
1

Route Diagnosis in Path Vector Protocols
Dan Pei1, Mohit Lad1, Beichuan Zhang1, Dan Massey2 and Lixia Zhang1

UCLA1 Colorado State University2

{peidan,mohit,bzhang,lixia}@cs.ucla.edu massey@cs.colostate.edu
UCLA CSD Technical Report TR040039

Abstract—In this paper we present a novel approach to route
diagnosis for path-vector routing protocols such as the Inter-
net’s Border Gateway Protocol (BGP). Given a sequence of
routing updates, our objective is to understand why a previous
path was removed, why the specific new path is chosen among
all existing alternatives, and whether any of the routers along
the path injected false information. We collect necessary topo-
logical information for route diagnosis by inferring topological
connectivity from routing updates, enhancing the path vector
protocol with root cause notification, and using active queries
between neighbor routers to learn missing information when
necessary. In the absence of false routing updates, our design
can reason about route removals and replacements with 100%
accuracy. We also use majority votes among independent in-
formation sources, combined with active queries, to identify the
source of false routing updates. Simulation results show that, in
the presence of false updates, our design can achieve high detec-
tion rate and attacker identification rate with a low overhead.

I. INTRODUCTION

In this paper we present a novel approach to route diag-
nosis for path vector routing protocols such as the Internet’s
Border Gateway Protocol (BGP). A given sequence of rout-
ing updates can be a result of valid topology changes, unin-
tentional mis-configurations, or malicious attacks. The ob-
jective of route diagnosis is to determine what underlying
event triggered these updates, and whether the update se-
quence corresponds to a valid execution of the protocol. In
the specific case of path vector routing, one would like to un-
derstand (1) why the previous path is removed, and why the
specific new path is chosen among all existing alternatives,
and (2) whether any of the routers along the path injected
false information.

The distributed nature of path vector routing and the large
scale of the Internet topology make the route diagnosis prob-
lem difficult. A path vector routing protocol only signals
the effects of a topology change, but not the change itself,
through the announcement of a new best path. When a topo-
logical change occurs, a router may have multiple alternative
paths from which to select. In order to understand why a
path is removed and why a specific new path is chosen, route
diagnosis requires the knowledge of the network topology
and the specific change that triggered the updates. In a large
scale, richly connected topology, a wide range of different
topological changes can trigger the same set of updates, thus

it is difficult to infer the change from its effects, as evidenced
by the limited accuracy and correctness of passive inference
effort[1][2][3] [4], and as confirmed by our simulation re-
sults in Section II-B. Furthermore, route diagnosis is made
difficult by potentially false information being injected into
the routing system, for example by operational errors or ma-
licious attacks. If a router cannot tell why existing paths are
removed or why new paths are chosen, it certainly cannot
tell whether a newly received path contains false informa-
tion. Our objective is not only to identify the existence of
false information, but also to pin down exactly which piece
of the information is false.

Our design is inspired by the diagnosis power of link-state
routing algorithms; by letting every node know the complete
topology and all the changes, a node’s routing table is pre-
cisely synchronized with that of the others. In other words, a
node can know precisely how other nodes make their routing
decisions. Similarly, effective path-vector diagnosis could be
achieved if a diagnosis station knew the full network topol-
ogy (and policy) and was notified of all topological (and pol-
icy) changes. In this case, the station would be able to predict
precisely how each of the routers would adjust its route after
a given change. Large network size and rich connectivity can
provide multiple alternative paths from the station to each
destination. Thus when some node injects a false route into
the network, as long as this node is not on all the alternative
paths, the station would be able to detect the inconsistency
between updates from different neighbors and nail down the
origin of the inconsistency. However, it can be costly to learn
and maintain the topology of a large, richly connected net-
work. Ideally, one wishes to learn only the relevant topology
information to achieve diagnosis goals.

In this paper, we present the design of Diagnosis through
Root Cause Notification, topology Accumulation, and Query
(DRAQ). DRAQ aims at providing diagnosis information to
network operators, such as raising an alarm after detecting
the existence of false routing updates. Thus DRAQ listens
to all the received routing updates, but does not block any
of them, including those which are detected of carrying false
information, as is done in [5][6][7][8]. DRAQ infers topo-
logical connectivity from routing updates to build a relevant
topology map. To maintain this map updated, DRAQ also
enhances the path vector routing protocol to carry a root
cause notification(RCN) [9][10] in each routing update as a

Fig. 1. Path Change Validation Problem

way to collect the latest topological changes. However as we
show by examples in Section II, one cannot collect all the
necessary topological information through such opportunis-
tic learning from routing updates, even with RCN enhance-
ment, to meet the need for route diagnosis. Therefore DRAQ
design also includes active queries between neighbor nodes
to acquire the missing topology and change information.

Our analysis and experiments show that, in the absence of
false information, DRAQ can determine path removals and
replacements with 100% accuracy. False routing updates are
detected when the actual replacement path does not match
the predicted path. Once the existence of false information
is detected, a majority vote algorithm is applied to identify
nodes with independent routing update sources, so as to pin
down the misbehaving node. Our simulation results show
that, in the presence of false information, DRAQ can achieve
detection rate of at least 90%, and identification rate of at
least 50%. The overhead cost is at most 4 query/reply mes-
sages for 90% of the cases.

The rest of the paper is organized as follows. Section II
presents our design and simulation results for understanding
why the previous path is removed and why the new path is
chosen. Section III presents our design for the false informa-
tion detection and identification problem, and its simulation
results are presented in Section IV. Section V discusses our
approach in DRAQ and future work. Finally, Section VI re-
views related work, and Section VII concludes the paper.

II. PATH CHANGE VALIDATION

To clearly present DRAQ design, we assume a simple
path vector routing protocol is running on atomic nodes
that are connected by atomic logical links.1 More formally,
the network is represented as a directed connected graph
G = (V, E), and every node v ∈ V runs a path vector rout-
ing algorithm. A path to a destination is an ordered sequence
of nodes. Paths are calculated using the path vector algo-
rithm rules: each node v stores the latest path received from
all its neighbors, and selects the best path to each destination
according to its routing policies. Each unidirectional link
[v u] ∈ E can be either up or down, and in the absence of
false information, node v and u always agree on the status
of link [v u]. Nodes adapt to changes of link status and re-
compute the best paths. In presenting the basic algorithm,
we consider one single destination node and assume nodes

1In BGP, one AS can have multiple routers, and one AS-level link can
have multiple physical links.

use a shortest path policy in selecting best paths. with the
tie-breaking rule of preferring a next hop with the lowest ID.
In section V-C, we will discuss how to handle more general
policies that would occur in a path vector routing protocol
like BGP.

Unless specified otherwise, in this paper we assume
that events (i.e., link failures and link recoveries) are non-
overlapping in time: when one event triggers some updates,
the network converges to a steady state before the next event
happens. We further assume that our diagnosis algorithm
starts after the network converges and finishes before any
new event happens. We will discuss how to relax these as-
sumptions in Section V-B. We assume diagnosis is typically
carried out at some external boxes, called diagnosis stations.
This external box does not modify path selection at the mon-
itored router. For ease of presentation, we sometimes use
diagnosis node to mean the combination of a router and its
diagnosis station.

Our first objective is “path change validation”, under-
standing why the previous path is removed and why the spe-
cific new path is chosen among all existing alternatives. For
example, node Z in Figure 1 observes that neighbor H’s path
has changed from (H G F A) to (H G D E B A). Route diag-
nosis at node Z should identify the topology change that has
triggered H to remove path (H G F A), and it should also ex-
plain why node H choose backup path (H G D E B A) over
path (H G D C B A)

To solve the path change validation problem, DRAQ ac-
cumulates the baseline topology inferred from topological
information from past updates, uses root cause notification
to propagate the relevant changes, and sends active queries
between neighbor routers to obtain any missing topological
information if necessary. The details of each component are
discussed below.

A. Accumulating Baseline Topology

Route diagnosis can benefit greatly from a complete pic-
ture of the network topology as in link-state protocols. How-
ever, most of topology information flooded by link-state pro-
tocols is not relevant to a route diagnosis node. A diagno-
sis node does not have to know the complete network topol-
ogy; it only needs to know the partial topology that affects
its neighbor’s choice in path selection.

Path vector protocols implicitly provide some topology
information by listing the full path used to reach the des-
tination. In the absence of false information, every link in
this path either exists in the network now, or must have ex-
isted in the network at some time. Using this path infor-
mation, node Z can accumulate an estimate of the topology
graph. More specifically, each node builds a network topol-
ogy graph GT = (VT , ET) based on updates received. Each
edge [v u] ∈ ET has a status of either up or down. On re-
ceiving an update with a path, each link that is not currently
in ET is added to ET , and its status is initialized as up. We
call the topology built solely from path vector updates as the
baseline topology.

2

 24

 13

 10
 9

 3

 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2

 24

 13

 10
 9

 3N
um

be
r

of
 C

an
di

da
te

 R
oo

t C
au

se
s

CDF

Standard Heuritic
Aggressive Heurtic

Fig. 2. Accuracy of Passive Inference: the CDF of number of candidate
locations of change over all the nodes and all the simulations. We simulated
the most conservative heuristic(“standard Heuristic”) and the most aggres-
sive heuristic(“Aggressive Heuristic”), with the risk of missing the real root
cause) presented in [4]. For better visual effects, we swapped the x-axis and
y-axis in all the CDF figures in this paper. The simulation settings are the
same as those in Section II-D.

The baseline topology provides a starting point for route
diagnosis, but it is not sufficient. The baseline topology does
not necessarily reflect every link’s current status. A link can
be down in the actual network, but if this information is not
explicitly reported in updates, the baseline topology may still
consider the link up. Path change validation based on this
obsolete baseline topology would be inaccurate. To enhance
the baseline topology, we propose to include root cause in-
formation in each update to explicitly report the state of some
relevant and important links.

B. Root Cause Notification

One possible way to identify topology changes is to in-
fer from routing updates, but inference is inaccurate at best.
Even in the simple example of Fig. 1, the failure of link [GF]
and [FA] can both result in the same update sequence as
shown. Generally speaking, in a large scale, richly connected
network, a wide range of different topological changes can
trigger the same set of updates, thus it is difficult to infer
the change from the effects of the change, as evidenced by
the limited accuracy and correctness of passive inference ef-
fort[1][2][3] [4]. Fig. 2 shows the results using the state of
the art in [4] to infer the location of triggering change in a
simulated topology. The figure shows that at best the trig-
gering change can be narrowed to within three locations in
less than 45% of the cases. Note also that existing inference
approaches[1][2][3][4] only attempt to identify the cause of
a path change and do not explain why a specific new path is
selected.

Rather than attempting to infer which links have failed, we
claim routing protocols should carry some essential informa-
tion to facilitate diagnosis. In the case of path vector routing
protocols, the essential information needed to facilitate di-
agnosis is provided by the Root Cause Notification (RCN)
approach recently proposed in [9][10]. RCN was originally
proposed to reduce the convergence time of path vector rout-
ing. By adding a RCN attribute that identifies the failed link,
routers are able to avoid choosing backup paths that contains

Fig. 3. Root Cause Notification.

the failed link. In effect, the convergence enhancement is at-
tempting to identify failed backup paths. In DRAQ, we adopt
the concept of root cause notification as discussed in [9][10].
However, unlike [9][10], we do not assume that routers use
RCN in selecting best paths. DRAQ uses RCN solely for
route diagnosis. 2

An RCN attribute has the format
{[u v], status, seq num}, where [u v] indicates the
root cause link, status indicates whether link is down or up,
and seq num is the sequence number associated with the
link. The seq num is incremented by 1 each time this link
changes its status. If link [u v] changes state and cause a
node u to modify its best path, node u will announce the
new best path and list link [u v] as the root cause for this
change. If a node w changes its best path due to the receipt
of an update message, node w will copy the root cause from
the incoming update into w’s outgoing update message. Any
updates that are triggered by the same link status change
will carry the same root cause information. For the purpose
of route diagnosis, the root cause for each update is directly
identified.

For example, in Figure 3, the RCN attribute
({[G F], down, 2}) of the updates tells node Z that
path P1 is removed because link [G F] has failed. The root
cause information carried in the updates conveys relevant
topology information, and we use the root cause information
to enhance the baseline topology in diagnosis nodes. The
status of an existing edge in the topology is updated by the
root cause information with a higher sequence number.

By combining topology information from path updates
and root cause notification, a diagnosis node can build a more
accurate estimate of the topology. All the information accu-
mulated by the diagnosis node was relevant (impacted path
selection) at some point in time. But note this is not equiv-
alent to the link state approach of learning the full topology.
In particular, our diagnosis cannot claim to have a complete
topology picture. Nevertheless, in later simulations, we will
show that this topology estimate is effective for route diag-
nosis.

2If one does choose to use RCN in best path selection at the router itself,
our algorithm still works equally well.

3

Fig. 4. Topology Accumulation and Query at node Z.

C. Path Prediction and Active Queries

With an accumulated topology enhanced by RCN, the di-
agnosis node will conduct path prediction after receiving
a sequence of updates, and send active query if necessary.
The path vector updates and the root cause information do
not always provide all the relevant topology information.
For example, in Fig. 1, suppose link [D C] fails before
link [G F] fails. When D detects the failure of [D C], it
sends the new path (D E B A) together with the root cause,
{[D C], down, 2}, to node G. Node G stores [D C] failure
information in its topology, but since its best path is still (G
F A), no update is sent to neighbor H or I . As a result, nodes
H , I , or Z are not aware of the failure of link [D C]. At the
time of the failure, this information is not relevant to nodes
H , I , or Z. However, the information becomes relevant after
link [G F] fails. As shown in Fig. 4, node Z updates link
[G F] status to be “down” in its topology graph, and the re-
sulting baseline topology is shown in the right-top corner of
Figure 4. In this graph, link [D C] is still considered up, even
though it is actually down in the network.

Algorithm 1: Path Change Validation algorithm at a node

Data : Update Sequences with RCN at a node

Result : validated(n) for each neighbor n: true or
false

Update Topology using updates and RCN;
GotNewInfo← true;
while GotNewInfo == true do

GotNewInfo← false;
foreach neighbor n do

Compute the predicted path for n;
if predicted path == received path then

validated(n)← true

else
querying n ;
if Querying got new info then

GotNewInfo← true;
add new info into Topology;

else
validated(n)← false;

With above inaccurate topology, Z’s Dijkstra algorithm
[11] would predict that the new path for H is P =
(HGDCBA).3 Since the predicted path is different from the
received path, either node Z has an outdated topology or the
network is not behaving correctly. Node Z will send a query
to neighbor H asking about the status of the links on the pre-
dicted path. If node H knows more up-to-date status, it will
send a reply back to Z; otherwise, as in the case of Figure 4,
it propagates the query to the next node on the path. In its
query to H , node Z attaches its current sequence number of
the links in question. Thus node H can tell the relative fresh-
ness of its own link status and that of Z, and H only replies
with more up-to-date link status information. Furthermore,
as opposed to query about every link in P = (HGDCBA),
node Z queries about [D C] and [C B] only since all other
links in P appears in P2, implying these links are not the
reason why P2 is not used by H.4

The recursive query finishes when either the query reaches
the node adjacent to the failed link (node D), or reaches a
node that has learned of the failure (node G). In Figure 4,
node G replies with the RC = {[D C], down, 2}, and this
reply is propagated back to Z. Both H and Z update the infor-
mation in their topology graphs and node Z conduct the path
prediction again. If the new predicted path matches the re-
ceived path, the case in this example, then the received path
from node H is validated. Otherwise, Z will send a new
query asking what’s wrong with the new predicted path. We
show the path change validation algorithm at node Z is pre-
sented in Algorithm 1.

In the absence of false information, the querying process
in Algorithm 1 will always terminate, and it always termi-
nate with the new path “validated.” This is because, as
shown above, each query about a particular path will always
get an answer, and eventually the topology will be accurate
enough such that each predicted path is the same as the re-
ceived one. This implies that if Algorithm 1 terminates with
validated(n) = false for some neighbor n, it is a clear in-
dication of the existence of false information. We conclude
this section by analyzing the effectiveness of DRAQ assum-
ing there is no false information and then the false informa-
tion identification algorithm discussed in Section III.

D. Accuracy and Overhead

To evaluate the performance of DRAQ’s path change val-
idation, we use SSFNET [12] to simulate BGP updates in a
110-node (with 572-links) Internet-like Topology, also from
SSFNET project [13]. We injected 5720 non-overlapping
random link changes. The path change validation algorithm
runs at each node.

3lowest ID tie-breaking
4Above discussion assumes the predicted path is more preferred than the

received path. If the predicted path is less preferred than the received path,
it means that some links in the received path are marked “down” in the
accumulated topology, but actually are “up” in the network. Thus, only
those links in the received path that are marked “down” in the topology are
needed to be queried.

4

 1.1

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1

 1.1

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

P
re

di
ct

io
n

S
uc

ce
ss

 R
at

e

CDF

Recurisve Query
One-hop Query

No Query

Fig. 5. Path Change Validation Accuracy

Fig. 6. Querying Overhead for Path Change Validation

For each event observed at a diagnosis node Z, the algo-
rithm should terminate with validated(n) = true for each
neighbor n (since no false information was injected). We say
Z’s path change validation is a success if Algorithm 1 returns
true for all n; otherwise, it’s a failure. We define node Z’s
accuracy of path change validation as the success rate of all
the events it observed. Figure 5 shows the CDF of accuracy
over all nodes in the network, and it shows that DRAQ’s ac-
curacy of path change validation is 100%, confirming our
earlier analysis.

We also measure how many query messages in total are
triggered by node Z for this event. Note that by “message”,
we mean a message between two neighbor routers, either a
query or a reply. For example, in Figure 4, Z triggered 4
messages, one query from Z to H, one query from H to G, and
two corresponding replies. Figure 6 shows the PDF of query
message overhead of all (Z, event) cases. The overhead is
very low: about 93% of events needs at most 1 query and 1
reply, and about 75% of events needs no query at all.

To show how much active query helps path change val-
idation, we compared DRAQ with the approach where no
query is used, and the approach with one-hop query only
(i.e., the neighbor will not propagate the query if it does not
know the answer). Figure 5 shows that for the no-query ap-
proach, half of nodes have higher than 60% accuracy. This
shows that, although not as accurate as in link-state protocol,
the topology accumulated from updates and root cause in-
formation is fairly adequate for route diagnosis. For the one-

hop query, each node has higher than 88% accuracy, which
demonstrates that active query, even just one-hop, can dra-
matically increase the path change validation success rate.

III. ATTACK DETECTION AND ATTACKER

IDENTIFICATION

In the previous section, we saw that a combination of
accumulating topology, adding root cause notification, and
sending queries when necessary, provides us with effective
diagnosis in the absence of false information. In this sec-
tion, we consider how to detect false information and iden-
tify the source of the false information. False routing infor-
mation may be injected due software faults, unintentional
mis-configurations, or malicious attackers who have com-
promised routers. In addition to injecting false information,
a misbehaving router may simply choose not to forward re-
quired information. In this paper, we use the term “attacker”
to mean any misbehaving router and we use “attack” to mean
the action of injecting false information or blocking the prop-
agation of genuine information.

Our objective is detect the following two types of attacks
and identify the source of this misbehavior:

1) Insertion Attack: The attacking router announces a
path that contains a false link and/or false RCN mes-
sage. More precisely the announced state of some link
in the path and/or the state of RCN is the opposite of
the actual state known by the router. As a result of
such an attack, some of the nodes in the network re-
ceive path vector updates triggered by the attacker, and
these updates all carry the false information.

2) Blocking Attack: A legitimate root cause triggers up-
dates in the network, but the attacker simply withholds
any new path announcements. For example, the at-
tacker fails to withdraw a path even though some link
in the path has failed.

As a first step we simplify the attack scenario by restrict-
ing the number of attackers at any given time to at most one.
We further restrict the attacker to inserting false information
on the existence or status of a single link. Even with a single
attacker and single false information, attack detection and
attacker identification is non-trivial and presents many chal-
lenges. Directions to deal with multiple attackers are dis-
cussed in Section V-E.

Finally, we distinguish between third-party attacks and di-
rect attacks. In a third-party attack, the disputed link is not
directly adjacent to the attacker. In a direct attack, the dis-
puted link is adjacent to the attacker. In Figure 7(a), a third-
party attack occurs when F inserts a false link, [C A], by
announcing the path (F C A) with root cause{[CA], up, 1}.
In Figure 7(c), a direct attack occurs when node C inserts a
false link [C A].

A. Overview of Our Approach

Our approach has two mechanisms for attack detection.
First, we note the Path Change Validation from the previous

5

(a) Third-party Attack:
validated(G)=false

(b) Third-party Attack: no validation failure (c) Direct Attack: no validation failure

Fig. 7. Third-Party Attack and Direct Attack. The shaded node is an attacker who inject a false link shown in dashed line.

section will finish with 100% rate in the absence of attacks.
Therefore, a failure of path change validation indicates an at-
tack has occurred. We later show that, in a richly connected
graph, failure of the path change validation is an effective
step in detecting third-party attacks. But not all attacks will
result in a failure of the path change validation algorithm.
In particular, path change validation does not detect any di-
rect attacks. In a direct attack where node v announces link
[v u], only node u can detect the false information, but path
vector routing does not signal this information to u. To re-
solve uncertainties such as those that result from a direct at-
tack, we send active queries to neighboring nodes to solicit
information about link status. Once the existence of attack
is detected, a majority vote algorithm identifies independent
nodes and pins down the attacker.

B. Detection: Staring from Algorithm 1

After the Path Change Validation algorithm (Algorithm
1) is done, the diagnosis node runs our attack detection al-
gorithm, shown in Algorithm 2. The detection algorithm
first checks whether any path has been marked invalid(i.e.,
validated(n) is false for neighbor n’s path) by Algorithm
1. Consider Fig. 7(a), where an attacker F fakes a false
link [C A] by announcing the false path (F C A) with root
cause{[CA], up, 1}. F cannot influence node G’s path, and
G still reports path (G C B A). Upon receiving F’s false
path and root cause, node Z first temporarily adds root cause
{[CA], up, 1} into its topology, then runs path change valida-
tion algorithm (Algorithm 1) to compute the predicted paths
for all its neighbors. The predicted path for node G is (G
C A), different from the received path (G C B A). As part
of Algorithm 1, Z sends a query to G, asking what’s wrong
with path (G C A). Neither G nor C has information that can
explain why (G C A) is not used by G, thus Algorithm1 at
Z terminates with validated(G)=false, validated(F)=true,
and validated(R)=true. Since at least one neighbor failed to
validate, Z has detected an attack.

In general, a node detects an attack anytime the path from
one (or more) neighbors is not validated. When one third-
party node x lies about the status of link [v u], another third-
party y might not agree. An attack is detected provided that

Algorithm 2: Attack Detection Algorithm

Data : validated(n) result for each neighbor n
from From Algorithm 1. RCN link [v u]

Result : attack detected: true or false
if validated(n)==false for any neighbor n then

attack detected← true;
Call Algorithm 3;

else
attack detected← false ;
if link [v u] /∈ GT or is timed out then

if has a neighbor n′ whose path includes u but
does not include v then

query this neighbor n′;
if u’s reply is the opposite to RCN then

attack detected← true;
Call Algorithm 3;

the diagnosis node receives a path from such a node y. In
topologies with reasonable connectivity, it is likely that there
exists at least one such node y. But no such y exists in the
case of a direct attack.

C. Detection: Adding Queries

In a direct attack, the disputed link is adjacent to the at-
tacker as shown in Figure 7(c). and the path change valida-
tion algorithm cannot detect any inconsistency. Under our a
single destination prefix model 5, a unidirectional link [v u]
can be announced only by v. Node u does not signal any-
thing about whether link [v u] is genuinely “up” or “down”
and thus there is no inconsistency to detect.6 Fundamentally,
verifying the state of link [v u] requires get some information
from node u. In addition to direct attacks, some third-party

5We discuss the potential advantage of a multiple-prefix model in Sec-
tion V-D.

6Under our single-prefix model, it does not help to try to infer [v u] from
[u v]’s status either. At most one of v or u announces either link [v u] or
[u v] in a new best path, thus when v is announcing link [v u], then node u

must not be announcing [v u] or [u v].

6

(a) Attack (b) Conflict Tree at Z (c) Conflict Set at Z

Fig. 8. Identifying Attacker

attacks can pose the same problem. For example, attacker
node D in Figure 7(b) announces a false link [C A], and both
neighbors of Z will use link [C A]. The paths received at Z,
(F D C A) and (G D C A), are consistent and match the pre-
diction.

Unlike other BGP security work[5][6][7][8] that require
node u to pro-actively propagate information about unidi-
rectional link [v u]’s status, our approach attempts to detect
attacks while limiting the amount of link status propagation.
Given the output of Path Change Validation algorithm, node
Z can determine what information is relevant and then ver-
ify only that information. For example, node Z in Figure 7(c)
can determine that the potential false information is the state
of link [C A]. Information for other links such as [F C] is
not needed. We use a query mechanism to reactively obtain
the “needed” information regarding link [C A] from node A.
Of course, our query must avoid the potential attacker and
neighbors who rely on the attacker. To do this, node Z iden-
tifies neighbors whose path include A but not C and then
sends the query to one of these neighbors. For example, in
Figure 7(c), node Z identifies node R as such a neighbor and
sends a query inquiring about link [C A]. Node R propagates
the query along its current path (R S T A) to A. When A
receives this query, it replies indicating link [C A] does not
exist, and the reply is propagated back to node Z, allowing
node Z to detect the attack. The query mechanism and over-
all detection algorithm are summarized in Algorithm 2.

There are two elements of the algorithm that merit fur-
ther discussion. First, note that if the Path Change Valida-
tion algorithm has already detected validated(n) = false
for some neighbor n, a query is not triggered by the detec-
tion algorithm. In this case, an attack has been detected and
we proceed directly to the problem of the attacker identifi-
cation. Second, note that if a link genuinely keeps going up
and down, the query overhead to verify this link could be
high. To counter this, we use a simple heuristic: a query is
sent only when a link appears in the topology for the first
time. As a result, the query overhead is related to how fre-
quently a new physical link appears over time.To flush out
stale information, we set a timer for each link and a link is

“timed-out” if it has been “down” or has not been updated
before the timer expires and is then treated as a new link if it
reappears in a path update.

D. Attacker Identification: majority vote among indepen-
dent nodes

Once Algorithm 2 detects the existence of an attack, the
next step is to identify the attacker as precisely as possible.
Our identification algorithm is motivated by the assumption
that there are relatively few attackers and large numbers of
correct nodes in the network.

In the event of the detection of an attack, one straightfor-
ward approach is to use a majority vote among conflicting
neighbors. We label neighbor n as “+” if validated(n) is
true and “-” if validated(n) is false. In other words, those
nodes with “+” agree with the topology information in the
root cause, and those with “-” do not. In addition, if a neigh-
bor n’s validated(n) is true, but its predicted path is not
affected by the new root cause information, a “?” mark is as-
signed. For example, node Z in Fig. 8(a) receives updates
that were triggered by the attack by node E. Nodes K and
J are assigned “+”, nodes M and N are assigned “-”, and
node R, U and X are assigned “?” since they are not af-
fected by the attack. The resulting straightforward majority
vote among node Z’s conflicting neighbors results in a draw.
But a closer look at the Figure 8(a) shows that conducting a
simple neighbor count is unfair because node K and J are
both influenced by node E. That is, K and J are not in-
dependent with respect to E. For a more accurate majority
vote, we actually seek a majority from independent nodes
instead of a simple majority.

To determine independence, we combine the paths from
all the neighbors marked either “+” or “-’” and obtain a short-
est path tree rooted at the destination. We call this tree a
“conflict tree” (shown in Figure 8(b)). Leaves of this tree
are neighbors of the diagnosis node and are labeled based on
whether validated(n) is true or false. A non-leaf node that
has descendants with both “+” and “-” is labeled with “+-”,
indicating its descendants cannot agree on whether the root
cause information is true or not. In Figure 8(b), node F , C

7

and A are labeled with “+-”. All other nodes in the network,
if independent of the attacker, should all agree with each
other and disagree with the attacker. Therefore, the attacker
must be the descendant of those nodes with ‘+-” marks.

More formally, we construct a conflict set S that contains
the attacker and other independent nodes. S is initialized to
be empty. From each leaf node of conflict tree(Fig. 8(b)),
we traverse up the tree until reaching the first node x that
satisfies the following two conditions:

1) x is marked with either “+” or “-”
2) its parent node is marked with “+-” mark

Node conflicts with at least one other node and thus x is
added to S, but none of node x’s descendants are added to
S since they are influenced by x. We repeat this procedure
for each leaf node of conflict tree to obtain S. Nodes in the
conflict set S are independent of each other and we now can
do a majority vote among nodes in S. For example, the node
E, L, and D in Figure 8(b) are all added to S. The mark
with the least votes loses, and the node with losing mark is
identified as the attacker. In our example, mark “+” loses,
and node E is identified as the attacker and the attack is an
insertion attack of link [C A].

E. Attacker Identification: Query

The above identification algorithm did not make use of
query messages. In Figure 7(b) and Figure 7(c), the above al-
gorithm results in S = {D+} and S = {C+}, respectively.
Both conflict sets only have a size of 1 unless query results
are added into the algorithm.In general, when we query node
u about a link [v u] through a neighbor n, there are several
nodes in the path from n to u. We only add the node adja-
cent to u into the conflict set, since replies of all the other
nodes on the same path are not independent. In the case of
Figure 7(b), the conflict becomes S = {D+, T−}, and in the
case of Figure 7(c), S = {C+, T−}.

Once the identification algorithm is called by Algorithm
2, and the conflict set after query result is incorporated, the
conflict set size is at least 2. Given we assume there is only
one attacker, the attacker can be directly identified if the con-
flict size is larger than 2. If the size is 2, we clearly can-
not rely on majority vote. At this point, the diagnosis node
may choose to send additional queries through other neigh-
bors in an attempt to further pin down the attacker. Again,
we need to find the independent nodes to query. In Fig-
ure 9(a), node Z has queried node R and obtained the con-
flict set S = {C+, T−}. A query to neighbors U would
go through T and thus wouldn’t contribute to the conflict
set. But a query neighbor X would produce the conflict set
S = {C+, T−, W−}, and identify node C as the attacker, as
shown in Figure 9(b).

After including queries, our attacker identification algo-
rithm is summarized in Algorithm 2. Finally, note that our
attacker identification algorithm deals with the case that the
link is genuine but query results are false(i.e., an attacker
fake a reply for a query). Given there is only one attacker,

(a) Attack (b) Conflict Set at Z

Fig. 9. Attacker Identification with Query

Algorithm 3: Attacker Identification Algorithm

Data : From algorithm 2. root cause link [v u];

Result : attacker identified: true or false
attacker identified← null;
repeat

construct conflict set;
if size of conflict set >2 then

attacker identified← true ;

if has a neighbor n whose path does not include v,
but include u; not queried yet; and independent of
other querying results then

query this neighbor n;

else
attacker identified← false;

until attacker identified 6= null;

this case is naturally solved by majority vote among inde-
pendent nodes in our identification algorithm.

IV. EVALUATION OF ATTACK DETECTION AND

IDENTIFICATION

In this section, we evaluate our attack detection and
identification algorithms using simulations. We simulate
path-vector protocol and our algorithm in an Internet-like
topology from [13] with 409 nodes. Throughout this sec-
tion, we will use the following notations: A for the origin
node(destination), X for the attacker, and Z for the diagno-
sis node. In a third-party attack, the attacker announces a
false link between its current next hop and the origin; in a
direct attack, the attacker announces a false link between it-
self and the origin. Such attack patterns are to approximate
maximal damage that an attacker can do to a specific origin.
Note that in each simulation run, the attacker attacks only
one origin at a time.

A. Overall Results

Given A and X , Z may or may not be affected by the
attack depending on their locations in the network. If Z re-
ceives updates triggered by the attack, we say Z is notified

8

(a) Third-party Attack (b) Direct Attack

Fig. 10. Overall Results

by the attack (A, X); otherwise Z is not notified. For our
attack pattern, Z is notified if X is on the old path or new
path(to A) of at least one of Z’s neighbors.

An attack has impacts only on notified nodes. For a no-
tified Z, if it can both detect the attack and identify the at-
tacker, we say the attacker X is identified by Z. Accord-
ing to our algorithm, identification is only possible when the
conflict set size is at least 3. This means node Z must re-
ceive paths from at least 3 independent information sources
regarding the disputed link, and node Z’s degree must be at
least 3.

If a notified Z can detect the attack but cannot identify the
attacker, we say the attack (A, X) is only detected by Z. A
node Z can detect the (A, X) if the new path of at least one
of Z’s neighbors does not go through X to reach to A. If a
notified Z cannot even detect the attack, we say node Z is
infected by attack (A, X). A node Z is infected by (A, X) if
all Z’s neighbors’ new paths go through X .

Since the locations of A, X , and Z have great impact on
the effectiveness of diagnosis, we enumerated all possible
combinations of (A, X, Z) in the 409-node topology. Fig. 10
shows the overall results.

We can see that the overall notification rate is low. Among
all combinations of (A, X, Z), Z is notified in only 3.67% of
the third-party attack cases, and 22.81% of the direct attack
cases. Since our detection algorithm does not block any up-
date, it doesn’t affect the notification rate at all. Therefore,
the relatively small notification rate reflects the network’s in-
trinsic immunity against attacks even without any detection
mechanism. This is mainly due to the Internet topology’s
rich connectivity, and the path vector routing protocol, in
which a node only sends its best path to neighbors.

Without a detection mechanism, the infection rate would
be equal to the notification rate. The difference between the
notification rate and the actual infection rate is how much
the system benefits from adopting a detection mechanism.
Fig. 10 shows that our algorithm can reduce the infection rate
to 0.02% for third-party attack, and 2.46% for direct attack,
less than 10% of the notification rate in both cases.

We now examine more detailed results from the origin AS’
point of view and the diagnosis node’s point of view respec-
tively.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

In
fe

ct
io

n
R

at
e

CDF

Notification Rate
Infection Rate before Query used

Infection Rate Query

(a) Third-Party Attack

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

In
fe

ct
io

n
R

at
e

CDF

Notification Rate
Infection Rate

(b) Direct Attack

Fig. 11. Notification Rate and Infection Rate over All origins.

B. Results for Origin ASes

Given an origin node A, we measure the notification rate
n(A), which is the ratio of the number of cases that Z is
notified over the number of all possible (X, Z) cases. Sim-
ilarly, we measure the infection rate i(A), which is the ratio
of the number of cases that Z is infected over the number of
all possible (X, Z) cases. Fig. 11 shows n(A) and i(A) as
CDF over all possible A.

For third-party attack (Fig. 11(a)), our detection algorithm
reduces the infection rate by two orders of magnitude com-
pared with the notification rate. For instance, the median
infection rate(Y value when X=0.5 in our CDF Fig. 11(a))
is 0.0159%, while the median notification rate is 1.92%. If
we only use path change validation algorithm without ac-
tive queries, the infection rate (e.g., the median is 0.345%)
is still about one order of magnitude smaller than the noti-
fication rate. For direct attack, our detection algorithm also
reduces the infection rate by one to two orders of magni-
tude (Fig. 11(b)). For instance, the median infection rate is
0.597%, while the notification rate is 17.5%.

Fig 11 also shows that both the notification rate and the
infection rate actually vary a lot for different origin ASes.
Suppose an origin A has t direct neighbors. The effect of a
third-party attack or direct attack is to add one fake neigh-
bor. Intuitively, an attack can affect about 1

t+1 fraction of

9

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

R
at

e

Degree

Notification Rate
Avg. Notification Rate

Infection Rate
Avg. Infection Rate

Fig. 12. Notification Rate and Infection Rate vs. Origin’s Degree for Direct
Attack. The result for third-party attacks has the same trend.

all nodes on average, that is, the average notification rate is
around 1

t+1 . Therefore, the higher an origin’s degree, the
more immune to an attack this origin is, even without any de-
tection mechanism. With our detection algorithm, for a given
(X, Z), the higher an origin’s degree, the more chance that
at least one of Z’s neighbors does not take X’s path which
enables Z to query the origin and detect the attack.

Fig. 13 shows the notification rate and infection rate ver-
sus origin’s degree for direct attacks. The result for third-
party attacks has the same trend. As analyzed above, both
notification rate and infection rate decrease as origin degree
increases, and the infection rate decreases sharper than the
notification (a node not notified will never be infected ac-
cording to the definitions). The implication is that a well-
connected node is better protected by both path-vector itself
and our detection algorithm.

Note that at the top-right corner of Fig. 11(b) the notifica-
tion and infection rates for some origins are quite high. In
addition, the scatter plots in Fig. 12 also show that origin’s
degree is not the only factor, since origins with the same de-
gree can have different notification rate. Our investigation
shows that those cases are mainly caused by the combina-
tion of origin’s low degree and being close to high-degree
attackers. Fig. 13 shows the notification rate and infection
rate versus attacker’s degree for direct attacks. The result
for third-party attacks has the same trend. It is clear that
as the attacker’s degree increases, its damage to the network
increases too. The higher a node’s degree, the more likely
that other nodes will rely on this node to reach the origin. If
such a high-degree node is compromised, it is likely to have
bigger negative impact on the system.

C. Results for Diagnosis Nodes

We now show the results from the diagnosis node’s point
of view. Given a diagnosis node Z, if its notification rate is
n(Z), and infection rate is i(Z), then its relative infection
rate is ri(Z) = i(Z)

n(Z) . Similarly, if its identification rate is

d(Z), its relative identification rate is rd(Z) = d(Z)
n(Z) .

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

R
at

e

Degree

Notification Rate
Avg. Notification Rate

Infection Rate
Avg. Infection Rate

Fig. 13. Notification Rate and Infection Rate vs. Attacker’s Degree for
Direct Attack. The result for third-party attacks has the same trend.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100
 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

(R
el

at
iv

e)
In

fe
ct

io
n

R
at

e

Degree

Third-Party Attack Avg. Infection Rate without Query
Third-Party Attack Avg. Infection Rate with Query

Direct Attack Avg. Infection Rate

Fig. 14. Relative Infection Rate vs. Diagnosis Node’s Degree

Since both our detection algorithm and identification al-
gorithm benefit from high-degree diagnosis nodes, we draw
the average ri(Z) as a function of Z’s degree in Fig. 14. We
see that in general infection rate decreases as the degree of
diagnosis node increases. When node degree is 10 or higher,
the average relative infection rate is no more than 0.0375%
for third-party attack, and no more than 3.45% for direct at-
tack. This shows that a well-connected diagnosis node can
be extremely effective in detecting attacks (e.g., more than
99.9% in third-party attack, and more than 96.5% in direct
attack).

Fig. 15 shows the relative identification rate as CDF over

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

R
el

at
iv

e
Id

en
tif

ic
at

io
n

R
at

e

CDF

Third-Party Attack
Third-Party Attack(before query is used)

Direct Attack

Fig. 15. Relative Identification Rate at Diagnosis Nodes

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
A

vg
. R

el
at

iv
e

Id
en

tif
ic

at
io

n
R

at
e

Degree

Third-Party Attack(before query is used)
Third-Party Attack

Direct Attack

Fig. 16. Relative Identification Rate vs. Diagnosis Node’s Degree

 0

 5

 10

 15

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 Q

ue
ry

in
g

M
es

sa
ge

s

CDF

Third-Party Attack, Dection and Identification
Direct Attack, Dection and Identification

Third-Party Attack, for Detection Only
Direct Attack, Detection Only

Fig. 17. Querying Overhead for Attack Detection and Identification.

all diagnosis nodes. For third-party attack, our identification
algorithm achieves high median rd(Z) of 93%. For direct
attack, the median rd(Z) is around 30%. According to our
algorithm, identification is only possible when the conflict
set size is at least 3, which means node Z’s degree must be
at least 3. However, in our topology, there are 48% of nodes
with degree of 2 or 3. Therefore, it is no surprise to have
lower relative identification rate for direct attacks.

Fig. 16 shows the average relative identification rate ver-
sus diagnosis node’s degree. When Z’s degree is 10 or
higher, average rd(Z) is more than 98% for third-party at-
tack, and more than 70% for direct attack. Also, when Z’s
degree is 10 or higher, using only the path change validation
algorithm without active query can achieve average rd(Z)
of more than 50% for third-party attack. This demonstrates
that the query mechanism significantly improves the identi-
fication of attackers.

D. Querying Overhead

Fig 17 shows the CDF of the query mechanism’s message
overhead. With our optimization, the message overhead is
very low. In 90% of all cases, the query overhead is at most
2 messages (one query and one reply) for detection only. In
90% of all cases, the query overhead is at most 4 messages
for both detection and identification.

V. DISCUSSIONS AND FUTURE WORK

In this section, we discuss our future work and some issues
not covered by previous sections.

A. Decoupling Diagnosis Function from Router

DRAQ does not modify best-path selection algorithm run
by routers. The only required change to the routing process is
that routers attach and propagate the root cause in the updates
to facilitate the diagnosis. All the other diagnosis function-
alities are conducted in an auxiliary device, called diagnosis
station, without sending feedback to routers.

To conduct route diagnosis, the diagnosis station receives
a copy of each update the corresponding router receives, and
then runs the diagnosis algorithm. The topology graph is
stored inside the diagnosis station using inexpensive storage
device (such as a hard disk). Necessary queries are sent and
propagated among diagnosis stations.

The output of route diagnosis is used by network opera-
tors. When false information is detected, an alarm is raised,
and identified attackers are provided to the operators. Com-
pared with alternative approaches [5][6][7][8] which provide
feedback to the routing process to actively block the detected
false information, DRAQ does not require timely detection
decision, adds little CPU overhead to th routers, and no feed-
back loops are created that could make diagnosis more diffi-
cult.

B. Overlapping Events

We now discuss our assumption in Section II that our di-
agnosis algorithm starts after the network converges and fin-
ishes before any new event happens.

To start running the diagnosis algorithm, the diagnosis
node first needs to know whether the current event has fin-
ished. To determine whether all the updates in an event have
been received, the diagnosis node can use the root cause in-
formation and some timing clustering algorithm as used in
[1][2][4]. A node determines that the current event converges
if no update is received within a time interval threshold af-
ter the last message with the same root cause. As long as
no new event occurs when our diagnosis algorithm is still in
progress, our algorithm works as expected. In case the tim-
ing heuristic prematurely declares the current event has con-
verged (e.g., because threshold is too small), some updates
with the same root causes will be received by the diagnosis
node, thus the diagnosis algorithm needs to start over again.

In the case that a new event happens before the current di-
agnosis completes, the diagnosis node will receive updates
with a new root cause. Thus, the diagnosis station declares
the two events are too close to each other, and the current
diagnosis process is canceled and then starts over when the
new event converges. Similarly, in the case that events over-
lap, the diagnosis algorithm runs after all the overlapping
events converge. In these cases, the diagnosis algorithm
needs to deal with two or more root cause changes. The
path change validation algorithm and the attack detection al-
gorithm still work, since the path prediction and query are
not affected. However, the attacker identification algorithm
needs to be generalized to deal with multiple root causes.
One way to do that might be to build the conflict tree and

11

conflict set for each root cause, and identify the attacker in-
dividually for each root cause. We plan to investigate the
generalization of attacker identification algorithm as part of
future work.

C. Path Prediction with More General Policy

So far we have assumed shortest-path policy in present-
ing DRAQ. However, some components of DRAQ are inde-
pendent of the policy used, and some others can be gener-
alized to apply to more general routing policies. First, the
root cause notification is per-prefix based, thus not affected
by policy. The querying mechanism is not affected by policy
either. Second, our topology graph is per-prefix based and
is built based on received updates. In a path-vector proto-
col with more general policies, a link in the received paths
regarding one prefix are allowed by the policy, thus links ac-
cumulated in this prefix’s topology are allowed by the policy
too.

Both path change validation and attack detec-
tion/identification use the path prediction algorithm,
and so far we have used shortest-path algorithm on the
accumulated topology graph to do the prediction. Similarly,
prediction can be done if the network policy is “known”
to the diagnosis node. For example, currently the most
common policy in the Internet is the so-called “no-valley”
policy based on the relationship between neighboring ASes,
where a path learned from a peer or a provider can be sent
only to customers, a path learned from a customer can be
sent to any neighbors, and a path from customer is always
preferred to a path from a peer. Under such a policy, we
can first run the AS relationship inference algorithm, such
as those in [14], then the path prediction is done using the
policy rule. As long as a diagnosis node knows the policy
(e.g. no-valley policy), and knows the input to the policy
(e.g., AS relationship), path prediction can still be done
accurately. In the case that policy and/or its input is not
known to diagnosis node or is inaccurate, the diagnosis node
can keep a list of past paths ever used by each neighbor, and
calculate their relative preference based on history and some
partial policy information, and use this ordered list of paths
to do the path change validation. We plan to generalize our
DRAQ along above directions to deal with general policies
as part of our future work.

D. Taking Advantage of Multiple Destination Topology

In this paper, we build topology on a per-destination base.
However, in reality, there are lots of destinations, and the fail-
ures and recoveries of one physical link can simultaneously
affect paths to multiple destinations. Also, we have assumed
a link is unidirectional, but it’s often the case that link [u
v] and link [v u] fail and recover at the same time. Correlat-
ing diagnosis results for different destinations can potentially
increase our diagnosis power, but there are some issues, es-
pecially with a general routing policy. For example, a link

legitimate to one destination might be illegitimate to another
destination due to policy reason.

To take advantage of multiple destinations, we can build
a topology graph combining all the per-destination topolo-
gies, while maintaining the individual topologies as before.
With this combined topology and the policy information that
we described in Section V-C, we can do some path predic-
tion for one destination based on path changes to another
destination. With this cross-checking among different des-
tinations, we can achieve more diagnosis power. One sim-
ple example is, if an attacker fakes a link for one destina-
tion, but the combined topology and the policy say such a
link, if genuine, should be used for another destination, then
some inconsistency is detected. Also, our querying mecha-
nism can be extended to query about multiple destinations in
the same message. Furthermore, the attack detection and at-
tacker identification results of different diagnosis nodes can
be correlated. For example, a node that is identified as an
attacker with multiple destinations is more suspicious than
others. For the root cause notification mechanism, currently
it is per-destination based, and it can be enhanced to carry
some policy information, specifying the link status change is
applicable to one destination only, a list of destinations, or
all the destinations. We plan to investigate these directions
as our future work.

E. Dealing with Multiple Attackers

We have assumed that there is at most one attacker in the
network at any given time. In case there are multiple iso-
lated attackers in the network at the same time, the problem
is equivalent to dealing with overlapping events, which is
discussed in Section V-B. We now discuss how to deal with
multiple colluding attackers at the same time.

Our attack detection and attacker identification algorithms
take advantage of the rich connectivity of the network, and
can detect and identify the attacker with high probability if
there is only one attacker. If there are two or more collud-
ing attackers, as long as there are less attackers than nor-
mal nodes, the same detection and identification algorithm
in general can still work. However, the detection rate and
identification rate might be decreased, especially for those
low-degree nodes close to the attackers, since query replies
and majority votes might be dominated by the false informa-
tion from colluding attackers.

To deal with colluding attackers, we propose that neigh-
boring diagnosis stations share the detection and identifi-
cation results. In the current DRAQ design, only the pure
topology information is queried and replied among neighbor
diagnosis nodes. To share the detection and diagnosis results,
each node keeps two sets of attack detection and attacker
identification results, one from its own diagnosis algorithm,
and one learned from neighbors. An enhanced detection al-
gorithm can then be done based on the learned detection and
identification results. Even if one might want to cut overhead
by exchanging only the local results between direct neigh-
bors, a node can still benefit from neighbor’s combined de-

12

grees and redundancy. Therefore, with reasonably rich net-
work connectivity, such a collaboration among neighbors can
be an effective defense against colluding attackers. We plan
to investigate this direction in the future.

VI. RELATED WORK

While there is a lot of existing work related to identifica-
tion of the root cause change and false information detec-
tion, there is little work targeting at false information iden-
tification and we are not aware of any work targeting at un-
derstanding why a specific path is chosen among alternative
path.

A. Related Work for Root Cause Identification

Root cause identification of BGP updates has received a
lot of research attention lately. [1],[2],[3], and [4] infer the
root cause solely based on current BGP messages. As re-
viewed in [4], there are three dimensions of update informa-
tion for root cause inference: time, different peers, and pre-
fixes, and these approaches use different combinations and
different orders of these three dimensions. However, the in-
sufficient information for diagnosis has limited effectiveness
of passive inference [15][16]. Furthermore, [4][15][16] have
shown that passive inference could even reach the wrong
conclusion in terms of the root cause location. As [15][16]
have argued, we believe that some network support is needed
for an effective solution to root cause identification problem,
and we have proposed root cause notification as the solu-
tion for the root cause identification problem. In terms of
utilizing path information in the updates, these approaches
only use two snapshots of the paths in the routing table at the
steady state to infer the change, while we utilize much more
historical information by accumulating a topology graph, al-
though we haven’t deeply explored the possibility of taking
advantage of dimension of multiple prefixes.

[15][16] propose some network support for the root cause
identification problem by first maintaining local root cause
at dedicated servers and then using queries between servers.
Both approaches focus on how to maintain the detailed local
root cause such as IGP distance changes and session failures,
while we focus on Inter-AS level root cause, therefore our
approach complements these two approaches and vice versa.
For root cause identification problem, we use RCN to signal
the root cause, while they use query among servers between
neighboring ASes to pin-down the root cause. These two ap-
proaches did not deal with understanding the choice of new
path.

B. Related Work for Attack Detection and Identification

One of the first routing security work is by Perlman [17].
[17] presents a secure link state protocol utilizing public
key cryptography for authentication of link state information.
Some theoretical results on Byzantine-robustness of this se-
cure link state protocol are provided.

In IRV [18] approach, each AS designates a server that
answers queries regarding BGP security. Queries and replies
are sent out-of-band of BGP, thus the authenticity of reply re-
mains a challenging problem. Our query aims to solicit only
relevant information along a chosen path, and our majority
vote approach can naturally deal with false reply if any. IRV
does not provide any attacker identification functionality.

The rest of work reviewed in this section, including
[5][6][7][8], all use cryptography, and require the signing
and verifying the path in the router, which increasing router’s
CPU overhead. DRAQ does not use any cryptography,
and it requires little CPU overhead on router since it only
needs routers to generate and propagate the root cause. All
other things, including topology accumulation, querying, at-
tack detection and identification can be done in separate de-
vices(diagnosis stations). Furthermore, these approaches to
some extent all depend on some out-of-band knowledge such
as PKI, PGP-like web of trust, or globally known hash func-
tion, which can be important deployment hurdle. In addition,
they focus on blocking invalid updates, and the attacker iden-
tification has not been the particular design goal of existing
approaches, although potentially identification can be done
based on the some approaches such as S-BGP. Furthermore,
DRAQ approach handles the Blocking Attack where an at-
tacker blocks genuine updates from being propagated, while
these approaches don’t. Note that our DRAQ approach can
be used together with these BGP security approaches and
when they fails to protect BGP path, DRAQ can still provide
another fence of defense.

S-BGP (S-BGP)[5] provides a comprehensive BGP secu-
rity solution using public key cryptography. A route attes-
tation(RA) is signed by ASx specifies that ASx authorized
ASx+1 to advertise the path of (ASx, ASx−1, . . . , AS0).
The recipient AS uses the public key of the router’s along
the path to verify the each link in the AS path. It requires
significant router CPU overhead to sign and verify the signa-
tures, and building and maintaining PKI required by S-BGP
is difficult and this further delays the S-BGP’s deployment.

The Secure Path Vector (SPV) protocol prevents attackers
from truncating an ASPATH or changing any AS number in
the ASPATH. In SPV, the owner of a prefix generates a se-
quence of one-time signatures and pass them with the update
to other ASes. As the update propagates, each AS along the
path uses one one-time signature to sign itself into the AS-
PATH. Hash trees are used to authenticate and verify the sig-
natures, and one-way hash chains are used to reduce the size
of cryptographic information. In most of its operations, SPV
uses symmetric key cryptography instead of asymmetric key
cryptography as in S-BGP, which makes it more computa-
tionally efficient. Nevertheless, SPV still requires some use
of asymmetric cryptography and certificate hierarchy in or-
der to authenticate the ownership of prefixes and verify the
ASPATH. SPV also doesn’t consider attacker identification.

In SoBGP approach [6], each AS use a special BGP mes-
sage to propagate a list of its AS neighbors. Routers can use
this information to build a directed graph that constructs a su-

13

perset of possible AS level links and then check any routing
update against this superset to see whether a link is possible.
However, even if each link in the update exists in the directed
graph, the update could still be invalid since this link might
not be available for the specific prefix in the update due to
policy reason, or because currently the link is down. Our
topology is built for each particular prefix based on updates,
root cause, and query results, and is more accurate. Further-
more, SoBGP does not support attacker identification.

In “Whisper” approach, each node v uses symmetric cryp-
tography to include some secret s(v) into the BGP updates.
At a receiving each node, the s(v) learned from different
peers should be the same, otherwise, an alarm is raised. This
approach shares the similarity with DRAQ in that both ap-
proaches utilize the network redundancy and use some form
of consistency checking. Whisper’s attacker identification
relies on the condition that the attacker simultaneously an-
nounces routes to multiple destinations so that penalty values
of attackers becomes higher and thus identified. When an at-
tacker only attacks one destination, Whisper cannot identify
the attacker or block the invalid update from propagating,
while DRAQ does not have this problem since it deals with
different prefixes separately.

VII. CONCLUSION

Internet route diagnosis is of great need in practice. How-
ever, as with all protocol designs, the importance of route
diagnosis is truly appreciated only after the protocol has
been developed and deployed. Current BGP routing update
messages carry only functional information, i.e., information
needed to compute the best path in the network. No informa-
tion is designed into the protocol to facilitate route diagnosis.

In this paper, we proposed a simple and effective path vec-
tor routing diagnosis solution DRAQ. DRAQ collects neces-
sary information for diagnosis through the following three
means: (1) fully utilizing the existing connectivity infor-
mation carried in the path vector protocol to build a partial
topology graph; (2) enhancing path vector protocol with root
cause notification to carry topological change information to
relevant nodes; and (3) using active queries to obtain missing
information on demand to achieve diagnosis goals. With all
the necessary topology and topological change information
in hand, and in the absence of false information and over-
lapping events, a diagnosis node can determine path removal
and replacement with 100% accuracy. In the presence of a
false routing update, DRAQ takes advantage of a network’s
rich connectivity and the attacker’s inability to block all the
correct routing updates from reaching a diagnosis node in
most cases. The diagnosis node checks the consistency be-
tween received paths to detect the existence of false informa-
tion, and uses majority votes among independent informa-
toin sources to identify the attacker. Our simulation results
show that DRAQ can achieve high detection rate and attacker
identification rate with low overhead.

We would like to draw the following conclusions from our
DRAQ design and evaluation experience. First, DRAQ de-

sign shows that effective routing diagnosis can be achieved
with minor additions to path vector routing protocols, in
combination with creative use of information already embed-
ded in the current protocol. Second, rich topological connec-
tivity of a large network can be utilized for effective attack
detection. As our simulation results show, attack against des-
tinations with high node degree are less likely to succeed,
and diagnosis node with high node degree is more effec-
tive in detecting and identifying attacks. By the same to-
ken, high degree nodes also need better protection because
a compromised high degree node can also be more danger-
ous. Finally, DRAQ design shows a proof of evidence that
one can achieve effective attack detection and identification
in the absence of cryptographic mechanisms. We believe the
exploration of such non-cryptographic mechanisms (such as
DRAQ) is important. They are not designed to compete with
cryptographic mechanisms but to complement them in de-
ployment, so that the system can be well protected by these
non-cryptographic mechanisms even when the crypto pro-
tection layer is broken.

REFERENCES

[1] D. Chang, R. Govindan, and J. Heidemann, “The Temporal and Topo-
logical Characteristiccs of BGP Path Changes,” in Proceedings of
ICNP, November 2003.

[2] M. Caesar, L. Subramanian, and R. H. Katz, “Root Cause Analysis of
Internet Routing Dynamics,” Tech. Rep., UC Berkeley CSD, 2003.

[3] M. Lad, A. Nanavati, D. Massey, and L. Zhang, “An algorithmic ap-
proach to identifying link failures,” in PRDC, 2004.

[4] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs, “Lo-
cating internet routing instabilities,” in Proceedings of ACM Sigcomm,
August 2004.

[5] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (s-
bgp),” IEEE JSAC Special Issue on Network Security, 2000.

[6] J. Ng, “Extensions to BGP to Support Secure Origin BGP,” ftp://ftp-
eng.cisco.com/sobgp/drafts/draft-ng-sobgp-bgp-extensions-02.txt,
April 2004.

[7] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz, “Listen
and whisper: Security mechanisms for bgp,” in Proceedings of ACM
NDSI 2004, ”March” 2004.

[8] Y.-C. Hu, A. Perrig, and M. Sirbu, “SPV: Secure path vector routing
for securing bgp,” in Proceedings of ACM Sigcomm, August 2004.

[9] D. Pei, M. Azuma, N. Nguyen, J. Chen, D. Massey, and L. Zhang,
“BGP-RCN: Improving BGP Convergence Through Root Cause No-
tification,” Tech. Rep. TR-030047, UCLA CSD, October 2003.

[10] J. Chandrashekar, Z. Duan, Z.-L. Zhang, and J. Krasky, “Limiting
path exploration in path vector protocols,” Tech. Rep., University of
Minnesota, 2003.

[11] Dimitri Bertsekas and Robert Gallager, Data Network, Prentice-Hall,
1992.

[12] “The SSFNET Project,” http://www.ssfnet.org.
[13] B. Premore, “Multi-as topologies from bgp routing tables,”

http://www.ssfnet.org/Exchange/gallery/asgraph/index.html.
[14] L. Gao, “On inferring automonous system relationships in the inter-

net,” IEEE/ACM Transactions on Networks, vol. 9, no. 6, 2001.
[15] R. Teixeira and J. Rexford, “A measurement framework for pin-

pointing routing changes,” in ACM SIGCOMM Network Troublestoot-
ing Workshop, August 2004.

[16] J. Chandrashekar, Z.-L. Zhang, and H. Peterson, “Fixing BGP, One
AS at a time,” in ACM SIGCOMM Network Troublestooting Work-
shop, August 2004.

[17] Radia Perlman, Network Layer Protocols with Byzantine Robustness,
Ph.D. thesis, MIT Lab. for Computer Science, 1988.

[18] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and A. Ru-
bin, “Working around bgp: An incremental approach to improving
security and accuracy of interdomain routing,” in NDSS, 2003.

14

