
Installing the SR Programming Language
Version 2.3

Gregg Townsend

Department of Computer Science

The University of Arizona

October 7, 1994

Minor update August 12, 1999 for SR 2.3.2

General Notes

The SR Programming Language runs under several different Unix systems including those of Sun, Digital,
Hewlett-Packard, Silicon Graphics, and IBM. A list is included in the Systems file in the main directory.

The standard distribution package requires about five megabytes of disk space. This expands to around
ten megabytes during the build process. The final, installed files occupy about three megabytes.

The SR system is in the public domain and you may use and distribute it as you wish. We ask that you
retain credits referencing the University of Arizona and that you identify any changes you make.

We can’t provide a warranty with SR; it’s up to you to determine its suitability and reliability for your
needs. We do intend to continue to develop and maintain SR as resources permit and we would like to hear
of any problems.

Unpacking the tar file

If you haven’t done so already, create a new directory for building the SR system. This directory can be
located anywhere and can be removed completely after the system has been built and installed. The new
directory is called the ‘‘main directory’’ in these instructions and is assumed to be your current directory
for all commands illustrated.

Make the main directory your current directory and unpack the tar file. This creates several files and
subdirectories. The procedure for unpacking the tar file depends on its form.

If you have a tar file on tape, or already online in a disk file, enter

tar xf file

where file is the tape device or disk file name of the SR distribution.

If you have a pair of diskettes, unpack only Disk 1. Ensure that it is write protected (the tiny windows
in the corners should both be open) and insert it in the diskette drive. Enter

dd if=dev bs=36b | uncompress | tar xf −

where dev is the raw diskette device. On a Sun, for example, this is /dev/rfd0c; or, if the volume daemon
is running, use /vol/dev/aliases/floppy0 after first running volcheck. Some systems may report ‘‘Broken
pipe’’ or ‘‘dd: write error’’ at the end of the unpacking step; don’t worry about this. It occurs because dd
hhhhhhhhhhhhhhhhhh
The SR Programming Language comes from the Department of Computer Science, The University of Arizona, Tucson, Arizona 85721
USA. The implementation is available by anonymous FTP from ftp.cs.arizona.edu, and the SR Project may be reached by sending
electronic mail to sr-project@cs.arizona.edu.

SR2.3−INSTALL 1

doesn’t stop at the end of the tar file.

System Components

The SR system consists of several components. sr and srl are the key programs used directly by an SR
programmer. The SR runtime system is loaded implicitly by srl. Supplemental tools, example programs,
and documentation are also provided.

sr is the compiler proper. It translates an SR program into a C program and then calls the C compiler to
produce object code.

srl is the SR linker. It generates tiny C files of configuration information and invokes the C compiler to
combine these with object files and the runtime library. The end product is an executable program.

srx is an executive program that supervises ‘‘distributed’’ SR programs: those that use create vm(). It
is not called explicitly but is forked automatically by the runtime system.

srm assists in the construction of complex programs by inspecting SR source code and automatically
creating a correct make description file.

srprof reads a trace file produced during the execution of an SR program and produces a report of
event counts by line number or an annotated listing showing the counts.

srtex formats an SR program for typesetting by TeX; srlatex formats a program for LaTeX. srgrind
does a similar job for use with troff. srgrind requires the vgrind program in order to function.

ccr2sr, m2sr, and csp2sr are preprocessors that convert CCR notation, monitor notation, and CSP
notation (respectively) into equivalent SR programs.

The library contains resources, globals, and externals that can be linked with SR programs. It includes
an option processor and interfaces to X Windows and to the XTANGO animation package.

srv runs verification tests to check that the SR system is functioning correctly. srvi installs new verifi-
cation tests. These programs are part of the installation process and are not used by SR programmers.

Directory Structure

Important files in the main directory include:

README General release information and last minute notes. READ THIS FILE!

Systems Detailed system-specific information. READ THIS, TOO.

Configuration File paths and other miscellaneous configuration data.

Makefile The master file of make directives for building SR.

sr-mode.el Lisp code implementing an SR editing mode for GNU Emacs.

There are also several source code files and other files used in the build process.

Subdirectories of the main directory are:

sr Source code for sr, the SR compiler.
srl Source code for srl, the SR linker.
rts Source code for the SR runtime system, including srx.
library Source code for the SR library routines.
csw Platform-specific runtime code for context switching.
multi Platform-specific runtime code for multiprocessing support.
srm Source code for srm, the Makefile builder.
srgrind Source code for srgrind, the troff formatter.
srtex Source code for srtex, the TeX formatter.
srlatex Source code for srlatex, the LaTeX formatter.
preproc Source code for the SR preprocessors ccr2sr, m2sr, and csp2sr.
srv Source code for srv and srvi, the verification tools.

links A collection of symbolic links pointing to locations where the executables are built.
This directory can be put in a search path to assist in testing.

SR2.3−INSTALL 2

vsuite A suite of verification programs used by srv.

examples Examples of SR programs, including programs from the SR book and programs that
utilize library routines. Also included are examples of CCR, monitor, and CSP pro-
grams for use with the preprocessors. examples is actually a symbolic link to
vsuite/examples.

ps Preformatted documentation, in PostScript format. See the README file in that
directory for details.

man Individual man pages for the various programs in the SR system.

doc Source for the rest of the documentation, in troff form.

notes Some miscellaneous text files, not necessarily accurate or current, containing addi-
tional, informal documentation that may or may not be useful.

Configuring the SR System

Before you build SR, you must decide where to install it. Pathnames are embedded in the binaries so that
(for example) sr can call srl and srl can find the runtime library. Five directories must be specified: one for
the commands, one for hidden files such as the runtime library, and three for the man pages. All of the
installed files have names beginning with sr or containing the string 2sr.

If you plan to install SR as a local utility you might choose distinct directories such as /usr/local/bin,
/usr/local/lib/sr, and then /usr/man/manl for all the man pages. Alternatively, everything can be collected
in a single directory such as /usr/sr/bin or /home/yourname/bin. Do not use any existing directories
within the SR distribution, but you can safely create a new bin subdirectory under the main directory.

If the directories you have chosen do not now exist, you must create them manually. The installation
process does not create new directories.

To configure the system, edit the file Configuration in the main directory. Change the SRSRC defini-
tion to reflect the path of the main directory. Define installation directories as described above for
SRCMD, SRLIB, MAN1, MAN3, and MAN5. All directories must be absolute paths (beginning with ‘/’),
and no comments may appear on the definition lines.

If the X window system is installed, set XINCL to the parent directory of the X11 include directory.
Usually, that is /usr/include. On a Sun running OpenWindows, set XINCL to /usr/openwin/include. If X
is not installed, set XINCL to be empty.

If you wish to use the animation interface provided in the library, you must first obtain and install the
XTANGO package from Georgia Tech. At this writing it is available by anonymous FTP from the
/pub/people/stasko directory on ftp.cc.gatech.edu. Then define XTANGO as the name of the XTANGO
include directory.

If the vgrind program is available on your system, set VFPATH and VGMACS to the absolute paths of
its back end program and macro package. Typical paths for Berkeley-derived systems are
/usr/lib/vfontedpr and /usr/lib/tmac/tmac.vgrind respectively. If vgrind is not available, set these defini-
tions empty. Note: Without vgrind, srgrind does not function.

A few other values can also be configured in the main Makefile. MANEXT defines the file extension
for installed man pages. The xxPATH definitions define the location of the C compiler and other utilities
called from within SR commands, but do not affect the building of SR. The CFLAGS definition sets com-
pilation options for use while building SR.

Some operating systems require additional changes to Configuration and/or Makefile. See the section
in the Systems file describing your particular operating system.

Configuring for MultiSR

A multithreaded version of SR, called MultiSR, is available for Intel Linux, Sun Solaris, Silicon Graph-
ics Irix, and Sequent Symmetry systems. MultiSR provides true concurrency on a shared-memory mul-
tiprocessor without requiring any programming changes. Note: MultiSR is not used on the Intel Paragon;
multiprocessing there utilizes SR’s virtual machine facilities.

SR2.3−INSTALL 3

To configure MultiSR, edit the main Makefile and define

MULTI=linux−x86for Linux on Intel x86

MULTI=solaris for Solaris

MULTI=irix for Irix

MULTI=dynix for Sequent

A few system-dependent configuration changes are also needed as noted below.

Intel Linux: (no other changes needed)

Sun Solaris: Define LIBR=−lthread in the Configuration file.

SGI Irix: Define LIBR=−lmpc in the Configuration file.

Sequent Symmetry:Define LIBR=−lpps in the Configuration file; define CFLAGS=−Y in the main
Makefile. Ignore warning messages about ‘‘Parallel library not detected’’ that
occur during the build.

Building and Testing

To build the SR system, simply type

make

in the main directory. This builds all the components of the SR system within the SR directory structure,
altering nothing outside the structure. The build process takes two to ten minutes on a typical modern
workstation.

If you later need to change the configuration information, do so and again type make. This sort of
rebuild goes relatively quickly because only a few files need to be recompiled.

After building the system, check that it is functional by entering

srv/srv −v quick

to run the ‘‘quick’’ set of SR tests. This prints some environmental information and then runs a small set
of tests. −v causes each verification directive to be echoed. The ‘‘quick’’ tests may actually take a few
minutes, even on a fast machine; quick/jumble, in particular, has grown to over 500 lines of SR and is com-
piled and executed twice.

No error messages are expected. If ‘‘expected 0, got 1 from $RSHPATH’’ appears for the quick/vm
test, it indicates a problem running the rsh (or remsh) program. This is discussed below under
Configuring Virtual Machines.

It is not necessary to complete the installation to manually test the newly built system. If you put the
links subdirectory in your search path, you can compile SR programs by running sr and srl with the −e
option. This causes them to load libraries and other files from within the source directory instead of from
the ultimate, installed locations.

Installing the System

After the system has been built and verified, it must be installed in its ultimate destination as configured
above. Type

make install

to copy the commands, man pages, and support files.

To verify a correct installation, type

srv/srv −v −p quick

to run the same tests as before, but using the installed files.

The install script places sr_mode.el, an SR editing mode for GNU Emacs, and srlatex.sty, a LaTeX
style file for use with srlatex, in the directory configured as SRLIB. Emacs and LaTeX will not look for
them there, however. If you use those programs, we recommend that you put symbolic links in the

SR2.3−INSTALL 4

directories that they search. The symbolic links should point to the files in SRLIB.

Configuring Virtual Machines

At this point, a complete SR system has been built and installed. Without further reconfiguration, however,
remote virtual machines may not work properly. This reconfiguration was deferred until now in order to
have a working SR system as a testbed. If you don’t have a network of machines or don’t need to use
create vm() on n, you can skip this section. If you’re building SR on an Intel Paragon, you should also
skip this section.

When a program creates a virtual machine and specifies a host machine on which to place it, SR uses a
remote shell to run the program on the remote host. The remote shell program is rsh(1) on most systems or
remsh(1) on some System V derived Unixes. Set the RSHPATH definition in the Configuration file to
name the correct program. Under Solaris 2, use /bin/rsh.

Verify that rsh or remsh is working by entering

rsh ‘hostname‘ date

If necessary, substitute remsh for rsh and/or uname −n for hostname. If this doesn’t print the date, there
is a configuration problem outside of SR; seek local assistance.

The name of the executable file passed to rsh is the same for all remote hosts and is controlled by an
srmap file. This contains patterns for matching the program’s filename and corresponding templates for
generating the remote filename for rsh. The format of srmap is described in its man page, man/srmap.5.

If your network provides transparent access to remote disks, it should be possible to make remote exe-
cution work automatically by specifying templates that generate host-independent filenames. The
srmap.az file in the main directory is an example of how this is done at Arizona.

Without remote disk access, users of multiple virtual machines will need to manually copy their pro-
grams to the remote hosts (e.g., using rcp or rdist) before beginning execution. The configuration in
srmap controls where the programs must be placed, so a simple and straightforward method is desirable.
One way to do this is to generate a path relative to the user’s home directory. For example, if srmap con-
tains the line

sequoia:/usr?/*/** ˜$2/$3

then when a program /usr3/username/path is run on host sequoia, SR expects to find copies of the execut-
able in ˜username/path on remote machines.

Edit srmap in the main directory and set up a configuration appropriate to your local situation. Refer
to the srmap man page for a detailed description of the format, and use the Arizona configuration as a
starting point and an example.

Make sure that your search path includes the directory where you just installed sr, and type rehash if
your shell requires it. Go into the examples/remote subdirectory and type

sr remote.sr

to compile a test program. Set the environment variable SRMAP to the absolute pathname of the new
srmap file.

Begin with a simple test by typing

a.out

to run the program with no arguments. It should simply tell you the local hostname; this verifies that srx is
accessible, and that the location of a.out matches one of the patterns in srmap. Then try giving the local
hostname as an explicit argument; this verifies that the generated filename works on the present host.

Now add other hostnames as command arguments; if remote execution fails (perhaps as expected), then
the diagnostics from rsh give the file name attempted. Copy a.out into other directories, and onto other
hosts if necessary. Run it from various locations with various hostname arguments. Run it using absolute
and relative paths. Try to test any special cases used in the srmap file.

When you are satisfied with the configuration in srmap, return to the main directory and type

SR2.3−INSTALL 5

make install

to reinstall the system including the revised srmap file.

Cleaning Up

After the system has been installed, nothing within the SR directory structure is needed to build or run SR
programs. The structure can be backed up on tape and removed from the disk.

If you wish to keep the source code online, type

make clean

to remove executables and intermediate files from the build process. Warning: the cleanup process is a bit
aggressive, and it removes all files within the directory structure that satisfy certain tests. If you have
created files of your own within the structure, and you wish to preserve them, it would be prudent to first
copy them elsewhere.

The doc and ps directories can be deleted manually if you do not wish to retain them.

The Full Verification Suite

The standard distribution of SR includes a few confidence tests and sample programs in the main tar file.
These are the tests run by srv/srv quick, and should be sufficient to verify correct installation of an unmo-
dified SR system.

A more extensive set of tests is available for those who wish to modify the system or transport it to a
different system architecture. There are about 450 tests in 2400 files, requiring about three megabytes of
disk space. The set includes a timings subdirectory of performance tests.

The full test set is provided as a second diskette, a second tar file on tape, or as a separate file for ftp
distributions. This tar file, when unpacked in the main directory, creates several new subdirectories of
vsuite. If srv/srv is run with no parameters it executes all of the tests. A full run typically takes between
one and four hours.

Porting to Other Systems

It is possible to port SR to other system architectures besides those presently supported; some assembly
language programming is required. 32-bit Unix systems with conventional memory models are most easily
accommodated. Instructions for porting SR are contained in doc/port.ms.

Feedback

Please let us know of any problems you encounter so that we can continue to improve SR. We can be
reached by electronic mail at:

sr-project@cs.arizona.edu

Our FAX machine is at:

+1 520 621 4246

Our mailing address is:

SR Project
Department of Computer Science
Gould-Simpson Building
University of Arizona
Tucson, Arizona 85721

We’ll need to know what computer and operating system you are using, what version of SR, and your
name, address, and telephone number.

Because of limited resources we can’t promise to fix every problem, but we appreciate all comments
and acknowledge all mail.

SR2.3−INSTALL 6

References

Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice
Benjamin/Cummings, 1993, ISBN 0-8053-0088-0.

Gregory R. Andrews, Ronald A. Olsson, et al., An Overview of the SR Language and Implementation.
ACM Trans. on Prog. Lang. and Systems 10, 1 (January, 1988), 51-86.

SR2.3−INSTALL 7

