
SR (1) User Commands SR (1)

NAME
sr − SR compiler

SYNOPSIS
sr [−−sbcqwegvOTMCFP] [−−I dir] [−−o file] [−−d flags] file.sr ... otherfiles...

DESCRIPTION
Sr compiles programs written in the SR language. In the usual case, one or more .sr files are compiled to
produce .o files, and then the SR linker, srl(1), is called to produce an executable file a.out. The last
encountered resource is taken as the main resource.

Compilation and linking takes place in the context of an Interfaces directory used for passing specification
and object files between sr and srl runs. Files are created in the Interfaces directory as each resource or
global is compiled. The Interfaces directory is needed for compilation and linking, but not execution, and
can be deleted after an executable has been produced.

Each source file is read twice. The first pass copies component specifications into the Interfaces directory;
the second pass generates object code. If errors are detected in the first pass, the second pass is omitted.

Files not ending in .sr (such as .o, .a, and −−lxx files) are not processed by sr but are passed along to srl.

OPTIONS
Any of the options s, b, c, M, or C inhibits linking.

−−I dir Use dir/Interfaces as the Interfaces directory instead of ./Interfaces.

−−o file Use file for the executable instead of a.out.

−−s Create specification files only (first pass only).

−−b Compile bodies only (second pass only), leaving specification files unaltered.

−−c Compile specs and bodies, but do not link .o files to create an executable file.

−−q Suppress the echoing of source file names as they are compiled.

−−w Suppress warning messages.

−−O Omit some runtime error checks and invoke the C optimizer to improve the generated code.

−−T Omit the ‘‘timeslicing’’ code that allows context switching at the top of each loop.

−−M Generate dependency information for use by srm(1), then exit without compiling anything.

Additional options are useful mainly when debugging the compiler:

−−C Stop after generating .c files, leaving them undeleted.

−−F Inhibit constant folding. This can break programs by rendering certain expressions non-constant.

−−P Inhibit normal optimizations in the SR compiler.

−−d flags Write debugging output selected by flags on standard output.

−−e Use experimental versions of srl and .h files, and pass −−e to srl.

−−g Compile for debugging with dbx(1), don’t delete .c files, and pass −−g to srl.

−−v Announce version number, trace other programs invoked by sr, and pass −−v to srl.

ENVIRONMENT
SR_PATH

When compiling an import statement, sr searches for a corresponding .spec file by looking first in
the current directory, then in the Interfaces directory, and finally in the SR library. If SR_PATH is
set, any directories named there are checked ahead of the standard search sequence. Directories in
SR_PATH are separated by colons (:).

University of Arizona Last change: 7 October 1994 1

SR (1) User Commands SR (1)

EXECUTION ENVIRONMENT
These environment variables can be set at execution time to affect the behavior of an SR program:

SR_PARALLEL
Controls the number of processes that can run with true concurrency (as opposed to simulated
concurrency) under MultiSR. MultiSR is a configuration option available on the SGI Iris, Sun
Sparc running Solaris 2.x, and Sequent Symmetry. The default value is 1 (no true concurrency). It
makes little sense to set SR_PARALLEL greater than the number of available processors.

SR_SPIN_COUNT
In MultiSR, the number of times an idle processor will check for a task before relinquishing the
CPU to the operating system. Larger values increase the opportunity for processes to quickly
resynchronize at the expense of greater CPU usage. The default is 35.

SR_NAP_INTERVAL
In MultiSR, the number of milliseconds an idle processor will nap after trying unsuccessfully to
find something to run. The default is 10.

SR_TRACE
If not null, SR_TRACE specifies the name of a file to receive a trace of messages, invocations,
and other language-level events. Two special names, stdout and stderr, direct the trace output to
standard output and standard error output respectively. The default is no tracing. Traces from
remote virtual machines appear only if the trace is directed to stdout or stderr. The srprof(1) pro-
gram can be used to summarize the trace output.

SR_DEBUG
A hexadecimal number specifying a bit mask that enables debugging information of various inter-
nal runtime events on standard error output. Each bit selects a different message category, and the
higher order bits (FFFFFF00) produce the most voluminous output. Details are contained in the
source code of the runtime system. The default is no debugging. In contrast with SR_TRACE, the
output from SR_DEBUG records internal events of interest to maintainers of the runtime system.

SRXPATH
Path to the executable of srx , which serves as the central controller of a distributed SR program.
The default is configured when the SR system is built.

SRMAP
File to read for the network configuration information used to generate a host-independent ‘‘net-
work path’’ of the executable for executing part of an SR program on a remote host. The default
is configured when the SR system is built.

FILES
file.sr SR source file
a.out executable program
Interfaces/component.c C language intermediate file
Interfaces/component.spec specification file
Interfaces/global.impl implementation characteristics of global
Interfaces/component.o object file

SEE ALSO
Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice.
Benjamin/Cummings, 1993, ISBN 0-8053-0088-0.

Gregory R. Andrews, Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991,
ISBN 0-8053-0086-4.

Ronald A. Olsson, Gregory R. Andrews, Michael H. Coffin, and Gregg M. Townsend, SR: A Language for
Parallel and Distributed Programming. TR 92-09, Dept. of Computer Science, The University of Arizona,
1992. Included in the SR distribution.

University of Arizona Last change: 7 October 1994 2

SR (1) User Commands SR (1)

Gregory R. Andrews, Ronald A. Olsson, et al., An Overview of the SR Language and Implementation.
ACM Trans. on Prog. Lang. and Systems 10, 1 (January, 1988), 51-86.

srl(1), srm(1), srprof(1), cc(1), dbx(1), srmap(5), srtrace(5)

DIAGNOSTICS
Messages diagnosing erroneous programs are intended to be self-explanatory.

Messages indicating ‘‘compiler malfunction’’, or any error messages generated by the C compiler, indicate
bugs in the SR compiler that should be reported to its implementors.

University of Arizona Last change: 7 October 1994 3

SRL (1) User Commands SRL (1)

NAME
srl − SR linker

SYNOPSIS
srl [−−eglvwA] [−−I dir] [−−o file] [−−r file] [−−CLNOPQRVS size] component ...

DESCRIPTION
Srl produces an executable file, a.out by default, by linking together the components of an SR program.
The command line lists one or more resource and global names and may also list additional ‘file.o’, ‘file.a’,
or ‘−lxxx’ arguments to link code from other languages. These additional arguments are passed to ld(1).

The last resource named becomes the main resource; it should have no parameters. Abstract resources
(those having no bodies) should not be named, but all globals must be listed.

Srl accepts the following general options:

−−I dir Use dir/Interfaces as the Interfaces directory instead of ./Interfaces.

−−o file Use file for executable output instead of a.out.

−−w Suppress warnings about out-of-date files.

−−l List runtime limits, then exit immediately.

The following options set values controlling the subsequent execution of the SR program. For most max-
ima, the default value is 1000000.

−−A Enable asynchronous output. When set, output calls do not block the entire program and are not
atomic. Instead, they can affect the flow of control by performing context switches.

−−C n Set the maximum number of active co statements.

−−L n Set the maximum number of loop iterations between context switches. A value of zero is taken as
infinite.

−−N n Set the maximum number of in operation classes.

−−O n Set the maximum number of active operations.

−−P n Set the maximum number of processes.

−−Q n Set the maximum number of pending remote requests.

−−R n Set the maximum number of active resources.

−−V n Set the maximum number of number of semaphores.

−−S size Set the size of a process stack.

Additional options are useful mainly when debugging the SR system:

−−e Use the experimental runtime system.

−−r file Use the runtime system from file.

−−g Link to allow debugging with dbx(1). This is useful mostly for debugging the runtime system and
is not particularly helpful towards understanding errant SR programs.

−−v Announce other programs invoked by srl.

ENVIRONMENT
SR_PATH

Srl searches for object files by looking first in the current directory, then in the Interfaces direc-
tory, and finally in the SR library. If SR_PATH is set, any directories named there are checked
ahead of the standard search sequence. Directories in SR_PATH are separated by colons (:).

University of Arizona Last change: 19 February 1993 1

SRL (1) User Commands SRL (1)

FILES
Interfaces/component.o object file
srlib.a runtime library
a.out executable program
Interfaces/component.spec specification file
Interfaces/_ofile.c configuration information
Interfaces/_ofile.o configuration object module

SEE ALSO
sr(1), ld(1), dbx(1)

DIAGNOSTICS
Srl does not actually do the linking itself; it is merely a front-end for the UNIX linker ld(1). Messages not
beginning with ‘‘srl’’ can be attributed to ld.

Messages about undefined externals usually stem from the omission of a resource or global name from the
srl call.

Srl verifies that object files of resource and globals are newer than the corresponding source files.

University of Arizona Last change: 19 February 1993 2

SRM (1) User Commands SRM (1)

NAME
srm − SR makefile generator

SYNOPSIS
srm [options] file.sr ... [other files and libraries]

DESCRIPTION
Srm generates a makefile (for use with make(1)) that builds an SR program from the given sr source files
(.sr files), other files (.c, .o files), libraries (-llib), and archives (.a files).

Srm produces a makefile that uses sr(1) and srl(1) to compile, link, and execute the program described by
the files and libraries listed on the command line. The generated makefile provides the following services:

make compile compiles without linking

make link links after a ‘‘make compile’’ (really the same thing as just ‘‘make’’)

make run executes the program (runtime arguments may be specified with the −−R option)

make ls produces a list of the source files (e.g., ‘‘pr ‘make ls‘’’)

make clean removes all artifacts of compilation except for the executable

make cleanx removes all artifacts of compilation including the executable (additional files may be
specified for removal with the −−Z option)

make make re-makes the makefile as per the original instructions (useful if the resource import
graph changes and the makefile needs to reflect the new dependencies)

The default makefile name is Makefile, and thus the command ‘‘make’’ executes it. The makefile name
can be changed using the −−f option. As a safety feature, srm refuses to overwrite an existing file that it did
not create.

The default executable name is a.out. This can be changed using the −−o option.

Srm attempts to determine the main resource (for linking purposes) by analyzing the source files and select-
ing the first resource it finds that is imported by the least number of resources. If some other resource is to
be the main resource, it should be specified with the −−m option.

Srm takes a number of option flags, which are specified in arguments beginning with a hyphen. The fol-
lowing options are recognized:

−−f mfile Name the makefile mfile instead of Makefile. A file name of ‘‘−’’ directs the makefile to stan-
dard output.

−−I dir Use dir/Interfaces as the Interfaces directory instead of ./Interfaces.

−−o ofile Use ofile for executable output instead of a.out.

−−c compiler
Use compiler instead of the default compiler.

−−m res Use the specified resource as the main resource. The default is the first resource found that is
imported by the fewest number of resources.

−−v Display interesting information while building the makefile.

−−w Output wide makefile lines instead of limiting to 78 columns.

−−C opts Include opts in the list of options passed to the compiler sr(1).

−−L opts Include opts in the list of options passed to the linker srl(1).

−−R args Include args in the list of arguments passed to the executable by ‘‘make run’’.

−−Z files Include files in the list of files removed by ‘‘make cleanx’’.

University of Arizona Last change: 15 December 1993 1

SRM (1) User Commands SRM (1)

EXAMPLES
srm ∗.sr no options, all .sr files in current directory

srm −m main −o x a.sr b.sr the main resource and executable name are specified

srm −C "−q −O" a.sr b.sr flags are passed to sr(1)

srm a.sr b.sr c.o −ll r.c −lm objects, libraries and C sources listed are passed on to srl(1) to be
linked in with the sr program.

ENVIRONMENT
SRMOPTS

The environment variable SRMOPTS may contain srm options to be processed ahead of explicit
options.

SR_PATH
Srm searches for resources and object files by looking first in the current directory, then in the
Interfaces directory, and finally in the SR library. (Items found somewhere other than the current
directory are included in the makefile as srl arguments but not as dependencies.) If SR_PATH is
set, any directories named there are checked ahead of the standard search sequence. Directories in
SR_PATH are separated by colons (:).

FILES
Makefile generated makefile
file.sr SR source file
a.out executable program
Interfaces/component.o object file
Interfaces/resource.spec export information

SEE ALSO
sr(1), srl(1), make(1)

DIAGNOSTICS
Srm uses the sr compiler to obtain dependency information. In addition to the syntax errors detected by the
compiler, srm detects missing resource/global specifications and duplicate spec/body definitions. Warnings
are issued if a resource or global has no body or a resource that is not the main resource is not imported by
any other resource.

CAVEATS
Omitting srm’s initial s can have disastrous results.

Srm doesn’t escape shell meta-characters in the makefile.

If the main resource is imported by others, the −−m option will probably be required to produce a correct
makefile.

University of Arizona Last change: 15 December 1993 2

SRPROF (1) User Commands SRPROF (1)

NAME
srprof − SR profiler

SYNOPSIS
srprof [−−a] [tracefile]

DESCRIPTION
Srprof reads a trace file produced by an SR program and totals the counts of the events by line number. If
the −−a option is given, the report is produced in the form of an annotated program listing.

SEE ALSO
sr(1), srtrace(5)

CAVEATS
An annotated listing can be produced only when srprof is run in the directory containing the source files.

University of Arizona Last change: 24 February 1993 1

SRGRIND (1) User Commands SRGRIND (1)

NAME
srgrind − format SR program for troff

SYNOPSIS
srgrind [−−f] [−−n] [−−w] [−−x] [−−d defs] [−−h header] [−−s size] [file ...]

DESCRIPTION
Srgrind formats an SR program for typesetting by troff(1). Srgrind actually works by executing vgrind(1)
with an appropriate set of files and parameters.

Input is read from the named files, or from standard input if none are given. The troff directives are written
to standard output.

Srgrind accepts the following options:

−−d defs Use an alternate vgrindefs(5) file instead of the default one inside srgrind.

−−f Run in filter mode. In this mode, srgrind passes most input untouched, processing only those
lines delimited by .vS and .vE macro calls.

−−h header Place a header at the top of the page.

−−n Don’t embolden keywords.

−−s size Set the pointsize for typesetting.

−−w Consider tabs to be spaced every four columns instead of every eight (works only if sup-
ported by vgrind).

−−x Pass −−x to vgrind for index processing.

SEE ALSO
sr(1), troff(1), vgrind(1), vgrindefs(5), srtex(1)

CAVEATS
Srgrind is limited by the capabilities of vgrind . For example, comments of the form /∗...∗/ do not nest.

Vgrind macros can conflict with others when using filter mode.

Srgrind doesn’t function on systems lacking vgrind.

University of Arizona Last change: 24 August 1992 1

SRTEX (1) User Commands SRTEX (1)

NAME
srtex − format SR program for TeX

SYNOPSIS
srtex [−−lp] [−−a n] [−−t n] [−−CIKS font] [file ...]

DESCRIPTION
Srtex formats an SR program for tex(1), allowing the program to be typeset. It can produce output for
either plain TeX (the default) or LaTeX. Input is read from the named files, or from standard input if none
are given. Output is written to standard output.

Srtex tries hard to keep indentation and alignment the same as the original program. Horizontal positioning
is recalculated (to preserve vertical columns) after reading a tab character or three consecutive spaces.

Srtex accepts the following options:

−−l Produce LaTeX instead of TeX.

−−p Produce a wrapper allowing output to be fed directly into TeX. By default, srtex produces output
to be included in a larger document.

−−t n Set tab stops every n columns. The default is every eight columns.

−−a n Set the number of spaces that will force column alignment. The default is three. A large value
inhibits alignment and usually looks ugly.

−−C font Set the comment font; the default is "it".

−−I font Set the identifier font; the default is "rm".

−−K font Set the keyword font; the default is "bf".

−−S font Set the string font; the default is "tt".

SEE ALSO
sr(1), tex(1), latex(1), srlatex(1), srgrind(1)

CAVEATS
Erroneous programs may exhibit strange spacing and/or pagination.

Extremely long program tokens will overflow lex buffers and cause core dumps.

It is possible to overflow TeX buffers.

University of Arizona Last change: 19 February 1993 1

SRLATEX (1) User Commands SRLATEX (1)

NAME
srlatex − format SR program for LaTeX

SYNOPSIS
srlatex [−−ep] [−−l lang] [−−a n] [−−t n] [file ...]

DESCRIPTION
Srlatex formats an SR program for use with latex(1). To include an SR program formatted with srlatex,
use document-style option srlatex and include the file with the output generated by srlatex with an \input{
filename } command. The document style option defines various parameters concerning the typesetting
aspects. For example, fonts for keywords, identifiers, literal strings, and comments are defined there. Input
is read from the named files, or from standard input if none are given. Output is written to standard output.

Srlatex tries hard to keep indentation and alignment the same as the original program. Horizontal position-
ing is recalculated (to preserve vertical columns) after reading a tab character or three consecutive spaces.
The average character width used to calculate columns is fixed (as defined by \srTeXcw in the style file). If
text exceeds this average length, a warning is printed and the text is typeset in its natural width.

The following options are accepted:

−−e Enable escape sequence. Text between the delimiters #< and ># is passed to the typesetting pro-
gram directly. The delimiters themselves are not printed. This allows to include arbitrary LaTeX
commands in a program. Note that the SR compiler regards the whole line as a comment.

−−l lang Select one of the following source languages:
sr SR (Synchronizing Resources)
ftsr Fault-Tolerant SR
pl Programming Logic (from Concurrent Programming)

PL adds the keywords await, barrier, chan, cond, empty, minrank, monitor, region,
signal, signal_all, wait, and when to SR.

−−p Produce a wrapper allowing output to be fed directly into LaTeX. By default, srlatex produces
output to be included in a larger document.

−−t n Set tab stops every n columns. The default is every eight columns.

−−a n Set the number of spaces that force column alignment. The default is three. A large value inhibits
alignment and usually looks ugly.

SEE ALSO
Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice.
Benjamin/Cummings, 1993, ISBN 0-8053-0088-0.

Richard D. Schlichting and Vicraj T. Thomas, FT-SR: A Programming Language for Constructing Fault-
Tolerant Distributed Systems. TR 92-31, Dept. of Computer Science, The University of Arizona, 1992.

Gregory R. Andrews, Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991,
ISBN 0-8053-0086-4.

sr(1), latex(1), srtex(1), srgrind(1)

CAVEATS
Erroneous programs may exhibit strange spacing and/or pagination.

Extremely long program tokens overflow lex buffers and cause core dumps.

It is possible to overflow TeX buffers.

University of Arizona Last change: 5 March 1993 1

CCR2SR (1) User Commands CCR2SR (1)

NAME
ccr2sr − CCR notation to SR code preprocessor

SYNOPSIS
ccr2sr [−−e] file.ccr

DESCRIPTION
Ccr2sr converts a program written in CCR (Conditional Critical Region) notation into an equivalent one
written in the SR language. The SR program is placed in file.sr, which may then be compiled and linked
using sr(1). The −−e (experimental) option is for testing ccr2sr.

The exact syntax of the CCR notation can be discerned by examining the CCR programs in the examples
directory. Each CCR-notation construct begins with an underscore; CCR code is mixed with regular SR
code. Syntactic peculiarities exist to ease implementation.

Ccr2sr translates a CCR resource into an SR global and translates a CCR region statement into code that
uses Rem’s algorithm. Typically, the rest of the user’s code will be a single SR resource program. The
resultant SR code should be run on only one virtual machine so that only one global is created. Variables
declared within CCR resources can be used only within region statements.

One-dimensional and two-dimensional arrays of CCR resources are supported. The bounds and subscripts
for arrays of CCR resources must be integers. In conventional CCR notation (e.g., see Andrews’s book),
each variable declared within a CCR resource is replicated within each element of the CCR resource array.
In the ccr2sr CCR notation, such replication does not occur. Instead, to effect such replication, the pro-
grammer needs to augment the declaration of each variable declared within a CCR resource array with
array bounds matching those for the CCR resource array; an element of these arrays should be accessed
only within a region statement for the corresponding element of the CCR resource. Hence, former simple
variables become arrays and former arrays become higher-dimensional arrays. A variable whose declara-
tion is not augmented as described above will be shared between all elements of the CCR resource array,
which is not conventional CCR semantics.

A number of syntactic limitations exist to ease the implementation. Do not use names of SR predefined
functions or reserved words (e.g., free, exit, or skip) as variable names within CCRs. Do not use identifiers
beginning with r_ within CCR code. Do not use any other SR synchronization or return/reply within a
CCR program. Do not use the # form of comment; use only the /∗ ∗/ form, but do not nest comments. Do
not use /% or %/. Spaces in source text, even within string literals, between the following pairs of charac-
ters will be deleted: / and %, % and /, / and /, [and], ∗ and ∗, ˜ and =, and : and =; in addition spaces
preceding : and = will also be deleted. Within string literals, use an escape character (\) to retain the
desired spacing. Do not use the [a,b] form of subscripting a two-dimensional array as part of a CCR con-
struct (e.g., _region2); instead use the [a][b] form.

The predefined SR procedure nap, which puts the currently executing process to sleep for a while and per-
forms a context switch to another process, is useful in CCR programs to alter the interleaving of process
execution. For example, it can be used with the random number functions to obtain different interleavings
to test whether a critical section algorithm works. See the programs in the examples directory for exam-
ples.

QUICK REFERENCE
_resource(name)
_resource_end(name)

_region(name,when) use true for when if empty
_region_end(name)

_resource1(name,l1,u1) one-dim CCR resource name[l1:u1]
_resource_end1(name)

_region1(name,v1,when) use true for when if empty; v1 is subscript
_region_end1(name,v1)

University of Arizona Last change: 21 March 1995 1

CCR2SR (1) User Commands CCR2SR (1)

_resource2(name,l1,u1,l2,u2) two-dim CCR resource name[l1:u1,l2:u2]
_resource_end2(name)

_region2(name,v1,v2,when) use true for when if empty; v1 and v2 are subscripts
_region_end2(name,v1,v2)

FILES
file.ccr CCR source file
file.sr generated SR source file

SEE ALSO
Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice.
Benjamin/Cummings, 1993, ISBN 0-8053-0088-0.

Gregory R. Andrews, Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991,
ISBN 0-8053-0086-4.

sr(1), cpp(1), csp2sr(1), m2sr(1)

DIAGNOSTICS
Some erroneous CCR code will cause errors from cpp. The line numbers that cpp complains about gen-
erally correspond to the ones in the .ccr file. Other than that, ccr2sr does nearly no error checking. To flag
some errors, ccr2sr intentionally generates invalid SR code containing the word "ERROR" followed by an
explanation. The SR compiler will detect that as an error later.

Other errors in CCR code are detected by the SR compiler. The line numbers for these errors will not
correspond to those in the original source file, but they can be mapped back by looking in the generated
code file. That file will be rather ugly, but the cause of the error can be found there. To give some help in
tracing back errors to the original source file, the generated code file contains comments of the form /∗--X-
-∗/, where X is a line number in the original source file. These comments are generated for any construct
that the preprocessor replaces by other text. If, for example, the SR compiler reports an error on line 38,
then look at line 38 of the generated SR file. If on that line you find the comment /∗--12--∗/, examine line
12 of the original source file to see the error’s cause. If you see no /∗--X--∗/ comment on the line itself,
you should look for the first /∗--X--∗/ comment that appears above the line and use that number to point
you back to the correct line in the original source file.

University of Arizona Last change: 21 March 1995 2

CSP2SR (1) User Commands CSP2SR (1)

NAME
csp2sr − CSP notation to SR code preprocessor

SYNOPSIS
csp2sr [−−ti] [−−te] [−−e] file.csp

DESCRIPTION
Csp2sr converts a program written in CSP (Communicating Sequential Processes) notation into an
equivalent one written in the SR language. The SR program is placed in file.sr, which may then be com-
piled and linked using sr(1). The −−t options specify which termination discipline is to be used. The −−e
(experimental) option is for testing csp2sr.

The exact syntax of the CSP notation can be discerned by examining the CSP programs in the examples
directory. Each CSP-notation construct begins with an underscore; CSP code is mixed with regular SR
code. Syntactic peculiarities exist to ease implementation.

Csp2sr translates a CSP program into an equivalent SR resource; the SR generated code uses a slight
modification of the centralized clearing house technique described in Andrews’s book. The generated code
is not necessarily fair; i.e., ports are serviced nondeterministically.

Csp2sr supports implicit (i.e., automatic) or explicit termination disciplines. The choice is made by the
corresponding command line option. The default is implicit termination. If a CSP input/output command
that appears as a statement (e.g., _stmt_i but not _guard_i) fails, the entire program terminates. A process
that attempts to send to or receive from itself is not detected as an error.

Following are a few restrictions in using csp2sr . CSP processes can have 0, 1, or 2 dimensions. The sub-
scripts for arrays of processes must be integers. A process’s spec must appear before its body. Code for all
members of a process family must be the same. Nested processes are not allowed. SR operation names are
used as constructors. There is no empty constructor. Operation names must be unique to the entire pro-
gram, not just to a process. Parameters must be enclosed in ‘()’ even if there are none. Operation declara-
tions should not declare variable or result parameters, and should not include returns clause. Put no spaces
around process or operation names in the CSP constructs.

The boolean part of a CSP guard can be only a single boolean expression; so, use ‘&’ to separate parts of a
guard (not ‘;’ as in the CSP paper). Quantifier variables should not be declared. Quantifiers can have 1 or
2 variables. Variables cannot be declared as part of guards. The CSP _if and _do constructs do not allow
an else part. The CSP _do construct does not allow exit or next statements.

A number of syntactic limitations exist to ease the implementation. Do not use names of SR predefined
functions or reserved words (e.g., free, exit, or skip) as variable names within CSP code. Do not use
identifiers beginning with csp_ within CSP code. Do not use any other SR synchronization or return/reply
within a CSP program. Do not use the # form of comment; use only the /∗ ∗/ form, but do not nest com-
ments. Do not use /% or %/. Spaces in source text, even within string literals, between the following pairs
of characters will be deleted: / and %, % and /, / and /, [and], ∗ and ∗, ˜ and =, and : and =; in addition
spaces preceding : and = will also be deleted. Within string literals, use an escape character (\) to retain the
desired spacing. Do not use the [a,b] form of subscripting a two-dimensional array as part of a CSP con-
struct (e.g., _guard); instead use the [a][b] form.

The predefined SR procedure nap, which puts the currently executing process to sleep for a while and per-
forms a context switch to another process, is useful in CSP programs to alter the interleaving of process
execution. For example, it can be used with the random number functions to obtain different interleavings
to test whether a critical section algorithm works. See the programs in the examples directory for exam-
ples.

QUICK REFERENCE
_program(name)
_program_end

_specs follow with process specs and port
_specs_end

University of Arizona Last change: 22 Dec 2000 1

CSP2SR (1) User Commands CSP2SR (1)

_dump_pidx for implementation debugging

_process_spec(name) name is a CSP process
_process_spec1(name, l1, u1) one-dim CSP process array name[l1:u1]
_process_spec2(name, l1, u1, l2, u2) two-dim CSP array name[l1:u1,l2:u2]

_port(pname,oname,ospec) declares a CSP port
pname, actually unused, is process that inputs from port
oname is name of port
ospec is parameters
get one port for each element of an array

_process_body(name) body of process name
_process_body1(name, v1) one-dim body; v1 is process id
_process_body2(name, v1, v2) two-dim body; v1,v2 is process id
_process_end

_stmt_i(pname,ouse,args)
input statement, i.e., pname?ouse(args)
pname is source; ouse is port name; args are formals

_stmt_iq1(v1,l1,u1, pname,ouse,args)
one-dim quantified input statement,
i.e., (v1 := l1 to u1) pname?ouse(args)

_stmt_iq2(v1,l1,u1, v2,l2,u2, pname,ouse,args)
two-dim quantified input statement
i.e., (v1 := l1 to u1, v2 := l2 to u2) pname?ouse(args)

_stmt_o(pname,ouse,args)
output statement, i.e., pname!ouse(args)
pname is destination; ouse is port name; args are actuals

_stmt_oq1(v1,l1,u1, pname,ouse,args)
one-dim quantified output statement
i.e., (v1 := l1 to u1) pname!ouse(args)

_stmt_oq2(v1,l1,u1, v2,l2,u2, pname,ouse,args)
two-dim quantified output statement
i.e., (v1 := l1 to u1, v2 := l2 to u2) pname!ouse(args)

_if CSP if, for using I/O in guards
don’t separate guards with []

_fi

_do CSP do, for using I/O in guards
don’t separate guards with []

_od

_guard(expr) plain boolean guard of _if or _do
_guard_q1(v1,l1,u1, expr) one-dim quantified guard

i.e., (v1 := l1 to u1) expr
_guard_q2(v1,l1,u1, v2,l2,u2, expr) two-dim quantified guard

i.e., (v1 := l1 to u1, v2 := l2 to u2) expr

_guard_i(expr,pname,ouse,args)
input command as a guard of _if or _do; expr is boolean
i.e., expr; pname?ouse(args)

_guard_iq1(v1,l1,u1, expr,pname,ouse,args)
one-dim quantified input command as a guard of _if or _do
i.e., (v1 := l1 to u1) expr; pname?ouse(args)

University of Arizona Last change: 22 Dec 2000 2

CSP2SR (1) User Commands CSP2SR (1)

_guard_iq2(v1,l1,u1, v2,l2,u2, expr,pname,ouse,args)
two-dim quantified input command as a guard of _if or _do
i.e., (v1 := l1 to u1, v2 := l2 to u2) expr; pname?ouse(args)

_guard_o(expr,pname,ouse,args)
output command as a guard of _if or _do; expr is boolean
i.e., expr; pname!ouse(args)

_guard_oq1(v1,l1,u1, expr,pname,ouse,args)
one-dim quantified output command as a guard of _if or _do
i.e., (v1 := l1 to u1) expr; pname!ouse(args)

_guard_oq2(v1,l1,u1, v2,l2,u2, expr,pname,ouse,args)
two-dim quantified output command as a guard of _if or _do
i.e., (v1 := l1 to u1, v2 := l2 to u2) expr; pname!ouse(args)

FILES
file.csp CSP notation source file
file.sr generated SR source file

SEE ALSO
Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice.
Benjamin/Cummings, 1993, ISBN 0-8053-0088-0.

Gregory R. Andrews, Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991,
ISBN 0-8053-0086-4.

sr(1), cpp(1), ccr2sr(1), m2sr(1)

DIAGNOSTICS
Some erroneous CSP code will cause errors from cpp. The line numbers that cpp complains about gen-
erally correspond to the ones in the .csp file. Other than that, csp2sr does nearly no error checking. To flag
some errors, csp2sr intentionally generates invalid SR code containing the word "ERROR" followed by an
explanation. The SR compiler will detect that as an error later.

Other errors in CSP code are detected by the SR compiler. The line numbers for these errors will not
correspond to those in the original source file, but they can be mapped back by looking in the generated
code file. That file will be rather ugly, but the cause of the error can be found there. To give some help in
tracing back errors to the original source file, the generated code file contains comments of the form /∗--X-
-∗/, where X is a line number in the original source file. These comments are generated for any construct
that the preprocessor replaces by other text. If, for example, the SR compiler reports an error on line 38,
then look at line 38 of the generated SR file. If on that line you find the comment /∗--12--∗/, examine line
12 of the original source file to see the error’s cause. If you see no /∗--X--∗/ comment on the line itself,
you should look for the first /∗--X--∗/ comment that appears above the line and use that number to point
you back to the correct line in the original source file.

University of Arizona Last change: 22 Dec 2000 3

M2SR (1) User Commands M2SR (1)

NAME
m2sr − monitor notation to SR code preprocessor

SYNOPSIS
m2sr [−−sc] [−−sw] [−−su] [−−sx] [−−e] file.m

DESCRIPTION
M2sr converts a program written in monitor notation into an equivalent one written in the SR language.
The SR program is placed in file.sr, which may then be compiled and linked using sr(1). The −−s options
specify which monitor signaling discipline is to be used. The −−e (experimental) option is for testing m2sr.

The exact syntax of the monitor notation can be discerned by examining the monitor programs in the exam-
ples directory. Each monitor-notation construct begins with an underscore; monitor code is mixed with
regular SR code. Syntactic peculiarities exist to ease implementation.

M2sr translates a monitor into an equivalent SR global; the SR generated code uses a slight modification of
the technique described in Joe Herman’s thesis. Typically, the rest of the user’s code will be a single SR
resource program. Monitor operations must be declared in the monitor’s specification part. User code
needs to import the monitor global; it can invoke monitor operations via call statements (in which the
operation name is qualified by the name of the monitor, as per usual SR rules).

M2sr supports SC (signal and continue), SX (signal and exit), SW (signal and wait), and SU (signal and
urgent wait) signaling disciplines. The choice is made by the corresponding command line option. The
default is SC.

The operations on condition variables are the standard ones: wait(cv), signal(cv), pri_wait(cv,rank),
empty(cv), minrank(cv), and signal_all(cv). (signal_all only makes sense in the SC signaling discipline; it
is not allowed in the others). In addition, print(cv), intended for primitive debugging, outputs the number
of processes waiting on the condition variable and their ranks. Arrays of one or two dimensions of condi-
tion variables can be declared, although the syntax is baroque; e.g., condvar1(scan,0:1) declares scan to be
a one dimensional array with indices 0 and 1, and condvar2(foo,3,5:9) declares foo to be a two dimensional
array with indices 1 through 3 in the first dimension and 5 through 9 in the second dimension.

A number of syntactic limitations exist to ease the implementation. Do not use names of SR predefined
functions or reserved words (e.g., free, exit, or skip) as variable names within monitors. Do not use
identifiers beginning with m_ within monitor code. Do not use any other SR synchronization or
return/reply within a monitor program. Do not use the # form of comment; use only the /∗ ∗/ form, but do
not nest comments. Do not use /% or %/. Spaces in source text, even within string literals, between the
following pairs of characters will be deleted: / and %, % and /, / and /, [and], ∗ and ∗, ˜ and =, and : and =;
in addition spaces preceding : and = will also be deleted. Within string literals, use an escape character (\)
to retain the desired spacing. Do not use the [a,b] form of subscripting a two-dimensional array within a
monitor construct (e.g., _wait); instead use the [a][b] form.

The predefined SR procedure nap, which puts the currently executing process to sleep for a while and per-
forms a context switch to another process, is useful in monitor programs to alter the interleaving of process
execution. For example, it can be used with the random number functions to obtain different interleavings
to test whether a critical section algorithm works. See the programs in the examples directory for exam-
ples.

QUICK REFERENCE
_monitor(name) (after which, declare each monitor proc as an op)
_body(name)
_monitor_end

_condvar(x) declare condition variable x
_condvar1(x,s) declare one-dim array condition variable x[s]
_condvar2(x,s,t) declare two-dim array condition variable x[s,t]

_proc(x) monitor procedure with name and parameters x
_proc_end

University of Arizona Last change: 21 March 1995 1

M2SR (1) User Commands M2SR (1)

_wait(cv)
_empty(cv)
_pri_wait(cv,r) prioritized wait by rank r on condition variable cv
_minrank(cv)
_print(cv) (for debugging; not a regular monitor primitive)

_signal(cv)
_signal_all(cv) (only for SC signaling discipline)

FILES
file.m monitor notation source file
file.sr generated SR source file

SEE ALSO
Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice.
Benjamin/Cummings, 1993, ISBN 0-8053-0088-0.

Gregory R. Andrews, Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991,
ISBN 0-8053-0086-4.

sr(1), cpp(1), ccr2sr(1), csp2sr(1)

DIAGNOSTICS
Some erroneous monitor code will cause errors from cpp. The line numbers that cpp complains about gen-
erally correspond to the ones in the .m file. Other than that, m2sr does nearly no error checking. To flag
some errors, m2sr intentionally generates invalid SR code containing the word "ERROR" followed by an
explanation. The SR compiler will detect that as an error later.

Other errors in monitor code are detected by the SR compiler. The line numbers for these errors will not
correspond to those in the original source file, but they can be mapped back by looking in the generated
code file. That file will be rather ugly, but the cause of the error can be found there. To give some help in
tracing back errors to the original source file, the generated code file contains comments of the form /∗--X-
-∗/, where X is a line number in the original source file. These comments are generated for any construct
that the preprocessor replaces by other text. If, for example, the SR compiler reports an error on line 38,
then look at line 38 of the generated SR file. If on that line you find the comment /∗--12--∗/, examine line
12 of the original source file to see the error’s cause. If you see no /∗--X--∗/ comment on the line itself,
you should look for the first /∗--X--∗/ comment that appears above the line and use that number to point
you back to the correct line in the original source file.

In some cases, the generated code for monitor code using the SX signaling discipline causes complaints
from the SR compiler, or later from the C compiler, about unreachable code. These warnings can be
ignored.

University of Arizona Last change: 21 March 1995 2

SRV (1) User Commands SRV (1)

NAME
srv − verify correct functioning of SR system

SYNOPSIS
srv [−−option ...] [dir ...]

DESCRIPTION
Srv executes verification scripts in subdirectories of the SR verification suite. It is part of the SR installa-
tion process and is not used by SR programmers.

If one or more dir arguments are given, testing is restricted to those directories and descendents; otherwise
the entire suite is searched. Within each subdirectory, a Script file directs the verification process. Each
line contains an expected status code followed by a command. If the command returns an unexpected
status, the test fails and (except for a run command) the script is abandoned. Empty lines, and lines begin-
ning with #, are ignored.

For sr, srl, srm, srprof, srgrind, srtex, srlatex, ccr2sr, m2sr, and csp2sr commands, production or
experimental versions are selected according to srv options, and output is redirected to reserved file names.
A run command executes a.out, redirecting standard input if a file is named; output is directed to a related
file and the results are compared with what was expected. Differences report a failure and disable rm com-
mands but do not abandon the script. Other commands are simply executed by the shell with no special
handling.

Srv normally finds binaries in the source hierarchy. The −−p option selects instead the production (installed)
version of the system. The options −−c, −−l, −−r, and −−t individually select the production versions of the
compiler, linker, runtime system, and other tools respectively.

The −−v option echoes each Script line as it is read.

FILES
Script verification script
Compiler.out compiler output
Linker.out linker output
Maker.out makefile maker output
Profiler.out profiler output
Grinder.out troff grinder output
Texer.out TeXer output
Latexer.out LaTeXer output
CCR.out ccr2sr output
M.out m2sr output
CSP.out csp2sr output
xxxxx.std expected output from input file ‘xxxxx’
xxxxx.out actual output from input file ‘xxxxx’

SEE ALSO
srvi(1), sr(1), srl(1), srm(1), srprof(1), srgrind(1), srtex(1), srlatex(1), ccr2sr(1), m2sr(1), csp2sr(1).

DIAGNOSTICS
Srv lists the SR system files to be used, and aborts if any are inaccessible. Each directory is listed as testing
begins. Any additional messages indicate a test failure.

CAVEATS
Srv does not detect infinite loops.

A full run starts slowly due to pipeline delays.

Quoted arguments don’t work with the specially recognized commands.

University of Arizona Last change: 24 February 1993 1

SRVI (1) User Commands SRVI (1)

NAME
srvi − install an SR program in the verification suite

SYNOPSIS
srvi [−−option ...] dir

DESCRIPTION
Srvi installs an SR program in the SR verification suite. It is part of the SR installation process and is not
used by SR programmers.

A new directory dir is created in the vsuite hierarchy to hold the program and associated files. dir may be
given as a path relative to vsuite if the intermediate directories exist.

Srvi prompts for source files and input files. Enter each of these as a space-separated list. The list of input
files may be empty.

After the specifications have been entered, the files are copied into the vsuite hierarchy and the program is
compiled and linked. If no errors are found, it is executed using each specified input file in turn as standard
input. If no input files are given, it is executed once with input from /dev/null. Standard output and error
files are combined and saved from each run. A Script file is created for srv(1).

Srvi normally finds binaries in the source hierarchy. The −−c and −−r options select the production (installed)
versions of the compiler and runtime system respectively; the −−p option selects both of these.

FILES
All files are created in vsuite/dir.

Script verification script
Compiler.std compilation messages, if any
xxxxx.std output from input file ‘xxxxx’

SEE ALSO
srv(1), sr(1), srl(1)

DIAGNOSTICS
Srvi lists the SR system files to be used, and aborts if any are inaccessible. It checks the accessibility of all
source and data files before copying anything or creating the Script file.

Srvi refuses to overwrite a directory with an existing Script file.

CAVEATS
Srvi does not support the full generality of srv. Complex verification scripts must be created manually.

Drexel University Last change: 8 April 1992 1

SRANIMATOR (3) SR Library SRANIMATOR (3)

NAME
sranimator − XTANGO based animation package for SR

SYNOPSIS
(in SR program:)

import SRanimator
(to build:)

sr program.sr sranimator.o XTANGO/xtango.o −−lXaw −−lXmu −−lXext −−lXt −−lX11
(with srm:)

srm program.sr sranimator.o XTANGO/xtango.o −−lXaw −−lXmu −−lXext −−lXt −−lX11
(to run:)

xrdb −−merge XTANGO/xtango.res
a.out

DESCRIPTION
SRanimator provides a front-end to XTANGO, a library of algorithm animation routines. The SR applica-
tion imports a global SRanimator and links with SR, XTANGO, and X library files. The library lists
shown above assume that XTANGO was built using the Athena widget set.

RUNNING AN ANIMATION
Before running an XTANGO application you must run xrdb −−merge XTANGO/xtango.res, where
xtango.res is the application default file from the XTANGO distribution. Alternative methods of initializa-
tion are discussed in the XTANGO documentation.

To run an animation, compile and run the SR application containing the procedure calls described below.
When the animation window appears, press the run animation button to begin the animation.

Animation parameters can be altered using other pushbuttons either before or after the animation has been
started. The arrows and zoom pushbuttons on the left control the display, while the buttons at the bottom
and the scrollbar at the right affect the animation behavior. An animation may be aborted at any time by
selecting the quit pushbutton in the lower right-hand corner of the animation window.

Panning and Zooming

The pushbuttons along the left-hand edge of the animation screen affect what portions of an animation are
displayed while an animation is running. To pan the animation window in a specific direction, select the
appropriate arrow pushbutton. To zoom in on a section of the animation select the in pushbutton; select the
out pushbutton to zoom back out.

Pausing a Running Animation

After initially selecting the run animation pushbutton to start the animation running, the run animation
pushbutton changes its name to pause. An animation may be paused at any time by selecting the pause
pushbutton which then pauses the animation and changes its name to unpause. To continue the animation,
select the unpause pushbutton which then changes its name back to pause.

Changing the Animation Refresh Mode

When using Motif and HP widgets, XTANGO supports three different times to redraw all images displayed
in an animation: between each frame, between each scene, and none. The default refresh mode is between
each frame. (With Athena widgets, the mode setting has no effect.)

There is a direct trade-off between the frequency of redrawing and the speed of the animation. Refreshing
by frame produces a smooth animation but runs the slowest. On the other hand, no refresh produces a
quick animation possibly with many holes in the images (created when one image passes over another).
Try the no refresh mode when initially building an animation. Then switch to by scene to iron out the
minor bugs. Finally use the by frame mode when an animation is complete.

To change the refresh mode, select the mode pushbutton either before running an animation or during the
animation. A menu will appear containing the three choices and the current choice will be indicated with a
checkmark. After selecting the appropriate choice, the new refresh mode will take effect immediately.

Drexel University Last change: 7 October 1994 1

SRANIMATOR (3) SR Library SRANIMATOR (3)

Select the refresh pushbutton located next to the quit pushbutton to force a refresh at any time.

Slowing Down a Running Animation

Use the vertical scrollbar located along the right-hand edge of the animation window to control the amount
of time between animation frames. The animation runs fastest when the scrollbar’s ‘‘thumb’’ (the black,
movable rectangle) is positioned at the top of the scrollbar; the animation becomes progressively slower as
the thumb is moved towards the bottom of the scrollbar.

To change the position of the thumb, either select the thumb and drag it to a new location, select a location
within the scrollbar (and the thumb will jump there), or select one of the arrows located at the ends of the
scrollbar (and the thumb will step in the desired direction).

INTERFACE PROCEDURES
Animations operate on an infinite plane having a real-valued coordinate system. A rectangular portion of
the plane, initially the area having x and y values between 0.0 and 1.0, is displayed on the screen. Graphi-
cal objects can be created and placed within the coordinate system, and then moved or altered to depict the
operations and actions of a computer algorithm. The SR programmer specifies a unique integer id when
creating an object, then uses this id to designate the object in subsequent operations.

The individual animation commands are described below. Most commands and parameters should be
self-explanatory. Arguments named steps, centered, and steptime are of integer type. Arguments named
xpos, ypos, xsize, ysize, radius, lx, by, rx, ty, ry are real or floating point numbers. The argument fillval
should be one of the following strings: outline, light, half, heavy, or solid. The argument widthval should
be one of the following strings: thin, medthick, or thick. The argument styleval should be one of the fol-
lowing strings: dotted, dashed, or solid. The argument arrows should be one of the following strings:
none, forward, backward, or bidirectional. The parameter colorval can be any color specification
acceptable to X. Note that the color command only supports a subset of all these possible colors: white,
black, red, orange, yellow, green, blue, and maroon. The parameter fontname can be any font
specification acceptable to X.

General Procedures

A_bg (colorval : string[∗])

Change the background to the given color. The default background is white.

A_coords (lx, by, rx, ty : real)

Change the displayed coordinates to the given values (left-bottom is (lx,by) and right-top is (rx,ty)).
You can use repeated applications of this command to pan or zoom the animation view.

A_delay (steps : int)

Generate the given number of animation frames with no changes in them.

A_zoom (id : int; rx, ry: real)

Zoom in to (positive values of rx and ry) or out from (negative values) the object given by id. Values
close to 0.0 zoom a little, absolute values close to 1.0 zoom a lot.

A_end ()

Terminate the animation.

Drawing Procedures

A_line (id : int; xpos, ypos, xsize, ysize : real; colorval, widthval, styleval, arrows : string[∗])

Create a line with one endpoint at the given position and of the given size. The line can be dotted,
dashed, or solid and can optionally have arrows on either or both ends. Note that lines are moved
(move, jump, and exchange commands) relative to their centers.

A_rectangle (id : int; xpos, ypos, xsize, ysize : real; colorval, fillval : string[∗])

Create a rectangle with lower left corner at the given position and of the given size (size must be

Drexel University Last change: 7 October 1994 2

SRANIMATOR (3) SR Library SRANIMATOR (3)

positive).

A_circle (id : int; xpos, ypos, radius : real; colorval, fillval : string[∗])

Create a circle centered at the given position.

A_triangle (id : int; v1x, v1y, v2x, v2y, v3x, v3y : real; colorval, fillval : string[∗])

Create a triangle whose three vertices are located at the given three coordinates. Note that triangles are
moved (move, jump, and exchange commands) relative to the centers of their bounding boxes.

A_text (id : int; xpos, ypos : real; centered : int; colorval, str : string[∗])

Create text str with lower left corner at the given position if centered is 0. If centered is 1, the position
arguments denote the place where the center of the text is put. The text string is allowed to have blank
spaces included in it but you should make sure it includes at least one non-blank character.

A_bigtext (id : int; xpos, ypos : real; centered : int; colorval, str : string[∗])

This works just like the text command except that this text is in a much larger font.

A_fonttext (id : int; xpos, ypos : real; centered : int; colorval, fontname, str : string[∗])

This works just like the text command except that this text is in the specified font.

Image Manipulation Procedures

A_move (id : int; xpos, ypos : real)

Smoothly move, via a sequence of intermediate steps, the object with the given id to the specified posi-
tion.

A_moverelative (id : int; xdelta, ydelta : real)

Smoothly move, via a sequence of intermediate steps, the object with the given id by the given relative
distance.

A_moveto (id1, id2 : int)

Smoothly move, via a sequence of intermediate steps, the object with the first id to the current position
of the object with the second id.

A_jump (id : int; xpos, ypos : real)

Move the object with the given id to the designated position in a one frame jump.

A_jumprelative (id : int; xdelta, ydelta : real)

Move the object with the given id by the provided relative distance in one jump.

A_jumpto (id1, id2 : int)

Move the object with the given id to the current position of the object with the second id in a one frame
jump.

A_stepjump (id : int; xpos, ypos : real; steps, steptime : int)

Move the object with the given id to the designated position in a multiple frame jump. The steps of the
jump are done at the specified millisecond intervals.

A_stepjumpto (id1, id2 : int; steps, steptime : int)

Move the object with the given id to the current position of the object with the second id in a multiple
frame jump. The steps of the jump are done at the specified millisecond intervals.

A_color (id : int; colorval : string[∗])

Change the color of the object with the given id to the specified color value. Only the colors white,
black, red, green, blue, orange, maroon, and yellow are valid for this command.

Drexel University Last change: 7 October 1994 3

SRANIMATOR (3) SR Library SRANIMATOR (3)

A_delete (id : int)

Permanently remove the object with the given id from the display, and remove any association of this
id number with the object.

A_fill (id : int; fillval : string[∗])

Change the object with the given id to the designated fill value. This has no effect on lines and text.

A_vis (id : int)

Toggle the visibility of the object with the given id.

A_lower (id : int)

Push the object with the given id backward to the viewing plane farthest from the viewer.

A_raise (id : int)

Pop the object with the given id forward to the viewing plane closest to the viewer.

A_exchangepos (id1, id2 : int)

Make the two objects specified by the given ids smoothly exchange positions.

A_switchpos (id1, id2 : int)

Make the two objects specified by the given ids exchange positions in one instantaneous jump.

A_swapid (id1, id2 : int)

Exchange the ids used to designate the two given objects.

A_resize (id : int; rx, ry: real)

The circle, line, rectangle, or triangle is resized as follows. The radius of a circle has rx added to it, the
endpoint of a line has (rx,ry) added to it, the lower-right corner of a rectangle is dragged by amount
(rx,ry), and the first vertex of a triangle is dragged by amount (rx,ry).

FILES
SRanimator.sr SR animator global resource
animator.o compiled C language animator commands
xtango.o compiled C language XTANGO library
xtango.res XTANGO widget resources for X11 resources database

SEE ALSO
sr(1), srl(1)

Stephen J. Hartley, Animating Operating Systems Algorithms with XTANGO. ACM SIGCSE Bulletin 26, 1
(March, 1994).

Stephen J. Hartley, Integrating XTANGO’s Animator into the SR Concurrent Programming Language.
Submitted for publication, 1994; included in the SR distribution.

John T. Stasko, Tango: A Framework and System for Algorithm Animation. IEEE Computer 23, 9 (Sep-
tember, 1990), 27-39.

Doug Hayes, The XTANGO Environment and Differences from TANGO. John T. Stasko and Doug Hayes,
XTANGO Algorithm Animation Designer’s Package. These two papers are provided as part of the
XTANGO package.

CAVEATS
Bracketing blocks of animation code with setpriority(1) and setpriority(0) may improve the animation.

The XTANGO package must be obtained and built separately in order to use the SR animator. XTANGO is
available by anonymous FTP from par.cc.gatech.edu. The SR library must be built (or rebuilt) after in-
stalling XTANGO.

Drexel University Last change: 7 October 1994 4

SRANIMATOR (3) SR Library SRANIMATOR (3)

AUTHOR
Stephen J. Hartley

ACKNOWLEDGMENTS
SRanimator was inspired by SRWin, written by Qiang A. Zhao, and by the animator interpreter program,
included with XTANGO, written by John T. Stasko and Doug Hayes.

University of Arizona Last change: 7 October 1994 5

SRGETOPT (3) SR Library SRGETOPT (3)

NAME
srgetopt − parse command arguments

SYNOPSIS
import SRgetopt
do c := getopt(optstring) != EOF −−> process option c od

DESCRIPTION
SRgetopt provides a means for an SR program to parse command line arguments in accordance with the
standard Unix conventions; it is analogous to, and based on, getopt(3) for C programs. SRgetopt is a global
containing one procedure, getopt, and variables that control its behavior or return additional information.

Getopt interprets command arguments in accordance with the standard Unix conventions: option arguments
are introduced by "−" followed by a key character; an argument value follows certain keys. Multiple keys
can be combined, as in "−ab", if they do not require arguments. A non-option argument terminates the pro-
cessing of options, as does the special argument "−−".

Option interpretation is controlled by the parameter optstring, which specifies the characters that designate
legal options and indicates which ones require associated values. The call getopt("ab") specifies that the
command line should contain only the options "−a" and "−b". If a letter in optstring is followed by a colon,
the option is expected to have an argument. The argument may or may not be separated by whitespace
from the option letter. For example, getopt("w:") accepts either "−w 80" or "−w80".

Each call to getopt returns the key of the next command line argument; this key must match a letter in opt-
string. If the option accepts an argument, the string variable optarg is set to the argument value. Predefined
conversion functions such as int, char, etc. can then be applied to optarg. The constant optMAXLEN
defines the length of the longest string that getopt can handle; extra characters are truncated silently.

Getopt places in the variable optind the index of the next command line argument to be processed; optind is
automatically initialized to 1 before the first call to getopt.

When all options have been processed, and only non-option arguments remain, getopt returns optEOF. The
remaining arguments can be retrieved using the predefined function getarg, beginning with argument
number optind.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (′?′) when it encounters a command
line argument not matched by optstring. Setting the variable opterr to false disables this error message.

NOTES
The following notes describe SRgetopt’s behavior in a few interesting or special cases; this behavior is
consistent with getopt(3).

A ′−′ by itself is treated as a non-option argument. By convention, most programs interpret this as specify-
ing the use of stdin or stdout, depending on context, in place of a named file.

If optstring is "a:" and the command line arguments are "−a −x", then "−x" is treated as the argument asso-
ciated with the "−a".

Duplicate command line options are allowed; it is up to user to deal with them appropriately.

An option ‘‘letter’’ can be a letter, number, or almost any special character. Like getopt(3), SRgetopt
disallows a colon as an option letter.

University of Arizona Last change: 5 October 1994 1

SRGETOPT (3) SR Library SRGETOPT (3)

EXAMPLE
The following code fragment shows how to use SRgetopt to process a command that takes the options ′a′,
′f′, and ′w′ where ′f′ is followed by a file name and ′w′ is followed by an integer.

resource main()

import SRgetopt
var ch: char

command line arguments
var aflg := 0
var filename: string[optMAXLEN] := "out"
var width := 80

do (ch := getopt("abf:w:")) != optEOF −>
if ch = ′a′ −>

aflg++
[] ch = ′f′ −>

filename := optarg
[] ch = ′w′ −>

width := int(optarg)
[] else −>

stop(1)
fi

od

write("−a", aflg)
write("−f", filename)
write("−w", width)

fa k := optind to numargs() −>
var xx: string[40]
getarg(k,xx)
write("normal argument", k, "is", xx)

af

end

SEE ALSO
getopt(3)

CAVEATS
Changing the value of the variable optind may lead to unexpected behavior.

Getopt, like the predefined functions numargs and getarg, is valid only on the main virtual machine.

University of Arizona Last change: 5 October 1994 2

SRWIN (3) SR Library SRWIN (3)

NAME
srwin − X-Windows graphics interface for SR

SYNOPSIS
(in SR program:) import SRWin
(to build:) sr program.sr srwin.o −−lX11
(with srm:) srm program.sr srwin.o −−lX11

DESCRIPTION
SRWin provides a set of window interface operations to the SR programmer. It is based on the Xlib inter-
face to the X window system. The application imports a global SRWin and links with a file of associated
C functions and the X library. The library is often found simply by linking −−lX11, but some systems may
require a different specification.

The package supports five basic types of objects: windows, events, fonts, cursors, and images. Windows
are primary objects for input and output. Cursors and fonts are resources of the underlying X Window Sys-
tem, which define the visible shape of the pointing device and the appearance of textual output respec-
tively. Window events are queued in the order of their occurrence and handled later either by the SRWin
package or by the application program.

Windows

Windows can be displayed on a X server or they can be off-screen pixmaps. To the programmer
they are obscured data structures. They reside in the X server’s memory, which means drawings
on windows must be packed as requests and sent to the X server (probably through the network).
A window cannot be shared among processes on different virtual machines.

A backup copy of each window’s contents is maintained in the package for automatic refreshing
when needed. A window can be treated as an abstract drawing surface without regard to overlap
or visibility considerations.

Usually a graphics primitive does not contain all the information needed to draw a particular
thing. The X server maintains resources called graphics contexts (GCs) that specify many attri-
butes that apply to each graphic request. GCs reduce the traffic between the X server and the
application programs (clients of the X server) in two ways. First, the GC information is main-
tained by the X server and only needs to be sent once, and later drawing requests use the id of the
GC to draw. In the case of changes, only the selected few fields need to be sent. Second, multiple
GCs can be created so clients can switch among different graphic bindings with ease.

SRWin treats GCs as parts of a window. The application program creates a new GC binding by
calling WinNewContext() to get a new window structure with the new GC, while it still refers to
the old window.

A window can have many subwindows as its children. All children are displayed on top of their
parents when mapped (which means ‘‘ready for display’’). When the extent of a window inter-
sects with that of a sibling window, these two windows can be displayed in any order. SRWin
provides a few primitives for managing subwindows.

Events

All inputs from a window are modeled as events. Events that require a part of the screen to be
redrawn are handled automatically by the SRWin package. Other events can be processed by the
application program. Unlike most other X Window packages, with which application programs
play a passive role responding to events, SRWin lets an application program manage the control
flow directly.

To receive events on a window, the application program selects events of interest by specifying an
event mask. When an event occurs, it is checked with the window’s mask; if the particular event
not selected, it is propagated to the parent window, and so on, until it reaches a window for which
the event is selected or ignored (in which case the event is discarded).

University of Arizona Last change: 7 October 1994 1

SRWIN (3) SR Library SRWIN (3)

Images

Images are rectangular areas of pixels; unlike windows, they reside on the client instead of the
server, and they are always invisible. Images support only a limited set of operations, but image
modification operations can be accomplished very quickly because they require no communica-
tion with the server. The typical use is to constuct an image locally, possibly a pixel at a time, and
then copy it to the screen as a unit.

Fonts and Cursors

A cursor is a transient shape that moves on the screen as the mouse moves on its pad to indicate
where the mouse is pointing. Different windows may have different cursor shapes.

A font is a set of bitmaps representing characters, cursor shapes, or other small patterns. In
SRWin, fonts and cursors come from a predefined set supported by the underlying X Window
System.

OUTPUT MODEL
All window output operations are defined in terms of an integer coordinate system with its origin at the
top-left corner of the window.

Lines, ellipses, texts, and individual pixels can be drawn. Multiple characteristics of drawing and filling
can be controlled. These include line width, line style, cap style, join style, dashes and dash offset, fill style
and fill rule.

To further reduce the communication traffic between the X server and the application program, drawing
can be temporarily disabled (on a per top-level window basis). Then the client must explicitly tell the X
server to update the window contents. Alternatively the application can choose to construct an image and
send the image as a whole to the X server for display.

INPUT MODEL
All input accepted by the package is represented by a uniform event record data structure, which includes
information about:

g type of the event
g window in which the event occurred
g coordinates of the pointer within the window when the event occurred
g the status of the mouse buttons (up or down)
g the status of the SHIFT, CONTROL, and META keys
g specific values associated with the particular event type (e.g. button number when it is a button

press or release event; ASCII code of keypress; etc.)

Each event from a window is dispatched to the event-message channel of that window. This channel is
provided by the user program when it calls SRWin to create a window. If the user program doesn’t pro-
vide an event channel, the window can be used only for output.

The user program can determine whether there is event pending by checking the number of messages in the
event channel, or it can wait on the event channel until an event happens. The application can specify the
event types of interest and have all other events discarded automatically. A process is generated for each
window to poll for events.

EVENT CHANNEL
The SRWin global exports

optype winEventChannel(winEvent) {send}
The application program can use this optype to declare a message channel.

When a selected event occurs, SRWin sends a winEvent record to the registered input channel for the win-
dow. The winEvent record contains the following fields:

event_type Type of the event.

window The window in which the event occurred.

x, y Coordinates of the pointer within the window when the event occurred.

University of Arizona Last change: 7 October 1994 2

SRWIN (3) SR Library SRWIN (3)

bk_status Inclusive OR of flags indicating the currently pressed buttons and keys:
BK_None BK_Button1 BK_Mod1
BK_CNTRL BK_Button2 BK_Mod2
BK_LOCK BK_Button3 BK_Mod3
BK_SHIFT BK_Button4 BK_Mod4

BK_Button5 BK_Mod5

data For a key event, data specifies which key or button was pressed or released, and it can
be converted to the corresponding character. For a mouse button event, data is one of
the button masks listed above. For a enter/leave window event, data can be converted
to a boolean value indicating whether the window has the focus or not. For all other
events, this field is undefined.

keysym Numerical value of standard X KeySym as defined in C header file <X11/keysymdef.h>
and the KeySym database /usr/lib/X11/XKeysymDB. It is useful for detecting keys that
do not have corresponding ASCII character representations, such as function keys and
arrow keys.

OTHER DATA STRUCTURES
winWindow Pointer to a record structure that holds all information for a window.

winInitialState Integer value specifying the initial state of an object when creating it.

winError Integer value that is zero in the case of an error or nonzero if successful.

winStdCursor An enumeration of the set of defined cursor shapes.

winCursor Pointer representing the handle of a cursor.

winColor String containing a color name or a numerical color specification.

winPixel Pointer representing the handle of a colormap entry.

winFont Pointer to a structure that holds information for a loaded font.

winImage Pointer to an image structure.

winPoint Record of (x, y) coordinates.

winRectangle Record of (x, y, w, h) for the coordinates of the top-left corner of the rectangle and its
width and height.

winLineStyle Enumeration of valid line styles: LineSolid, LineDoubleDash, LineOnOffDash

winCapStyle Enumeration of valid cap styles: CapNotLast, CapButt, CapRound, CapProjecting

winJoinStyle Enumeration of valid join styles: JoinMiter, JoinRound, JoinBevel

winFillStyle Enumeration of valid fill styles: FillSolid, FillTiled, FillOpaqueStippled, FillStippled

winFillRule Enumeration of valid fill rules: FillEvenOddRule, FillWindingRule

winArcMode Enumeration of valid arc modes: ArcChord, ArcPieSlice

winDrawOp Enumeration of valid drawing operations: these control how the source pixel values
generated by a graphics request are combined with the old destination pixel values
already on the screen to produce the final destination pixel values. The operations are:
Op_Clear Op_And Op_AndReverse Op_Copy
Op_AndInverted Op_Noop Op_Xor Op_Or
Op_Nor Op_Equiv Op_Invert Op_OrReverse
Op_CopyInverted Op_OrInverted Op_Nand Op_Set

NAMING AND ARGUMENT CONVENTIONS
SRWin follows a set of conventions for the naming and syntax of the functions:

g The names of all SRWin functions begin with Win followed by compound words which are con-
structed by capitalizing the first letter of each word.

University of Arizona Last change: 7 October 1994 3

SRWIN (3) SR Library SRWIN (3)

g Names of user-visible data structures and types begin with win. Names of all members of data
structures use lower case.

g The window argument, where used, is always first in the argument list. The image argument,
where used, is always right after the window argument when there is one, or the first when there is
no window argument.

g Source arguments always precede destination arguments in an argument list.
g An x argument always precedes a y argument in an argument list.
g A width argument always precedes a height argument in an argument list.
g If x, y, width, and height arguments are used together, the x and y arguments always precede the

width and height arguments.
g If a procedure returns an integer, a value of zero serves as an error indicator. If a procedure

returns a pointer, null indicates an error. Not all errors are reported in this manner; some (espe-
cially those that cannot be detected immediately) abort the program.

FUNCTIONS
General Functions

WinOpen (display: string[∗]; title: string[∗]; evchannel: cap winEventChannel; state: winInitialState; w, h:
int) returns win: winWindow

WinCreateSubwindow (oldwin: winWindow; evchannel: cap winEventChannel; state: winInitialState; x,
y, w, h: int) returns newwin: winWindow

WinOpen() opens and initializes a top-level window of width w pixels, height h pixels, and with the
same depth of the root window, with white foreground and black background. If WinOpen() can’t
open such a window, a null pointer is returned. WinCreateSubwindow() creates a subwindow as
oldwin’s child. The subwindow begins at (x, y) relative to its parent’s top-left corner.

The initialization includes opening a connection to the X server, creating a window, creating a backing
store, allocating a graphics context and a colormap, loading default font, setting default window attri-
butes, etc. If the display argument is a null string, SRWin then tries to open that window on the screen
specified by the environment variable DISPLAY.

When state equals to UseDefault, the created window is displayed on screen (at a position determined
by the window manager for the top-level window case), and output to the window is enabled. If state
equals to OffScreen, the window is off screen and can be made visible by calling WinMapWindow(),
while direct output is initially disabled.

The evchannel argument is used to register a message channel to receive incoming window events. It
can be null if no event reporting is wanted. If the window is on screen at the beginning and evchannel
is not null, then all events are selected on this window.

For a subwindow, the graphics context information is inherited from its parent, but in a different GC.

WinDestroyWindow (win: winWindow)

Destroys a window and all its subwindows, freeing contexts. This operation has no effect on a top-
level window.

WinClose (win: winWindow)

Destroys a top-level window and all its subwindows, frees the associated X resources, and closes its
connection to the X server.

WinNewContext (oldwin: winWindow) returns newwin: winWindow

Creates a new context window from an existing window. The context window appears as a ‘‘window’’
and points to the original window except it cannot generate any window events and it has a different
graphics context.

WinCopyContext (srcwin, destwin: winWindow)

Copies all information associated with srcwin’s graphics context to that of destwin’s.

University of Arizona Last change: 7 October 1994 4

SRWIN (3) SR Library SRWIN (3)

WinSetBorder (win: winWindow; width: int; color: winColor)

Sets the window border width and paints it using color. The border is not included when creating a
window.

WinSetLabels (win: winWindow; winlab, iconlab: string[∗])

Sets the window and icon labels.

WinMapWindow (win: winWindow)
WinMapSubwindows (win: winWindow)
WinUnmapWindow (win: winWindow)
WinUnmapSubwindows (win: winWindow)

Maps or unmaps a window and/or all of its subwindows. Mapping a window onto the screen makes it
and its subwindows visible; unmapping a window makes it and its subwindows invisible. Output to an
unmapped window is allowed; when the window is remapped, its contents reflect such output.

WinMoveWindow (win: winWindow; pt: winPoint)

Moves the window to the given location relative to its parent.

WinEnableOutput (win: winWindow)
WinDisableOutput (win: winWindow)
WinUpdateWindow (win: winWindow)

Normally, output to an on a on-screen window is directed simultaneously to the window and to its
backing pixmap. This can be disabled for performance reasons so that the output goes only to the pix-
map; the window is then updated from the pixmap when WinUpdateWindow() is called.

WinFlush (win: winWindow)

Flushes all pending output for a window and its subwindows.

WinSync (win: winWindow; discard: bool)

Flushes the output buffer and waits for all requests to be received and processed by the X server. If dis-
card is true, all pending window events not recognized by SRWin are discarded.

WinBell (win: winWindow; percent: int)

Rings the bell on the specified window, if possible. Volume is specified by the percentage relative to
the base volume set by xset(1). Percent can be in the range −100 to 100 inclusive. If it is positive, the
sound is louder than the base volume; if it is negative, the sound is quieter.

Cursors and Fonts

WinCreateCursor (win: winWindow; stdcursor: winStdCursor) returns cur: winCursor

Creates a standard cursor. Valid cursors are:

XC_X_cursor XC_arrow XC_based_arrow_down XC_based_arrow_up
XC_boat XC_bogosity XC_bottom_left_corner XC_bottom_right_corner
XC_bottom_side XC_bottom_tee XC_box_spiral XC_center_ptr
XC_circle XC_clock XC_coffee_mug XC_cross
XC_cross_reverse XC_crosshair XC_diamond_cross XC_dot
XC_dotbox XC_double_arrow XC_draft_large XC_draft_small
XC_draped_box XC_exchange XC_fleur XC_gobbler
XC_gumby XC_hand1 XC_hand2 XC_heart
XC_icon XC_iron_cross XC_left_ptr XC_left_side
XC_left_tee XC_leftbutton XC_ll_angle XC_lr_angle
XC_man XC_middlebutton XC_mouse XC_pencil
XC_pirate XC_plus XC_question_arrow XC_right_ptr
XC_right_side XC_right_tee XC_rightbutton XC_rtl_logo

University of Arizona Last change: 7 October 1994 5

SRWIN (3) SR Library SRWIN (3)

XC_sailboat XC_sb_down_arrow XC_sb_h_double_arrow XC_sb_left_arrow
XC_sb_right_arrow XC_sb_up_arrow XC_sb_v_double_arrow XC_shuttle
XC_sizing XC_spider XC_spraycan XC_star
XC_target XC_tcross XC_top_left_arrow XC_top_left_corner
XC_top_right_corner XC_top_side XC_top_tee XC_trek
XC_ul_angle XC_umbrella XC_ur_angle XC_watch
XC_xterm XC_None

WinSetCursor (win: winWindow; cursor: winCursor; fg, bg: winColor) returns c: winCursor

Sets the cursor of the specified window, returning null if unsuccessful. The cursor colors are set to fg
(foreground) and bg (background).

WinFreeCursor (win: winWindow; cursor: winCursor)

Frees a cursor and reclaims any associated resources.

WinDefaultFont (win: winWindow) returns font: winFont

Returns the default font of the graphics context.

WinLoadFont (win: winWindow; fontname: string[∗]) returns font: winFont

Loads a font by name.

WinSetFont (win: winWindow; font: winFont)

Sets the font for the specified window.

WinFreeFont (win: winWindow; font: winFont)

Frees a font and reclaims any associated resources. The default font cannot be freed.

Clipping Manipulation Function

WinSetClipRectangles (win: winWindow; origin: winPoint; rects[∗]: winRectangle)

Sets the clipping region for a context window (clip rectangles are stored on a per-context basis). Sub-
sequent output is clipped to be contained within the specified nonintersecting rectangles. The parame-
ter origin is relative to the origin of the window, and the rectangle coordinates are relative to the clip
origin.

Drawing Functions

WinClearArea (win: winWindow; area: winRectangle)

Clears a rectangular region using the window background color (which can differ from the current
value set by WinSetBackground()). The clipping attributes of the context window are ignored.

WinEraseArea (win: winWindow; area: winRectangle)

Clears a rectangular area to the current graphics context background color, which is set using WinSet-
Background().

WinCopyArea (srcw, destw: winWindow; src_rect: winRectangle; destp: winPoint)

Copies a rectangular region between (potentially) two windows on the same physical screen.

WinDrawArc (win: winWindow; box: winRectangle; a1, a2: int)
WinFillArc (win: winWindow; box: winRectangle; a1, a2: int)

Draws a (filled) arc, ellipse, or circle. The center of the circle or ellipse is the center of the rectangle.
The major and minor axes are given by the width and height of the rectangle. The two angles are in
units of degrees. The first angle specifies the start of the arc; the second specifies the path and extent of
the arc, with positive values indicating a counterclockwise direction.

University of Arizona Last change: 7 October 1994 6

SRWIN (3) SR Library SRWIN (3)

WinDrawLine (win: winWindow; pt1, pt2: winPoint)
WinDrawPolyline (win: winWindow; pts[∗]: winPoint)
WinDrawPolygon (win: winWindow; pts[∗]: winPoint)
WinFillPolygon (win: winWindow; pts[∗]: winPoint)

Draws a (filled) line, polyline, or polygon.

WinDrawPixel (win: winWindow; pt: winPoint)

Draws a pixel.

WinDrawRectangle (win: winWindow; rect: winRectangle)
WinFillRectangle (win: winWindow; rect: winRectangle)

Draws a (filled) box.

WinDrawString (win: winWindow; pt: winPoint; str: string[∗])
WinDrawImageString (win: winWindow; pt: winPoint; str: string[∗])

Draws a string. WinDrawString() alters only the pixels forming the characters of the text; Win-
DrawImageString() clears the ‘‘extent’’ of the text to the background color.

WinTextWidth (font: winFont; str: string[∗]) returns width: int

Computes the pixel width of a string in that font.

WinFontAscent (font: winFont) returns ascent: int
WinFontDescent (font: winFont) returns descent: int

Returns the ascent or descent of a font.

Drawing Attributes Manipulation Functions

WinSetLineAttr (win: winWindow; line_width: int; l: winLineStyle; c: winCapStyle; j: winJoinStyle)
WinSetFillAttr (win: winWindow; fill_style: winFillStyle; fill_rule: winFillRule)
WinSetDashes (win: winWindow; dash_offset: int; dash_list: string[∗])
WinSetArcMode (win: winWindow; arc_mode: winArcMode)
WinSetDrawOp (win: winWindow; dop: winDrawOp)

Sets the line drawing characteristics of a window. Constants include:
winLineStyle: LineSolid, LineDoubleDash, LineOnOffDash
winCapStyle: CapNotLast, CapButt, CapRound, CapProjecting
winJoinStyle: JoinMiter, JoinRound, JoinBevel
winFillStyle: FillSolid, FillTiled, FillOpaqueStippled, FillStippled
winFillRule: FillEvenOddRule, FillWindingRule
winArcMode: ArcChord, ArcPieSlice
winDrawOp:

Op_Clear, Op_And, Op_AndReverse, Op_Copy, Op_AndInverted, Op_Noop, Op_Xor, Op_Or,
Op_Nor, Op_Equiv, Op_Invert, Op_OrReverse, Op_CopyInverted, Op_OrInverted, Op_Nand,
Op_Set

The defaults are line width 0, LineSolid, CapButt, JoinMiter, FillSolid, FillEvenOddRule, ArcPieSlice,
Op_Copy, and no dashes.

Using a line width other than zero may degrade performance on some X servers.

Drawing operations other than Op_Copy are potentially nonportable or even undefined and should be
used only with a clear understanding of the X color model. For example, Op_Xor gives different
results (other things being equal) on Sun and DEC hardware.

WinSetForeground (win: winWindow; foreground: winColor) returns pv: winPixel
WinSetBackground (win: winWindow; background: winColor) returns pv: winPixel

University of Arizona Last change: 7 October 1994 7

SRWIN (3) SR Library SRWIN (3)

WinSetForegroundByPixel (win: winWindow; foreground: winPixel)
WinSetBackgroundByPixel (win: winWindow; background: winPixel)

Sets the foreground or background color to be used in subsequent drawing operations.

Event Handling Functions

WinSetPoll (win: winWindow; msec: int)

Sets the interval between event checks, in milliseconds. The default interval is 100 milliseconds.

WinSetEventMask (win: winWindow; em: int)

Registers events of interest for a window.

Valid event masks are the same as the event types. They can be or’ed together to set multiple masks
for a window. The default event masks include all supported event types if an event channel is pro-
vided at the window creation time, or nothing if no channel is provided and the window is requested to
be mapped.

There are several defined events masks:
Ev_KeyDown Ev_EnterWindow Ev_All
Ev_KeyUp Ev_PointerMove Ev_None
Ev_ButtonDown Ev_ExitWindow
Ev_ButtonUp Ev_DeleteWindow

Ev_DeleteWindow is sent whenever the window manager issues a DELETE_WINDOW message (e.g.
the user chooses Quit from window manager’s menu); this event can only be received in the top-level
window. Ev_All is the combination of all possible events; Ev_None selects no events.

Image Manipulation Functions

WinCreateImage (win: winWindow; depth, w, h: int) returns im: winImage

Creates an image with width w and height h. If UseDefault is passed as depth, the depth of the image
is set to be the same as that of the physical display.

WinDestroyImage (im: winImage)

Destroys the image and frees the memory space it occupies.

WinGetPixel (im: winImage; pt: winPoint) returns pv: winPixel
WinPutPixel (im: winImage; pt: winPoint; pv: winPixel)

Reads or writes a pixel value from or to the image. The point must be inside the image. These two
functions are not protected by mutual exclusion; the application program should be aware of potential
consistency problems when an image is shared among multiple processes. WinPutPixel() is most reli-
able when different processes work on different rows (and therefore different memory words).

WinAddPixel (im: winImage; pv: winPixel)

Increments each pixel in the image by the value of pv. This function is not protected by mutual exclu-
sion.

WinGetImage (win: winWindow; im: winImage; src_rect: winRectangle; dest: winPoint)
WinPutImage (win: winWindow; im: winImage; src_rect: winRectangle; dest: winPoint)

Copies the rectangular area specified by src_rect on the window to the image starting at point specified
by dest, or copies an image to a window. The depth of the image and the window must match.

SEE ALSO
sr(1), srl(1)

University of Arizona Last change: 7 October 1994 8

SRWIN (3) SR Library SRWIN (3)

Qiang Alex Zhao, SRWin: A Graphics Library for SR. TR 93-14, Dept. of Computer Science, The Univer-
sity of Arizona, 1993. Included in the SR distribution.

Adrian Nye, Xlib Programming Manual, Volume One, 3rd ed. O’Reilly & Associates, Inc., 1992, ISBN 1-
56592-002-3.

Adrian Nye, Xlib Reference Manual, Volume Two, 3rd ed. O’Reilly & Associates, Inc., 1992, ISBN 1-
56592-006-6.

Robert W. Scheifler and James Gettys, X Window System: The Complete Reference to Xlib, X Protocol,
ICCCM, XLFD, 3rd ed. Digital Press, 1992, ISBN 1-55558-088-2.

CAVEATS
Numerous unexplained problems have been seen on the Sequent Symmetry.

Except on an SGI Iris, SRWin does not function properly if MultiSR is enabled.

AUTHOR
Qiang A. Zhao.

ACKNOWLEDGMENTS
SRWin was inspired by X-Icon, an X interface developed by Clint Jeffery for the Icon language. Many
useful ideas came from the Winpack graphics library created by Scott Hudson.

University of Arizona Last change: 7 October 1994 9

SRMAP (5) Headers, Tables, and Macros SRMAP (5)

NAME
srmap − network mapping file for SR

DESCRIPTION
Srmap is used to find the executable program when a virtual machine is created with an ‘on n’ clause and
an explicit pathname has not been given for machine n.

Srmap is read from a standard location; this may be overridden by supplying the name of a file in the
environment variable SRMAP.

Lines in the file have two whitespace-separated fields, a pattern and a template. Lines with less than two
fields are ignored. Comments are introduced by ‘#’ and terminate at end of line.

When an SR program runs, a program location is defined by concatenating the hostname, a colon (:), and
the absolute pathname of the executable. The hostname is chopped at the first ‘.’, if any. The location is
matched against each pattern in turn until one succeeds; then the corresponding template is used to form a
network pathname. This pathname is passed to rsh(1) on the remote machine.

Patterns have the general form host:path, with these characters having special meaning:
? matches any single character except ‘/’
∗ matches any string of characters except ‘/’
∗∗ matches any string of characters including ‘/’

Templates construct network file paths corresponding to matched patterns. Each occurrence of $n in a tem-
plate is replaced by the characters matched by the nth ?, ∗, or ∗∗ in the corresponding pattern. n may be 1
to 9, or A to Z for the 10th through 35th strings.

EXAMPLE
Consider the mapping file:

sample mapping file
∗:/r/∗∗ /r/$2 # already a network path
client:/∗∗ /r/server/$1 # client disks are on server
???∗:/∗∗ /r/$1$2$3/$5 # general rule for others

A program run on host ‘caslon.arizona.edu’ generates these different network paths, depending on the
program’s path:

local path network path generated
/r/bas/usr/abc/foo /r/bas/usr/abc/foo
/usr/xyz/bar /r/cas/usr/xyz/bar

Note that ‘caslon:’ was prepended to the program path before scanning the patterns.

CAVEATS
Srmap is designed for environments providing transparent access to remote disks via a systematic naming
scheme. Other environments may require explicit path specification by the SR program.

University of Arizona Last change: 16 March 1992 1

SRTRACE (5) Headers, Tables, and Macros SRTRACE (5)

NAME
srtrace − runtime event trace file for SR program

DESCRIPTION
The runtime events of any SR program can be recorded during execution in an srtrace file by setting the
environment variable SR_TRACE to the name of the srtrace file. Two specific names, stdout and stderr,
can be used to direct the trace output to standard output and standard error output respectively.

Each line of the srtrace file has the following fields:

Filename
Name of the file where the corresponding SR statement is located.

Line number
Line number of the corresponding SR statement.

Proc name
Proc name of the corresponding SR statement. This has the form

[vm(n).]resource.proc
which reads as proc in resource of virtual machine n. vm(n) is displayed only for distributed pro-
grams.

Event
Name of the event used in srtrace file. The available events are as follows:

Event Meaning SR statement

CREATER creation of resource create
CREATEG creation of global import
CREATEV creation of virtual machine create
DESTROYR destruction of resource destroy
DESTROYV destruction of virtual machine destroy

CALL synchronous invocation call
SEND asynchronous invocation send
FORWARD transfer of responsibility for reply forward
REPLY reply and continue execution reply
RETURN terminate and return return

BODY beginning of resource init code resource
ENDBODY end of resource init code end
FINAL beginning of resource final code final
ENDFINAL end of resource final code end
PROC beginning of service by proc proc
ENDPROC end of service by proc end

IN entry to input statement in
ARM service of arm of an input statement −>
NI exit from an input statement ni

CREATES creation of semaphore sem
INITS initialization of semaphore
P beginning of P operation P
CONTP completion of P operation
V V operation V

CO beginning of co statement co
OC end of co statement oc

Process ID
A hexadecimal number identifying the particular process that generated the event.

University of Arizona Last change: 25 January 1993 1

SRTRACE (5) Headers, Tables, and Macros SRTRACE (5)

Additional Field
For the following events, there is a second hexadecimal number following the process ID. The
meanings are:

RETURN process ID of the invoker
REPLY process ID of the invoker
FORWARD process ID of the invoker
ARM process ID of the invoker
NI process ID of the invoker
PROC process ID of the invoker
ENDPROC process ID of the invoker

INITS initial value of the semaphore

CREATES semaphore ID
P semaphore ID
CONTP semaphore ID
V semaphore ID

Other events have 0 in the place of this field.

EXAMPLE
Some sample output:

CS.sr, 15 main.body BODY 1730b8 0
CS.sr, 16 main.body CREATEG 1730b8 0
CS.sr, 1 CS.body BODY 173168 0
CS.sr, 5 CS.body SEND 173168 0
CS.sr, 1 CS.body ENDBODY 173168 0
CS.sr, 5 CS.arbitrator PROC 1731c0 173168
CS.sr, 20 main.body SEND 1730b8 0
CS.sr, 15 main.body ENDBODY 1730b8 0
CS.sr, 7 CS.arbitrator IN 1731c0 0
CS.sr, 20 main.user PROC 173168 1730b8
CS.sr, 22 main.user CALL 173168 0
CS.sr, 8 CS.arbitrator ARM 1731c0 173168
CS.sr, 7 CS.arbitrator NI 1731c0 173168
CS.sr, 10 CS.arbitrator IN 1731c0 0
CS.sr, 24 main.user SEND 173168 0
CS.sr, 10 CS.arbitrator ARM 1731c0 173168
CS.sr, 10 CS.arbitrator NI 1731c0 173168
CS.sr, 7 CS.arbitrator IN 1731c0 0
CS.sr, 20 main.user ENDPROC 173168 1730b8

SEE ALSO
sr(1), srprof(1)

CAVEATS
srtrace output reflects the actual SR implementation, which differs in some details from the SR source
language. For example, a process statement is traced as a SEND followed by a PROC. Some P and V state-
ments are implemented as in and send respectively, and vice versa.

The following srtrace events report a line number different from the line number of the corresponding SR
statement:

NI line number of corresponding IN
ENDPROC line number of corresponding PROC
ENDBODY line number of corresponding BODY
ENDFINAL line number of corresponding FINAL

University of Arizona Last change: 25 January 1993 2

