, pp. 109–120.
[16] ——, “The tiled bitmap forensic analysis algorithm,” IEEE Trans.

Knowl. Data Eng., vol. 22, no. 4, pp. 590–601, April 2010.

