
Forensic Analysis of Database Tampering

Kyriacos Pavlou
Department of Computer Science

University of Arizona
Tucson, AZ

kpavlou@email.arizona.edu

Richard T. Snodgrass
Department of Computer Science

University of Arizona
Tucson, AZ

rts@cs.arizona.edu

ABSTRACT
Mechanisms now exist that detect tampering of a database,
through the use of cryptographically-strong hash functions.
This paper addresses the next problem, that of determin-
ing who, when, and what, by providing a systematic means
of performing forensic analysis after such tampering has
been uncovered. We introduce a schematic representation
termed a “corruption diagram” that aids in intrusion in-
vestigation. We use these diagrams to fully analyze the
original proposal, that of a linked sequence of hash val-
ues. We examine the various kinds of intrusions that are
possible, including retroactive, introactive, backdating, and
postdating intrusions. We then introduce successively more
sophisticated forensic analysis algorithms: the monochro-
matic, RGB, and polychromatic algorithms, and character-
ize the “forensic strength” of these algorithms. We show
how forensic analysis can efficiently extract a good deal of
information concerning a corruption event.

1. INTRODUCTION
Due in part to recent federal laws (e.g., Health Insurance
Portability and Accountability Act: HIPAA, Canada’s
PIPEDA, Sarbanes-Oxley Act) and standards (e.g., Orange
Book for security), and in part due to widespread news
coverage of collusion between auditors and the companies
they audit (e.g., Enron, WorldCom), which helped acceler-
ate passage of the aforementioned laws, there has been inter-
est within the file systems and database communities about
built-in mechanisms to detect or even prevent tampering.

One area in which such mechanisms have been applied is
audit log security. The need for audit log security goes far
beyond just the financial and medical information systems
mentioned above. The 1997 U.S. Food and Drug Adminis-
tration (FDA) regulation “part 11 of Title 21 of the Code of
Federal Regulations; Electronic Records; Electronic Signa-
tures” (known affectionately as “21 CFR Part 11” or even
more endearingly as “62 FR 13430”) requires that analytical
laboratories collecting data used for new drug approval em-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’06, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

ploy “user independent computer-generated time stamped
audit trails” [9].

Audit log security is one component of more general record
management systems that track documents and their ver-
sions, and ensure that a previous version of a document
cannot be altered. As an example, digital notarization ser-
vices such as Surety (www.surety.com), when provided with
a digital document, generate a notary ID through secure
one-way hashing, thereby locking the contents and time of
the notarized documents [5]. Later, when presented with a
document and the notary ID, the notarization service can
ascertain whether that specific document was notarized, and
if so, when.

Compliant records are those required by myriad laws and
regulations (10,000 in the US) to follow certain “processes
by which they are created, stored, accessed, maintained, and
retained” [4]. It is common to use Write-Once-Read-Many
(WORM) storage devices to preserve such records [16]. The
original record is stored on a write-once optical disk. As the
record is modified, all subsequent versions are also captured
and stored, with metadata recording the timestamp, optical
disk, filename, and other information on the record and its
versions.

Such approaches cannot be applied directly to high-perfor-
mance databases. A copy of the database cannot be ver-
sioned and notarized after each transaction. Instead, audit
log capabilities must be moved into the DBMS. We pre-
viously proposed an innovative approach in which crypto-
graphically strong one-way hash functions prevent an in-
truder, including an auditor or an employee or even an un-
known bug within the DBMS itself, from silently corrupting
the audit log [15]. This is accomplished by hashing data
manipulated by transactions and periodically validating the
audit log database to detect when it has been altered.

The question then arises, what do you do when an intrusion
has been detected? At that point, all you know is that
at some time in the past, data somewhere in the database
has been altered. Forensic analysis is needed to ascertain
when the intrusion occurred, what data was altered, and
ultimately, who is the intruder.

In this paper, we provide a means of systematically perform-
ing forensic analysis after an intrusion of an audit log has
been detected. We first summarize the originally proposed

109

approach, which provides exactly one bit of information: has
the audit log been tampered? We introduce a schematic
representation termed a “corruption diagram” for analyzing
an intrusion. We then consider how additional validation
steps provide a sequence of bits that can dramatically nar-
row down the “when” and “where.” We examine the corrup-
tion diagram for this initial approach; this diagram is central
in all of our further analyses. We characterize the “foren-
sic strength” of this algorithm, defined as the reduction in
area of the uncertainty region in the corruption diagram.
We look at the more complex case in which the timestamp
of the data item is corrupted, along with the data. Such
an action by the intruder turns out to greatly decrease the
forensic strength. Along the way, we identify some configu-
rations that turn out not to improve the forensic strength,
thus helping to cull the most appropriate alternatives.

We then consider computing and notarizing additional se-
quences of hash values. For each successively more powerful
forensic analysis algorithm, we provide a formal/diagrammatic
analysis of its forensic strength. The above-mentioned algo-
rithm is the monochromatic algorithm; we also consider the
RGB algorithm and the polychromatic algorithm. This last
algorithm can efficiently extract a good deal of information
concerning a corruption event. We end with a discussion of
related and future work.

2. TAMPER DETECTION
In this section we summarize the tamper detection approach
we previously proposed and implemented [15]. We just give
the gist of our approach, so that our forensic analysis tech-
niques can be understood.

There are several related ideas that in concert allow tamper
detection.

• The first insight is that the DBMS can maintain the
audit log in the background, by rendering a specified
relation as a transaction-time table. This instructs the
DBMS to retain previous tuples during update and
deletion, along with their insertion and deletion/update
time (the start and stop timestamps), in a manner
completely transparent to the user application [2]. An
important property of all data stored in the database
is that it is append-only : modifications only add infor-
mation; no information is ever deleted. Hence, if old
information is changed in any way, then tampering
has occurred. Oracle 10g1 supports transaction-time
tables with its workspace manager [13]. The Immortal
DB project2 aims to provide transaction time database
support built into Microsoft SQL Server [10]. How this
information is stored (in the log, in the relational store
proper, in a separate “archival store” [1]) is not that
critical in terms of forensic analysis, as long as previous
tuples are accessible in some way.

• The second insight is that the data modified (inserted/
updated/deleted) by a transaction can be cryptograph-
ically hashed to generate a secure one-way hash of the
transaction.

1http://www.oracle.com/technology/products/
database/workspace_manager/index.html
2http://www.research.microsoft.com/research/db/
immortaldb/

User
Application

DBMS

Audit Log)

DBMS

(including
Audit Log)

Validator

Database

(including
Database

Digital

Service
Notarization

Digital

Service
Notarization

Figure 1: Normal Operation and Audit Log Valida-
tion

• The third insight is to digitally notarize this hash value
with an external notarization service. So even if the in-
truder has full access to the database itself, the DBMS,
and even the operating system and hardware, the in-
truder cannot change the hash value. This makes it
exceedingly difficult to make a series of changes to the
audit log that generate the same hash value.

• The final insight is a series of implementation opti-
mizations that minimize notarization service interac-
tions and speed up normal processing within the DBMS:
opportunistic hashing, linked hashing, and a transac-
tion ordering list, that in concert reduce the runtime
overhead to just a few percent of the normal running
time of a high-performance transaction processing sys-
tem. For our purposes, the only detail that is impor-
tant for forensic analysis is that at commit time, the
transaction’s hash value and the previous hash value
are hashed together to obtain a new hash value. Thus,
the hash value of each individual transaction is linked
in a sequence, with the final value being essentially a
hash of all changes to the database since the database
was created.

For more details on exactly how the tamper detection ap-
proach works, please refer to our previous paper [15], which
presents the threat model used by this approach, discusses
performance issues, and clarifies the role of the external no-
tarization service.

This basic approach differentiates two execution phases: nor-
mal processing, in which transactions are run and hash val-
ues are digitally notarized, and validation, in which the hash
values are recomputed and compared with that previous no-
tarized. It is during validation that tampering is detected,
when the just-computed hash value doesn’t match those pre-
viously notarized. Figure 1 illustrates these two phases.

110

Initially, our database is running fine, processing many trans-
actions per second. Periodically, say every night at mid-
night, it sends a hash value to the digital notarization ser-
vice, receiving back a notarization ID that it inserts into the
hash sequence. At some point, we decide to run the valida-
tor (which, by the way, can be an ordinary user application,
though we have to be a little careful, so that a potential
intruder doesn’t have control over it). The validator, to our
mortification, reports that our database has been tampered.
The DBA or Chief Information Officer (CIO) is contacted,
along with the Chief Security Officer (CSO), and forensic
analysis is initiated. Additional steps might include lock-
down of the facility, temporary tightening of the firewall,
and other steps to limit subsequent damage to the database.

The validator provides a vital piece of information, that tam-
pering has taken place, but doesn’t offer much else. Since
the hash value is the accumulation of every transaction ever
applied to the database, we don’t know when the tampering
occurred, or what portion of the audit log was corrupted.
(Actually, the validator does provide a very vague sense of
when: sometime before now, and where: somewhere in the
data stored before now.)

It is the subject of the rest of this paper to examine how to
perform a forensic analysis of a detected tampering of the
database.

3. SOME DEFINITIONS
Let’s now get more precise. We have just detected a corrup-
tion event (or CE), which is any event that corrupts the data
and compromises the database. The corruption event could
be due to an intrusion, some kind of human intervention, a
bug in the software (be it the DBMS or the file system or
somewhere in the operating system), or a hardware failure,
either in the processor or on the disk. There exists a one-to-
one correspondence between a CE and its corruption time
(tc), which is the actual time instant (in seconds) at which
a CE has occurred.

The CE was detected during a validation of the audit log
by the Notarization Service (NS), termed a validation event
(or VE). A validation can be scheduled (that is, is periodic)
or could be an ad hoc VE. The time (instant) at which a
VE occurred is termed the time of validation event, and
is denoted by tv. Tampering is indicated by a validation
failure, in which the validation service returns false for the
particular query of a hash value and a notarization time.
What is desired is a validation success, in which the NS
returns true, stating that everything is OK: the data has
not been tampered.

The validator compares the hash value it computes over the
data with the hash value that was previously notarized. A
notarization event (or NE) is the notarization of a document
(specifically, a hash value) by the notarization service. As
with validation, notarization can be scheduled (is periodic)
or can be an ad hoc notarization event. Each NE has an
associated notarization time (tn), which is a time instant.

Forensic analysis involves temporal detection, the determi-
nation of the corruption time, tc. Forensic analysis also in-
volves spatial detection, the determination of “where,” that

is, the location in the database of the data altered in a CE.
The finest granularity of the corruption data locus would be
an explicit attribute of a tuple, or a particular timestamp
attribute. We term this data that has been corrupted the
corruption locus data (lc).

Recall that each transaction is hashed. Therefore, in the ab-
sence of other information, such as a previous dump (copy)
of the database, the best a forensic analysis can do is to
identify the particular transaction that stored the data that
was corrupted. Instead of trying to ascertain the corrup-
tion locus data, we will instead be concerned with the locus
time (tl), the time instant that locus data (lc) was originally
stored. The locus time specifically refers to the time in-
stant when the transaction storing the locus data commits.
(Note that here we are referring to the specific version of the
data that was corrupted. This version might be the original
version inserted by the transaction, or a subsequent version
created through an update operation.) Hence the task of
forensic analysis is to determine two times, tc and tl.

A CE can have many lc’s (and hence, many tl’s) associated
with it, termed multi-locus: an intruder (hardware failure,
etc.) might alter many tuples. A CE having only one lc
(such as due to an intruder hoping to remain undetected by
making a single, very particular change) is termed a single-
locus CE.

4. THE CORRUPTION DIAGRAM
To explain forensic analysis, we introduce the Corruption
Diagram, which is a graphical representation of CE(s) in
terms of the temporal-spatial dimensions of a database. We
have found these diagrams to be very helpful in understand-
ing and communicating the many forensic algorithms we
have considered and so we will use them extensively in this
paper.

Let us first consider the simplest case. During validation, we
have detected a corruption event. Though we don’t know
it (yet), assume that this corruption event is a single-locus
CE. Furthermore, assume that the CE just altered the data
of a tuple; no timestamps were changed.

Figure 2 illustrates our simple corruption event. There is a
lot going on in this diagram, but the reader will find that it
succinctly captures all the important information regarding
what is stored in the database, what is notarized, and what
can be determined by the forensic analysis algorithm about
the corruption event.

The x-axis represents when the data are stored in the database.
The database was created at time 0, and is modified by
transactions whose commit time is monotonically increasing
along the x-axis. (In temporal database terminology [7], the
x-axis represents the transaction time of the data.) Hence,
time moves inexorably to the right.

This axis is labeled “Where.” The database grows mono-
tonically as tuples are appended (recall that the database is
append-only). As above, we designate “where” a tuple or
attribute is in the database by the time of the transaction
that inserted that tuple or attribute. The unit of the x-axis
is thus (transaction-commit) time. We delimit the days by

111

FVF
t

ct

t
l

CE

When

Where

USB

 Failure (FVF)
First Validation

NE0

6

tRVS

V

I
N

I

.

16

22

= LSB

LTB

=UTB

t
FVF

NE
1

NE
2

NE
VE

1
3

NE
4

NE
5

NE
VE

2

NE
7

NE
8

NE
9

VE
3

NE
10

NE
11

VE
4NE

12

Figure 2: The corruption diagram for a data-only single-locus corruption event

marking each midnight, or, more accurately, the time of the
last transaction to commit before midnight.

A 45-degree line is shown, terminating at the point labeled
“FVF.” This is the validation event at which we first became
aware of tampering. (Hence the name: a corruption diagram
always terminates at the VE that detected the CE.) We term
this the time of first validation failure (or tF V F): the time
at which the corruption of the log is first detected. Note
that tF V F is an instance of a tv. Also note that in every
corruption diagram, tF V F coincides with the current time.

The 45-degree line is termed the action axis, as all the action
in the database occurs on this line. So for example, the
VE associated with tF V F occurs on the action axis, at its
terminus. (This turns out to be the fourth such validation
event, VE4.)

The actual corruption event is shown as a point labeled
“CE,” which always resides above or on the action axis, and
below the last VE. If we project this point onto the x-axis,
we learn “where” (in terms of the locus of corruption, lc)
the corruption event occurred. Hence, the x-axis, which be-
ing ostensibly commit time, can also be viewed as a spatial
dimension, labeled in locus time instants (tl). This is why
we term the x-axis the where axis.

The y-axis represents the temporal dimension (actual time-
line) of the database, labeled in time instants. Any point

on the action axis thus indicates a transaction committing
at a particular transaction time (a coordinate on the x-axis)
that happened at a clock time (the same coordinate on the y-
axis). (In temporal database terminology, the y-axis is valid
time, and the database is a degenerate bitemporal database,
with valid time and transaction time totally correlated [8].
For this reason, the action axis is always a 45-degree line.
Projecting the CE onto the y-axis tells us when in clock time
the corruption occurred, that is, the corruption time, tc. We
label the y-axis with “When.” The diagram shows that the
corruption occurred on day 22 and corrupted an attribute of
a tuple stored by a transaction that committed on day 16.

There is a series of points along the action axis denoted
with “NE.” These (naturally) identify notarization events,
when a hash value was sent to the notarization service. The
first notarization event, NE0, occurs at the origin, when the
database was first created. This event hashes the tuples
containing the database schema and notarizes that value.

Notarization event NE1 hashes the transactions occurring
during the first two days (here, the notarization interval, IN ,
is two days), linking these hash values together using linked
hashing. This is illustrated with the upward-right-pointing
arrow with the solid arrowhead originating at NE0(since
the linking starts with the hash value notarized by NE0)
and terminating at NE1. Each transaction at commit time
is hashed; here the “where” (transaction commit time) and
“when” (wall-clock time) are synchronized; hence, this oc-

112

curs on the diagonal. The hash value of the transaction is
linked to the previous transaction, generating a linked se-
quence of transactions that is associated with a hash value
notarized at midnight of the second day in wall-clock time
and covering all the transactions up to the last one commit-
ted before midnight (hence, NE1 resides on the action axis).
NE1 sends the resulting hash value to the digital notariza-
tion service.

Similarly, NE2 hashes two days’ worth of transactions, links
it with the previous hash value, and notarizes that value.
Thus, the value that NE12 notarizes is computed from all
the transactions that committed over the previous 24 days.

Also along the action axis are points denoted with “VE.”
These are validation events for which a validation occurred.
During VE1, which occurs at midnight on the sixth day
(here, the validation interval, IV , is six days), rehashes all
the data in the database in transaction commit order, de-
noted by the long right-pointing arrow with a white arrow-
head, producing a linked hash value. It sends this value
to the notarization service, which responds that this “doc-
ument” is indeed the one that was previously notarized (by
NE3, using a value computed by linking together the values
from NE0, NE1, NE2, and NE3, each over two days’ worth
of transactions), thus assuring us that no tampering has oc-
curred in the first six days. (We know this from the diagram
because this VE is not at the terminus.) In fact, the dia-
gram shows that VE1, VE2, and VE3 were successful (each
scanning a successively larger portion of the database, the
portion that existed at the time of validation). The diagram
also shows that VE4, immediately after NE12, failed, as it
is marked as FVF; its time tF V F is shown on both axes.

In summary, we now know that at each of the VEs up to but
not including FVF succeeded. (Note that as the database
grows, more tuples must be hashed at each validation. Given
that any previous hashed tuple could be corrupted, it is un-
avoidable to examine every tuple during validation.) When
the validator scanned the database as of that time (tv for
that VE), the hash value matched that notarized by the VE.
Then, at the last VE, the FVF, the hash value didn’t match.
The corruption event, CE, occurred before midnight of the
24th day, and corrupted data stored sometime during those
twenty four days.

5. FORENSIC ANALYSIS
Once the corruption has been detected, a forensic analyzer
springs into action. The task of this analyzer is to ascertain,
as accurately as possible, the corruption region: the bounds
on “where” and “when” of the corruption.

From this validation event, we have exactly one bit of infor-
mation: validation failure. For us to learn anything more,
we have to go to other sources of information.

One such source is a backup copy of the database. We
could compare, tuple-by-tuple, the backup with the current
database to determine quite precisely where (the locus) of
the CE. That would also delimit the corruption time, to af-
ter the locus time (one cannot corrupt data that has not yet
been stored!). Then, from knowing where and very roughly
when, the CIO and CSO and their staffs can examine the ac-

tual data (before and after values) to determine who might
have made that change.

However, it turns out that the forensic analyzer can use just
the database itself to determine bounds on the corruption
time and the locus time. The rest of this paper will propose
and evaluate the effectiveness of several forensic analysis al-
gorithms.

In fact, we already have one such algorithm, the trivial
forensic analysis algorithm: on validation failure, return the
upper-left triangle, denoting that the corruption event oc-
curred before tF V F and altered data stored before tF V F .

Our next algorithm, termed the monochromatic forensic anal-
ysis algorithm for reasons that will soon become clear, yields
the rectangular corruption region illustrated in the diagram,
with an area of 12 days2 (two days by six days). We provide
the trivial and monochromatic algorithms as an expository
structure to frame the more useful RGB and polychromatic
algorithms introduced later.

The most recent VE before FVF, VE3, occurred at the time
of most recent validation success (tRV S), as shown on the
where axis. This implies that the corruption event occurred
after the RVS, that is, tc > tRV S. The corruption event
occurred before the most recent validation event, the first
validation failure, that is, tc < tF V F . Thus the times of
VEs bound the “when.”

To bound the “where” the monochromatic analyzer can vali-
date prior portions of the database, at times that were earlier
notarized. Consider the very first notarization event, NE1.
The forensic analyzer can rehash all the transactions in the
database in order, starting with the schema and then from
the very first transaction (such data will have a start time
earlier than all other data), and proceeding up to the last
transaction before NE1 (the transaction timestamps stored
in the tuples indicate when these tuples should be hashed).
If that de novo hash value matches the notarized hash value,
the validation result will be true, and this validation will suc-
ceed, just like the original one would have, had we done a
validation query then. Assume likewise that NE2 through
NE7 succeed as well.

Of course, the original VE1 and VE2, performed during nor-
mal database processing, succeeded, but we already knew
that. What we are focusing on here are validations of por-
tions of the database performed by the forensic analyzer af-
ter tampering was detected. Computing the multiple hash
values can be done in parallel by the forensic analyzer. The
hash values are computed for each transaction during a sin-
gle scan of the database and linked in commit order. When-
ever a midnight is encountered as a transaction time, the
current hash value is retained. When this scan is finished,
these hash values can be sent to the notarization service for
a notarization check.

Now consider NE8. The corruption diagram implies that the
validation of all transactions occurring during day 1 through
day 16 failed. That tells us that the “where” of this corrup-
tion event was the single IN interval between the midnight
notarizations of NE7 and NE8, that is, during day 15 or day

113

VI

When

Where

 Failure (FVF)
First Validation

NE

NE

NE0

6

9

FVF

I
N

22

=UTBt

.

USBtRVS = LSB
21

CE

LTB

tl

NE

NE
2

1

VE
1NE

3

NE
4

NE
5

VE
2

NE
7

NE
8

VE
3

NE
10

NE
11

VE
NE

12
4

c
t

Figure 3: The corruption diagram for a data-only
single-locus introactive corruption event

16. Note also that all validations after that, NE9 through
NE11, also fail.

Define the lower temporal bound LTB := tF V F −IV , the up-
per temporal bound UTB := tF V F , the lower spatial bound
LSB := tRV S , and the upper spatial bound
USB := tRV S + IN . This defines a corruption region, in-
dicated here as a narrow rectangle, within which the CE
must fall.

This example shows that, when utilizing the monochromatic
algorithm, the notarization interval, here
IN = 2 days, bounds the “where” and the validation inter-
val, here IV = 6 days, bounds the “when.”

The CE just analyzed is termed a retroactive corruption
event : a CE with locus time tl appearing before the next
to last validation event. Figure 3 illustrates an introactive
corruption event : a CE with a locus time tl appearing after
the next to last validation event.

In this figure, the corruption event occurred on day 22, as
before, but altered data on day 21 (rather than day 16 in
the previous diagram). NE10 is the most recent validation
success. Here the corruption region is a trapezoid in the
corruption diagram, rather than a rectangle, due to the con-
straint mentioned earlier that a CE must be on or above the
action axis.

Recall that a CE with locus time tl appearing after at least
one future validation event doesn’t make sense. This last
case should not be confused with the case where the corrup-
tion changes time-related data (timestamps) so that they
appear to have happened in the future (see the next section
for this scenario). Due to the way tl is defined, it only de-
pends on the true (original) time of the transaction, not the
time it was changed to.

6. NOTARIZATION AND VALIDATION
INTERVALS

The two corruption diagrams we have thus far examined
assumed a notarization interval of IN = 2 and validation in-
terval of IV = 6. In this case, notarization occurs more fre-
quently than validation and the two processes are in phase,
with IV a multiple of IN . In such a scenario, we saw that the
spatial uncertainty is determined by the notarization inter-
val and the temporal uncertainty by the validation interval.
Hence, we obtained tall, thin CE regions. One naturally
asks, what about other cases?

Say notarization events occur at midnight every two days,
as before, and validation events occur every three days, but
at noon. So we might have NE1 on Monday night, NE2 on
Wednesday night, NE3 on Friday night, VE1 on Wednesday
at noon, and VE2 on Saturday at noon. VE1 rehashes the
database up to Monday night and checks that linked hash
value with the digital notarization service. It would detect
tampering prior to Monday night; tampering with a tl after
Monday would not be detected by VE2. VE2 would hash
through Friday night; tampering on Tuesday would then be
detected. Hence, we see that a non-aligned validation just
delays detection of tampering. Simply speaking, one can
validate only what one has previously notarized.

If the validation interval were shorter than the notarization
interval, say every day at midnight, then a validation on
Tuesday at midnight could again only check through Mon-
day night.

Our conclusion is that the validation interval should be equal
to or longer than the notarization interval, should be a multi-
ple of the notarization interval, and should be aligned, that
is, periodically be simultaneous with notarization. When
the two do align, validation should occur immediately after
notarization. Thus we will speak of the validation factor V
such that IV = V · IN .

7. ANALYZING TIMESTAMP CORRUPTION
The previous section considered a data-only corruption event,
a CE that does not change timestamps in the tuples. There
are two other kinds of corruption events. In a backdating
corruption event, one or more timestamps are changed to
indicate a previous time/date with respect to the original
time in the tuple. We term the time a timestamp was back-
dated to the backdating time, or tb. It is always the case that
tb < tl. Similarly, a postdating corruption event changes one
or more timestamps to indicate a future time/date with re-
spect to the original time in the tuple, with the postdating
time (tp) being the time a timestamp was postdated to. It
is always the case that tl < tp. This induces six specific
corruption event types.

(
Retroactive

Introactive

)
×

8>><
>>:

Data-only

Backdating

Postdating

9>>=
>>;

For backdating corruption events, we ask that the foren-
sic analysis determine, to the extent possible, “when” (tc),

114

c
t

t
l

t
l

When

 Failure (FVF)
First Validation

NE0

6

FVF

VI

22

LTB

=UTBt

Where

IN

.

14
= LSBRVS

t
10

.CE

NE
1

NE
2

NE
VE

1
3

NE

NE

NE
VE

2

5

4

NE
7

NE
8

NE
9

VE
3

NE
10

NE
11

NE
12

VE
4

t

t

b

p

USB

postdating

backdating

Figure 4: The corruption diagram for postdating
and backdating corruption events

“where” (tl), and “to where” (tb). Similarly, for postdat-
ing corruption events, we want to determine tc, tl, and tp.
This is quite challenging given the only information we have,
which is a single bit for each query on the notarization ser-
vice.

It bears mention that neither postdating nor backdating CEs
involve movement of the actual tuple to a new location. In-
stead, these CEs consist entirely of changing an insertion-
date timestamp attribute. (We note in passing that in some
transaction-time storage organizations the tuples are stored
in commit order. If an insertion date is changed during a
corruption event, the fact that that tuple is out of order
provides another clue, one that we don’t exploit in the al-
gorithms proposed here.)

Figure 4 illustrates a retroactive postdating corruption event
(denoted by the forward-pointing arrow). On day 22, the
timestamp of a tuple written on day 10 was changed to make
it appear that that tuple was inserted on day 14 (perhaps to
avoid seeming that something happened on day 10). This
tampering will be detected by VE4, which will set the lower
and upper temporal bounds of the CE. The monochromatic
algorithm will then go back and rehash the database, query-
ing with the notarization service at NE0, NE1 ... It will
notice that NE4 is the most recent validation success, be-
cause the rehashed sequence will not contain the tampered
tuple: its (altered) timestamp implies it was stored on day
14. Given that the query at NE4 succeeds and that at NE5

fails, the tampered data must have been originally stored
sometime during those two days, thus bounding tl to day 9
or day 10. This provides the corruption region shown as the
left-shaded rectangle in the figure.

Since this is a postdating corruption event, tp, the date
the data was altered to, must be after the local time, tl.
Unfortunately, all subsequent revalidations, from NE5 on-

ward, will fail, then giving us absolutely no additional in-
formation as to the value of tp. The “to” time is thus some-
where in the shaded trapezoid to the right of the corruption
region. (We show this on the corruption diagram as a two-
dimensional region, representing the uncertainty of tc and
tp. Hence, the two shaded regions denote just three uncer-
tainties, in tc, tl, and tp.)

Figure 4 also illustrates a retroactive backdating corruption
event (backward-pointing arrow). On day 22, the timestamp
of a tuple written on day 14 was changed to make it appear
that the tuple in question was inserted on day 10 (perhaps
to imply something happened before it actually did). This
tampering will be detected by VE4, which will set the lower
and upper temporal bounds of the CE. Going back and re-
hashing the data at NE0, NE1, . . . the monochromatic algo-
rithm will compute that NE4 is the most recent validation
success. The rehashing up to NE5 will fail to match its nota-
rized value, because the rehashed sequence will erroneously
contain the tampered tuple that was originally was stored
on day 14. Given that the query at NE4 succeeds and that
at NE5 fails, the new timestamp must be sometime within
those two days, thus bounding tb to day 9 or day 10. The
left-shaded rectangle in the figure illustrates the extent of
the imprecision of tb.

Since this is a backdating corruption event, the date the data
was originally stored, tl, must be after the “to” time, tb. As
with postdating CEs, all subsequent revalidations, from NE5

onward, will fail, then giving us absolutely no additional
information as to the value of tl. The corruption region is
thus the shaded trapezoid in the figure.

While we have illustrated backdating and postdating cor-
ruption events separately, the monochromatic algorithm is
unable to differentiate these two kinds of events from each
other, or from a data-only corruption event. Rather, the al-
gorithm identifies the RVS, the most recent validation suc-
cess, and from that puts a two-day bound on either tl or tb.
Because the link chains that are notarized by NEs are cu-
mulative, once one fails during a rehashing, all future ones
will fail. Thus future NEs provide no additional information
concerning the corruption event.

To determine more information about the corruption event,
we have little choice but to utilize to a greater extent the
external notarization service. (Recall that the notarization
service is the only thing we can trust after an intrusion.)
At the same time, it is important to not slow down regular
processing. We’ll show how both are possible.

8. THE RGB FORENSIC ALGORITHM
The central insight of the monochromatic algorithm was
that the data could be rehashed when tampering was de-
tected, and the hash value(s) sent to the notarization ser-
vice to be checked. In fact, this could be done by the foren-
sic analyzer at every notarization event, thus bounding the
“where” to within one notarization interval (in the above
examples, a particular two days). Thus, extra work during
the last validation event, the one that detected the tamper-
ing, provides us with a corruption region. However, we also
saw that we couldn’t tightly bound both tl and tb or tp.

115

VE1

t
c

t
l

t
p

When

 Failure (FVF)
First Validation

NE

NE0

6

FVF

VI

22

LTB

=UTBt

Where

IN

10

.CE

14

G
B

R

G
B

R

G
B

R

= LSBRVS
t

NE2

NE
4

NE

NE
1

3

2
VE

NE
5

VE
3

NE
7

NE
8

VE
4

NE
9

NE
VE

5

10

NE

NE
VE
12

11

6

USB

Figure 5: The corruption diagram for a postdating corruption event using the RGB algorithm

The insight of the Red-Green-Blue forensic analysis algo-
rithm (or simply, the RGB algorithm) is that during nota-
rization events, in addition to reconstructing the entire hash
chain (illustrated with the long right-pointed arrows in prior
corruption diagrams), the validator can also rehash portions
of the database and notarize those values, separately from
the full chain. In the RGB algorithm, we add three addi-
tional chains, denoted with the colors red, green, and blue,
to the original (black) chain in the so-called monochromatic
algorithm. These hash chains can be computed in parallel;
all consist of linked sequences of hash values of individual
transactions in commit order. While additional hash values
must be computed, no additional disk reads are required.
The additional processing is entirely in main memory.

Figure 5 illustrates a postdating corruption event with the
additional chains notarized during the validation events. Note
that the validation factor has been changed to 2: IV = 2 · IN

(this is required by the algorithm). The postdating corrup-
tion is the same as with Figure 4: on day 22, the timestamp
of a tuple written on day 10 was changed to make it appear
that that tuple was inserted on day 14.

The RGB algorithm adds several hash chains to the corrup-
tion diagram. For odd i, VE i computes a red hash chain
from NE2·i−3 to NE2·i−1. Hence, VE1 computes a red hash
chain over NE0–NE1 (a short chain), VE3 over NE3–NE5,
and VE5 over NE7–NE9. (Note the “R” on the far left
designating the red hash chains.) The resulting hash value

is notarized with the digital notarization service. During
forensic analysis, this value can be checked. This is shown
in the corruption diagram with a black arrowhead for the
red hash chains.

For even i, two hash chains are computed: a blue chain over
NE2·i−3–NE2·i−1 and a green chain over NE2·i−2–NE 2·i.
VE2 computes a blue chain over NE1–NE3 and a green
chain over NE2–NE4, VE4 blue over NE5–NE7 and green
over NE6–NE 8, and VE6 blue over NE9–NE11 and green
over NE10–NE12. All of these are black arrows, as they
represent additional notarizations.

There is a distinct pattern here. The original black hash
chain covers the “where” axis, as do the red and blue chains
in combination. The black chain gets longer and longer,
whereas the other three are of fixed length of IV = 2 · IN .
The green hash chain covers the last two notarizations before
this validation event. The monochromatic algorithm com-
putes one hash value, and hence performs one query, per
validation; the RGB algorithm performs that query as well
as 1.5 additional notarizations per validation on average.

Using only the original black hash chain, the RGB algorithm
can compute the (tc,tl) corruption region, which is the left
shaded region. To compute tp, the other three chains are
used. The query for the red chain at VE1 succeeds (denoted
Red1 = T). Similarly, the blue and green queries at VE2

succeed (Blue2 = Green2 = T). But Red3 = F because a

116

VE2

VE1

VE3

VE4

VE5

t
l

When

 Failure (FVF)
First Validation

NE

NE

VE

0

6

9

6FVF

VI

22

LTB

=UTBt

Where

IN

10

.CE

14

B

R

B

R

B

R

G

G

G

= LSBRVS
t

NE
4

NE
1

NE
2

NE
5

NE

NE
7

NE
8

NE
10

NE
11

NE
12

NE
3

USB

t
c

t
p

Figure 6: The corruption diagram for a postdating corruption event using the polychromatic algorithm

tuple originally stored during NE3–NE5 has been tampered
(recall that this tampering is a postdating corruption event,
where the timestamp of a tuple originally stored during day
10 is changed to day 14). Similarly, Blue4 = Green4 = F
because a tuple was added to those transactions on day 14.
Finally, Red5 = Blue6 = Green6 = T .

In this case, the red failure doesn’t tell us anything, as we
already know that tl is on day 9 or day 10. But the blue
and green failures tell us that tp must be on day 13 or day
14, hence the tp shaded region on the right. Both regions
will each be of area IV · IN = 8 days.

Had the corruption postdated the tuple to day 15, then
Blue4 = T and Green4 = Red5 = F , and the combina-
tion of green and red would have narrowed tp to two days,
day 15 or day 16. (Note that tl and tp must be in different
validation periods.)

A similar analysis applies to backdating. In fact, the algo-
rithm is not able to differentiate postdating from backdat-
ing: either way, two regions will be obtained. For data-only
single-locus corruption events, only one region will result
from the analysis.

9. THE POLYCHROMATIC ALGORITHM
Recall that the red and blue chains in concert cover the
“where” axis. They allow the uncertainty of tp to be re-
duced to IN , or two days. The polychromatic algorithm

extends these partial hash chains to shrink the corruption
regions. Specifically, with k partial red and blue chains, the
uncertainty can be reduced to IN/2k. In Figure 6, we add
one red chain Red1 and one blue chain Blue1 to reduce the
uncertainty to one day. While a day may comprise many
transactions and even more tuples, knowing which partic-
ular day was corrupted may provide valuable context for
identifying the intruder.

The first additional red chain, Red1
1, extends for just the first

day. (We’ll denote the original red hash chain as Red0
1.) All

the other additional chains will be composed of two separate
days, linked together. The first additional blue chain, Blue1

2,
is composed of days 3 and 5; the linking is denoted with a
dotted curved arrow. So VE2 will link all the transactions
occurring on day 3 with all the transactions occurring on day
5, computing a single hash value which is then notarized
with the digital notarization service. Similarly, Red1

3 will
link day 7 and day 9, and Blue1

4 will link day 11 and 13, and
so on. The net effect is that each validation event causes 2.5
notarizations.

Once we establish a rough bound on the “where,” tl, using
the black chains (here, within the interval IN , or day 9 or day
10), these additional hash chains enable tl to be determined
to within one day. The algorithm computes Red0

3 = F and
Red1

3 = T , thereby locating tl to day 10. The algorithm
computes Green4 = F and Blue0

4 = F and Blue1
4 = T to

establish tp on day 14.

117

In the general case, let IV = 2k days. (IN can be any
smaller power of two number of days.) The polychromatic
algorithm requires an additional k − 1 red hash chains and
an equal number of blue hash chains to reduce the width
of the corruption region to one granule (day). In the above
example, IV = 4 and two red hash chains are required. The
cost is 0.5 + k notarizations per validation event.

The polychromatic algorithm needs to determine the day
in which all the hash chains overlapping that day fail. We
saw in the above example that for day 10 the hash chains
were Black5 (from NE5) and Red0

3 from VE3 and for day 14
the relevant hash chains were Blue0

4 and Green4, both from
VE4.

We’ll first define the RGB algorithm and then add the red
and blue partial chains for the polychromatic algorithm. For
a given day d, let g = �(d − 1)/IV � + 1. This partitions
the x-axis into intervals of size IV , aligned with the origin.
The green hash chains are the even intervals. Similarly,
rb = �(d − 1 + IV /2)/IV � + 1 partitions the x-axis also into
intervals of size IV , but offset by IV /2, corresponding to the
red and blue hash chains. Finally, the black hash chains are
partitioned by �d/IN�. Then tl for data-only or postdating
corruption events is within day d if the following predicate
is satisfied.

Black�d/IN�−1 ∧ ¬Black�d/IN� ∧ (g is even ⇒ ¬Greeng)∧
(rb is odd ⇒ ¬Red0

rb) ∧ (rb is even ⇒ ¬Blue0
rb)

This expression also finds tb for backdating CEs, and tp for
postdating CEs and tl for backdating CEs. For Figure 5,
these predicates will be satisfied for days 9 and 10 for tl

and for days 13 and 14 for tp. This completes the RGB
algorithm.

For the partial chains maintained by the polychromatic al-
gorithm, we first map the day into an integer between 0 and
IV −1. Let m = (d−1−IV /2) mod IV . The time is within
day d if the following two predicates are also satisfied.

rb is odd ⇒
k−1̂

i=1

„—
m

(IV /2i+1)

�
is even ⇒ ¬Red i

rb

«

rb is even ⇒
k−1̂

i=1

„—
m

(IV /2i+1)

�
is even ⇒ ¬Bluei

rb

«

Since IV = 2k, the Redk−1 or Bluek−1 partial hash chains
contain single-day segments. Thus, only one day will satisfy
the three predicates above. For Figure 6, these predicates
will be satisfied for day 10 for tl and day 14 for tp.

10. COMPARISON
In this paper we have defined four forensic analysis algo-
rithms.

Trivial: the corruption and backdating/postdating date is
the entire upper-left triangle.

Monochromatic: The corruption region is reduced to IV · IN

days, at the cost of additional queries during forensic
analysis, but the postdating date could be anywhere
to the right of tl.

RGB: The backdating/postdating date is known to within
IN days, at the cost of additional partial hash chain
notarizations during normal processing and additional
queries during forensic analysis.

Polychromatic: This algorithm ensures that tl and tp (or
tb) are known to one day (or hour or second) at the
cost of k − 1 additional partial hash chain notariza-
tions during normal processing and additional queries
during forensic analysis.

More effort during normal processing and forensic analysis
yields higher precision. This is useful, as it gives the CSO
a knob to vary the cost and precision. Note that these al-
gorithms do not differ on the times that they access the
database: all four require that the entire database be read
once during each notarization event. Rather, these algo-
rithms differ mainly in the number of hash values computed,
as well as the number of notarizations and queries of the dig-
ital notarization service. As the latter two actions costs real
money, it will be those that we tally.

In this section, we go further, by characterizing the foren-
sic strength of each of these four algorithms. We focus on
postdating corruption events, as those are the most diffi-
cult to analyze. We define forensic strength of an algorithm
in terms of three rather disparate components: (1) the ef-
fort (work) of the forensic analysis (to estimate tc, tl, and
tp), (2) the region-area (a measure of the quality of the re-
sult of the algorithm and again, of tc, tl, and tp), and (3)
the uncertainty (an additional measure of quality). These
components are in some way compensatory, in that with
more effort, high quality (or smaller region or uncertainty)
results. Indeed, for each successive algorithm, it turns out
that the work increases and the uncertainty (or region area)
decreases. If these two effects balance out for two candidate
algorithms, the two algorithms will be considered to have
similar forensic strength.

We chose to combine these three components as a product,
which has the desirable property just stated. Our intuition
is that in general, with twice the work, one would expect, for
a similar forensic strength, twice the accuracy, that is, half
the uncertainty (focusing just on these two components for
the moment). Say for simplicity that the two components
were roughly the same size, S. With an additive defini-
tion of forensic strength, the former algorithm would have
a strength of S + S = 2S, while the latter algorithm would
have a strength of 0.5S + 2S = 2.5S. With our multiplica-
tive definition, the former’s strength is S ∗ S = S2 and the
latter’s, 0.5S ∗2S = S2. Hence, the multiplicative definition
better matches our intuition.

An alternative definition of forensic strength would be some
kind of weighted sum or product of the components. A prob-
lem with any weighted scheme is that it introduces the com-
plication of having to propose specific values for the weights,
which makes the comparison more difficult. That said, other
definitions of forensic strength may certainly be pertinent.

We define the inverse forensic strength as the product of (a)
the normal processing, in units of number of notarizations
and validations plus the cost of forensic analysis, in units

118

of number of queries on the notarization service, (b) the
area of the corruption region, in units of days2, and (c) the
uncertainty of tp, in units of days. However, the inverse
forensic strength increases if the work or the uncertainty
increases. So we define the forensic strength as the reciprocal
of the inverse forensic strength. For convenience, we focus
on the inverse forensic strength (IFS), which we want to
minimize.

We’ll characterize IFS as a function over D, the number of
days before the first validation failure was detected, IN , the
notarization interval, and V , the validation factor
(V = IV /IN) and consider the worst-case.

IFS(D, IN , V) = (NumNotarizes + ForensicAnalysis)

·RegionArea · PostdatingUncertainty

For the trivial algorithm, a notarization occurs at each no-
tarization event and a query occurs at each validation event;
the three times are known only to be less than D.

IFStrivial = (�D/IN� + �D/(V · IN)�) · 1

2
D2 · D

= O(D4/IN)

In this and following complexity analyses, we assume that
D 	 IV and D 	 V .

The monochromatic algorithm finds the first validation fail-
ure. To do so, it can use binary search on the notarization
events, thus requiring �lg(D/IN)� queries, while reducing
the uncertainty of tc to IV and of tl to IN .

NumNotarizesmono = �D/IN� + �D/(V · IN)�
ForensicAnalysismono = �lg(D/IN)�

IFSmono = (�D/IN � + �D/(V · IN)� +

�lg(D/IN)�) ·
(IN · V · IN) · D

= O(V · D2 · IN)

As D2/IN 	 V · IN , the monochromatic algorithm has
strictly greater forensic strength.

The RGB algorithm adds red, blue, and green partial hash
chains to reduce the uncertainty of tp to IN . It performs a
binary search on the black hash chains to find the first one
that failed and a linear search on the red, green, and blue
partial hash chains to find the right region. The uncertainty
region is now IV by IN and the uncertainty in the postdate
is IN .

NumNotarizesRGB = �D/IN� + 1.5 · �D/(V · IN)�
ForensicAnalysisRGB = �lg(D/IN)� + 2 · �D/(V · IN)�

IFSRGB = (�D/IN� + 1.5 · �D/(V · IN)� +

�lg(D/IN)� + 2 · �D/(V · IN)�) ·
(IN · V · IN) · IN

= O(V · D · I2
N)

As D 	 IN , the RGB algorithm has strictly greater forensic
strength than the monochromatic algorithm.

The polychromatic algorithm adds some queries during nor-
mal processing and linear search on the multiple red and blue

partial hashes to get the uncertainties of tl and tp down to
one day.

NumNotarizespoly = �D/IN � + 0.5 · �D/(V · IN)� +

lg(IN) · �D/(V · IN)�
ForensicAnalysispoly = �lg(D/IN)� + 2 · �D/(V · IN)� +

2 · (�lg(D/(V · IN))�)

IFSpoly = (�D/IN� + 0.5 · �D/(V · IN)� +

lg(IN) · �D/(V · IN)� + 2 · �lg(D/(V · IN))� +

�D/IN)� + 2 · (�lg(D/(V · IN))�)) ·
IN · V · 1

= O((V + lg(IN)) · D)

As V · I2
N 	 V + lg(IN), the polychromatic algorithm has

strictly greater forensic strength than all of the other forensic
analysis algorithms introduced here. The short summary is
that while each successive algorithm adds extra work during
both normal processing and forensic analysis, the resulting
decrease in uncertainty more than counterbalances this ex-
tra work.

Given the cost functions for the three components for each
of these algorithms, it is easy, for any given set of specific
weights, to compute the forensic strength of each algorithm
and to compare the various algorithms using an alternative
definition of forensic strength, such as a weighted sum or
product.

11. RELATED WORK, SUMMARY, AND
FUTURE WORK

There has been a great deal of work on records management,
and indeed, an entire industry providing solutions for these
needs, motivated recently by Sarbanes-Oxley and other laws
requiring audit logs. In this context, a “record” is a version
of a document. Within a document/record management sys-
tem (RMS), a DBMS is often used to keep track of the ver-
sions of a document and to move the stored versions along
the storage hierarchy (disk, optical storage, magnetic tape).
Examples of such systems are the EMC Centera Compli-
ance Edition Content Addressed Storage System3, the IBM
System Storage DR series4, and NetApp’s SnapLock Com-
pliance5. Interestingly, these systems utilize magnetic disks
(as well as tape and optical drives) to provide WORM stor-
age of compliant records. As such, they are implementa-
tions of read-only file systems (also termed append-only),
in which new files can only be added. Several designs of
read-only file systems have been presented in the research
literature [3, 11]. Both of these systems (as well as Ivy [12])
use cryptographic signatures so that programs reading a file
can be assured that it has not been corrupted.

Hsu and Ong have proposed an end-to-end perspective to es-
tablishing trustworthy records, through a process they term
fossilization [6]. The idea is that once a record is stored in
the RMS, it is “cast in stone” and thus not modifiable. An

3http://www.emc.com/products/systems/centera ce.jsp
4http://www.ibm.com/servers/storage/disk/dr/
5http://www.netapp.com/products/software/snaplock.html

119

index allows efficient access to such records, typically stored
in some form of WORM storage. Subsequently, they showed
how the index itself could be fossilized [16]. Their approach
utilizes the WORM property provided by the systems just
listed: that the underlying storage system supports reads
from and writes to a random location, while ensuring that
any data that has been written cannot be overwritten.

This is an appealing and useful approach to record manage-
ment. We extend this perspective by asserting that every
tuple in a database is a record, to be managed. The chal-
lenge is two-fold. First, a record in a RMS is a heavy-weight
object: each version is stored in a separate file within the
file system. In a DBMS, a tuple is a light-weight object,
with many tuples stored on a single page of a file storing all
or a good portion of a database. Secondly, records change
quite slowly (examples include medical records, contacts, fi-
nancial reports), whereas tuples change very rapidly in a
high-performance transactional database. It is challenging
to achieve the functionality of tracked, tamper-free records
with the performance of a DBMS.

In the present paper, we introduced corruption diagrams as
a way of visualizing corruption events and forensic analy-
sis algorithms. We presented four such algorithms, trivial,
monochromatic, RGB, and polychromatic, showing through
a formal forensic strength comparison that each successive
algorithm adds extra work in the form of main-memory pro-
cessing, but that the resulting additional precision in the
obtained information more than counterbalances this extra
work. The polychromatic algorithm in particular is able to
determine the “where”, the “when,” and the “to when” of
a tampering quite precisely.

There is much left to do. First, a lower bound for foren-
sic strength is needed. We conjecture that the lower bound
is at least Ω(D). We’re working to improve on the poly-
chromatic algorithm, by improving its performance and by
eliminating some simplifying assumptions. We are investi-
gating multi-locus corruption events as well as complex cor-
ruption events that simultaneously tamper with data and
timestamp values. We are extending the polychromatic al-
gorithm to efficiently accommodate these multiple corrup-
tion events, while also enabling much finer resolution of de-
tection. We are also considering how to differentiate back-
dating from postdating corruption events. We are devel-
oping a comprehensive cost function of the polychromatic
forensic analysis algorithm that takes into account its space
requirements and the time to compute the additional hash
functions. We are implementing this algorithm to validate
its cost function. Finally, we are examining the interaction
between a transaction-time storage manager and an under-
lying magnetic-disk-based WORM storage (such as those
discussed above). As archival pages are migrated to WORM
storage, they would be thus protected from tampering, and
so would not need to be rescanned by the validator.

12. ACKNOWLEDGMENTS
NSF grants IIS-0100436, IIS-0415101, and EIA-0080123 and
a grant from Microsoft provided partial support for this
work. We thank the reviewers for their insightful questions.

13. REFERENCES
[1] I. Ahn and R. T. Snodgrass, “Partitioned Storage

Structures for Temporal Databases,” Information
Systems, Vol. 13, No. 4, December 1988, pp. 369–391.

[2] J. Bair, M. Böhlen, C. S. Jensen, and
R. T. Snodgrass, “Notions of Upward Compatibility of
Temporal Query Languages,” Business Informatics
(Wirtschafts Informatik) 39(1):25–34, February, 1997.

[3] K. Fu, M. F. Kaashoek and D. Mazières, “Fast and
secure distributed read-only file system,” in
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, pp. 181–196,
October 2000.

[4] P. A. Gerr, B. Babineau, and P. C. Gordon,
“Compliance: the effect on information management
and the storage industry,” Enterprise Storage Group
Technical Report, May 2003.

[5] S. Haber and W. S. Stornetta, “How To Time-Stamp
a Digital Document,” Journal of Cryptology 3:99–111,
1999.

[6] W. W. Hsu and S. Ong, “Fossilization: A process for
establishing truly trustworthy records,” IBM Research
report RJ 10331, 2004.

[7] C. S. Jensen and C. E. Dyreson (eds), “A Consensus
Glossary of Temporal Database Concepts—February
1998 Version,” in Temporal Databases: Research
and Practice, O. Etzion, S. Jajodia, and S. Sripada
(eds.), Springer-Verlag, pp. 367–405, 1998.

[8] C. S. Jensen and R. T. Snodgrass, “Temporal
Specialization and Generalization,” IEEE
Transactions on Knowledge and Data Engineering,
Vol. 6, No. 6, December 1994, pp. 954–974.

[9] Lab Compliance, www.labcompliance.com/-
e-signatures/overview.htm, viewed November 14,
2005.

[10] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov,
R. Wang, and Y. Zhu, “Immortal DB: transaction
time support for SQL server,” in Proceedings of the
International ACM Conference on Management of
Data (SIGMOD), pp. 939–941, June 2005.

[11] D. Mazières, M. Kaminsky, M. F. Kaashoek and
E. Witchel, “Separating key management from file
system security,” in Proceedings of the ACM
Symposium on Operating Systems Principles,
pp. 124–139, December 1999.

[12] A. Muthitacharoen, R. Morris, T. M. Gil and
B. Chen, “Ivy: A Read/Write Peer-to-Peer File
System,” in Proceedings of USENIX Operating
Systems Design and Implementation, 2002.

[13] Oracle Corporation, “Oracle Database 10g Workspace
Manager Overview,” Oracle White Paper, May 2005.

[14] B. Schneier and J. Kelsey, “Secure Audit Logs to
Support Computer Forensics,” ACM Transactions on
Information and System Security 2(2):159–196, May
1999.

[15] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper
Detection in Audit Logs,” in Proceedings of the
International Conference on Very Large Databases,
pp. 504–515, Toronto, Canada, September 2004.

[16] Q. Zhu and W. W. Hsu, “Fossilized Index: The
Linchpin of Trustworthy Non-Alterable Electronic
Records,” in Proceedings of the ACM International
Conference on Management of Data, pp. 395–406,
Baltimore, Maryland, June 2005.

120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

