
Porting the SR Programming Language

Gregg Townsend

Dave Bakken

Department of Computer Science

The University of Arizona

October 5, 1994

This document outlines the steps necessary to port the SR system to a new system architecture. The reader
should first review the companion document Installing the SR Programming Language, which gives an
overview of the system and its organization.

The first stage of any port of SR is the construction and verification of a single-threaded system. That
is described first. With additional effort, SR can be configured to utilize true multiprocessing on architec-
tures that provide this. This optional second stage is described later.

If you decide to attempt a port, please let us know by electronic mail and keep us informed of your pro-
gress. We’ll try to assist by answering questions and offering suggestions. If you succeed with the port,
please send us a copy of your changes for possible inclusion in future versions of SR. Several of the exist-
ing configurations are based on such contributed code.

Part 1 — Porting Single Threaded SR

System Requirements

Most modern Unix systems provide a good base for implementing SR. SR assumes the following:

Memory is addressable at the byte level; characters are 8 bits, ASCII coded.
The C type int is at least 32 bits wide.
All pointer types are the same size as a C long.
User stacks can be switched by assembly code.
A Berkeley-style socket(2) interface is available.

The first two assumptions pervade the system. The third is used by runtime routines that use long as a
universal argument type. Context switching is localized to rts/process.c and the assembly code described
below. Dependencies on Berkeley networking are concentrated mostly in rts/socket.c and rts/srx.c.

Porting the C Code

The present SR system has been built in several different environments. It is intended to compile without
warning messages under compilers designed for either traditional or ANSI C.

To configure a new architecture, edit the file arch.h in the main directory and add a section similar to
the others. Use conditional code triggered by a symbol that is predefined by the C compiler.
hhhhhhhhhhhhhhhhhh
The SR Programming Language comes from the Department of Computer Science, The University of Arizona, Tucson, Arizona 85721
USA. The implementation is available by anonymous FTP from ftp.cs.arizona.edu, and the SR Project may be reached by sending
electronic mail to sr-project@cs.arizona.edu.

SR2.3−PORT 1



Define ARCH to be a string describing the target architecture. Define SFILE as an appropriately
named assembly language file (to be described later). If <float.h> is not available as a standard #include
file, define LOW_REAL and HIGH_REAL to be the smallest and largest positive double values
representable on the architecture. (Be sure to use values that printf can handle; do not specify something
that rounds up and prints as Infinity.) If you later find that a special compiler option is needed to accom-
modate the complex code generated by SR, come back and define BIGCC using the existing examples as a
model.

To check out the C code, first create an empty file in the csw directory matching the name given for
SFILE. Configure the system according to the installation guide, and run make −k to compile.

If there are errors, you will need to modify the source code. Our preference is to try first for a portable
solution; or, failing that, to isolate the code in a machine-specific #ifdef. Pervasive problems can some-
times be handled by modifying gen.h in the main directory.

Writing the Assembly Language Code

Each SR virtual machine is implemented as a single Unix process, with the machines communicating via
sockets. Within a virtual machine, SR implements a lightweight process facility. Assembly code to switch
contexts is required for each new machine; scheduling decisions are handled in the existing C code.

Three entry points must be supplied for creating, switching, and checking process contexts. A ‘‘con-
text’’ is just a block of memory containing stack space, saved registers, and whatever else is necessary.
The C code never looks inside a context array and doesn’t care how it’s laid out. The existing .s files give
some examples for different architectures.

The needed entry points are:

sr_build_context (entry, context, size, arg1, arg2, arg3, arg4)
void (*entry)(); /* entry point of function to be called */
char *context; /* context array */
int size; /* size of context array, in bytes */
long arg1,... arg4; /* arguments to be passed to the entry point */

Initialize a context array so that, when activated by sr_chg_context, it will call the function speci-
fied by entry with the four supplied arguments. (We assume that no problems arise from possibly
calling a C function with too many arguments.) The called function is never expected to return; if it
does, a stack underflow abort should occur (see below).

The context need not be set up so that sr_chg_context invokes entry directly; for example, in the
mips.s code, it proved easiest to plant the address of some additional assembly code to invoke the
desired function when triggered.

The context array will be aligned on an address that is a multiple of 8.

sr_chg_context (newctx, oldctx)
char *newctx, *oldctx; /* context arrays */

Suspend execution of the current lightweight process oldctx in favor of the one identified by
newctx. Generally, this means saving one set of registers (including stack and frame pointers) and
restoring another. It is only necessary to save those registers that the C compiler expects to be
saved across function calls. sr_chg_context is always called explicitly by the SR runtime system,
never by random events such as interrupts.

The first time sr_chg_context is called, the program is using its original C stack; oldctx is zero, and
no registers need be saved. On subsequent calls, oldctx is a context created earlier by
sr_build_context.

Some older ports of SR ignore the oldctx parameter and instead use a saved value. These versions
continue to work for single-threaded SR, but will need modification if they are to be used to imple-
ment MultiSR.

sr_check_stk (context)

Check that the current stack in context has not overflowed its bounds. This routine is called by the

SR2.3−PORT 2



runtime system as a sanity check.

sr_check_stk is called only when executing in an sr_build_context context.

For all three functions, error conditions should be handled by calling one of the C functions
sr_stk_overflow, sr_stk_underflow, or sr_stk_corrupted as appropriate. It is a good idea to check the
integrity of a new context, if possible, before switching to it.

Integration and Testing

Go to the csw subdirectory and place the new assembly language code in the file named by SFILE in
../arch.h. Add that file name to the SRC definition in the Makefile. The Makefile uses cc(1) to select and
copy the .s file to asm.s, which is then assembled by as(1).

The cstest program is provided for testing assembly code in a simpler environment than that of SR.
Type make cstest to build this test program. When run, cstest should produce output that is identical with
the file cstest.stdout.

When the cstest output is correct, incorporate it into the library by moving back to the top directory and
again running make. This now builds a complete SR system that includes the new code.

Initial system testing can be performed using the quick and examples subdirectories of the verification
suite (vsuite) provided with the SR source code. To run these tests, enter ‘‘srv/srv quick examples’’. For
a port to a new architecture, further testing is in order. Be sure to get and run the full verification suite as
described in the installation guide. When the full suite runs successfully you can be reasonably certain of
having a solid implementation of SR.

Part 2 — Porting MultiSR

Introduction

MultiSR is a configuration of the SR programming language that utilizes true multiprocessing on systems
having more than one processor. In MultiSR, SR’s lightweight threads package multiplexes SR threads on
top of concurrent processes provided by the system.

Requirements

To be able to host MultiSR, a multiprocessor system must provide:

g concurrent processes with access to shared variables

g facilities for dynamically allocating additional shared memory

g a fast locking facility, such as spin locks

g a way for each process to determine its index (0..n)

MultiSR is ported by defining macros and functions that interface the SR runtime system to the mul-
tiprocessing system. Some editing of Makefiles and other configuration files is also likely to be required.

For MultiSR to work, it is important that the assembly language code be reentrant. Most older imple-
mentations of sr_chg_context and sr_check_stk ignore the oldctx parameter and use a variable saved in
static memory, which only works correctly on a uniprocessor. (However, the i386.s code works correctly
on a Sequent because the value it saves is private to a particular process.)

Configuring MultiSR

Select a name for the new configuration of MultiSR that suggests the platforms to which it applies. For
example, the Sequent port is named dynix because it is applicable to Sequents running the Dynix operating
system. Choose a name and substitute it where this document uses xxxxx.

Begin by editing files in the multi directory. Copy irix.h and irix.c to make new files xxxxx.h and
xxxxx.c respectively. Edit these files as described below, using the Dynix and Irix files as models.

SR2.3−PORT 3



File multi/xxxxx.h

This file casts the system’s multiprocessing facilities in terms expected by SR. It is included by many com-
ponents of the SR system and by the generated C code.

1. Define MULTI_SR with no value. This enables conditional compilation of MultiSR code throughout
the SR system.

2. Add any #include directives and/or function declarations needed to use the multiprocessing facilities.

3. Define MALLOC(n) and UNMALLOC(a) macros that function like malloc(n) and free(a) but allo-
cate shared memory. These will probably map directly to system functions. MALLOC must return a
char * or void * pointer just like malloc.

4. If the C code generated by SR needs to be compiled with a special cc option, such as the ‘‘−Y’’ needed
for shared variables on the Sequent, define the option as a text string with the name
MULTI_CC_OPT.

5. Several macros are required for declaring and manipulating locks. Define multi_mutex_t as the data-
type to be used for lock variables. If the locks themselves must be allocated dynamically, use a pointer
type, and define multi_alloc_lock(a) to allocate a lock and multi_free_lock(a) to free one. If locks are
declared statically, define these as 0. Define multi_reset_lock(a) to initialize or reinitialize a lock,
multi_lock(a) to reserve a lock, and multi_unlock(a) to release a lock.

6. Define SHARED_FILE_OBJS if the system allows a file opened by one process to be used by
another, and UNSHARED_FILE_OBJS if not. If you are uncertain, SHARED_FILE_OBJS is a
good guess and will be validated later by the test package.

7. Define FIRST_SHARED_FD and LAST_SHARED_FD to give a range of file descriptors that are
always shared regardless of the general rule. For example, standard output and standard error are
always safely shared because they are created by an ancestor of all the processes in the program and
because SR flushes output buffers after every write. If these are the only files, FIRST_SHARED_FD
and LAST_SHARED_FD should be 1 and 2 respectively. If you defined SHARED_FILE_OBJS,
define FIRST_SHARED_FD and LAST_SHARED_FD to be 0 and 255; there is little penalty if
LAST_SHARED_FD is too large.

8. Define MAX_JOBSERVERS to specify an upper limit on the number of concurrent processes. This
limit will include the implicit I/O process that is created if UNSHARED_FILE_OBJS is defined. For
maximum benefit, the limit should allow at least as many user processes as the number of available
processors.

9. Define MY_JS_ID as a macro that returns a process’s index (ranging from 0 to the number of con-
current processes). If this is not easily available from the system, make it a function call and add a rou-
tine for obtaining it to the .c file below.

File multi/xxxxx.c

This file is included by ../rts/process.c, causing it to be incorporated in the SR runtime system. It contains
three C functions needed for porting MultiSR. All functions must be provided.

1. sr_init_multiSR() is called before any locks are allocated or initialized and before any other function
in this file is called. It need not do anything, but may be used for any necessary global initialization.

2. sr_create_jobservers(code,n) creates n concurrent processes, each executing the function code(arg),
which never returns. sr_create_jobservers is itself assumed to disappear (not return), leaving only the
spawned code functions running. The void * parameter arg can be any value; it is uninterpreted by
code but can be used to communicate a value with sr_jobserver_first (below).

3. sr_jobserver_first(arg) need not do anything, but may be used for error checking or per-process ini-
tialization. It is called immediately by each instance of code spawned by sr_create_jobservers. arg is
the argument passed to that code.

Any other variables or functions needed by the port may be added to this file. Initialization, if needed, can
be performed in sr_init_multiSR. New external and function names should begin with sr_. The runtime
system function sr_missing_children may be used if the requested number of processes cannot be

SR2.3−PORT 4



obtained; the Dynix code provides an example of its use.

Testing the MultiSR Porting Primitives

The multi directory includes a program for testing the machine-dependent primitives needed by MultiSR.
The Makefile is currently set up to build and run the test on the existing platforms; it will need editing to
work elsewhere. The test program checks several things:

g It verifies that SHARED_FILE_OBJS work, if configured

g It exercises the locking primitives

g It allocates shared memory to pass data among processes

g It ensures that process indices can be obtained

The correct output of the test program is dependent on the number of processes. The program
mexpect.c synthesizes a copy of what is expected, given a process count. This synthesized output can be
compared with the test program’s actual output to verify its correctness.

Building and Testing MultiSR

Return to the main SR directory and note that srmulti.h and srmulti.c are symbolic links. Enable MultiSR
by redirecting these to point to the two new files multi/xxxxx.h and multi/xxxxx.c. Also make any neces-
sary Makefile or Configuration changes, such as to CFLAGS or LIBR definitions.

Type make sclean and then make to rebuild the system with MultiSR enabled. Try building and run-
ning a few SR programs with the environment variable SR_PARALLEL set to enable multiprocessing.
Finally, use srv to run the SR verification suite as described in the SR porting guide, and be sure to run it at
least twice (with SR_PARALLEL both set and unset).

The issue of debugging MultiSR is beyond the scope of this document, but a couple of hints are worth
mentioning. The environment variable SR_DEBUG can be set to enable runtime tracing of an SR pro-
gram; details are contained in the file rts/debug.h. An annotated list of the locks used by MultiSR appears
in the appendix of The SR Run-Time System Interface.

SR2.3−PORT 5


