
The SR Run-Time System Interface

Amy Morgenstern

Vicraj Thomas

Gregg Townsend

Department of Computer Science

The University of Arizona

October 12, 1994

The SR book (The SR Programming Language: Concurrency in Practice, by Gregory Andrews and Ronald
Olsson) presents an overview of the SR run-time system (RTS) in its Appendix E. This document
describes details of the interface to the run-time system and is aimed at the reader who wishes to modify
the system or the generated code that calls it.

The RTS provides primitives that are used by the code generated by the SR compiler to access services
provided by the RTS. The C files that implement these primitives may be found in the rts subdirectory of
the SR distribution.

Multiprocessor SR (MultiSR) uses locks to avoid interference among processes. These locks are men-
tioned briefly in some of the function descriptions and are described more completely in the appendix.

General Conventions

Identifiers beginning with an initial capital, such as Array, Ocap, and Func, are the names of types
defined in sr.h.

Several functions have an initial locn parameter encoding the source file and line number of the SR
statement that generated the function call. This information is printed in trace messages or when an error is
detected. The decoding of a locn value is done by sr_fmt_locn.

Several source files contain initialization functions having names that begin with sr_init_. Each is
called once, before any of the other related functions. Because these initialization functions are trivial, they
are not listed in this document.

Memory Management Primitives

The memory management primitives are used to allocate and free storage at run time.

char *sr_new (char *locn, int len)

Allocates memory for a new(type) statement. This function is independent of the other alloca-
tion functions because failure is returned to the programmer and because the region can only be
freed on explicit request.

hhhhhhhhhhhhhhhhhh
The SR Programming Language comes from the Department of Computer Science, The University of Arizona, Tucson, Arizona 85721
USA. The implementation is available by anonymous FTP from ftp.cs.arizona.edu, and the SR Project may be reached by sending
electronic mail to sr-project@cs.arizona.edu.

SR2.3−RUNTIME 1

void sr_dispose (char *locn, Ptr addr)

Deallocates a block of memory that was allocated by sr_new.

Ptr sr_alloc (int size)

Allocates a region of memory, by calling malloc(), and checks for success. The program is
aborted if memory cannot be obtained. This function is used by all other allocation functions
except sr_new.

Resource-owned memory

The RTS records the ownership of certain allocated regions. A region may be owned by one particular
resource or by none. Memory owned by a resource is freed when that resource is destroyed.

Ptr sr_alloc_rv (int size)

Allocates memory for a new resource instance. This is called by resource initialization code
immediately after entry.

Ptr sr_alc (int size, int need_rmutex)

Allocates a region of contiguous memory and remembers which resource, if any, is to be con-
sidered its owner. If size is positive, the current resource becomes the owner; if it is negative,
no resource is associated with the region. The parameter need_res_mutex is true unless the
resource lock is already held.

String *sr_alc_string (int maxlength)

Allocates a string and initializes its header. Ownership is set to the current resource.

void sr_free (Ptr addr)

Frees a region previously allocated by sr_alc or sr_alc_string. Used when not holding
the resource lock.

void sr_locked_free (Ptr addr)

Frees a region previously allocated by sr_alc or sr_alc_string. Used when the caller
already holds the resource lock.

void sr_res_free (Rinst r)

Frees all memory owned by the resource r.

Memory Pool Primitives

Some data structures are grouped into pools. A pool is a set of memory regions of a particular type.
Regions are allocated and freed using the functions below; freed memory remains in the pool for reuse.
Pool memory is not owned by any resource.

The pool routines themselves use no externally visible locks; however, they may call user routines that use
such locks.

Pool sr_makepool (char *name, int size, int max, Func init, Func re_init)

Initializes a pool of descriptors. Parameter name is used in error messages. Each descriptor is of
size size; a maximum of max descriptors are allowed. Function init is called when a pool
element needs to be initialized for its first use; function re_init is called upon destruction to
prepare the element for later reuse. Either function parameter may be null if no function is
needed.

Ptr sr_addpool (Pool p)

Allocates a new descriptor from pool p and returns a pointer to it.

SR2.3−RUNTIME 2

void sr_delpool (Pool p, Ptr el, int have_mutex)

Returns element el to pool p. Parameter have_mutex is true if the lock pl->pmutex is
already held.

void sr_eachpool (Pool p, Func f)

Calls the function f once for each currently allocated member of pool p. The single argument
passed to function f is a pointer to a descriptor. Function f must not allocate or deallocate items
from pool p.

Resource Management Primitives

The resource management primitives are used to create and destroy resources and to inform the RTS when
the initial or final code has been executed. There are three major data structures associated with these
primitives: the operation capability (Ocap), the resource capability (Rcap) and the creation request block
(CRB). The CRB includes a packet header used for remote creation; the only field of the packet header that
is used by the generated code is the size field. These data structures are defined in sr.h.

Ptr sr_create_resource (char *locn, int rpat, Vcap vm, CRB c, int rsize)

Called by the generated code to create a new resource instance. rp is the resource pattern
number, v is the target virtual machine, c is the address of the creation request block, and
rsize is the size of the resource capability. The parameters are placed in the CRB and
sr_create_res is called.

void sr_create_res (CRB *crbp)

Actually creates a new resource instance. Various data structures are created or updated and a
process is spawned to execute the initialization code. The caller blocks until the initialization
code completes or replies. A pointer to the new resource capability is returned.

void sr_create_global (char *locn, int rpatid)

Creates a new instance of a global in a manner similar to resource creation. If the global is
already running, the call is ignored.

void sr_destroy (char *locn, Rcap rcp, int have_rid_mutex)

Destroys the resource rcp. A process is created to execute the final code of the resource. The
current process blocks until the final code is executed. All memory owned by the resource is
freed and all processes executing in the resource are killed. The primitive does not return if
called from the resource being destroyed; in this case, the calling process is killed. The argument
have_rid_mutex is true if the caller holds the lock for res_pool->pmutex.

void sr_dest_all ()

Destroys all the resource instances, but not the globals, on the current machine.

void sr_destroy_globals ()

Destroys all the globals on the current virtual machine in a hierarchical order based on what other
globals they import.

void sr_finished_init ()

Signals that the resource initialization code has completed. The resource creator is awakened if it
was not awakened earlier by a reply. This primitive does not return; instead, the calling process
is killed.

void sr_finished_final ()

Signals that the resource final code has completed. The destroying process is awakened. This
primitive does not return; instead, the calling process is killed.

SR2.3−RUNTIME 3

Process Management and Scheduling Primitives

This section describes the primitives that create, destroy and schedule processes.

void sr_init_proc (Func start_code)

Initializes the process management system. The free list of process descriptors is set up. The job
servers are created. The calling process is killed and execution continues by calling
start_code in a new SR process context.

Proc sr_spawn (Func pc, int pri, Rinst r, int have_lock, a1, a2, a3, a4)

Creates a new process that will begin by calling pc(a1,a2,a3,a4). A new process descrip-
tor is allocated and initialized. Stack space is allocated and set up for process initiation. The pro-
cess is added to the list for the specified resource, but not placed on the ready list. Parameter
have_lock is true if the caller holds the resource lock.

void sr_activate (Proc pr)

Places a process pr created by sr_spawn on the ready list.

void sr_kill (Proc pr, Rinst res_mutex_held)

Kills an SR process. The parameter res_mutex_held points to pr->res if the caller holds
the lock pr->res->mutex and is null otherwise.

void sr_scheduler ()

Requests a context switch to the next eligible process. The caller must hold the lock
sr_queue_mutex. Before calling sr_scheduler, the caller must requeue its own process
on the appropriate queue.

void sr_loop_resched (char *locn)

Reschedules the current process to let another process execute. It checks to see if any napping or
I/O-blocked jobs can be awakened. It is called by the generated code every time
sr_max_loops loop iterations have occurred.

void sr_reschedule (Proc pr)

Reschedules process pr on the appropriate ready or idle list. The caller must hold the lock
sr_queue_mutex.

void sr_setpri (int newpri)

Sets the priority of the current process to newpri. If this is a decrease in priority, a context
switch to another process may result.

Remote Request Processing Primitives

The following primitives service requests for a remote machine.

Pach sr_remote (Vcap dest, enum ms_type type, Pach ph, int size)

Passes a message of type type for execution on virtual machine dest, waits for the reply, and
returns a pointer to that reply. Parameters dest, type, and size, plus the current VM and
priority, are stored in the message’s packet header ph before sending the message.

void sr_rmt_callme (Pach ph)
void sr_rmt_create (Pach ph)
void sr_rmt_destroy (Pach ph)
void sr_rmt_destop (Pach ph)
void sr_rmt_destvm (Pach ph)
void sr_rmt_invk (Pach ph)
void sr_rmt_query (Pach ph)
void sr_rmt_receive (Pach ph)

SR2.3−RUNTIME 4

Each of these processes a particular type of request from a remote VM and then sends back an
acknowledgement.

void sr_rcv_call (Pach ph)

Processes a call invocation that was returned in response to a remote receive request. The
packet is in the form of an invocation block, which is then passed to the original receiver. When
a reply is sent to the invocation, it is caught here and passed back to the invoking machine.

void sr_net_start (char abuf[])
void sr_net_connect (int n, char *address)
Bool sr_net_known (int n)
void sr_net_more (Pach ph)
enum ms_type sr_net_recv (Pach ph)
void sr_net_send (int dest, enum ms_type type, Pach ph, int size)

These primitives service network requests.

RTS Support for Synchronization Primitives

This section describes the RTS primitives required by SR’s synchronization statements.

Invocations

All invocations are made using the sr_invoke primitive. The generated code provides an invocation
block that describes the invocation.

Ptr sr_invoke (char *locn, invb ibp)

Invokes an operation. The caller must initialize the size, opc, and type fields of the invoca-
tion block ibp. The arguments for the invocation are located immediately beyond the fixed por-
tion of ibp, and the return values will be returned in this same area. A pointer to the invocation
block is returned; the block may have been moved if it called an operation on a remote machine.

invb sr_reply (char *locn, invb ibp)

Sends an early reply to the invoker of an operation. A copy of the invocation block is retained by
the current process and the original is returned to the invoker. A reply in the initialization code
of a resource is treated very much like an sr_finished_init: the creator process is awak-
ened but the current process is not killed. (The compiler ignores reply statements in a final
block.) The address of the new copy of the invocation block is returned.

Ptr sr_forward (char *locn, Invb obp, Invb ibp)

Forwards an argument list and responsibility for a reply to another operation. The packet header
of the old invocation block, obp, is copied into the packet header of a new invocation block,
ibp. A new process is spawned to execute the operation specified in ibp.

void sr_make_proc (Ocap *ocap, enum op_type type, Func ept)

Adds a new resource proc operation. Called during resource initialization.

void sr_kill_resops (Rinst res)

Kills all operations of resource res. Any pending input invocations are purged. This is called
by sr_destroy.

void sr_finished_proc (invb ibp)

Called by the generated code when a proc operation has finished. If the operation was called,
the invoker is notified. This primitive does not return; instead, the current process is killed.

SR2.3−RUNTIME 5

The Concurrent Invocation Statement

This section describes the commands that are used to execute the co statement.

void sr_co_start (char *locn)

Creates a co block for the start of the co statement. The new block is linked to the current pro-
cess.

Ptr sr_co_wait (char *locn)

Blocks until an arm of a co terminates and returns a pointer to the invocation block used in the
original invocation. The generated code can use the invocation block to find out which arm of
the co terminated. To be able to do this, the generated code sets the co.arm_num field in each
invocation block before making the invocations inside the co. A pointer to the original invoca-
tion block is returned so that the generated code can copy result parameters and find out which
arm terminated. NULL is returned after all arms of the co have terminated.

void sr_co_call (Invb ibp)

Handles a call within a co statement.

void sr_co_call_done (Invb ibp)

Signals that a call invocation from a co statement has returned. If the invoker is still interested
in the event, it is notified.

void sr_co_send (Invb ibp)

Handles a send within a co statement. The invocation block is copied and returned to the
invoker.

void sr_co_end (char *locn)

Indicates the end of a co statement. The co block is freed.

The Input Statement

An important concept while dealing with the input statement is that of a class. The compiler groups opera-
tions in an input statement into a class. A class is the transitive closure of the relation ‘‘serviced by the
same input statement.’’ The generated code, however, does not have to concern itself with the structure of
a class, and as far as it is concerned, a pointer to a class is just a character pointer.

Ptr sr_make_class ()

Makes a new operation class and returns a pointer to it.

Ptr sr_make_semop (char *locn)

Creates an operation implemented by a semaphore and returns a pointer to it.

void sr_init_semop (char *locn, Ptr sems, Ptr initvals, int ndim)

Initializes an unoptimized semaphore or array of semaphores by issuing a series of send opera-
tions.

Ocap sr_new_op (char *locn, Class clap)

Creates and returns a single new dynamic operation for new(op...).

void sr_make_inops (Ptr addr, Class clap, int ndim, int type)

Creates one or more input operations and stores their capabilities at addr. The parameter ndim
gives the number of dimensions for an array of ops or is zero for a simple op; type is either

SR2.3−RUNTIME 6

INPUT_OP or DYNAMIC_OP.

void sr_dest_op (char *locn, Ocap opc)
void sr_dest_array (char *locn, Ptr addr)

Destroys a single dynamic operation or an array of them.

void sr_kill_inops (Ptr addr, int ndim)

Removes local operations from the operation table and purges any pending invocations. As with
the preceding function, ndim gives the dimensionality of an operation array.

void sr_iaccess (Class clap, Bool else_present)

Reserves access to an input operation class for a sequence of calls to sr_get_anyinv,
sr_get_myinv, or sr_chk_myinv. Exclusive access is lost when the any of those calls
block the process or when the process calls sr_rm_iop. The calling process blocks if another
process already has access to the class. Parameter else_present is true if the input statement
has an else clause and is false otherwise.

When an input statement has a synchronization statement, the generated code reserves the class
and then iterates through the queue until it finds an acceptable invocation, which it then accepts
by calling sr_rm_iop. Parameter values in the invocation blocks can be used in the evaluation
of the synchronization expression.

When the input statement has a scheduling expression, the generated code inspects all the pend-
ing invocations and evaluates the scheduling expression for each. Again, the parameter values
can be used.

invb sr_get_anyinv (char *locn, Class clap)

Returns a pointer to the next uninspected invocation block of operation class clap. The process
must have previously reserved the class by calling sr_iaccess. If the class is empty and the
sr_iaccess call specified no else clause, the process blocks until an invocation appears. If
the class is empty and there is an else clause, a null is returned.

invb sr_chk_myinv (Ocap opc)

Returns a pointer to the next uninspected invocation of operation opc, leaving the invocation in
the queue. The process must have previously reserved the operation’s class by calling
sr_iaccess. If no invocation is found, a null pointer is returned.

Bool sr_cap_ck (char *locn, Ptr oentry, Ocap opc)

Checks whether the operation entry oentry matches the capability opc given in an input state-
ment, and returns TRUE if so.

void sr_rm_iop (char *locn, char *cp, Invb ibp)

Removes an invocation block from a class queue and releases access to the class. If ibp is null,
access is released but no operation is dequeued.

void sr_finished_input (char *locn, Invb ibp)

Signals the exit from the body of an input statement. The invocation block is freed if the block if
it is no longer needed.

Ptr sr_receive (char *locn, Ocap opc, Bool else_present)

Unconditionally dequeues the next invocation from an operation class and returns a pointer to its
invocation block. If no invocation is available and an else clause is present, a null pointer is
returned; otherwise, the process blocks. sr_receive combines the functions of
sr_iaccess, sr_get_anyinv, sr_cap_ck, and sr_rm_iop, and is additionally the only
entry point providing for input from a remote machine.

SR2.3−RUNTIME 7

int sr_query_iop (char *locn, Ocap *opc)

Returns the pending invocation count for an input operation. This implements the ? operator.

Semaphore Primitives

Semaphores are really pointers to structures, but as far as the generated code is concerned they are just
pointers to characters.

Ptr sr_make_sem (int init_val)

Creates a semaphore with a specified initial value and returns a pointer to it.

void sr_kill_sem (Sem sp)

Destroys a semaphore.

void sr_P (char *locn, Sem sp)

Does a P on semaphore sp.

void sr_V (char *locn, Sem sp)

Does a V on semaphore sp.

Input/Output Primitives

This section describes primitives that do input and output.

File sr_open (char *fname, int mode)

Opens the file named by fname. Files can be opened in one of three modes: READ (0), WRITE
(1), or READWRITE (2). A file pointer is returned on a successful open; NULL is returned if the
open fails.

void sr_flush (char *locn, File fp)

Flushes the buffers of the file fp. The file remains open.

void sr_close (char *locn, File fp)

Closes the file fp.

int sr_read (char *locn, File fp, char *at, arg1, ...)

Reads zero or more variables from file fp, returning the number of items read. Argument at
gives the type and number of the arguments that follow. If no items are read and EOF is encoun-
tered, EOF is returned.

void sr_printf (char *locn, File fp, String sp, String fmt, char *at, ...)

Generates output for any of the predefined functions printf, sprintf, write, or put.
Either fp, a file pointer, or sp, a string pointer, is null to select printf or sprintf behavior. The
argument at gives the type and number of the arguments that follow.

int sr_scanf (char *locn, File fp, String sp, String fmt, char *at, ...)

Reads formatted input from the file fp or the string sp, whichever is not null. Argument at
gives the type and number of the arguments that follow. The function sr_scanf returns the
number of items read. If no items are read and EOF is encountered, EOF is returned.

int sr_get_string (char *locn, File fp, String *s)

Reads a string value for get(s). The number of characters read is returned.

SR2.3−RUNTIME 8

int sr_get_carray (char *locn, File fp, String *s)

Reads a character array for get(a). The number of characters read is returned.

int sr_seek (char *locn, File fp, int seektype, int offset)

Moves the file pointer to be offset bytes from the beginning, current position, or end of the
file fp, depending on whether seektype is ABSOLUTE (0), RELATIVE (1), or EXTEND (2),
respectively. The new offset relative to the beginning of the file is returned.

int sr_where (char *locn, File fp)

Returns the current position in the file fp relative to the beginning of the file.

Bool sr_remove (char *fname)

Removes the file given by fname. Returns true if successful.

Primitives dealing with Virtual Machines

This section describes primitives that manipulate virtual machines. The first call to any of these on the
main virtual machine initiates execution of srx, the central VM coordinator, in a separate Unix process.
All of these routines function by sending their parameters to srx for processing.

void sr_locate (char *locn, int n, String *host, String *exe)

Implements the locate statement.

Vcap sr_crevm (char *locn, int physm)

Creates a new virtual machine on physical machine physm, returning a VM capability.

Vcap sr_crevm_name (char *locn, String *host)

Creates a new virtual machine on the computer named host, returning a VM capability.

void sr_destvm (char *locn, int vm)

Destroys the virtual machine vm.

Clock Functions

These functions deal with the system clock.

int sr_age ()

Returns the age in milliseconds (elapsed time during execution) of the current virtual machine.

void sr_nap (char *locn, int msec)

Delays the calling process for msec milliseconds. If msec is nonpositive, the caller is
rescheduled with no delay behind any other ready processes of the same priority.

Termination Processes

These functions are called to end a program in various ways.

void sr_stop (int exitcode, int report_blocked)

Terminates the execution of the SR program. Output streams of all VMs are flushed and the
VMs are terminated. The VMs exit with the specified exit code.

void sr_abort (char *msg)

Prints an fatal error message and aborts the program.

SR2.3−RUNTIME 9

void sr_net_abort (char *s)

Identical to sr_abort but called by the network routines.

void sr_loc_abort (char *locn, char *msg)

Aborts the program giving source line information.

void sr_malf (char *msg)

Aborts the program indicating a run-time malfunction. Only called in ‘‘cannot happen’’ situa-
tions.

void sr_message (char *label, char *msg)

Prints a run-time message preceded by a label such as "warning".

int sr_runerr (locn, errno, args ...)

Aborts the program giving source line information and a message selected by the index errno
from the list in runerr.h. Additional arguments may be inserted in the message a la printf.

void sr_stk_corrupted ()
void sr_stk_overflow ()
void sr_stk_underflow ()

Issues an error message and aborts the program due to a problem detected by the context switch
routines.

Conversion Functions

The following functions convert an SR string to the requested type, returning the converted value:

int sr_boolval (int locn, String *s)
int sr_charval (String *s)
int sr_intval (int locn, String *S)
Ptr sr_ptrval (int locn, String *S)
Real sr_realval (int locn, String *s)
Array* sr_chars (String *s)

The following functions convert a C string to boolean or integer, returning success or failure:

int sr_cvbool (char *sp, Bool *bp)
int sr_cvint (char *sp, int *ip)

The following functions each convert a particular type to an SR string, returning a pointer to a newly allo-
cated string:

Ptr sr_fmt_arr (Array *a)
Ptr sr_fmt_bool (Bool b)
Ptr sr_fmt_char (Char c)
Ptr sr_fmt_int (int n)
Ptr sr_fmt_ptr (Ptr p)
Ptr sr_fmt_real (Real r)

The following functions implement the getarg predefined function. Each returns 1 if successful, 0 if the
conversion fails, or EOF if n is out of range.

int sr_arg_bool (int n, Bool *p)
int sr_arg_carray (int n, Array *a)
int sr_arg_char (int n, Char *p)
int sr_arg_int (int n, Int *p)
int sr_arg_ptr (int n, Ptr *p)
int sr_arg_real (int n, Real *p)

SR2.3−RUNTIME 10

int sr_arg_string (int n, String *s)

Miscellaneous Utilities

Many functions are so small and straightforward that no detailed description is needed.

Math Functions

These functions implement some arithmetic operations and predefined functions. (Most arithmetic opera-
tions require no run-time functions; most predefined math functions are implemented by direct calls to the
C library.)

int sr_imin (int nargs, int v, ...) integer minimum
int sr_imax (int nargs, int v, ...) integer maximum
int sr_rmin (int nargs, Real v, ...) real minimum
int sr_rmax (int nargs, Real v, ...) real maximum

Real sr_rtor (char *locn, Real x, Real y) real ** real
Real sr_rtoi (char *locn, Real x, int y) real ** int
int sr_itoi (char *locn, int x, int y) int ** int

Real sr_round (char *locn, Real x) round(real)
Real sr_rmod (char *locn, Real x, Real y) real mod real
Real sr_imod (char *locn, int x, int y) int mod int

void sr_seed (Real x) seed(x)
Real sr_random (Real x, Real y) random(x,y)

String Functions

These functions implement string comparison, concatenation, slicing, slice assignment, and swapping.

int sr_strcmp (String *l, String *r)
Ptr sr_cat (char *addr1, int len1, ... , NULL, 0)
Ptr sr_sslice (char *locn, String s, int i, int j)
String* sr_chgstr (char *locn, String *s, int i, int j, String *v)
String* sr_sswap (char *locn, String *lside, String *rside)

Array Functions

These functions implement several operations involving arrays.

Array* sr_acopy (char *locn, Array *dest, Array *src)
int sr_acount (Array *a)
Ptr sr_astring (Array *a)
Array* sr_aswap (char *locn, Array *lside, Array *rside)
Ptr sr_clone (char *locn, Ptr addr, int len, int n)
Array* sr_init_array (locn, addr, esize, initv, ndim, lb1, ub1, ...)
Ptr sr_slice (locn, a1, a2, esize, nbounds, lb1, ub1, ...)
Array* sr_strarr (char *locn, Array *dest, int lb, int ub, Array *src)

Tracing and Debugging Functions

These functions trace significant events and assist in debugging the run-time system.

int sr_trace (char *action, char *locn, Ptr addr)
int sr_bugout (char *f, int v1, int v2, int v3, int v4, int v5)
void sr_debug (char *fmt, inv v1, int v2, int v3)
int sr_get_debug ()

SR2.3−RUNTIME 11

void sr_set_debug (int n)

Context Switch Functions

The following system-dependent functions implement SR’s underlying lightweight threads package. They
are described in detail in Porting the SR Programming Language. The actual code is located in the csw
directory.

void sr_build_context ()
void sr_chg_context ()
void sr_chk_stack ()

MultiSR Functions

The following system-dependent functions support MultiSR. They are also described in Porting the SR
Programming Language. The actual code is located in the multi directory.

void sr_init_multiSR ()
void sr_jobserver_first ()
void sr_create_jobservers (Func code, int n)

References

Gregory R. Andrews and Ronald A. Olsson, The SR Programming Language: Concurrency in Practice
Benjamin/Cummings, Redwood City, CA, 1993.

G.R. Andrews, R.A. Olsson, M.A. Coffin, M. Elshoff, I. Nilsen, T. Purdin, and G. Townsend, An Overview
of the SR Language and Implementation. ACM Transactions on Programming Languages and Systems,
vol. 10, no. 1, Jan. 1988, pp. 51-86.

Gregg M. Townsend and Dave Bakken, Porting the SR Programming Language. Department of Computer
Science, The University of Arizona, 1993. Distributed with the SR system.

SR2.3−RUNTIME 12

Appendix: Lock Usage

Dave Bakken

Multiprocessor SR (MultiSR) requires several locks for proper synchronization. This appendix describes
the purpose of each lock and the relationships of the locks to each other.

The defined type Mutex is used to declare a lock; Mutex variables are accessed only through the mac-
ros INIT_LOCK, LOCK, and UNLOCK. In uniprocessor versions of SR these macros have no effect.

Code that concurrently reserves multiple locks must follow nesting rules to avoid deadlock. Inter-
dependencies with other locks are identified for each lock. A linear ordering reflecting these interdepen-
dencies appears at the end of the appendix. Terms such as ‘‘first’’ and ‘‘last’’ refer to the order of acquisi-
tion.

SR assumes machine-word atomicity. Locks are not used to protect variables that are a single word,
such as the global msclock or the individual elements of the array fp_table.

Individual Locks

Locks indicated with -> as part of the name are components of structures. Locks whose names begin with
sr_ are global. Other locks are local to a single source file. The defining file name is indicated for each
lock.

cob_st->cobmutex [oper.h]

This lock protects all the elements of a concurrent statement block structure cob_st. The lock
is nested once, in sr_co_end, and is acquired after cob_pool->pmutex. In sr_co_wait,
if the co block has not terminated, the lock is released until the co statement has terminated.
cobmutex is then re-acquired.

mem_mutex [alloc.c]

This lock protects all_mem, the linked list of owned memory regions. This lock is taken after
the appropriate res->rmutex has been acquired.

sr_exec_up_mutex [globals.h]

This lock protects sr_exec_up, the variable that tells if srx has been started. It is not nested.

alloc_mutex [misc.c]

This lock protects the variables low_alloc and high_alloc, which are used by RTS Primi-
tives sr_new and sr_dispose. It is not nested.

class_pool->pmutex [oper.c]

This lock protects the memory allocation pools. It is not nested.

class_st->clmutex [oper.h]

This lock protects a class structure. Except for rmutex, res_pool->pmutex, and
sr_main_res_mutex, it is obtained before all other locks.

cob_pool->pmutex [co.c]

This lock protects the memory allocation pool for the co statement. The only nesting for this
lock is in sr_co_end(), where it is acquired before cobp->cobmutex.

cre_mutex [vm.c]

This protects num_crevm_name, which assigns a unique serial number for each VM created
using a text string (instead of a machine number). It is never held while another lock is acquired.

SR2.3−RUNTIME 13

currfd_mutex [socket.c]

This protects currfd, the current file that sr_net_recv is checking. It is never held while
acquiring another lock.

send_mutex [socket.c]

Large messages sent to other virtual machines may be broken into parts. This lock ensures that
the parts are sent consecutively with no other messages interspersed. send_mutex also pro-
tects the outgoing message counters. It is not nested.

debug_mutex [debug.c]

This synchronizes debug outputs and is acquired and freed (indirectly) inside the DEBUG macro.
This lock is always acquired last.

final_mutex [main.c]

This protects finals_started and shutdown_started to ensure that finalization and
shutdown are done no more than once. It is always acquired last.

maxfd_mutex [socket.c]

This protects the variable maxfd, the highest file descriptor checked by sr_net_recv. It is
acquired after wait_ready_set_mutex and is never held while another lock is acquired.

mfd_fdm_mutex [socket.c]

This lock protects the variables that maintain mappings between machines and file descriptors,
mfd[n] and fdm[n]. It is nested inside wait_ready_set_mutex and is never held when
another lock is acquired.

oper_st->omutex [oper.h]

This protects an operation table entry. The lock is acquired before sr_queue_mutex but after
clmutex and rmutex. The most complex nesting occurs in sr_kill_resops. It acquires
rmutex, clmutex, and omutex. Then it calls sr_kill_sem, which acquires
sr_queue_mutex and sem_pool->pmutex.

oper_pool->pmutex [oper.c]

This lock protects the run-time operation pool. It is not nested.

proc_pool->pmutex [pool.c]

This lock is used to protect the process memory allocation pool. It must be acquired after
sr_queue_mutex. A given proc will either be on a protected queue or be served by only one
job server, so simultaneous access is not possible.

random_mutex [math.c]

This protects the variables used by sr_random. It is not nested.

remote_mutex [remote.c]

This lock protects the arrays started[MAX_VM] and waiting[MAX_VM] used in function
contact. It is acquired before the queue mutex.

res_pool->pmutex [res.c]

This lock protects the resource memory allocation pool. The only nesting is with rmutex in the
function sr_dest_all, and here res_pool->pmutex is acquired first. Function
sr_dest_all is called during VM destruction, and it must hold res_pool->pmutex the
entire time so no other resources can be created.

SR2.3−RUNTIME 14

rin_st->rmutex [res.h]

This protects a resource instance descriptor. Only the locks res_pool->pmutex and
sr_main_res_mutex are acquired earlier.

sem_pool->pmutex [semaphore.c]

This lock protects the semaphore memory allocation pool. It is never held when another lock is
acquired.

sr_main_res_mutex [globals.h]

This protects sr_main_res, which is the capability for the main resource. It is interlocked
only with rmutex, and is acquired first.

sr_queue_mutex [globals.h]

This protects the I/O list, the nap list, and all queues. It interacts with a number of locks but is
acquired before all others except clmutex, rmutex, and omutex. Some functions that need
the lock do not know whether it is already held. To handle this situation, the macros
LOCK_QUEUE and UNLOCK_QUEUE are used in nested pairs to access it. The first call to
LOCK_QUEUE acquires the lock and subsequent calls do nothing but increment a private counter.
Calls to UNLOCK_QUEUE just decrement the counter; when it reaches zero, the lock is released.
Except for sr_scheduler, which requires that its caller lock the queue, the pairs are contained
in the same function.

sr_fd_lock[n] [globals.h]

This array of locks protects files. It is indexed by file descriptor. Only one file lock is held at
any time. Except for debug_mutex, file locks acquired last.

proc_st->stack_mutex [sr.h]

This protects pr->stack. Routine sr_scheduler finds the next pr on some queue, then
sets old_cur_proc to itself and the sr_cur_proc to pr. It then does a context switch to
the job server’s private context, which is just an infinite loop in switch_proc. Routine
switch_proc does four things:

1) releases old_cur_proc->stack_mutex
2) acquires sr_cur_proc->stack_mutex
3) calls sr_chg_context(sr_cur_proc->stack)
4) if (old_cur_proc->status == FREE)

free_proc(old_cur_proc)

Since the job server holds no other locks while acquiring stack_mutex, it is acquired before
all other locks.

wait_ready_set_mutex [socket.c]

This protects waitset, the set of file descriptors checked for input, and incoming message
counters. It is acquired before mfd_fdm_mutex, but other than that it is never held when
another lock is acquired.

SR2.3−RUNTIME 15

Linear Ordering

A linear ordering of lock classes is presented below. When two locks are needed concurrently, the one in
the lower numbered class is acquired first. There are no nestings between locks in the same class. In other
words, while a lock from class n is held, no other lock from a class m may be obtained if m≤n.

Class 0 stack_mutex (always held by the current proc)
Class 1 res_pool->pmutex
Class 2 sr_main_res_mutex
Class 3 rmutex
Class 4 clmutex
Class 5 omutex

remote_mutex
Class 6 sr_queue_mutex

wait_ready_set_mutex
Class 7 alloc_mutex

class_pool->pmutex
cob_pool->pmutex
cre_mutex
currfd_mutex
send_mutex
final_mutex
mem_mutex
oper_pool->pmutex
proc_pool->pmutex
random_mutex
sr_exec_up_mutex

Class 8 cobmutex
Class 9 maxfd_mutex

mfd_fdm_mutex
sem_pool->pmutex
started_mutex

Class 10 sr_fd_lock[]
Class 11 debug_mutex

SR2.3−RUNTIME 16

