
Load-Balanced IP Fast Failure Recovery

Mingui Zhang1, Bin Liu1, and Beichuan Zhang2

1 Computer Science and Technology Dept., Tsinghua University, Beijing, 100084, P.R. China
2 Computer Science Dept., University of Arizona, Tucson, Arizona 85721, USA
zmg06@mails.tsinghua.edu.cn, bzhang@cs.Arizona.edu

Abstract. As a promising approach to improve network reliability, Proactive
Failure Recovery (PFR) re-routes data traffic to backup paths without waiting
for the completion of routing convergence after a local link failure. However, the
diverted traffic may cause congestion on the backup paths if it is not carefully
split over multiple paths according to their available capacity. Existing approach
assigns new link weights based on links’ load and re-calculates the routing paths,
which incurs significant computation overhead and is susceptible to route oscil-
lations. In this paper, we propose an efficient scheme for load balancing in PFR.
We choose an adequate number of different types of loop-free backup paths for
potential failures, and once a failure happens, the affected traffic is diverted to
multiple paths in a well balanced manner. We formulate the traffic allocation
problem as a tractable linear programming optimization problem, which can be
solved iteratively and incrementally. As a result, only the flows affected by the
failures are re-allocated to backup paths incrementally without disturbing flows
not directly affected by the failures. Simulation results show that our scheme is
computationally efficient, can effectively balance link utilization in the network,
and can avoid route oscillations.

Keywords: OSPF; failure recovery; load balance; Linear Programming.

1 Introduction

One of the primary design goals of the Internet was to continue to function despite of the
component failures [1]. At the IP level, when routers or links fail, the network should
still be able to deliver the packets as long as alternative paths exist. In current routing
protocols, such as OSPF (Open Shortest Path First) and IS-IS (Intermediate System to
Intermediate System), routers are informed about network topology changes by update
messages, and then re-calculate their routing paths accordingly. However, this approach
incurs convergence delay, as it takes considerable long time for the update messages to
propagate throughout the network and for the routers to re-calculate routing paths [2].
During the convergence period, packets may be delayed, dropped, or fall in temporary
routing loops, which will definitely lead to significant performance degradation of on-
serving applications.

A different approach for handling physical failures is Proactive Failure Recovery
(PFR) ([3]), in which routers compute and store backup paths for potential failures
beforehand, and once a local link failure is detected, a router will redirect traffic to
backup paths right away instead of waiting for the completion of network-wide routing

N. Akar, M. Pioro, and C. Skianis (Eds.): IPOM 2008, LNCS 5275, pp. 53–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 M. Zhang, B. Liu, and B. Zhang

convergence. PFR has short failure recovery time and reduces the overhead of both
update propagation and path re-calculation. Given that a large portion of failures in IP
networks is short, transient failures [4], PFR should be able to improve the quality of
packet delivery significantly.

In both the conventional routing convergence approach and the early work on PFR,
routers redirect traffic affected by failures to alternative paths without load balanc-
ing considerations. The diverted traffic will easily cause uneven traffic reassignments,
which either congests on already heavily loaded links, or under-utilizes lightly loaded
links. Especially if other links are congested due to the diverted traffic, it defeats the
goal of minimizing the impacts of failures to the application performance. Therefore,
to be robust against failures, post-failure load balancing is particularly important.

Recently, “weight-setting” method [5] was used for load balancing in PFR [6]. Given
that the demands have been projected from previous measurements, in order to find the
weight set that can avoid congestions, the weights of links are re-assigned according to
the load they carry: large weights for heavily loaded links and small weights for lightly
loaded links, and then the routing paths are re-calculated based on the new link weights.
In this way, part of the traffic will be shed from heavily loaded links to lightly loaded
ones. The results in [5] show that changing weights for just a small percentage of links
can significantly re-balance traffic load over the entire network.

However, re-calculating routing paths (e.g., running Dijkstra’s algorithm) network-
wide is expensive and time-consuming, and it may easily lead to routing oscillations as
well. Weight-setting is often formalized as an optimization problem of Integer Linear
Programming (ILP), which is NP-hard. Existing work has to resort to heuristics such as
Tabu search [4] and local search [5]. The result does not guarantee convergence in that
new weight assignment redistributes traffic, which will in turn affect weight assignment
in the next round, and so forth. In some network settings, route oscillations can easily
happen [7]. More recent work ([4], [6]) has put much efforts to try to refine the weight-
setting method but no substantial improvements have been achieved.

Thinking in a different way, in this paper, instead of working on the “weight-seting”,
we turn to propose another light-weight yet efficient and stable scheme for post-failure
load balancing with PFR. Each router prepares multiple backup paths for potential fail-
ures based on the best-path routing tables when the network is stable. Once a fail-
ure happens, the router will distribute the affected traffic over multiple backup paths
through solving a Linear Programming (LP) problem incrementally, which is tractable
and requires much less computation than ILP. The diverted traffic will be allocated on
the multiple backup paths and the allocation will be further refined with the subsequent
LP iterations. With this scheme, link weights keep unchanged and routers do not need
to re-calculate their routing paths, but the load-balancing goal is perfectly achieved.

Two design challenges are addressed here in PFR and its post-failure load balanc-
ing: 1) how to select multiple loop-free backup paths with small overhead, and 2) how
to decide the amount of affected traffic to be shed on each backup path in a well bal-
anced manner. By proposing a unique solution, we make the following four contribu-
tions. 1) We explore and identify another two additional types of loop-free alternative
paths locally besides the Equal-Cost-Multiple-Path [8] [9], which gives more path diver-
sity for post-failure delivery; 2) In deciding traffic distribution over multiple paths, we

Load-Balanced IP Fast Failure Recovery 55

formulate it as a LP problem minimizing the sum of link utilization. By solving the
problem iteratively and assigning penalty factors to heavily loaded links, we actually
achieve the goal of minimizing the maximum link utilization in the network; 3) We
introduce a bias factor into the LP iteration to damp the oscillations; 4) Once a failure
happens, the LP problem can be solved incrementally since only the traffic affected by
the failures is taken into consideration by the LP objective function. Simulation results
show that our scheme can effectively balance the load over multiple paths, has small
computation overhead and converges fast.

The rest of the paper is organized as follows. Section 2 presents how we choose
loop-free backup paths for failure recovery. Section 3 formulates the traffic allocation
as a LP problem and describes how we solve it iteratively and incrementally. Section 4
evaluates the scheme’s performance. Section 5 concludes the paper.

2 Alternative Paths Setup

In PFR, routers try to detect and recover failures locally rather than relying on network-
wide routing convergence. Generally, a link failure will trigger the physical detection,
which reports the event to the IP layer immediately. A router can locally find multiple
paths forwarding the affected traffic on the failed link(s) via its neighbors. Figure 1(a)
illustrates this by a simple example. Node u’s next hop on its shortest path towards d
is f . Node u also maintains alternative paths to reach d through other neighbors such
as a1, a2, . . . , an. When a local link u → f fails, u will shift its affected traffic to al-
ternative paths, e.g., via a1, without waiting for the completion of routing convergence.
The diverted packets are marked (e.g., using the Type Of Service (TOS) field in the
packet), so that the downstream routers will know that the packet is diverted and can
make appropriate forwarding decisions.

PFR works mainly in intra-domain routing, or IGP, such as OSPF and IS-IS. It can
handle single-link failures and multiple-link failures that do not affect each other. In
other words, as long as the multiple failures do not disable all the alternative paths and
the packets diverted to the alternative paths do not encounter another failure again, PFR
works fine. Our work is within the same intra-domain routing scope and inheres the
same limitation regarding multiple link failures. Our contribution is to set up and uti-
lize multiple alternative paths (e.g., paths via a1, a2, . . . , an in Figure 1(a)) efficiently

s

d

Adj[u]

a1

fu

...

...

an

(a) Local alternative paths

d

a

b

c

1

5

1

2

2

5

(b) Non-directional graph

d

a

b

c

1
2

2

(c) All the shortest paths to d

Fig. 1. Demo graphs

56 M. Zhang, B. Liu, and B. Zhang

to spread the adjusted traffic load to avoid potential post-failure congestions. This sec-
tion describes how we choose multiple paths, and the next section describes how we
distribute traffic over the multiple paths.

On one hand, given a destination, there can be a huge number of alternative paths
from a router to reach the destination. It is not only impractical but also unnecessary
to find all the possible alternative paths and store them. On the other hand, the number
of alternative paths cannot be too small, otherwise they will not be able to serve the
purpose of failure recovery and load balancing. Therefore, we need to find adequate
number of loop-free alternative paths without significant computation overhead.

One way of doing multi-path routing is to split traffic among paths with the same
IGP costs [8]. Those ECMPs should be able to be used for post-failure load balanc-
ing without introducing routing loops. We extend the Dijkstra’s algorithm to calculate
ECMP from a router to all destinations. We use ECMP for load balancing, but they do
not have the adequate path diversity yet. At this point, we need other types of loop-free
alternative paths.

We represent the network by a positive weighted bi-directional graph G = (V , A),
where V is the set of vertexes and A is the set of arcs. Running Dijkstra’s algorithm
on G will generate shortest paths that form a tree rooted at the source vertex s. This
tree is known as Shortest Paths Tree (SPT) [10]. We call the shortest paths generated by
Dijkstra’s algorithm the type-0 paths. Running the extended Dijkstra’s algorithm will
generate ECMP, which are called the type-1 paths. Type-0 paths are the primary for-
warding paths, and type-1 paths are alternative paths. Further, we will calculate another
two types of paths and prove that they can be used as alternative paths too.

We reverse the direction of each arc in the graph G, and then run Dijkstra’s algorithm
to get SPT regarding vertex d as the “root”. Finally, by reversing back the directions of
the arcs, we get a subgraph that gives every vertex’s shortest path to the given destina-
tion d. Let Gπ be the subgraph we get. Figure 1(c) is an example of Gπ for the graph
given in Figure 1(b). In the following discussion, we focus on the paths to a single given
destination, i.e., Gπ. It is difficult and unnecessary for u to get all the information of Gπ

locally. However, we can get a part of the information from u and its neighbors locally,
as depicted in Figure 1(a). This part of information is enough for u to set up the other
two types of alternative paths, as described in the following. We define the shortest path
from s to d on Gπ by s � d. s � u � d is the shortest path from s to d going through
u, s � u → f � d is the shortest path from s to d via arc u → f , and s � d/u � f
represents the shortest path from s to d not via arc u → f . Suppose there is a shortest
path p � q. s � d/p �� q denotes the shortest path from s to d does not use any vertex
or arc on p � q. When p can not reach q due to failures, s can still reach d safely using
s � d/p �� q.

On Gπ , there is a single successor for each vertex. Assume f is the successor of u.
We disable the connection of arc u → f proactively to prepare the alternative paths
for u, which is u � d/u � f . In our work, we resolve u � d/u � f locally
instead of fixing up s � d/u � f directly. When the arc u → f really fails, we use
s � u � d/u � f to replace s � d/u � f . u must go through its neighbors except
f to bypass the failure: u � d/u � f = u → a � d/u � f , here a ∈ Adj[u] − {f}.

Load-Balanced IP Fast Failure Recovery 57

Let A(u) = Adj[u] − {f}. Since a’s shortest path to d may or may not be affected
by the failure, A(u) can be divided into 2 disjoint sets: A1(u) = {a|a ∈ A(u) and a �
d = a � d/u � f} and A2(u) = {a|a ∈ A(u) and a � d �= a � d/u � f(i.e. a �
d = a � u → f � d)}.

Theorem 1. If a ∈ A1(u) then a � d = a � d/s �� u, i.e., a � d does not use any
vertex or arc on s � u .

Proof. Assume a � d uses any vertex v on s � u, v will go through u → f to d, then
a � d must be affected by the failed arc u → f , namely a � d �= a � d/u � f , i.e.,
a /∈ A1(u). We obtain a contradiction here. ��

Theorem 1 tells us that when u → f is failed, the shortest path of the neighbors in
set A1(u) is safe to be used by u without any risk of incurring a loop. Thus, we safely
replace u � d/u � f with u → a � d.

The failure of arc u → f on the shortest path from s to d can be recovered by u
locally. These alternative paths are stored proactively in router u, and we call them the
type-2 paths.

All neighbors in set A2(u) are not safe to be used, but we still have a method to
obtain the alternative paths via part of them. Assume u′ ∈ A2(u). u′ has its own type-2
alternative paths to bypass their shortest path failure of arc u′ → f ′. Let a′ ∈ A1(u′). If
the type-2 alternative path u′ → a′ � d luckily does not go through the failed arc u →
f , i.e. u′ → a′ � d = u′ → a′ � d/u′

� f ′ = u′ → a′ � d/(u′
� f ′, u � f), u

may use this path to establish its own alternative path as well. The paths established in
this way are also safe for u, which can be insured by the following theorem.

Theorem 2. If u′ ∈ A2(u), and a′ ∈ A1(u′), assume a′ � d = a′ � d/u � f , then
a′ � d = a′ � d/s �� u.

Proof. There are two possibilities for u′: a) u′ ∈ V [s � u] and b) u′ /∈ V [s � u].
Here, V [s � u] denotes the set of all the vertexes on the shortest path from s to u. We
get the contradictions respectively as following to prove the theorem.

a) u′ ∈ V [s � u].Because f ′ is the successor of u′ on Gπ, u′ is on the path s � u
and u′ �= u, f ′ must be on the path s � u too. Then, u′ → f ′ ∈ A[s � u]. A[s � u]
denotes the set of all the arcs on the shortest path s � u. Here, f ′ may happen to be
u. For the purpose of contradiction, we suppose a′ � d �= a′ � d/s �� u. That is to
say the type-2 alternative path of u′, u′ → a′ � d must go through a vertex v on the
shortest path s � u, i.e. v ∈ V [s � u]. If u uses this path, a loop will occur. According
to theorem 1, v /∈ V [s � u′], thus v ∈ V [f ′ � u]. v � d must go through arc u → f
as well. Consequently, a′ � d �= a′ � d/u � f , which contradicts our assumption.

b) u′ /∈ V [s � u].
Obviously, u′ → f ′ /∈ A[s � u], the failure of u′ → f ′ will not break the connectivity
of s � u. If the type-2 alternative path of u′ goes through the vertex on s � u, it must
go through the arc u → f as well. The contradiction is easy to get. ��

Therefore, according to Theorem 2, if u′ meets the assumption in the theorem, we can
safely replace u � d/u � f with u → u′ → a′ � d. We call this kind of alternative

58 M. Zhang, B. Liu, and B. Zhang

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Mesh Wax1 Wax2 Wax3 Sprint

T
he

 s
um

 o
f p

at
hs

Names of topologies

loop
type3
type2

type0,1

(a) The sums of paths

 0

 10

 20

 30

 40

 50

 60

Mesh Wax1 Wax2 Wax3 Sprint

T
he

 a
ve

ra
ge

 le
ng

th
 o

f p
at

hs

Names of topologies

type0,1
type2
type3

(b) The average lengths of paths

Fig. 2. The statistics of different kinds of paths

paths type-3 paths. u’s remaining neighbors whose type-2 paths are affected by the
failure of arc u → f can not be used or else loops will occur.

Always, the alternative paths can be configured explicitly using MPLS (Multi-
protocol Label Switching) [11]. Nevertheless, MPLS does not appeal to ISPs due to
its configuration overhead and vulnerability to human errors [9]. Mechanisms that can
be employed in pure IP networks appear to be more potential in the near future [12].
When a failure occurs, the upstream router adjacent to the failure takes charge of the
failure before the finish of the time-consuming routing convergence. It uses the alter-
native paths to bypass the failure, and mark whether the packets should be detoured or
normally delivered by its downstream. The downstream router will determine locally
which kind of paths should be used. The TOS field is a natural choice for us to do
the marking, and there is similar work in IETF that deals with Multi-Topology rout-
ing [13]. However, our scheme need only one bit while Multi-Topology routing has to
exploit several bits.

Figure 2 shows the statistics of different topologies including the Mesh-16-4 topol-
ogy1, three topologies with 20 nodes produced by the Waxman model [14] and the
PoP-level North American Sprint IP backbone topology got from [4]. We use “Mesh”,
“Waxman” or “Wax” and “Sprint” for short respectively in this paper. Figure 2(a) shows
that the alternative paths are plentiful and Figure 2(b) shows that the length of them are
not very long despite of the bypass.

So far, the first design question has been solved efficiently and sufficiently. We move
on to the next question: divert and balance the affected traffic onto the alternative
paths.

3 Post-failure Load Balancing

After choosing the extra loop-free backup paths (type-2, type-3) besides ECMPs (type-
1), we use them to balance the load in case of link failures. This section describes how
to divert traffic onto backup paths so that the risk of causing congestions is minimized.

1 There are 16 nodes and every node connects to 4 neighbors. The weight of each link is 1.

Load-Balanced IP Fast Failure Recovery 59

Table 1. ODL matrix

ODL(:, :, 1) ODL(:, :, 4) ODL(:, :, 5)
a b c d a b c d a b c d

a 0 0 0 4 0 0 0 0 0 0 0 4
b 0 0 0 0 0 0 3 0 0 0 0 0
c 0 0 0 0 0 0 0 10 0 0 0 10
d 0 0 0 0 0 0 0 0 0 0 0 0

3.1 ODL Matrix

The traffic matrix of an IP network can be represented by the Origination-Destination
matrix, i.e., the OD matrix [7]. OD(j, k)(j, k = 1, 2, ..., N ; j �= k) denotes the traffic
volume originated from node j and destined to node k. Here N is the total number of
nodes in the network.

Based on OD matrix an N × N × L matrix, called ODL (Origin-Destination-
Link) matrix, is devised in our work to record the details of the load distributed onto
network links. Here, L is the total number of the links in the network. On the network
in Figure 1(b), for example, router a wants to send 4 units of traffic to router d, router b
wants to send 3 units of traffic to router c, and router c wants to send 10 units of traffic
to router d. Given that only type-0 paths are used. The ODL matrix is given in Table 1.

All the elements of ODL(:, :, 2), ODL(:, :, 3) and ODL(:, :, 6) are zeros which are
not exhibited in Table 1.

The load of every link can be calculated conveniently from the data structure ODL
through the manipulation of summarizing specific matrix’s elements. We use vectorLLV
to denote the load on every link. For ODL given in Table 1, LLV = [4, 0, 0, 13, 14, 0].

3.2 The Formulation of Linear Programming

Previous work of the weight-setting approach formulates the traffic allocation problem
as an ILP problem, which is NP-hard. We formulate it to a different LP problem instead,
which is more tractable. With the multiple alternative paths established and the details
encoded by the data structure ODL, the LP problem can be formulated as follows.

Suppose Pjk is the set of the paths from j to k. xjkp is the share of traffic orig-
inated from j and destined to k through the pth path of Pjk . Let X be the vector
[−xjkp−](j, k = 1, 2, . . . , N ; j �= k; p = 1, 2, . . . , |Pjk|). Denote the links’ capac-
ities as c = [c1, c2, . . . , cL] and link utilization as u=[u1, u2, . . . , uL] = LLV./c,
where the operator “./” denotes the element-by-element division of two vectors, i.e.,
ul = LLV(l)/cl.

We simply sum up every link’s utilization to get the objective function f(X). An
optimization problem of Linear Programming can be depicted as follows. By solving
this problem, we get the optimal share of the traffic demand XOPT.

min f(X) =
L∑

l=1

ul (1)

60 M. Zhang, B. Liu, and B. Zhang

 0

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1
C

on
tr

ib
ut

io
n

to
 th

e
co

st

Link utilization

Φ(u)
g(u)=u/(1-u)

Fig. 3. The comparison between two cost functions. The curve of Φ(u) is similar to that of g(u).

subject to
|Pjk|∑

p=1

xjkp = 1 (2)

xjk(p−1) ≥ xjkp p = 2, . . . , |Pjk| (3)

0 ≤ xjkp ≤ 1 (4)

Intuitively, longer paths should get less traffic. The paths in Pjk are indexed in an
increasing order of the paths’ lengths.

Weight-setting method has to resort to heuristic search to solve the ILP which is NP-
hard [5]. We know that LP is always simpler than ILP. Therefore, our method should be
simpler than weight-setting method.

When LP is finished, the backup paths already get their proportion of traffic accord-
ing to their available capability. But we are not content with this and try to further refine
the result in the next subsection.

3.3 LP Iteration

We use f(X) =
∑L

l=1 ul in the last subsection as the objective function of LP, which
treats the contribution of every link utilization to the overall cost equally. But f(X) is
not the true objective function of optimization. We introduce the LP iteration to do the
refinement in the following.

First of all, the contribution of each link utilization ul to the overall cost function can
be estimated by

Ctb(ul) =
{

ul/(1 − ul) , 0 ≤ ul < 0.9
9 , ul ≥ 0.9 (5)

This is based on the following analysis. Assume the IP network is a Jackson queuing
network. A frequently used formula from [7] is:

Dij(Fij) =
Fij

Cij − Fij
+ dijFij (6)

where Fij is the traffic load on link (i, j) expressed in bit/s, Cij is the transmission
capacity of link (i, j) measured in the same units as Fij and dij is the processing and
propagation delay.

Load-Balanced IP Fast Failure Recovery 61

Suppose the utilization of link (i, j) is uij = Fij/Cij , and dij = 0, then

∑

(i,j)

Dij(Fij) =
∑

(i,j)

uij

1 − uij
(7)

Let u be the utilization of a specific link, then this link’s contribution to the cost
function is

g(u) = u/(1 − u), u ∈ [0, 1] (8)

The curve of g(u) is depicted in Figure 3.
Previous work in [5] and [6] uses a piece-wise cost function:

Φ(l(a)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l(a) , 0 ≤ u(a) < 1/3
3l(a) − 2c(a)/3 , 1/3 ≤ u(a) < 2/3
10l(a) − 16c(a)/3 , 2/3 ≤ u(a) < 9/10
70l(a) − 178c(a)/3 , 9/10 ≤ u(a) < 1
500l(a) − 1468c(a)/3 , 11/10 ≤ u(a) < ∞

(9)

Here, l(a) is the load carried by link a, c(a) is the capacity of a and u(a) is the
utilization of a. Suppose c(a) = 1, then l(a) = u(a). Depict the curve of Φ(u) in the
same figure as g(u). We find that the two curves are similar to each other. However, the
objective function in Equation (9) is used arbitrarily without any analysis in [5] and [6].
It is still too complex to be used in the n-objective function, as it is a piece-wise linear
function rather than a linear function. Based on our analysis of a simplified network
model, we use cost function (5) to estimate the contribution of a link to the overall cost.

With Ctb, we define a penalty vector p as follows:

p = (Ctb/max(Ctb) + bias)/(1 + bias) (10)

At each iteration, f(X) is substitute with p.*f(X) and the LP is solved over and
again. The operator “.*” denotes the element-by-element multiplication of two vec-
tors. bias is a substantial bias factor used to damp potential route oscillations. bias ∈
[0, ∞) and p ∈ [0, 1]. In [7], bias has been mentioned as a measure for damp oscilla-
tions. Here, we use the bias in a simple way in order not to introduce much computation
cost. In our experiments, oscillations can happen too if the Ctb is used directly without
bias. By comparison, weight-setting method mentioned in [4], [6] and [5] even does
not address the issue of potential route oscillations.

3.4 Incremental LP Iteration

The traffic of the working paths affected by the failures should be shed on the alterna-
tive paths locally. If there is no alternative path for recovering the failures, the upstream
router can send an ICMP (Internet Control Message Protocol) redirection message to
the source, and then the source redirects its traffic to its own alternative paths. However,
the traffic unaffected by the failures should remain undisturbed. That is to say, the shift-
ing of the diverted traffic should be done incrementally. With the help of ODL matrix,

62 M. Zhang, B. Liu, and B. Zhang

the detail of the affected traffic can be easily gotten. We re-allocate affected traffic based
on the current traffic distribution state with LP once. When LP is finished, the failure
is recovered and the affected traffic is shifted onto the backup paths wisely. Then we
further refine the traffic allocation with incremental LP iteration.

What incremental LP iteration regards as variables is the share of the failed traffic
among alternative paths which can be denoted as X′ = [−xjkp−] (OD pairs (j, k) are
the pairs whose type-0 paths are broken by the failures, p = 2, 3, . . . , |Pjk|). The sum
of the variables here is smaller than that in the vector X.

Incremental LP iteration does its best to avoid congestions and not to disturb the
failure-unaffected traffic being carried by the network simultaneously. Weight-setting
method usually decreases the lightly loaded links’ weights to attract traffic while in-
creasing the heavily loaded links’ weights to reduce traffic. However, changing links’
weights may affect a wide range of traffic, including those not directly affected by the
failures. In certain network settings, this can easily cause route oscillations or perfor-
mance degradation.

The speed-up of our work compared with the weight-setting method is three-fold:
It replaces ILP with light-weighted LP; It damps oscillations so that the iteration con-
verges quickly; Finally, it balances the diverted load locally without resorting to the
time-consuming re-calculation of the routing paths in the whole network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

T
he

 m
ax

im
um

 li
nk

 u
til

iz
at

io
n

LP iteration times

bias=0
bias=9

(a) Maximum link utilization of Mesh

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

T
he

 m
ax

im
um

 li
nk

 u
til

iz
at

io
n

LP iteration times

bias=0
bias=9

(b) Maximum link utilization of Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80

T
he

 m
ax

im
um

 li
nk

 u
til

iz
at

io
n

LP iteration times

bias=0
bias=9

(c) Maximum link utilization of Sprint

Fig. 4. The comparison between LP iteration with and without bias. The bias damps the oscilla-
tions of LP iteration and makes it converge quickly.

Load-Balanced IP Fast Failure Recovery 63

4 Performance Evaluation

In our experiments, we use three kinds of different topologies mentioned in Section 2:
Mesh, Waxman and Sprint. We generate the OD matrices synthetically according to the
Gravity Model ([4], [15]) to conduct simulations to evaluate our scheme’s performance.

We first evaluate the convergence of the LP iteration. Figure 4 compares the maxi-
mum link load resulted from using different bias values. It clearly shows that without
the bias factor, oscillations can easily happen. The punishment from the penalty vector
p is too harsh. The max link load varies greatly with iteration times and the algorithm
does not converge. In the Mesh topology, the objective function even begins to get no
feasible solution after a few iterations. With the bias factor, LP iteration is able to avoid
route oscillations and converges fast. The value of bias can be tuned for particular
IP networks as the operator usually has the full knowledge of the network. As to the
topologies used in our simulation, the bias 9 is enough to damp the oscillations. Too
large bias slows down the convergence of the LP interation. The stop condition can be
easily got by setting an upper threshold for the maximum link utilization, e.g., 80%.

We fail each link independently in the networks of three kinds of topologies sepa-
rately to evaluate the performance of incremental LP iteration. Figure 5 shows its re-
sults in comparison with what are achieved by Dijkstra’s algorithm used in the “routing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30

m
ax

im
um

 li
nk

 u
til

iz
at

io
n

Failed link IDs

Dijkstra
Incremental LP once

Incremental LP iteration

(a) Maximum link utilization of Mesh

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 10 20 30 40 50 60

m
ax

im
um

 li
nk

 u
til

iz
at

io
n

Failed link IDs

Dijkstra
Incremental LP once

Incremental LP iteration

(b) Maximum link utilization of Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5 10 15 20 25 30 35

m
ax

im
um

 li
nk

 u
til

iz
at

io
n

Failed link IDs

Dijkstra
Incremental LP once

Incremental LP iteration

(c) Maximum link utilization of Sprint

Fig. 5. The maximum link utilization when incremental LP iteration and routing convergence
happen respectively after each link’s failure

64 M. Zhang, B. Liu, and B. Zhang

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35

Li
nk

 u
til

iz
at

io
n

Link IDs

Link utilization

(a) Link utilization of Sprint before fail-
ures.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30 35

Li
nk

 u
til

iz
at

io
n

Link IDs

Dijkstra, failed link 1
LP iteration, failed link 1

Dijkstra, failed link 3
LP iteration, failed link 3

(b) Link utilization after routing conver-
gence.

Fig. 6. Link 1 and link 3 are the most loaded links

convergence” after the failure. For most links (except link 1 and link 3 in Sprint topol-
ogy), the “Incremental LP iteration” achieves much smaller maximum link load than
Dijkstra’s algorithm. It clearly demonstrates the effectiveness of using incremental LP
iteration for post-failure load balancing. The lines with dots show the maximum link
utilization when the incremental LP iteration is run one round immediately after the
failure. Most of the time, the results of “Incremental LP once” is already much better
than that of Dijkstra’s.

Link 1 and link 3 are the links with the smallest weights in the Sprint topology
derived from [4]. From Figure 6(a), we find that they are the most heavily loaded links.
When either one fails, there will be lots of traffic which needs to be shed onto other
paths. Conventional routing convergence and the weight-setting method re-calculate
all routing paths, resulting in a widespread re-shuffling of traffic and smaller maximum
link load. Incremental LP iteration keeps the impact within a small range of the network
instead, and in these two particular cases, results in slightly higher link load.

If we let LP iteration take into consideration all traffic regardless of whether they
are affected by the failures, our scheme can achieves better load balancing. Figure6(b)
shows the results after the failure of link 1 and link 3 in Sprint topology. This time, LP
iteration takes into consideration all the traffic carried on the network. Clearly it is able
to shed more traffic from heavily loaded links to lightly loaded ones.

5 Conclusion

In this paper, we propose an efficient scheme to achieve load balancing with Proactive
Failure Recovery (PFR). The algorithms are devised to set up loop-free alternative paths
proactively. The redundancy of Internet offers us enough margin to set up alternative
paths to re-allocate the traffic affected by the link failures.

Through Incremental Linear Programming, traffic demands are split among multiple
paths optimally for the objective function and hence potential congestions are avoided.
After the failed working routes shed their load and the diverted traffic is absorbed
by the multiple alternative paths, the load can be further balanced with the help of

Load-Balanced IP Fast Failure Recovery 65

incremental LP iteration. Our simulation results show that the proposed scheme is ef-
fective in reducing the maximum link load in the network after failures.

Acknowlegements

We would like to thank the anonymous reviewers for their feedback. This work
was partly supported by NSFC (60573121, 60625201), China 973 program
(2007CB310701), the Cultivation Fund of the Key Scientific and Technical Innovation
Project, MoE, China (705003), the Specialized Research Fund for the Doctoral Pro-
gram of Higher Education of China (20060003058), Tsinghua Basic Research Foun-
dation(JCpy2005054), 863 high-tech(2007AA01Z216) and the China/Ireland Science
and Technology Collaboration Research Fund (2006DFA11170).

References

1. Clark, D.D.: Design philosophy of the darpa internet protocols. Computer Communication
Review 25(1), 102–111 (1995)

2. Francois, P., Filsfils, C., Evans, J., Bonaventure, O.: Achieving sub-second igp convergence
in large ip networks. Computer Communication Review 35(3), 35–44 (2005)

3. Kvalbein, A., Hansen, A.F., Cicic, T., Gjessing, S., Lysne, O.: Fast ip network recovery using
multiple routing configurations. In: Proceedings - IEEE INFOCOM, Barcelona, Spain, pp.
23–29 (2006)

4. Nucci, A., Bhattacharyya, S., Taft, N., Diot, C.: Igp link weight assignment for operational
tier-1 backbones. IEEE/ACM Trans. Networks 15(4), 789–802 (2007)

5. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing ospf weights. In: Proceed-
ings - IEEE INFOCOM, Tel Aviv, Isr, vol. 2, pp. 519–528 (2000)

6. Kvalbein, A., Cicic, T., Gjessing, S.: Post-failure routing performance with multiple routing
configurations. In: Proceedings - IEEE INFOCOM, Anchorage, AK, United States, pp. 98–
106 (2007)

7. Bertsekas, D., Gallager, R.: Data Networks, 2nd edn. Prentice-Hall, Inc., Upper Saddle River
(1992)

8. Chim, T.W., Yeung, K.L., Lui, K.S.: Traffic distribution over equal-cost-multi-paths. Com-
puter Networks 49(4), 465–475 (2005)

9. Iselt, A., Kirstadter, A., Pardigon, A., Schwabe, T.: Resilient routing using mpls and ecmp. In:
IEEE Workshop on High Performance Switching and Routing, HPSR, Phoenix, AZ, United
States, pp. 345–349 (2004)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

11. Elwalid, A., Jin, C., Low, S., Widjaja, I.: Mate: Mpls adaptive traffic engineering. In: Pro-
ceedings - IEEE INFOCOM, Anchorage, AK, vol. 3, pp. 1300–1309 (2001)

12. Shand, M., Bryant, S.: Ip fast reroute framework. IETF Draft, Work in progress (June 2007)
13. Psenak, P., Mirtorabi, S., Roy, A.: Multi-topology (mt) routing in ospf. IETF RFC 4915 (June

2007)
14. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Com-

munications 6(9), 1617–1622 (1988)
15. Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation:

existing techniques and new directions. In: Proceedings - ACM SIGCOMM 2002, pp. 161–
174. ACM, New York (2002)

	Load-Balanced IP Fast Failure Recovery
	Introduction
	Alternative Paths Setup
	Post-failure Load Balancing
	ODL Matrix
	The Formulation of Linear Programming
	LP Iteration
	Incremental LP Iteration

	Performance Evaluation
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

