
DIP: Distance Information Protocol for IDMaps

Yixin Jin Beichuan Zhang Vasileios Pappas Lixia Zhang
Computer Science Department

University of California, Los Angeles
{yjin, bzhang, vpappas, lixia}@cs.ucla.edu

Sugih Jamin
Department of EECS

University of Michigan
jamin@eecs.umich.edu

Abstract

The Internet Distance Map Service (IDMaps) [3] pro-
vides distance estimates between any pair of hosts con-
nected to the Internet. The IDMaps system comprises two
component types: Tracers that measure distances between
IP address prefixes, and Servers that collect measurement
results and answer distance queries. The Distance Informa-
tion Protocol (DIP) is used for Tracers to report measured
distance data to Servers. The dynamics on the Internet
topology, the distributed nature of autonomous Tracers and
Servers, and the vast size of the data set require that DIP
provide highly adaptive and scalable data dissemination
from Tracers to Servers. DIP is a soft-state announce/listen
protocol and scales independently from the total amount of
measurement data by all Tracers. DIP achieves its scala-
bility through a combination of staged timers, positive feed-
back, and feedback suppression techniques, which enable
DIP to disseminate only the most useful measurement data
to Servers in a dynamic way. Simulations verified DIP’s
scalability and adaptability under various network condi-
tions.

1. Introduction

The Internet Distance Map Service (IDMaps) [3] aims
at providing distance1 estimates between any two hosts on
the Internet, so that applications can learn network distances
quickly and efficiently without performing actual measure-
ments themselves. Possible applications include locating
the nearest mirror server, building efficient content distri-
bution networks and P2P networks. As shown in Fig. 1,
IDMaps has a two-layer structure. Tracers are light-weight
measurement processes that are expected to be widely de-
ployed on the Internet over time. Tracers measure network
delay to different locations on the Internet and report the

1Throughout this paper, network distance refers to network latency,
though IDMaps design can support other metrics such as bandwidth as
well. See [3] for more discussion.

IS

IS

IS

IS

TT

T

Tracers

Tracers measure network distances,
advertise virtual topology over
multicast groups. Servers calculate
end-to-end distances.

IDMaps servers calcuate distances
on behalf of Internet hosts. Convey
distances via simple query/reply
protocol.

IDMaps servers:

End-user applications

T
T

T
T T

Figure 1. IDMaps Architecture

results to Servers. IDMaps Servers2 collect measurement
reports from all the Tracers and provide query/reply service
to end-user applications by estimating network distances.
Distance Information Protocol (DIP) is the component that
glues these two layers together. It is used for reporting
measurement results from Tracers to Servers and sending
feedback messages from Servers to Tracers. The issues of
how Tracers measure distances to various locations and how
IDMaps Servers estimate the distance in answering appli-
cations’ queries are addressed in [13] and [3], respectively;
they are not part of DIP’s functionality.

As a large-scale information dissemination protocol, DIP
is designed as an announce/listen protocol. Each Tracer
periodically advertises its measurement results to a multi-
cast group comprising all Servers, while Servers just pas-
sively collect these reports. This soft-state approach gives
the protocol adaptability and robustness needed in the dy-
namic operational environment, in which events such as net-
work change, packet loss, node failure, adding or removing
Tracers and Servers are not exceptional. Unfortunately, this
simple “open-loop” announce/listen protocol does not work
well in IDMaps system because our data size is huge. A
soft-state protocol generally incurs extra transmission over-
head due to periodic refreshment. It is not an issue when

2In previous publications [3] [4] [6], we refer the same entity as
“Clients” to emphasize that they consume information provided by Trac-
ers. Throughout this paper, we will call them “Servers” to emphasize that
they provide distance estimates to applications.

Address Prefix (AP)

Tracers

Tracer-Tracer distance (VL)

Tracer-AP distance (VL)

Host

Figure 2. Distance Map

the data size is small, but will be prohibitively expensive
when data size is as large as that in IDMaps system. Peri-
odically sending all the data will either consume too much
bandwidth or take too much time. Thus the challenge is to
design DIP as a protocol scalable to data size and retain the
advantages of soft-state approach as well.

Our main approach to scale DIP is information differen-
tiation. Servers prioritize different data items based on their
usefulness in distance estimation, then send the conclusion
to Tracers as feedback. Based on the feedback information,
Tracers are able to allocate more bandwidth to more use-
ful data and less bandwidth to less useful data. When the
most useful data is only a small portion of the entire data set
as in IDMaps, the system can achieve great scalability and
only lose little performance. To make this scheme work, we
incorporate effective techniques to adjust sending rate and
suppress duplicate feedbacks in our design. We believe that
DIP design presents not only a scalable, robust and adap-
tive solution to IDMaps system, but also valuable insights
on how to scale a soft-state protocol to large data size.

The rest of this paper is organized as follows. We be-
gin with overview (Section 2) on IDMaps background and
DIP’s design rationales, then discuss protocol design in de-
tail (Section 3), followed by performance evaluation (Sec-
tion 4). We discuss related work (Section 5) and give a sum-
mary (Section 6) in the end.

2. Overview

2.1. Background of IDMaps

Since it is very difficult to keep measuring and report-
ing distances to every single host on the Internet, IDMaps
groups nearby hosts into clusters represented by a common
IP address prefix (AP). Hosts are grouped into APs accord-
ing to network distances, as all hosts in one AP share rela-
tively the same distance to Tracers. Thus Tracers can mea-
sure distance to just one host in an AP and use the result
to represent the approximate distance to all the hosts in that
AP. Though they take the same representation, IDMaps’ AP
is different from routing prefix since the latter is grouped

according to routing policy. Hosts belonging to the same
routing prefix may locate far away and have very different
distances to Tracers.

A Tracer measures distances to other Tracers and APs,
and reports the results to Servers. An IDMaps Server com-
bines measurement results from all Tracers and build adis-
tance map(Fig. 2) , which is a virtual network topology. A
link in the distance map is called aVirtual Link (VL). When
a client application (e.g., web browser) queries for distance
between two hosts, the IDMaps Server will find out the cor-
responding APs and estimates the distance by calculating
the length of the shortest path between these two APs in
the distance map. Since the Internet topology changes from
time to time, Tracers must perform measurements and send
reports continuously. IDMaps’ goal is to provide distance
estimates with an update frequency on the order of days, or
if necessary, hours. Such information only adjusts to “per-
manent” topology changes instead of transient network con-
ditions. Instantaneous or near-instantaneous distance infor-
mation is both impossible to be distributed globally and of
diminishing importance to future applications [3].

2.2. Design Rationales of DIP

In IDMaps, there are a large number of both producers
(Tracers) and consumers (Servers) of the raw distance in-
formation. Each Tracer produces a small portion of the dis-
tance map; Each server collects information from all Trac-
ers and computes the entire distance map. The ideal mecha-
nism for this many-to-many distribution is IP multicast be-
cause of its efficiency. IP multicast also provides an effec-
tive way to handle dynamic membership. At any moment,
Tracers and Servers may join the system as deployment is
in progress, or leave the system as old hardware/software is
being phased out. Tracers and Servers are also distributed
widely on the Internet under different administrative con-
trol. With IP Multicast, we can identify all the Servers by a
multicast groupGs and all the Tracers by another multicast
groupGt, eliminating the need for explicitly tracking every
Tracer and Server. It allows each Tracer to transmit its small
portion of the distance map without coordination with other
Tracers. Tracers never need to know about the Servers in
advance and vice versa. In this sense, IP multicast serves
as a valuable discovery mechanism as well as a distribution
mechanism. In the case that IP Multicast is not available,
IDMaps can use end-host based multicast schemes (e.g.,
[16], [17], [12]) to obtain the same functionality.

There are two basic approaches to send raw distance
information from Tracers to Servers: hard-state and soft-
state. In the hard-state approach, Tracers report their dis-
tance information by reliable delivery. After the initial de-
livery, only significant updates will be reported. Therefore
the transmission overhead is kept small. However, as in an

Tracer
IDMaps
server

Report (Multicast)

Feedback(Unicast) t-spanner

Distance
Measurements

Hot VL

Icy VL

AP

Tracer

AP

Warm VL

Cold VL

full distance map

Figure 3. Overview of DIP operations

Internet-wide distributed system like IDMaps, no compo-
nent is guaranteed to be error-free: packets may be dropped,
links may go down, Tracers and Servers may crash etc. The
hard-state approach has to prepare for all possible errors
and handle them explicitly. Furthermore, reliable delivery
is not always necessary, because when a new measurement
result is available, whether or not the old result is delivered
becomes irrelevant. We adopt the soft-state approach be-
cause it simplifies protocol operations and makes the proto-
col adaptive to unexpected errors or changes. In a soft-state
protocol, Tracers periodically send distance informationas
refresh messages to Servers using best-effort transmission.
Over time, a Server will receive all the VLs. Each VL has
a time-to-live which is set to be several times longer than
the transmission period. Servers simply delete any raw dis-
tances whose age exceeds the assigned time-to-live.

However, periodic refresh messages between Tracers
and Servers introduce more transmission overhead, which
is proportional to the data size. In the worst case, if each
Tracer traces every other Tracer and all the APs, the data
size is on the scale of

� � � � � � �
, where

�
is the num-

ber of APs and
�

is the number of Tracers. As shown in
Section 3, our preliminary results suggest that

� �� ����
and

� �� �� , so the total data size can be hundreds million,
or even thousands million in the worst case. Periodically
sending and receiving all these information will consume
too much bandwidth, especially for a Server since it is the
sink for all reports. The conventional way to reduce band-
width consumption by soft-state refreshes is slowing down
the sending rate of refreshes. But in the case of huge data
size, the interval between two consecutive refresh messages
will be too big to be of any practical use. For example,
when a packet is lost, the Server has to wait a long time
before receiving the second transmission of the packet. An-
other problem caused by the data size is that Tracers have
to periodically measure a huge number of distances, which
can be a lot of workload.

The way we solve this problem is to differentiate data
items based on their usefulness in distance estimation. In-
stead of maintaining a full distance map with all possible
VLs, Servers calculate a	-spanner3 from the full distance

3A
-spanner of a graph is a subgraph in which the distance between
any pair of nodes is at mostt times of the distance in the original graph.

map and use the	-spanner in distance estimation. This	-
spanner has much fewer VLs, but is still able to provide
distance estimates without losing performance significantly.
VLs in the	-spanner are calledactiveVLs, while others are
calledbackupVLs. Servers send feedback to Tracers in-
forming them which VLs are active. Tracers will measure
and report active VLs much more frequently than backup
VLs. Therefore even some backup VL information become
stale or inaccurate, the overall performance of distance es-
timation keeps at roughly the same level. Fig. 3 shows the
overview of DIP’s operation.

3. Protocol Design

3.1. Distance Map

The Number of APs and Tracers Before diving into de-
tails of protocol design, we would like to get an idea of the
distance map’s scale, namely the number of APs in the In-
ternet and the number of Tracers needed by IDMaps.

First of all, the number of CIDR blocks is around 100K
and growing. However, CIDR blocks are aggregated ac-
cording to routing policies, not network distances as defined
in IDMaps. The same CIDR block may have multiple APs.
Therefore there are probably several times as many distinct
APs as there are CIDR blocks. We conducted an Internet
experiment in order to verify this and to get a more accurate
estimation. We first obtain about 2 million web site names
by searching English words in major search engines. After
resolving names to IP addresses and cleaning them up, we
end up with about 800K unique and reachable IP addresses
as our IP address pool. Compared with BGP tables, our
IP address pool covers about one third of the BGP address
prefixes. Therefore, we assume it covers one third of the
entire Internet, and the number of APs on the Internet will
be roughly three times the number of APs that exist in our
IP address pool.

In order to find the number of APs in our address pool,
we first measure the round trip time (rtt) to all IP addresses
in the pool and then group addresses that share the same
prefix and have similar rtt into one AP. For this purpose we
use the following algorithm. At first, we assume that all the
addresses in the pool belong to the same AP. If the distance
between any two addresses differs more than an error toler-
ance we split the AP in two halves. We recursively repeat
the same procedure for every AP until all the addresses of
each AP have almost the same distance (Fig. 4). We did the
measurement from three different locations in USA4 and the

4Though the experiment was carried out from only three sites,we feel
the accuracy is adequate for our purpose of estimating the number of APs
to assist the protocol design. We plan to expand the experiment to other
locations as more tracers are deployed.

IP Address Space

D
el

a
y

median

median*(1-error)

median*(1+error)

outside of error range

split half

split half Done

Done Done

Figure 4. Simple top-down AP discovery

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 A

P
s

di
sc

ov
er

ed

Distance Tolerance level (in percentage)

"nAP.Ann Arbor, MI"
"nAP.Los Angeles, CA"

"nAP.San Jose, CA"

Figure 5. Number of APs discovered

results are shown in Fig. 5. If we conservatively take the er-
ror tolerance level as 10%, the number of APs is between
100K and 160K. Considering the address pool only covers
about one third of the entire Internet, we estimate that there
are about 300K to 500K APs on the current Internet.

We also did simulations to evaluate how many Tracers
are needed by IDMaps in order to provide satisfactory dis-
tance estimation. The major conclusion is that increasing
the number of Tracers will improve the performance, but
with diminishing gain. Only 0.2% of all nodes serving as
Tracers can already provide correct estimates with very high
probability. Being conservative, we assume the number of
Tracers IDMaps will deploy is 1% of the number of APs,
which gives 3000 to 5000 Tracers. Detail discussions and
simulation results are available in [3] and [7].

	-spanner Although the distance map can have as many
as ��� � �� � �� � � � �

VLs, not all VLs are equally
important in distance estimation. For example, among three
nodesA, B andC, if ��� � ��	 �� ��	 , then theAC vir-
tual link can be well approximated by the sum ofAB and
BC virtual links. In [3], Franciset al. exploited this prop-
erty by applying a	-spanner algorithm to the full-mesh of
Tracer-Tracer VLs. The result shows that for	 = 2, there
is no perceptible performance degradation for applications
like closest server selection, and the number of necessary

0

1

2

3

4

5

20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 A
P

 d
eg

re
e

Number of Tracers

"Average AP degree"

Figure 6. AP degree v.s. number of tracers

Figure 7. Active VLs v.s. backup VLs

Tracer-Tracer VLs are reduced by more than 10 times in a
1000-node topology with 100 Tracers.

What left unsolved in [3] is how many Tracer-AP VLs
should be maintained, although it demonstrated that hav-
ing 2 or 3 Tracers per AP performs better than having only
one Tracer per AP. We solve this problem by extending the
	-spanner algorithm to Tracer-AP VLs as well [7]. Now
the entire distance map is reduced to a 2-spanner, and the
distance estimation is done by calculating shortest path be-
tween two APs. Although one AP can have as many asN
Tracer-AP VLs, our simulation (Fig. 6) shows that in the 2-
spanner, the number of Tracer-AP VLs per AP, i.e., the AP
degree, is very small, and it decreases as more Tracers are
deployed.

Using a 2-spanner instead of the full distance map differ-
entiates all VLs into two types: active VLs which comprise
the 2-spanner, and backup VLs otherwise. In order to es-
timate the active to backup VL ratio, we run the 2-spanner
algorithm on an Internet-like topology [14] of 5000 nodes,
from which we randomly select APs and Tracers. The num-
ber of active VLs is much small compared with the number
of backup VLs, as shown by Fig. 7. This makes it possible
for DIP to allocate more resources to carry a small amount
of important information, rather than treat every data item
equally. We also designed an incremental	-spanner algo-
rithm [6] to reduce the computational load.

Warm Hot

Cold Icy

new distance

new distance

new distance

timeout, become backup

acknowledged by feedback,
become active.

report

report
report,
reduce sending rate

report report

Figure 8. State transitions for virtual links

3.2. Tracer Report

Tracers report their distance measurement results to all
the Servers by multicasting to the Server groupG�. The re-
port is sent by best-effort instead of reliable delivery, which
is expensive and unnecessary. Reliable delivery requires
handling of NACK or ACK from multiple IDMaps Servers,
which can be quite complex as reliable multicast protocols
have shown. Since the report is sent periodically, a loss can
be recovered by a later arrived report. Furthermore, when
there is a new measurement result for a VL, whether the old
information is delivered becomes irrelevant.

As discussed before, using the same sending rate for ev-
ery VL does not work well when data size is very large. In
order to scale to the data size, we need to take application
requirements into account to allocate the bandwidth more
efficiently. In DIP, Tracers categorize VLs into four types
and use different sending rate for each type (Fig. 8). If a VL
is a new VL or its distance has just changed significantly
(e.g. over 50%) , it becomeshot and will be reported by
a very fast rate

�
hot. Then the VL enters thewarm state

as its sending rate gradually slows down, until a slow rate
�

cold is reached and the VL becomescold. Active VLs
stay in cold state and the sending rate is fixed at

�
cold.

Backup VLs will go further to becomeicy where a much
slower rate

�
icy is in use. The transition fromicy to cold

is triggered and confirmed by Server’s periodic feedbacks
indicating which VL is active. If a VL has not been ac-
knowledged by feedbacks for some time, it will becomeicy
again. At any state, if the measurement reveals significant
change in a VL’s distance, the VL turnshot.

During warmstate, the sending rate is exponentially re-
duced from

�
hot to

�
cold, cut in half after every trans-

mission. Compared with directly jumping fromhot to cold,
this mechanism sends a few packets in fast rate at the be-
ginning, so that the newly updated information is likely to
overcome potential packet loss quickly.Hot andwarmare
transient states. Most of the time VLs are eithercold or
icy. To ensure quicker transmission of active VLs without

starving backup VLs, Tracers adjust
�

cold and
�

icy so that
bandwidth is allocated between them proportionally. In the
current design, we tentatively set the bandwidth for backup
VLs to be one third of the bandwidth for active VLs. Since
active VL is only a small portion of all VLs, the number of
backup VLs grows much faster than active VLs when the
number of Tracers and APs increases. As a result,

�
icy

will become much lower. However this does not affect the
system performance perceptibly since backup VLs are not
directly used in distance estimation.

Although any significant change in distances will trigger
fast transmission, we still need to send refresh message of
active VLs and backup VLs in relatively slow rates (

�
cold

and
�

icy respectively) periodically. First, it ensures the sys-
tem’s robustness by helping the Server overcome unfore-
seen faults. Second, for changes that are not qualified as
significant changes, they will be conveyed to Servers via
periodic refreshes. Though they may not make big differ-
ence in the distance map, such information is still useful
in refining the distance estimation. Third, for a newly de-
ployed Server, there will be a predictable time period before
it collects most VLs, especially active VLs, in order to build
the distance map and start providing estimation service.

3.3. Server Feedback

Positive Feedback A Tracer only measures distances be-
tween itself and other places and has no global view of the
Internet distance map. Therefore it cannot decide on its own
which VL is active, which backup. Such information is only
available from Servers who are able to calculate	-spanner
of the entire distance map.

Servers unicastpositive feedbacks to Tracers telling
them which VL is active, instead ofnegativefeedbacks
telling them which VL is backup. Positive feedback con-
sumes less bandwidth than negative feedback since active
VLs are much less than backup VLs. When the network is
congested, lost negative feedbacks will trigger more report
traffic since Tracers falsely think there are more active VLs.
But lost positive feedback will just reduce the report traf-
fic. Therefore using positive feedback is more scalable and
robust.

Since Servers act independently in sending feedbacks,
each Tracer will receive feedbacks from all Servers causing
feedback implosion. Therefore we need an efficient feed-
back suppression mechanism to reduce duplicate feedbacks.

Feedback Suppression DIP uses a novel algorithm for
feedback suppression. The goal is to elect a small coun-
cil of Servers to send feedbacks to a Tracer. The council
size should be appropriate to make sure the number of feed-
back that a Tracer receives is within the range of [L � � �U]
and close to a constant�. The constant� is usually chosen

0

2

4

6

8

10

0 5 10 15 20 25

A
ve

ra
ge

 N
c

Packet loss probability (in percentage)

"63 servers"
"125 servers"
"250 servers"
"500 servers"

"1000 servers"
"2000 servers"

Figure 9.
�

� vs. packet loss probability

as a small number greater than 1 in order to offset possi-
ble packet loss. The election of the council is done in each
report-feedback round.

A simple way to elect the council is to let every Server
hold a probability� and decide whether to join the council
according to� . However,� is hard to choose because it
depends on the total number of Servers and the packet loss
probability in the network. The idea is to let Tracers tell
Servers the result of last round election, and Servers adjust� accordingly to let the Tracers receive� feedback messages
in the next round.

A Tracer includes the number of feedback it received
(
� �

) in last round with every report of active VLs. Each
Server uses a flag� to remember whether itself is a coun-
cil member (� � �

) or not (� � �). A Server adjusts its
probability of being a council member as follows:

� �
���

��� �� � � 	
 ��� � � �
� �� � �
 ��� � � �� � �� � � � � ��� � � �

Basically, if
� �

is within the range [L � � �U], the council will
remain unchanged; If there are too many feedbacks (

� �
>

U), current council members will opt out by probability (
���� �); If there are too few feedbacks (

� �
< L), non-council

Servers will join the council by a heuristic probability� � .
Non-council members maintain their� � in the following
way:

� � � � � � �� �� � � 	
 ��� � � �� � � � �� � � � � ��� � � �

Initially � � is set to�� , and is always limited within [0� � �1].
After several rounds of adjustment,� � will adapt to the
number of non-council members. It makes sure that every
time the council needs to increase, there will be only a lim-
ited number of new members joining instead of everyone.

Compared with other feedback control mechanisms such
as in [1], the council algorithm can elect the council with
desired size quickly, normally in 1-3 rounds. The council

remains the same most of the time, so the overhead of pe-
riodic re-election is saved. More prominently, the council
algorithm adapts well to network conditions (e.g., packet
loss) and scales independently of the number of Servers.
Fig. 9 is a typical simulation result withL = 3, � � � �� �
andU = 6. It shows clearly that

� �
remains close to� as

the number of Servers varies between 63 and 2000, and the
packet loss probability varies between 0% and 25%. When
packet loss increases, more Servers will join the council so
that the number of feedback received by the Tracer remains
the same. Since the increment of council size is at least
1 every time, it may over-compensate the effect caused by
packet loss when loss probability is small. This explains the
initial increase of

� �
in Fig. 9.

4. Performance Evaluation

In this section, we use simulation to evaluate the overall
scalability of DIP in terms of traffic load it introduces into
the network. Our purpose is not to show the exact number of
traffic volume, but to show the trend as some performance
factors change. In particular, we try to find out how the
traffic load changes as the system grows, what the contribu-
tion of different types of messages is, and how link failure
affects the overall traffic load.

4.1. Simulation Setup

We use Waxman [15] topologies with parameters set to� � �
and� � � �� to model the network. These topolo-

gies are mesh-like with rich connectivity. When we sim-
ulate network changes by bringing a link down, there will
be changes in network distances instead of partition of the
entire topology. Most simulations are run on a 500-node
topology with mean node degree of 5.37. Each node in
the topology is treated as an AP. Tracers are placed into the
network randomly. We tentatively set the rate of advertis-
ing active VLs,

�
cold, to once every 2 hours, and restrict

the bandwidth consumed by backup VLs to be one third
of the bandwidth consumed by active VLs. Servers keep
an active VL for at most 2.5*

�
cold without receiving any

refresh from the Tracer. In real implementation, these pa-
rameters should be determined by available bandwidth and
the volume of distance information. The simulation runs
for 1 month (43200 minutes) of simulated time. Network
changes are simulated by link failure and recovery using a
simple on-off model. The time that a link is down is ex-
ponentially distributed, as is the time that a link is up. The
average length of downtimeToff is 4 hours, the link fail-
ure probability� � is between 0% to 1.28%, and the average

length of uptime is��� � ���� !"#$ � . As a link goes
up and down once in a while, the network path between two

10

11

12

13

14

15

16

10 15 20 25 30 35 40 45 50 55

T
ra

ffi
c

ov
er

he
ad

 (
in

 M
B

yt
es

 o
ve

r
1

m
on

th
)

Number of Tracers

"Load_vs_nTracer"
"Bezier_Curve"

(a) Traffic load v.s. number of Tracers

0

2

4

6

8

10

12

10 15 20 25 30 35 40 45 50 55

T
ra

ffi
c

ov
er

he
ad

 (
in

 M
B

yt
es

 o
ve

r
1

m
on

th
)

Number of Tracers

"Feedback"
"Active VL"

"Backup VL"

(b) Different types of traffic load

10

15

20

25

30

35

40

45

50

55

400 600 800 1000 1200 1400 1600

T
ra

ffi
c

ov
er

he
ad

 (
in

 M
B

yt
es

 o
ve

r
1

m
on

th
)

Size of network (Number of APs)

"Load_vs_Size"

(c) Traffic load v.s. number of APs

Figure 10. Simulation Results

nodes may change, which in consequence may change some
network distances, so that we can observe its effects on DIP.

4.2. Simulation Results

The main goal of our simulation is to compute the traffic
load injected into the network due to DIP messages. Traffic
load in our simulation is defined as the average number of
bytes transmitted over one physical link, i.e., total traffic
volume over the number of physical links. For multicast
packets, we assume they traverse every link in the topology,
to simplify computation.

Fig. 10(a) shows that the traffic load increases as the
number of Tracers increases. When the number of Tracer
is large, traffic load grows much slower than linearly.
Fig. 10(b) shows the contribution from different types of
messages. As designed, the traffic load of advertising active
VLs is about three times as that of backup VLs. They grow
sub-linearly because the number of active VLs grows sub-
linearly with the number of Tracers. Feedback traffic only
contributes a small portion of total traffic load. Because
Servers use feedback to tell Tracers which VL is active, and
only a small number of Servers are elected to send feedback
to a particular Tracer, the feedback traffic is about propor-
tional to the number of active VLs and is independent of the
number of Servers deployed. All types of traffic grow sub-
linearly, which makes the entire system scale well with the
number of Tracers.

To see how traffic load changes with the number of APs,
we run several simulations with different network sizes.
The numbers of Tracers and IDMaps Servers are fixed (25
Tracers and 5 IDMaps Servers). The link failure rate is
0.01% and topologies are created with the same Waxman
parameters. Fig. 10(c) shows that the traffic load increases
linearly when the size of the topology changes from 500 to
1500. Given the number of APs on the Internet is about
500-700 thousands, extrapolation of Fig. 10(c) gives an es-

13.6

13.8

14

14.2

14.4

14.6

14.8

15

15.2

15.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4
T

ra
ffi

c
ov

er
he

ad
 (

in
 M

B
yt

es
 o

ve
r

1
m

on
th

)
Link failure probability (in percentage)

"Load_vs_Condition"
"Bezier_Smoothed"

Figure 11. Traffic load vs. link failure

timated average traffic of 43-25Kbps when DIP is deployed
widely.

To show how the traffic overhead changes under different
network conditions, we simulate DIP in a 500-node topol-
ogy with 25 Tracers and 5 IDMaps Servers and apply the
on-off model of link failure. Fig. 11 shows that the traffic
load grows as the link failure probability increases, but its
pace slows down as the network becomes less stable. There
are two factors that affect the traffic load in this simulation.
One is how frequently the network changes. When links go
up and down, the distance between two nodes are likely to
change which triggers Tracers to advertise new distances at
a fast rate. In DIP’s term, more VLs becomehot. Therefore,
more network changes cause more traffic load. On the other
hand, when link failure probability is high, some links will
be down for a long time. Statistically, there are fewer links
in the network topology. This results in less links in the	-
spanner because more virtual links will be able to share the
same physical link. Therefore, although the total number
of VLs remains the same, there are less active VLs in this
statistically simplified topology, and traffic load is reduced.
As shown in Fig. 11, when link failure probability is small,
the first factor dominates and traffic load increases almost
linearly. When link failure probability is high, the second
factor gradually offsets the first factor, thus the curve goes

flatter. This simulation demonstrates both DIP’s adaptabil-
ity to network changes and the effectiveness of information
differentiation.

5. Related Work

Soft-state approach has been adopted by many Internet
protocols, including RSVP [18], SRM [2], SAP [5] and so
forth. SAP is similar to DIP in that senders periodically ad-
vertise information to a well-known multicast group which
receivers passively listen. SAP controls its bandwidth con-
sumption by slowing down the advertisement when the
number of sessions increases. State compression [11] is a
technique that compresses RSVP state information to re-
duce bandwidth consumption of refresh messages. It is or-
thogonal to our approach of information differentiation. It
can be applied to DIP to further reduce transmission over-
head, but cannot help reduce Tracer’s measurement work-
load.

The idea of sending important data faster appeared in [8],
in which RSVP triggered messages are sent out quickly,
then exponentially slowed down to a fixed refresh rate after
an acknowledgment has arrived from the receiver. Sharma
et al. [10] presents an adaptive algorithm for senders to ad-
just refresh rate and for receivers to set timeout timer dy-
namically. SRM [2] proposes to organize data into a hierar-
chical namespace and periodically multicast this namespace
for the purpose of detecting packet loss and recovering the
loss. Raman and McCanne [9] summarize many of these
techniques and propose a formal model to analyze the per-
formance tradeoff in soft-state protocols. These work focus
on reliable data delivery, while DIP focuses on how to dis-
seminate large-scale data set.

6. Summary

Designing a large-scale data dissemination protocol for
IDMaps is challenging in that the protocol has to deal with
both the dynamic operational environment and the huge
data size. A hard-state design does not need periodic re-
freshment, but requires reliable delivery and complex error
handling. Basic soft-state design handles various errors by
simple periodic refreshment, but the traffic load will be pro-
hibitive as the data size is huge. DIP takes the soft-state ap-
proach and incorporates several techniques such as staged
timer, positive feedback, feedback suppression etc. under
the guidance of information differentiation. We demon-
strate that by taking application’s requirements into account
to allocate resources more efficiently, a soft-state data dis-
semination protocol can be made scalable to huge data size.
We believe this principle of information differentiation can
be applied to other soft-state protocols as well to achieve
better scalability.

References

[1] J. Bolot, T. Turletti, and I. Wakeman. Scalable feedback
control for multicast video distribution in the Internet. In
Proc. of ACM SIGCOMM, pages 58–67, 1994.

[2] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang.
A reliable multicast framework for light-weight sessions and
application level framing.ACM/IEEE Transactions on Net-
working, 5(6):784–803, 1997.

[3] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global internet host distance estima-
tion service.ACM/IEEE Transactions on Networking, Oct.
2001.

[4] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. Gryniewicz,
and Y. Jin. An architecture for a global internet host distance
estimation service. InProc. of IEEE INFOCOM 1999, Mar.
1999.

[5] M. Handley, C. Perkins, and E. Whelan. Session announce-
ment protocol. RFC 2974, IETF, Oct. 2000.

[6] S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. On
the placement of Internet instrumentation. InProc. of IEEE
INFOCOM 2000, Mar. 2000.

[7] Y. Jin. Distance Information Protocl (DIP) for Internet Dis-
tance Map Service (IDMaps). PhD thesis, University of Cal-
ifornia, Los Angeles, June 2001.

[8] P. Pan and H. Schulzrinne. Staged refresh timers for RSVP.
In Proc. of IEEE GLOBECOM, pages 3–8, November 1997.

[9] S. Raman and S. McCanne. A model, analysis, and protocol
framework for soft state-based communication. InProc. of
ACM SIGCOMM, pages 15–25, 1999.

[10] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson. Scalable
timers for soft state protocols. InProc. of IEEE INFOCOM,
pages 222–9, April 1997.

[11] L. Wang, A. Terzis, and L. Zhang. A new proposal for RSVP
refreshes. InProc. of the Int’l Conf. on Network Protocols
(ICNP), pages 163–72, November 1999.

[12] W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay opti-
mizations for end-host multicast. InProc. of the Int’l Work-
shop on Networked Group Communication (NGC), Oct.
2002.

[13] Z. Wang, A. Zeitoun, and S. Jamin. Challenges and lessons
learned in measuring path RTT for proximity-based applica-
tions. submitted for publication, 2002.

[14] J. Winich and S. Jamin. Inet-3.0: Internet topology genera-
tor. Technical Report CSE-TR-456-02, University of Michi-
gan, 2002.

[15] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model
an internetwork. InProc. of IEEE INFOCOM, Mar. 1996.

[16] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: a frame-
work for delivering multicast to end users. InProc. of IEEE
INFOCOM, June 2002.

[17] B. Zhang, S. Jamin, and L. Zhang. Universal IP multicast
delivery. InProc. of the Int’l Workshop on Networked Group
Communication (NGC), Oct. 2002.

[18] L. Zhang, S. Deering, D. Estrin, S. Schenker, and D. Zap-
pala. RSVP: A new resource ReSerVation protocol.IEEE
Network Magazine, 7(5):8–18, Sept. 1993.

