
AN INFRASTRUCTURE FOR DATABASE

TAMPER DETECTION AND FORENSIC ANALYSIS

By

MELINDA JOY MALMGREN

A Thesis Submitted to The Honors College

In Partial Fulfillment of the Bachelors degree
With Honors in

Computer Science

THE UNIVERSITY OF ARIZONA

M A Y 2 0 0 7

Approved by:

Dr. Richard T. Snodgrass
Department of Computer Science

 STATEMENT BY AUTHOR

 This thesis has been submitted in partial fulfillment of requirements
for a degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Signed: ___________________________________

Abstract

The need for secure data storage has become a necessity of our time. Medical

records, financial records, and legal information are all in need of secure storage. There

have been several methods proposed for how to secure and tamperproof a database. The

use of append-only transaction time databases provided the ability to know the exact time

in which data was changed.

This formed the foundation for a new approach wherein the DBMS computes a

cryptographically strong one-way hash function for each tuple inserted and then notarizes

it using a notarization service. This made it possible to check the consistency of the data

by comparing it to the values stored with the notarization service.

In continuation with this method, algorithms were designed to further analyze an

intrusion of a database. This thesis examines the implementation of these methods and

algorithms, including how to store all relevant information and hash codes pertaining to

each database being monitored and how to analyze and display the results of this stored

information.

By utilizing a central security master database as part of an enterprise architecture

for auditing, and by providing role-specific GUIs, it is possible to efficiently manage the

auditing of databases across an enterprise.

TABLE OF CONTENTS

1. NEED FOR TAMPER DETECTION 1

2. BACKGROUND AND RELATED WORK 3
2.1 TAMPER DETECTION IN AUDIT LOGS .. 3
2.2 ANALYSIS OF DATABASE TAMPERING .. 4

3. OVERVIEW 9
3.1 PURPOSE ... 9
3.2 IMPLEMENTATION ... 9
3.3 USER ROLES ... 10
3.4 SEQUENCE OF EVENTS .. 11

4. SECURITY MASTER DATABASE 13
4.1 CONCEPTUAL SCHEMA ... 13
4.2 CONCEPTUAL SCHEMA WITH TIME ... 17
4.3 MAPPING TO THE LOGICAL SCHEMA ... 18
4.4 MAPPING TO THE LOGICAL SCHEMA WITH TIME... 22
4.5 CONCLUSION .. 24

5. THE APPLICATIONS 25
5.1 SECURITY MASTER APPLICATION ... 25

5.1.1 Control Features .. 25
5.1.2 Viewing Features ... 27
5.1.3 Functionality/Requirements ... 28
5.1.4 Summary .. 29

5.2 DATABASE MONITOR APPLICATION ... 29
5.2.1 Features ... 29
5.2.2 Functionality/Requirements ... 30
5.2.4 Summary .. 31

5.3 FORENSIC ANALYZER APPLICATION ... 32
5.3.1 Features ... 32
5.3.2 Functionality/Requirements ... 32
5.3.3 Summary .. 32

6. DESIGN AND IMPLEMENTATION OF THE APPLICATIONS 35

7. CONCLUSION 37
7.1 RESULTS ... 37
7.2 FUTURE WORK ... 38

BIBLIOGRAPHY 39

A - COMPLETE LOGICAL SCHEMA 40

 1

1. Need for Tamper Detection

Secure data storage is an everyday requirement for public businesses, government

agencies and many institutions. For many organizations, if data were to be maliciously

changed, whether by an outsider or by an inside intruder, it could cause severe

consequences for the company. Possibly even for their clients as well.

There are many reasons why someone might want to tamper with data. For

example, an unsatisfied student who receives a “D” in his calculus class, in which he

needed at least a “B”, could be highly tempted to try to dishonestly change his grade to a

“B” in the school’s database. This would be an example of someone who would have to

hack into the system from the outside, unless of course the student somehow had access

to the database containing the grade.

A similar example, wherein the intruder is an insider rather than someone hacking

in from the outside, could be that of an employee at a large company who is trying to

meet his sales requirements for a fiscal year. He might attempt to change the dates of

transactions to make it appear that they had transpired within the previous fiscal year

when, in reality, they had not.

 Another example wherein an insider might want to corrupt the database could be

at a doctor’s office. As part of the federal Health Insurance Portability and Accountability

Act (HIPPA) [1], medical providers are responsible for auditing their interactions with

patients, vendors and other medical providers to ensure patient privacy. Because of this,

doctors are not allowed to release a patient’s medical information to an insurance

company, or any other company, without written permission from the patient. Assuming

that the doctor uses a database to track not only all the medical and prescription records,

but also the records of who has signed an information release form, it could be highly

possible that someone within the office may want to alter the data in the database. If

information about a patient was released to an insurance company before the release form

was entered into the database, the doctor could potentially be sued for releasing

information prior to consent. In this situation it would not be surprising if the doctor (or

one of his assistants) tried to either change the timestamp of when the release form was

entered or to remove the record showing that they released information about the patient.

 2

 These three examples provide just a few of the many reasons why someone might

want to tamper with a database. These fraudulent acts can be punishable by law and result

in severe consequences if the perpetrator is caught.

 It is obvious to see that secure data storage is a huge necessity in everyday life.

Would you want your social security information being changed, or your checking

account’s balance modified, or your medical information released without your consent?

The purpose of this project is to explore a new method of protecting databases from these

situations and provide a way to monitor a database for such intrusions.

By utilizing a central security master database as part of an enterprise architecture

for auditing, as well as role-specific GUIs, it is possible to efficiently manage the auditing

of databases across an enterprise.

 3

2. Background and Related Work

This project is a direct continuation of a concept that was created many years ago

by Christian Collberg, Richard T. Snodgrass, and Shilong Stanley Yao. There have been

multiple papers published describing the ideas and goals this project is based on. The first

of which is Tamper Detection in Audit Logs [2], discussed in Section 2.1. In Section 2.2,

we discuss another paper, Forensic Analysis of Database Tampering [3], which expands

on the concepts introduced in the first paper. In these two sections we will summarize

these ideas, first looking at how to detect tampering within a database and then secondly,

how to analyze such tampering. In Section 3 we will discuss how this specific project has

assisted these ideas.

2.1 Tamper Detection in Audit Logs

Mechanisms were proposed within a database management system (DBMS),

based on cryptographically strong one-way hash functions, which prevent an intruder,

including an auditor or an employee or even an unknown bug within the DBMS itself,

from silently corrupting the audit log [2]. It was proposed that the DBMS transparently

store the audit log as a transaction-time database, so that it is available to the application

if needed. The DBMS should also store a small amount of addition information in the

database to enable a separate audit log validator (to be referred to simply as the validator

from here on) to examine the database along with this extra information and state

conclusively whether the audit log has been compromised. It was also proposed that the

DBMS periodically send a short document (a hash value) to an off-site digital

notarization service, to bind when changes were made to a database.

One important thing to note about this approach is that a transaction-time database

is an append-only database. Modifications never remove information from the database;

instead they only add to it. All past versions of the data are retained and can be

reconstructed from the information stored in the database.

On each modification of a tuple, the DBMS obtains a timestamp, computes a

cryptographically strong one-way hash function of the (new) data in the tuple and

timestamp, and sends that hash value to the notarization service, obtaining a notary ID.

 4

However, the authors also noted that notarizing each tuple as it was modified would be

quite an expensive operation and hence proposed to instead hash all the tuples modified

by a single transaction to compute a single hash value. Instead of storing each notary ID

with the given tuple, the IDs are instead stored in a separate Notarization History Table.

In fact, it is most likely that notarization would only need to occur once per day at which

time all changes in the previous twenty-four hours could be hashed and notarized. A tool,

called the notarizer, can perform these operations on a regular schedule.

Finally, the validator periodically scans the audited tables, computing the hash

values on a per-transaction basis and then finally sending these hash values to the digital

notarization service along with the ID stored in the Notarization History Table. The

validator will then be able to report if the current data is inconsistent with the audit log.

Let’s assume an intruder gains access to the database. If they change either the

data or a timestamp, the hash value that will be computed will be inconsistent with the

notarized ID. Even if the intruder gained access to the hash function itself they could not

store a newly computed hash value because it would be inconsistent with the one that was

notarized.

One might wonder how all of the above changes would affect the performance of

a database. The authors discovered that the auditing overhead was between 9% and 16%

in all the experiments they ran. This is a small price to pay for the protection of highly

critical data. In summary, the authors present a feasible way of detecting tampering

within a database.

2.2 Analysis of Database Tampering

The idea described above provides a way to detect tampering within a database.

The question then arises of what to do once tampering has been detected. This issue was

discussed in a paper by Pavlou and Snodgrass [3]. They state that “Forensic analysis is

needed to ascertain when the intrusion occurred, what data was altered, and ultimately,

who is the intruder” [3]. They built their implementations on the ideas discussed in the

previous section.

 5

 The authors begin by defining some terms, a few of which will be useful to

reiterate here. A corruption event (CE) is any event that corrupts the data and

compromises the database. This can happen in many forms, be it an actual intrusion or

merely a hardware failure. A notarization event (NE) is the notarization of a hash value

by the digital notarization service and occurs every time the notarizer is run. A validation

event (VE) occurs every time the validator is run. Normally these validation events are

scheduled and happen at constant time intervals, but they can be random as well.

Tampering is first detected when a validation event has failed.

 Forensic analysis involves both temporal detection, the determination of time, and

spatial detection, the determination of where in the database the data was altered. The

authors created a corruption diagram to graphically represent corruption event(s) in

terms of the temporal-spatial dimensions of a database. Figure 1 illustrates a simple

corruption event by using a corruption diagram. A corruption diagram is a graphical

representation of corruption event(s) in terms of the temporal-spatial dimensions of a

database.

Figure 1 - Corruption Diagram

 6

 In a corruption diagram the x-axis represents the transaction time of the data. In

other words, this axis represents when the data was stored in the database. This axis is

labeled “Where” because a tuple is designated by the time of the transaction that inserted

that tuple. The y-axis represents the actual-time of the database and is called the “When”.

The 45-degree line is the action axis since all the action occurs on this line. Any point on

this line thus indicates a transaction committing at a particular transaction time (x-axis)

that happened at a clock time (y-axis).

 Notarization events are denoted along the action axis by the points labeled with

“NE”. Validation events are similarly denoted along the axis by the points labeled with

“VE”. Since the validator can only validate data that has already been notarized it is

pointless to have validation events that are unaligned with notarization events. Thus the

validation interval should not be less than the notarization interval and the validation

interval should be a multiple of the notarization interval. For this reason, all validation

events on the diagram are aligned with notarization events. From looking at the diagram

we can tell that all the validation events except for the last one succeeded. Due to the fact

that the last one failed, we have a corruption diagram. In Figure 1 we can also see the

corruption event contained within the corruption region which is denoted by “CE”. Since

this is just an example it is possible to display the corruption event on the graph, however

in most cases the exact point of corruption is not known.

 Upon the detection of a corruption, the next step in forensic analysis. The authors

proposed multiple algorithms that use only the database itself to determine the bounds on

a corruption region. For simplicity, I will only describe one of them here, however

multiple algorithms do exist and there is the possibility of more in the future. The

algorithm that we will look at is the monochromatic forensic analysis algorithm. First

let’s look at how to bound the “when”. We know that at the second-to-last validation

event that everything was fine. Thus the corruption happened sometime between the last

successful validation event and the failed validation event which bounds the “when” on

the diagram. Secondly, the “where” can be determined by individually rehashing all the

tuples contained within each notarization event and checking them against the notarized

hash values. If any of these values do not match up, we know within which notarization

 7

event the corruption occurred and we then have a bound on the “where”. Upon

performing this analysis we get the diagram shown in Figure 1.

 We should note that this example deals with data-only corruption events and not

with a corruption that occurs because of timestamps of tuples being changed. The

monochromatic algorithm can also deal with such corruptions and there are many other

algorithms that are able to create smaller and smaller corruption regions. These are

explained elsewhere [3]. It should be noted that while each algorithm is more complex

than the last and requires more main-memory processing, each successive algorithm adds

additional precision that more than counterbalances the extra work.

 In summary, the authors first devised a clean way to visually display a corruption

to an analyst using a corruption diagram. They then proceeded to present multiple ways

of forensically analyzing such corruptions to more accurately determine where and when

they happened. It is expected that more algorithms will be created in the future that will

allow even more precise bounds than before.

 8

 9

3. Overview

 This project implements and builds on the concepts introduced in Section 2. We

designed an auditing system to ensure that multiple databases can be protected from

intrusion and corruption.

3.1 Purpose

 The purpose of this project was to aid in the implementation of the concepts

described in Section 2. The notarizer, validator and forensic analysis application were

all implemented by other students. The aim of this project was to design a master

database to store all information involved in auditing and forensically analyzing a

database and to create three user-specific applications for allowing users to interact with

the system.

3.2 Implementation

 The notarizer, validator, and forensic analysis application must all be stored

and executed on a highly secure machine in order to ensure that they themselves are not

tampered with. If any of these applications were not well protected and hence were

tampered with, a complete failure of the auditing process could result. In the same

manner, the master database must also be kept on a highly secure machine as it stores all

of the information produced by the notarizer and validator. Whatever machine(s) these

three items are run on should also be stored in a secure room with limited access. This is

depicted by the large box in Figure 2.

The Individual Databases shown in Figure 2 represent the databases that are

being audited. The Forensic Analysis Validator is the application described above in

Section 2. The Digital Notarization Service represents any third-party company that can

notarize a digital document. The three applications along the side; the Security Master

Application, the Database Monitor Application and the Forensic Analysis

Application represent the three applications that were created for this project, one for

each role described in Section 3.4. Each application is described in detail in Section 5.

 10

Figure 2 - Auditing System

The Security Master Database is the central element of this system as it

interacts with all components except for the individual databases themselves and the

digital notarization service. It is the one tool that ties together all the other tools in the

system.

3.3 User Roles

 There are three roles within the system. The first is that of the Chief Security

Officer (CSO). The CSO is a role that will most likely only be taken on by one employee.

This employee should be a highly reliable person who can be readily available to deal

with problems that arise in the system. The CSO will be in charge of maintaining the

system as a whole. They alone will have the ability to add other employees to the system

and to assign each employee to their specific tasks. The CSO role is also the only role

that has the ability to add an individual database that the system should monitor. Most

 11

importantly, the CSO is in charge of setting the overall system settings such as maximum

notarization and validation intervals that all databases must abide by.

 The next role is that of the Database Administrator (DBA). Generally speaking, a

DBA is responsible for the general management and design of one or more individual

databases. In our situation a DBA is also in charge of selecting the configuration settings

for auditing their database(s). These settings include such things as which algorithm to

use, how often to notarize, and how often to validate. There can be many employees in

the system that have this DBA role.

 The last role is that of the Crime Scene Investigator (CSI). The CSI is responsible

for investigating tamper detections once they have occurred. Each CSI is also assigned to

specific databases. Like the DBA role, there will most likely be many employees in the

system that are given this role.

3.4 Sequence of Events
A normal sequence of events would be as follows: the notarizer periodically

hashes the data in an individual database and notarizes this value with the digital

notarization service. At the same time, the validator will periodically be checking the

data in this database against the values stored with the digital notarization service. At

some point, the validator detects tampering and calls the Forensic Analysis Validator.

The Forensic Analysis Validator then performs forensic analysis on this database and

stores the corruption region in the Security Master Database. Upon detecting the

tampering the validator will also email the DBA and CSI of this database to inform them

that tampering has been detected. Using their appropriate applications, the DBA and CSI

will then be able to view all known information about the tampering, including a

corruption diagram.

 12

 13

4. Security Master Database

 The Security Master database (SMDB) is the backbone of our infrastructure for

tamper detection and analysis. Since it is only a database, it is obviously not notarizing

and validating databases or attempting to portray a tamper detection to the user, but

without the SMDB none of these tasks would be possible. Without the SMDB a

notarization event would just be sent into oblivion, rendering the event entirely useless

and unusable in the future. Without the SMDB there would not be any status or records

of past events to display to an analyst.

 The purpose of the SMDB is to be a single point of interaction for all of the above

tasks. It will be the only place that the notarizer and validator write to and the only place

that the forensic analysis application draws from. It will be the one secure place where

the CSO and all DBAs can monitor their databases.

 Since this part of our infrastructure is so critical, our tables must be designed

intuitively and logically. Seeing as this is a project that is the first of its kind and still in

implementation we need a design that is easily expandable as new algorithms or concepts

are introduced. Also, it was also very important that we not store redundant data across

multiple tables.

4.1 Conceptual Schema

We started our design of the SMDB by creating an Entity-Relationship diagram

[4] as shown in Figure 3. The top leftmost entity type in Figure 3 is the

CONFIGURATION entity type. This entity type is specialized to record either an

individual database or the overall settings of the system. The condition for this

specialization is the composite Source attribute, which consists of the Name and Path.

Both of these attributes are set to the string “Overall” when an OVERALL entity type

is being recorded; otherwise an INDIVIDUAL DATABASE entity type is being recorded.

 14

Figure 3 - Entity Relationship Diagram of SMDB

 15

The composite Source attribute is the primary key of the CONFIGURATION

entity type. The Notarization Interval, Validation Factor, Number of Levels, Algorithm,

and Notarization Scheduled attributes all record specific settings for notarizing and

validating the given database. In the case of the OVERALL entity type these attributes

record the maximum notarization interval and validation interval and the minimum

algorithm and number of levels allowed for each database throughout the system.

The INDIVIDUAL DATABASE entity type has a many-to-many relationship type

with the EMPLOYEE entity type because each employee may be associated with more

than one database and each database has multiple roles that different employees could be

assigned to. At any given time, there can be only one DBA and only one CSI assigned to

each database. It is possible for a database to have only one or the other or neither

assigned to it. Each relationship between an INDIVIDUAL DATABASE and an

EMPLOYEE is denoted by a Kind, either ‘C’ for CSI or ‘D’ for DBA. This attribute is

multi-valued because an employee may be both the DBA and the CSI for a given

database.

The EMPLOYEE entity type also contains a multi-valued Kind attribute to

represent the role(s) an employee may take on. In addition to the two listed above, an

employee may also have the role of CSO, which is denoted by an ‘A’. Instead of linking

the employee to an individual database via the IsMaintainedBy relationship, as is done for

a DBA or CSI role, the employee is linked to OVERALL to take on the role of the CSO.

The Name, Email and Phone Number attributes of the EMPLOYEE entity type all

represent basic information needed to contact an employee. The Password attribute

provides a way to ensure that an employee is who they say they are. The Email attribute

is the primary key of this entity type because no two employees should be allowed to use

the same email address.

 The next entity type, Event, has a one-to-many relationship type with the

INDIVIDUAL DATABASE entity type. Each database can create multiple events but each

event is linked to only one database. The ActualDate attribute represents the valid-time in

which the event occurred. The Info attribute allows for anything unusual about an event

to be noted.

 16

Similar to the CONFIGURATION entity type, the EVENT entity type is also

specialized into other entity types. The Kind attribute is the condition for this

specialization and can take on one of five values as seen in the diagram. The first kind of

event is the CREATION EVENT, which represents when a database was first created. This

information provides a starting point for both the notarizer and the validator when

performing operations on a given database.

Both the NOTARIZATION EVENT entity type and the VALIDATION EVENT

entity type are fairly self-explanatory in their use. The NOTARIZATION EVENT entity

type also contains an atID attribute for scheduling the next run of the notarizer. Probably

the greatest confusion comes from differentiating between the ERROR EVENT and the

TAMPER DETECTION EVENT. A TAMPER DETECTION EVENT is the direct result of a

failed validation event. Forensic analysis is then started by performing notarization

checks. These checks are represented by the one-to-many relationship type between the

TAMPER DETECTION EVENT entity type and the CHAIN entity type, which is discussed

below. When the result of one of these checks is a failure, a TAMPER DETECTION

EVENT is created. On the other hand, an ERROR EVENT is something that is not directly

tied into another event. An example would be if the notarizer or validator attempted to

access a specific database but could not locate it or was denied access. In these situations

an ERROR EVENT would be created with a detailed description of the problem in the

Info attribute.

The REGION entity type has a one-to-many relationship type with the TAMPER

DETECTION EVENT entity type because a tamper detection may be associated with

multiple corruption regions, but each of those regions is associated with just the one

detected tampering. There are eight attributes that represent four X,Y coordinate pairs on

a graph. When a region is a rectangle all eight attributes are needed. In the cases where a

region is a triangle only six of the eight attributes need to be used, in which case

BottomRightX = BottomLeftX and BottomRightY = BottomLeftY. The REGION entity type

is used mainly for visually displaying a tamper detection to the user via a graph.

Finally, we have the CHAIN entity type. It is linked to the EVENT entity type

because validation events can be broken down into multiple chains and notarization

events can also create a single black chain. The other event types do not create chains.

 17

The CHAIN entity type is linked to the TAMPER DETECTION EVENT entity type

because chains are only validated once tampering occurs. This entity type also has a one-

to-many relationship type with the EVENT entity type because each chain is associated

with a particular validation event and each validation event may have multiple chains. In

some algorithms chains can be different colors, and there can also be multiple chains of a

single color within an event. The Color and Level attributes are used to store this

information. The Hashcode attribute stores the hashed value of all the tuples within the

chain. The NotarizationID attribute stores the value returned to the notarizer by the

digital notarization service.

One of our main goals when designing the CHAIN entity type was making it

easily expandable for uses with future algorithms. By setting up the EVENT and the

CHAIN entity types the way that we did, it will be easy to accommodate new algorithms

as they are designed.

4.2 Conceptual Schema with Time

One important consideration is which entity types are valid-time representations

and which entity types are simply transaction-time representations. The difference is that

valid-time entity types represent when a fact in the database is valid in reality while

transaction-time tells us only when certain facts were stored in the database. In this

section we annotate various entity and relationship types with their temporal behavior.

The EVENT entity type is a valid-time event entity type because it represents

when exactly an event occurred in reality. It is the only entity type in Figure 3 that is an

event entity type. The reason it is an event entity type is because it stores information that

happened at a specific time and not information that is valid over a period of time. The

CHAIN entity type is also a valid-time entity type as each chain is limited by a specific

real time interval; however, it is a state entity type because it represents data that is valid

over a period of time.

The CONFIGURATION entity type is a transaction-time state entity type because

it only records when the information was stored in the database and not when the

information became valid. This entity type is a state entity type since the information it

 18

records is a state of configuration that is valid over a certain time period. The

EMPLOYEE entity type and the IsMaintainedBy relationship types are both valid-time

representations because they represent when an employee was active in the system as

well as when they were active in certain roles. Both of these entity types are state entity

types as they record information that is valid over a period of time.

4.3 Mapping to the Logical Schema

After creating the conceptual schema as seen in Figure 3, we then mapped it into

the logical schema shown in Figure 4 and Figure 5. There were many things to consider

including how to deal with time and how to best break the entity-relationship pairs into

tables. Those issues involving time are discussed in the next section. First, we will look at

how we mapped the entities to tables and attributes to columns. In some cases the

primary keys of the tables may not be obvious until we discuss how time affects the table.

Starting with the CONFIGURATION, OVERALL, INDIVIDUAL DATABASE trio,

we mapped them into a single table, the Configuration table, which represents both

the OVERALL and INDIVIDUAL DATABASE entity types. We did this because neither the

OVERALL nor the INDIVIDUAL DATABASE entity types had any of their own attributes

and they inherited all of the attributes from the CONFIGURATION entity type. The

Name and Path attributes continued to make up the primary key. These two columns are

set to “Overall” when a tuple is representing the OVERALL entity type; otherwise the

tuple represents an INDIVIDUAL DATABASE entity type.

In a similar manner, we mapped the CREATION EVENT, NOTARIZATION

EVENT, ERROR EVENT, VALIDATION EVENT and TAMPER DETECTION EVENT

entity types into a single Event table. The only column that is not used by all the events

it the atID column and since it was only one column we did not feel that it would be a

waste of space in the table. When considering the primary key for the Event table, a

surrogate key, EventID, was used to simplify the table. This also makes it much simpler

for other tables to link with the Event table since they only need to link with the one

field instead of multiple fields. The CHAIN entity type was mapped to its own Chain

 19

table. To simplify the primary key once again, we added a surrogate key, ChainID, to

serve as the primary key of the table.

Configuration Table
Name
Path
NotIntDays
NotIntHrs
NotIntMins
ValidationFactor
Algorithm
NumLevels
NotarizationScheduledDate

char(35)
char(35)
tinyint(4)
tinyint(4)
tinyint(4)
tinyint(4)
varchar(35)
tinyint(4)
timestamp

Employee Table
Email
Name
Password
PhoneNumber
isCSI
isCSO
isDBA

char(35)
char(35)
varchar(35)
varchar(35)
enum(‘Y’, ‘N’)
enum(‘Y’, ‘N’)
enum(‘Y’, ‘N’)

 IsMaintainedBy Table

Name
Path
Email
Kind

varchar(35)
varchar(55)
varchar(35)
enum('A','C','D')

Event Table
EventID
Name
Path
Kind
Info
atID
ScheduledDate

int(11) auto_increment
varchar(35)
varchar(55)
enum('C','E','F','N','V')
varchar(500)
int(11)
timestamp

Figure 4 - Logical Schema Part 1

 20

The NotarizationCheck relationship type is one of two relationship types that were

mapped to actual tables. The reason that we did this is because the NotarizationCheck

relationship type is a many-to-many relationship type between the TAMPER

DETECTION EVENT and CHAIN entity types. We keep track of which tamper detection

event and which chain is involved with the relationship with the FailureID and ChainID

columns. The FailureID column is actually a foreign key to the Event table’s EventID.

The ChainID is also a foreign key to the ChainID of the Chain table. The only other

column in the table is the Result column that stores ‘P’ for a passed check and ‘F’ for a

failed check. Since this is a many-to-many relationship type, the ChainID and FailureID

columns make up the primary key of this table.

The REGION entity type required some special consideration when we mapped it

to the logical schema. This is because in certain algorithms a region is bounded by

notarization and validation events and in other algorithms a region is not bounded by

specific events. In order to make the REGION entity type work the way we wanted it to

we decided to map it to two tables instead of one. In both tables the primary key consists

of the EventID column along with the TopLeftX and TopLeftY columns since the top left

coordinates of a region should always be unique within a specific event.

The first table is the SynchronizedRegion table which holds regions for

those algorithms that are bounded by specific events. Since each coordinate is an actual

event, each of the eight coordinate points is a foreign key to the Event table’s EventID.

We also have an EventID column within the SynchronizedRegion table that links

the region as a whole to a specific tamper detection event. This column is once again a

foreign key to the Event table’s EventID.

The second table is the UnsynchronizedRegion table which also contains

the foreign EventID column but instead of all the coordinate points being events they are

simply timestamps. We added columns for the millisecond values of each coordinate as

well since the validator stores times down to the exact millisecond. The two top-left

millisecond columns are also part of the primary key.

The EMPLOYEE entity type was mapped directly into a table with columns for

each of its attributes. In the case of the multi-valued Kind attribute three distinct columns

were made instead. The isCSI, isCSO and isDBA columns can each be either ‘Y’ for Yes

 21

Chain Table
ChainID
EventID
Level
Color
StartMilliseconds
StopMilliseconds
Hashcode
NotarizationID

int(11) auto_increment
int(11)
tinyint(4)
varchar(15)
int(11)
int(11)
char(40)
char(40)

NotarizationCheck Table

ChainID
FailureID
Result

int(11)
int(11)
enum('P','F')

SynchronizedRegion Table

EventID
TopLeftX
TopLeftY
TopRightX
TopRightY
BottomLeftX
BottomLeftY
BottomRightX
BottomRightY

int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)

UnsynchronizedRegion Table

EventID
TopLeftX
TopLeftY
TopRightX
TopRightY
BottomLeftX
BottomLeftY
BottomRightX
BottomRightY
TopLeftXMillisecond
TopLeftYMillisecond
TopRightXMillisecond
TopRightYMillisecond
BottomLeftXMillisecond
BottomLeftYMillisecond
BottomRightXMillisecond
BottomRightYMillisecond

int(11)
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
Timestamp
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)

Figure 5 - Logical Schema Part 2

 22

or ‘N’ for No. Since an employee can be any combination of these three roles it was

necessary to have a column representing each role. The Email attribute still worked as the

primary key for this table.

The IsMaintainedBy relationship type is the second of the two relationship types

in our diagram that got mapped to its own table. Once again this is because it is a many-

to-many relationship between its two entities. The IsMaintainedBy table contains

columns for the foreign keys of both entities that it relates; Name and Path from the

CONFIGURATION table and Email from the EMPLOYEE table. These three columns

make up the primary key of this table. In addition it contains a Kind column which

denotes if the assignment is for a CSI or for a DBA.

4.4 Mapping to the Logical Schema with Time

One thing that was not discussed in the previous section was how each of the

tables deals with time. We will now proceed to explain which columns were added to

each table to deal with time. The complete logical schema can be found in Appendix A.

When mapping to the logical schema we also added a column to the Configuration

table that became a part of the primary key, the StoredDate column. This column is an

auto-generated timestamp of when the tuple was inserted into the table. This addition to

the primary key was necessary so that multiple configurations could be stored for a single

database allowing the history of past settings to be recorded. This makes the table

stepwise constant without gaps. The reason there are not any gaps is because we are only

storing one date for each tuple and that is the creation date of the tuple. Since each

database has a tuple inserted into this table when it is first entered into the system and

because there is no stop date for a tuple there can never be a period of time wherein a

database does not have a configuration. This is what makes the CONFIGURATION table

a transaction time table. The only other column in this table that deals with time is the

NotarizationScheduled column, which is a user-defined time.

The Event table is the most complex table in the database as far as time is

concerned. Since this table is full of events we had to have a column that tells us when

 23

the event occurred. However, we encounter problems when the notarizer does not run on

perfectly scheduled intervals. Let’s say for example, the notarizer is supposed to run on a

certain database every night at 12:00 AM, but for some reason it does not run until 12:03

AM one night. When hashing the tuples in the database we must know exactly when the

notarizer stopped hashing the last time it ran. Since tuples can be timestamped down to a

specific millisecond, we have to store the exact millisecond the notarizer stops at. So in

our Event table we added a column ScheduledDate which represents when the event

was supposed to happen, and we have the ActualDate and ActualMillisecond columns to

store when the event actually occurs. A notarization event is the only event type that uses

the scheduled date and time; the rest of the events only require the actual date and time.

The reason that the scheduled date is not just stored instead of the actual date for a

notarization event is because it is important to know when the notarizer was supposed to

run versus when it actually ran. Also the scheduled date and time are useful for graphing

purposes, so that events are displayed evenly across the graph even if the events are off

by a few minutes. Since we are storing when the event occurred in real time this table is

indeed a valid time table. The primary key of the table was already the surrogate key,

EventID, so we did not have to change the primary key of this table.

When adding time to the CHAIN table we simply added the StartDate and

StopDate of each chain. And since each chain involves hashing we store the time down

to the exact millisecond; thus, we also have the columns StartMilliseconds and

StopMilliseconds. Since these times are real world times this is a valid time table. As with

the Event table, there was already a surrogate key, ChainID, serving as the primary key

of this table, and that did not have to be changed.

The Employee table required the addition of StartDate and StopDate columns

in order to record when an employee was active in the system. Without these two

columns there would be no record of when an employee was first added to the system or

if an employee had any gaps in their career. Since an employee could potentially be listed

in this table twice if there are gaps in their career we had to add StartDate to the primary

key of this table along with Email. Because we are recording real times, this table is also

a valid time table.

 24

The last table that required modifications to accommodate time issues was the

IsMaintainedBy table. Since the roles of each employee in relation to different

databases could change, we also added a StartDate and StopDate column to this table.

The primary key of this table was also expanded to include the StartDate along with

Name and Path from the CONFIGURATION table and Email from the EMPLOYEE table.

Once again this table is recording when an employee had a certain role in real time so this

table is also a valid time table.

The NotarizationCheck, SynchronizedRegion and

UnsynchronizedRegion tables did not need any modifications when considering

time.

4.5 Conclusion

As you can see, the SMDB holds all the information necessary for this

infrastructure and does so in a well organized manner. It was also designed to be

adaptable and fully expandable. Future algorithms and advancements to this

infrastructure can be supported when using this design as a starting point.

 25

5. The Applications

Three applications were created, one for each role in the system. They provide a

way for employees to interact with and view the state of system. While some of the

applications contain similar features, all were designed to serve the unique role of either a

CSO, a DBA, or a CSI. The features of all three applications are described in this section

while design and implementation issues are discussed in Section 6.

5.1 Security Master Application

 The SMA (Security Master Application) is the main instrument for interacting

with the system as a whole. In most situations there will be only one employee, the CSO,

who has the ability to login to this application. It provides the highest level of

manipulation within the system. The purpose of the SMA is to provide control of the

system to the CSO as well as to alert the CSO of any problems in the system.

5.1.1 Control Features

The initial screen of the SMA is shown in Figure 6. The application provides the

CSO with many features for manipulating the system. The first of which would be the

feature that allows the CSO to assign a DBA and a CSI to each database or to un-assign

any DBA or CSI from a database. This is done by using the Assign DBA or Assign CSI

buttons as seen in Figure 6. Another feature is the ability to set the minimum notarization

interval and the maximum validation interval for all databases in the system. These

options can be seen at the bottom of Figure 6. When these setting are modified all

databases in the system are required to meet these maximums and minimums. DBAs will

not be allowed to change individual database settings to anything outside of these bounds.

 26

Figure 6 - Security Master Application (Databases tab)

The SMA also allows the CSO to add databases and employees to the system.

These options can be found under the File menu as Add Database or Add Employee. The

dialog for adding an employee can be seen in Figure 7.

Figure 7 - Add Employee Dialog

 27

5.1.2 Viewing Features

 In addition to providing features for controlling the system, the SMA also

includes many features for viewing the state of the system. For example, as shown in

Figure 8, by clicking on the Detected Tampering tab the CSO is able to view of a

summary of all tamper detections in the system. This list gives a high level view of each

problem including which database it relates to and provides the date and time of the

occurrence as well as any special information that is known. In future expansions of the

application the list could be expanded to allow the user to click on a description and be

able to view a more detailed description and in some cases, a diagram depicting the issue.

Figure 8 - Security Master Application (Detected Tampering tab)

Another viewing feature is the DBA tab which provides a list of all DBAs

currently in the system. By clicking on any of the names the CSO is able to view a list of

all the databases that DBA is currently assigned to. This can be seen in Figure 9. Another

viewing feature is also a control feature; the ability to select a database in the Databases

tab and see which DBA and which CSI (if any) are assigned to that database.

 28

Figure 9 - Security Master Application (DBA tab)

5.1.3 Functionality/Requirements

While most of the features of the SMA that were listed above seem simple and

straight-forward some of them actually require complex operations in order to implement

them. For example, when adding a database to the system the SMA cannot simply trust

that the given name and path will point to a valid database. In actuality, it must first

check to make sure that a database does exist at the given path with the given name

before adding it to the list of databases in the system. It must also create the Creation

Event associated with this database. This requires the retrieval of the date this database

was first created. This is done by calling a separate application that was written

specifically to retrieve the date of the first tuple within a given database. Similarly, when

adding an employee to the system the SMA must first confirm that the given email

address is not already in use within the system. In either situation, if the data entered by

the CSO is invalid a proper error message must be displayed depicting the problem to the

CSO.

Another feature that is actually quite complex in implementation is the ability to

set the maximum notarization and validation intervals. When the CSO sets these values

 29

the SMA cannot simply store them in the database but instead must also check every

database that is currently in the system to make sure that it conforms to the new

requirements. If a database does not meet the new requirements it must be modified so

that it does. In this situation, any settings of that individual database that are not

compliant are changed to the new overall settings. The SMA must also have a way of

verifying that it is indeed the CSO who is trying to access it. This is done using a login

screen that requires the CSO’s email and password before the application will load.

5.1.4 Summary

 The SMA provides a clean and easy way to interact with the system. It provides

many necessary features for maintaining the system and was written in such a way as to

allow for easy expansions in the future. Since the application utilizes tabs to display

different features it is easy to expand by simply adding more tabs to the application.

5.2 Database Monitor Application

The DMA (Database Monitor Application) is the tool that allows DBAs to

configure and monitor the databases that they are assigned to. Each active employee in

the system who has the role of a DBA is allowed to login to this application. The purpose

of the DMA is to allow each database to be individually configured and monitored.

5.2.1 Features

The main feature of the DMA is the ability to set the notarization interval,

validation interval, and algorithm for each database. The start date is also set and refers to

when these settings should go into affect. The initial screen of the DMA is shown in

Figure 10.

When a DBA logs in, the DMA is automatically populated with a list of all the

databases that the DBA is currently assigned to. These can be seen in the dialog box at

the top of the application in Figure 10. Upon selecting any of these databases the current

configuration settings are displayed on the Settings tab and any tamper detections are

 30

displayed on the Detected Tampering tab. The Detected Tampering tab can be seen in

Figure 11. Also, when a database is selected the CSI that is currently assigned to it can be

seen next to the drop down box.

Figure 10 - Database Monitor Application (Settings tab)

5.2.2 Functionality/Requirements

 One prerequisite of the DMA is that it must not allow a DBA to set any

configuration settings outside the bounds outlined by the current overall requirements. If

the current overall settings require that the maximum validation interval not be greater

than four, the DMA must not allow a DBA to set any validation intervals to a value

greater than four. The DMA does this by only populating the drop downs and slider with

values that are in accordance with the current overall requirements. If a CSO later

changes the maximum validation interval to six, the DMA slider would then contains

values up to six.

 31

The DMA is responsible for a very important behind-the-scenes task; it invokes

the notarizer for each database. The first time that a DBA saves the configuration

settings for a given database, the notarizer is then scheduled using the “Start On” date

given by the DBA. Without this step the notarizer, and subsequently the validator,

would never know to run on a given database. It is assumed for this first version of the

application that the DBA does not change the settings twice before the notarizer is

invoked. Each time the notarizer or the validator runs on a given database, it schedules

its next execution time for that database according to the settings stored in the SMDB.

Similarly to the SMA, the DMA must also have a way of verifying that the

employee trying to use the application is indeed a valid DBA. This is also done using a

login screen that requires the DBA’s email and password before the application will load.

Figure 7 - Database Monitor Application (Tamper Detection tab)

5.2.4 Summary

 The DMA provides all the necessary elements for a DBA to interact with the

system and maintain their databases. Since it also utilizes tabs like the SMA does it can

be easily expanded in future versions to incorporate new features and concepts.

 32

5.3 Forensic Analyzer Application

When tampering has been detected, the CSI assigned to the tampered database

should spring into action. This will involve the use of the FAA (Forensic Analyzer

Application). The FAA is the tool that provides analysts with the known all known

information about the intrusion. Each active employee in the system who has the role of a

CSI is allowed to use this application.

5.3.1 Features

The FAA is laid out very similarly to the DMA. When an employee logs in they

are given a list of all databases in which they currently have been assigned to as the CSI.

They can select any of these databases and will be able to see a list of any tamper events

in the system for that database. Also, when a database is selected the DBA that is

currently assigned to it can be seen next to the drop down box. In the future this

application will be able to display a detailed corruption diagram like the one shown in

Section 2.3. The initial screen of the FAA is shown in Figure 12.

5.3.2 Functionality/Requirements

Similarly to the SMA and the DMA the FAA must also have a way of verifying

that the employee trying to use the application is indeed a valid CSI. This is also done

using a login screen that requires the CSI’s email and password before the application

will load.

5.3.3 Summary

 The FAA currently provides a very basic view of tamper detections. There are

many future goals for this application which are outlined in Section 6.2. For now, the

application provides a means for the CSI to view all tamper detections associated with

any databases they are assigned to.

 33

Figure 8 - Forensic Analysis Application

 34

 35

6. Design and Implementation of the Applications

 The SMA, DMA, and FAA are all written entirely in Java and utilize both the

Model-View-Controller pattern and the Observable-Observer pattern [5]. The class

structure can be seen in Figure 13. Instead of having three separate classes to represent

the model, view, and controller each application instead has one class, e.g.

CSOView.java, which represents both the view and the controller and then a separate

class, e.g. CSOModel.java, to represent the model. The view-controller class contains all

of the Java swing components necessary for the graphical representation of the

application and also utilizes anonymous inner classes and event listeners to handle user

interaction. The model class contains all the methods necessary for performing the

operations on the system and is the class that interacts with the SMDB. By using the

Model-View/Controller pattern we allow the ability to create additional GUIs to interact

with the system.

Each application is started from a login class, e.g. CSOLoginDialog.java for,

which provides the user with a login dialog. This class first confirms that the information

entered by the user is valid in the system and that the user currently has the role necessary

to access the application and then invokes the view.

 Each of the three applications uses a similar class structure. In the case of the

SMA a couple of extra classes were needed for dialog boxes. A basic non-inclusive

diagram of the SMA class structure is shown in Figure 13.

As described previously, the CSOLoginDialog class invokes the CSOView. The

view displays the application and then interacts with the model to provide all the needed

functionality. When adding an employee or database to the system the view invokes a

dialog. As shown in Figure 13, the EmployeeDialog class is invoked by the view and

then calls the addEmployee() method in CSOModel to store the employee in the

SMDB.

The DatabaseConfig class is used by the SMA and the DMA for passing

configuration settings between the model and the view. The getConnection() method in

the Connector class is used by all three models to obtain a connection to the SMDB. If

the location of or any of the details regarding the SMDB ever change, this is the only

class that needs to be modified in order to update all three applications.

 36

Figure 9 - UML of SMA Classes

 37

7. Conclusion

 This project consisted of six team members: three doctoral students, one master’s

student, a faculty member, and myself, the only undergraduate student. An integrated

system was created through weekly team meetings, multiple demonstrations, and team

collaboration. The overall concept of this project was described in Sections 2 and 3. My

portion of this project was described in detail in the next three sections. Due to the fact

that I was designing and implementing central components of the system, namely the

SMDB, I was required to fully understand all the pieces of the system and how they were

to fit together.

 By creating a central database for all of the tools in the system to interact with it

made it possible for the notarizer and validator to perform their operations successfully.

They can now store their data in this central database as well as use the information

stored in it to schedule future executions. The three role-specific applications allow

auditing to be started on individual databases and then be maintained.

 The necessary tools for auditing a database are in place. It is now possible for

doctor’s offices, companies, and government agencies to protect their information from

threats by implementing this auditing system.

7.1 Results

 A robust and well-organized database, the SMDB, was created to maintain the

system as a whole and provide the central point of interaction for all tools in the system.

This database is easily expandable for future versions of this project.

Three applications were created, one for each role, to allow users to interface with

the SMDB. They provide an organized and controlled way for employees to interact with

the system. Combined the three applications consist of fourteen different Java classes

totaling roughly 3,900 lines of code. Five of these classes are used by all three

applications and nine are unique to an individual application. At this point, there are

many ideas for additions that can be made to these applications; some ideas are outlined

in the next section.

 38

 All in all, a large step was made toward securing databases from intrusion and the

maintenance of such intrusions. By utilizing a central security master database as part of

an enterprise architecture for auditing, as well as role-specific GUIs, it is possible to

efficiently manage the auditing of databases across an enterprise. This auditing makes it

possible to protect a database from both inside and outside intruders. By using this

auditing system, businesses, government agencies, and other institutions can now know

that their data is secure and safe from tampering.

7.2 Future Work

 At this point the SMDB provides all the necessary tables for implementing the

entire system. If future algorithms are invented that require more complex chains or

regions, the SMDB can be easily modified to accommodate them. However, the three

applications could all be expanded to incorporate new or extended functionality.

 Additions to the SMA could include a more robust employee management

interface. At this point the only option available in regards to employee records is the

ability to add an employee to the system. In the future it would be nice to be able to edit

information about an employee and to set the stop date of an employee. The same is true

for editing individual database information. Another useful addition would be the ability

to view any error events that have occurred in the system. At this point the application

only displays tamper detection events.

 As stated before, the DMA assumes at this point that a DBA only sets the

configuration settings once before notarization begins on a database. In the future the

application should be expanded to incorporate the DBA changing settings multiple times

and the issue of how to maintain the scheduling of the notarizer will have to be

investigated.

 In all three applications, but most specifically the FAA, a detailed corruption

diagram would be a very useful addition. It would be nice for a CSO to be able to click

on a tamper detection description in the SMA and see a corruption diagram. Also, it

would be useful if employees had a way of managing their personal password and contact

information.

 39

Bibliography

[1] HIPPA, http://www.cms.hhs.gov/HIPAAGenInfo/, viewed April 20,

2007.

[2] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper Detection in Audit Logs” in

Proceedings of the International Conference on Very Large Databases, pp. 504-515,

Toronto, Canada, September 2004.

[3] K. Pavlou, and R. T. Snodgrass, “Forensic Analysis of Database Tampering”,

Proceedings of the ACM SIGMOD International Conference on Management of Data

(SIGMOD), Chicago, June 2006.

[4] Elmasri and Navathe, Fundamentals of Database Systems, Fifth Edition, Addison

Wesley Company, 2003.

[5] Gamma, Helm, Johnson, and Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, First Edition, Addison Wesley Company, 1995.

 40

A - Complete Logical Schema

Chain Table

ChainID
EventID
Level
Color
StartMilliseconds
StopMilliseconds
Hashcode
NotarizationID
StartDate
StopDate

int(11) auto_increment
int(11)
tinyint(4)
varchar(15)
int(11)
int(11)
char(40)
char(40)
timestamp
timestamp

Configuration Table

Name
Path
StoredDate
NotIntDays
NotIntHrs
NotIntMins
ValidationFactor
Algorithm
NumLevels
NotarizationScheduledDate

char(35)
char(35)
timestamp
tinyint(4)
tinyint(4)
tinyint(4)
tinyint(4)
varchar(35)
tinyint(4)
timestamp

Employee Table

Email
StartDate
Name
Password
PhoneNumber
isCSI
isCSO
isDBA
StopDate

char(35)
timestamp
char(35)
varchar(35)
varchar(35)
enum(‘Y’, ‘N’)
enum(‘Y’, ‘N’)
enum(‘Y’, ‘N’)
timestamp

 41

Event Table

EventID
Name
Path
Kind
Info
atID
ScheduledDate
ActualDate
ActualMilliseconds

int(11) auto_increment
varchar(35)
varchar(55)
enum('C','E','F','N','V')
varchar(500)
int(11)
timestamp
timestamp
int(11)

IsMaintainedBy Table

Name
Path
Email
StartDate
Kind
StopDate

varchar(35)
varchar(55)
varchar(35)
timestamp
enum('A','C','D')
timestamp

NotarizationCheck Table

ChainID
FailureID
Result

int(11)
int(11)
enum('P','F')

SynchronizedRegion Table

EventID
TopLeftX
TopLeftY
TopRightX
TopRightY
BottomLeftX
BottomLeftY
BottomRightX
BottomRightY

int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)

 42

UnsynchronizedRegion Table

EventID
TopLeftX
TopLeftY
TopRightX
TopRightY
BottomLeftX
BottomLeftY
BottomRightX
BottomRightY
TopLeftXMillisecond
TopLeftYMillisecond
TopRightXMillisecond
TopRightYMillisecond
BottomLeftXMillisecond
BottomLeftYMillisecond
BottomRightXMillisecond
BottomRightYMillisecond

int(11)
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
timestamp
Timestamp
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)
int(11)

	TitlePage
	signature
	Abstract
	Contents
	Thesis

