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Abstract

This paper describes a semantic basis for a compositional approach to the analysis of logic
programs. A logic program is viewed as consisting of a set of modules, each module defining
a subset of the program’s predicates. Analyses are constructed by considering abstract inter-
pretations of a compositional semantics. The abstract meaning of a module corresponds to its
analysis and composition of abstract meanings corresponds to composition of analyses. Such
an approach is essential for large program development so that altering one module does not
require re-analysis of the entire program. A compositional analysis for ground dependencies is
included to illustrate the approach. To the best of our knowledge this is the first account of a
compositional framework for the analysis of (logic) programs.

1 Introduction

It is widely acknowledged that as the size of a program increases, it becomes impractical to maintain
it as a single monolithic structure. Instead, the program has to be broken up into a number of smaller
units called modules that provide the desired functionality when combined. Modularity helps reduce
the complexity of designing and proving correctness of programs. Modularity helps also in developing
adaptable software. Since the specifications for a program can change while the program is being
constructed, a modular program structure and a corresponding modular analysis can reduce the
complexity of addressing such changes both in program development and in program analysis. In
contrast to this situation, however, current works on dataflow analysis of logic programs typically
assume that the entire program is available for inspection at the time of analysis. Consequently, it is
often not possible to apply existing dataflow analyses to large programs, either because the resource
requirements are prohibitively high, or because not all program components are available when we
wish to carry out the analysis. This is especially unfortunate because large programs are typically
those that stand to benefit most from the results of good dataflow analysis.

In this paper, we give a formal account of how modular logic programs may be analyzed. We
consider a semantics for modular programs, then study how such a semantics may be safely approxi-
mated and how the results of such approximations may be composed to yield flow analysis results for
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the entire program. Semantic treatments of modules in logic programs have been given by a number
of authors (e.g. see [5, 29]), typically based on nontrivial extensions to Horn clause logic that lead to
complex semantics; it appears to us that the development of abstract interpretations based on such
semantics is not entirely straightforward. The semantics we consider here as a basis for abstract
interpretations is a simplification of that proposed by Bossi et al. [3]. The idea is to treat modules
as programs in which undefined predicates are considered to be “open.” The meaning of a module
is given in terms of iterated unfoldings of the procedures defined in it, except that the open (i.e.,
imported) predicates are not unfolded—the result is to specify the meaning of a module in terms of
structures that depend only on the meaning of the open predicates. It turns out that composition
of modules is described using the same semantic function—i.e., iterated unfolding—as that used for
describing the meaning of a module, leading to a conceptually simple and elegant treatment.

This semantics 1s attractive for abstract interpretation purposes, since it can be seen as a gen-
eralization of the approach of Falaschi et al. [17], which provides the semantic basis for abstract
interpretations such as those discussed in [2, 6]. The use of clauses as semantic objects leads to
interesting technical complications for abstract interpretation, in that there are two independent
dimensions along which we might need finite descriptions in the abstract domain, namely, finite de-
scriptions of sets of substitutions (the “usual” dimension), and also finite descriptions of unbounded
sequences of open atoms. We propose two notions of composition: symmetric composition — which
composes two program analyses; and directed composition — which uses the analysis of one module
in the analysis of another. The termination of an analysis based on symmetric composition depends
on the inter-module dependencies of the program. A decidable sufficient condition is provided to
guarantee that sequences of atoms will be bounded in length. For directed composition, termination
depends on the order in which the modules are analyzed.

The applicability of our approach depends both on the topological structure of program modules
and on the algebraic structure of the abstract domain at the basis of an analysis. This paper
illustrates the constraints underwhich compositional analysis can be obtained with ease. Of course
there is a price to be paid for compositionality. One might have to merge modules to eliminate
dependencies between modules and one might have to strengthen the abstract domain to enhance
its capability to support compositional analysis. Similar properties are required by a domain to
support goal-independent analyses as described in [10]. The technical proofs for our results can be
found in [21].

2 Preliminaries

In the following we assume familiarity with the standard definitions and notation for logic programs
[27], constraint logic programs [26] and abstract interpretation [15]. Throughout, we assume a fixed
set of function symbols X, a fixed set of predicate symbols IT and a fixed denumerable set of variables
Var. The non-ground term algebra over % and Var is denoted Term. Herbrand constraints are finite
conjunctions of equations between terms in Term; the system of such constraints is denoted by #.
Constraints are (possibly infinite) disjunctions of Herbrand constraints. We often view a disjunction
of Herbrand constraints as a set of Herbrand constraints. We let false denote the unsatisfiable
constraint (e.g., the empty disjunction) and true the always satisfiable constraint (e.g., the empty
conjunction). We write # < 8" if  logically implies #. C denotes the set of disjunctions of Herbrand
constraints over Term modulo logical equivalence. Thus C is a complete lattice ordered by < with
bottom element false and top element true.

The set of atoms constructed from predicate symbols in II and terms from Term is denoted
Atom. It is well known that “ordinary” logic programs can be characterized as constraint logic
programs over the constraint system H [26], and in context of this paper it is technically convenient
to view logic programs in this manner. A goal is of the form ¢ || a, where ¢ is a Herbrand constraint
and a is a sequence of atoms. The empty sequence of atoms is denoted by true. We let (a;)I,
denote the sequence ai,...,a,. The concatenation of sequences by and b is written by :: by, A

(constrained) Horn clause is an object of the form h + ¢ | b where h is an atom, called the head,



and o [ b is a goal, called the body. When ¢ = true we write h < b. A logic program (or module)
is a finite set of clauses. The set of clauses constructed from elements of Atom is denoted Clause.
We say that a clause h « o | b is normalized if o is in solved form and h « b is linear, i.e., contains
no multiple occurrences of any variable, and flat, i.e., contains no function symbols or constants.
vars(t) denotes the set of variables occurring in a syntactic object t.

A substitution ranging in Sub is a mapping from Var to Term which acts as the identity almost
everywhere: 1t extends to apply to any syntactic object in the usual way. Following tradition, the
application of a substitution # to an object t will be written t@ rather than #(t). The satisfiability of
a Herbrand constraint o, denoted H = o, is determined by computing a solution (a set of equations
in solved form or a most general unifier) of ¢. We fix a partial function mgu which maps a pair of
syntactic objects to an idempotent most general unifier of the objects. For a syntactic object t and
constraint o, o(t) denotes t@ where § = mgu(s). For a set of constraints ©, O(t) = {o(t)|c € O}.
A wvariable renaming is a (possibly non-idempotent) substitution that is a bijection on Var. Two
syntactic objects t; and t, are equivalent up to renaming, written t; & to, if t1p = t» for some
variable renaming p. The equivalence class of t under & is denoted by [t]~. For a syntactic object
s and a set I of equivalence classes under =, we denote by {(c1,...,¢cn) < I that ¢1,...,cn are
representatives of elements of I renamed apart from s and from each other. In the discussion that
follows, we will be concerned with sets of clauses modulo the following notion of equivalence between
clauses: we say that (h < o[ b) ~ (h' + o' [ b)) iff c(h + b) = ¢/(h’ + b’) and b is a permutation
of b’. The intention is identify clauses which differ syntactically yet specify the same implicational
relationship between the clause body and its head. For example, a clause p([H|L]) « q(L) can
also be written as p(X) «+ X = [H|L] | q(L). For simplicity of exposition, we will abuse notation
and assume that a clause represents its equivalence class under ~ and write Clause rather than
[Clause]... The powerset of a set X is denoted by p(X). An interpretation is any element in
Int = p(Clause).

3 Bottom-Up Semantics for Composition

If Py,...,Py are logic program modules, then P = UL P; is a modular logic program. Such a
program 1s said to be predicate disjoint if no predicate is defined in more than one module. In
the following, we assume that modular programs are predicate disjoint as in [19], unless otherwise
specified. For a logic program (or module) P, open(P) denotes the set of predicates that occur in
the body of a clause in P but are not defined in P. For any program P, we denote by ®p the set
{ p(x) « p(x)]~ | p € open(P) }.

The modular semantics we assume 1s an instance of the compositional bottom-up semantics of
Bossi et al. [3]. We consider two notions of composition: the first, “symmetric composition”, is
that introduced in [3]. Tt is applicable to the analysis of modular logic programs for which we can
guarantee that the size of clauses will be bound in the number of open predicates occurring in their
bodies. The second, “directed composition”, allows us to analyze a module while “plugging in”
analyses for predicates defined in other modules that are lower in the program call graph.

The concrete semantics is formalized in terms of unfolding of clauses. The unfolding operator unf
specifies the result of unfolding clauses from an interpretation P, with clauses from an interpretation

P (cf. [16]).

Definition 3.1 [unfolding]
The unfolding operator unf : Int x Int — Int is defined as

c=h«o]gi,.. ., gn€Py,
1
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A bottom-up semantics for open logic programs is defined in terms of “iterated unfolding” as
follows:

Definition 3.2 [compositional fixpoint semantics [3]]
The semantics of a program P is given by the function F : Int — Int, defined as F(P) = lfp(Tp),
where Tp : Int — Int is defined as Tp(I) = unf(P,IU $p). 1

Note that the above definition is a generalization of the “usual” fixpoint semantics for Horn logic
programs. If open(P) = @ then the iterations of Tp starting from the empty interpretation are the
same as with the (non-ground) immediate consequence operator of the s-semantics in Falaschi et al.

[17).

Theorem 3.1 [concrete composition [3]]

Let Py and Ps be modules. Then

(1) symmetric composition : F(P; UPy) = F(F(P1) UF(Ps)); and
(2) directed composition: F(P1UP3) = F(P1UF(Py)).

4 Abstract Semantics and Composition

We assume the standard framework of abstract interpretation, as defined by Cousot and Cousot
[15], in terms of Galois insertions. We let (AInt,,M,C) denote a complete lattice of abstract
interpretations, where each abstract interpretation describes a set of clauses, and (Int, o, AInt,~)
is a Galois insertion. Note that programs and interpretations have the same structure — sets of
clauses. Hence, the abstract semantics of a program P is F4(«(P)), where F4 : AInt — Alnt is
the semantic function. Abstract composition is analogous to concrete composition. The following
theorem states the correctness of applying abstract composition for program analyses based on any
safe abstract semantics.

Theorem 4.1 [correciness of abstract composition]

Let (Int, oo, AInt,y) be a Galois insertion and let FA : Alnt — AlInt be a monotonic and safe
approzimation of F, i.e. for every I € Int, o(F (1)) C FA(a(T)). Then, for any program modules
P, Ps € Int,

1. a(F(PLUPy)) C ]-"A(]:A(oz(Pl)) U fA(a(Pz))). [symmelric composition]
2. a(F(PLUP,y)) C ]-"A(oz(Pl) I_I}"A(oz(Pz))). [directed composition]

Proof
(1) a(F(PLUPy) = o(F(F(P)uUF(P)) [ Theorem 3.1 ]
C FYa(F(P1)UF(Ps))) [ safety ]
= TA(oz(T Pl)) u O{(T(PQ))) [ «is additive ]
C TA(TA(Oz(Pl)) u TA(O[(PQ))) [ safety and monotonicity ]

The proof of (2) is similar. O

We now illustrate how a safe semantic function F#4 : AInt — Alnt can be induced from a
domain A of abstract constraints (or substitutions). A general definition of abstract constraint
system for abstract interpretation of possibly non Herbrand constraints can be found in [22].

Definition 4.1 [abstract constraints]

A domain of abstract constraints is a complete lattice (A, C4) such that (C, 4,4, v4) is a Galois
insertion and for any syntactic object s and sets of constraints ©1,03 € C, O1(s) & O3(s) implies
Yaaa01(s) & y4aa402(s). 1

The condition of Definition 4.1 requires that v4 o a4 preserves renamings. Similar conditions on
abstract atoms and on abstract substitutions are assumed in [2, 6].



Example 4.1 The domain Pos was first proposed by Marriott and Sgndergaard as a domain
of abstract substitutions for groundness analysis [1]. The domain is formalized as a Galois inser-
tion denoted (p(Sub), apes, Pos, ¥pos) and consists of equivalence classes of positive propositional
formulae, ordered by implication. The generalization of this domain to Herbrand constraints is
straightforward. A truth assignment £ satisfies a propositional formula f, written & = f, if £(f) is
a tautology. For groundness analysis, a constraint § € C is associated with a corresponding truth
assignment assigng that maps a variable x to true if and only if #(x) is ground, and which is defined
as Ax.vars(f(x)) = 0. The functions Ypes : Pos — € and apes : C — Pos are defined as follows (cf.
[14]) vpos(f) = { 9| (V@) : ¢ <0 = assigng =1 } and apes(©) = /\{ K?| O < Ypos() } |

Abstract clauses are similar to normalized (concrete) clauses except that an abstract constraint
occurs instead of a concrete constraint.

Definition 4.2 [abstract clauses]

Let A be a domain of abstract constraints. An abstract clause over A is an object of the form
h < & | b such that x € A and h + true | b is normalized. The set of abstract clauses over A is
denoted Clause”. I

The meaning of a set of abstract clauses over A is defined by a concretization mapping v :
p(Clause™) — p(Clause) such that for any I* C Clause™:

) ={ e o 1B

A domain of abstract interpretations is induced from (C, «v4, A, v4) by considering the equivalence
relation I# = 1% iff y(I2) = v(I2), induced by v on p(Clause?). The intuition is that if {h «
k[ b} = {h«+ &' b} then « and &’ describe the same set of concrete constraints, when restricted
to vars(h < b). Notice that the equivalence relation = also provides variable hiding and equivalence
up to renaming.

Definition 4.3 [abstract interpretations]
Let A be a domain of abstract constraints and AInt 4 = p(Clause?)/~. We lift v to AInt4 — Int
in the standard way. Hence « : Int — Alnt 4 is defined as

Oz(I):Hh%aA(O')Hb cel,h«c]b~e¢, }]

h + o | b is normalized

~

In the following we will omit equivalence classes modulo = when their use can be easily deduced
from the context.

The running example considered throughout the paper is the modular logic program specifying
the quick-sort relation depicted in Figure 1. The program consists of five modules and is illustrated
in constraint form.

Example 4.2 Let A = Pos and consider the module Pyg from Figure 1.

gt(x,y) « (x & x') Ay | num(x’),
gt(x,y) —xx A yoy gt
le(x,y) « xA(y < ¥) | num(y’),
le(x,y) —xex A yoy |lex,y)

a(Pyg) = ¥,



Pyt gsort(X, YY)« X =[] A Y=[]]true
gsort(X,Y) «+ X =[X;|Xs] A Ls' =[X;|Bs] |

split(Xy, Xs, Ly, L2), gsort(Li,Ls),

gsort(Lz,Bs), append(Ls,Ls’,Y).

Papp: append(X,Y,Z)« X =[] A Y =Z ] true.
append(X,Y,Z) + X =[X,|Xs] A Z=[X,|Zs]) [ append(Xs,Y, Zs).

Pspl Split(X17X27X3,X4)FX2:[] AN X3:[] AN X4:[][|true.
Split(X17X27X37X4) — X2 = [Y|L] AN X3 = [Y|L1] AN X4 = L2 [|
gt(){l,Y—)7 Split(Xl,L,Ll,LQ).
Split(X17X27X37X4) — X2 = [Y|L] AN X3 = L1 AN X4 = [Y|L2] [|
le(Xl,Y), Split(Xl,L,Ll,LQ).

Pig:  gt(s(X),0) + num(X). Poum: num(0).
gt(s(X),s(Y)) « gt(X,Y). num(s(X)) + num(X).
1e(0,Y) + num(Y)
le(s(X),s(Y)) < le(X,Y)

Figure 1: Modular quick-sort program.

Proposition 4.2
If A is a domain of abstract constraints and Alnt 4 the induced domain of abstract interpretations,
then (AInt,C) is a complete lattice where I C I3 iff v(I?) C v(I%) and (Int,a, Alnt4,7) is a
Galois insertion.

We introduce an abstract unfolding operator which is defined in terms of an (monotonic, as-
sociative and commutative) operator ® on abstract constraints which is required to approximate
conjunction on concrete constraints. A domain of abstract constraints together with such an oper-
ator constitutes an abstract constraint system. The monotonicity requirement for ® is natural from
the perspective of abstract interpretation. The requirements for associativity and commutativity are
stronger, and while they are motivated by a desire to approximate an associative and commutative
concrete operation, namely, conjunction of constraints, it 1s possible that they may not be satisfied
by all abstract domains. In this case, there is a tradeoff: one can either strengthen the domain to
support compositionality, or one can manually construct larger modules so as to reduce the number
of points where these requirements do not hold. In any case, there are relevant examples of domains
for logic program analysis that fit in our framework, e.g. ® as ACI unification of constraints for
types and set-sharing analysis [11]. Termination is addressed in the standard way, i.e., by requiring
that the domain of abstract interpretations AInt4 obtained from a set of abstract constraints .4
satisfies a given finiteness property, or via the use of widening operators, as discussed by Cousot and

Cousot [15].

Definition 4.4 [abstract constraint system]

An abstract constraint system A is a (A, C4) together with a monotonic, associative and commu-
tative operator @ : A x A — A such that for every ¢1,¢2 € C, au(ci Aer) Ca as(cr) @ aq(cs).
We say that A is finitary if for any linear clause h < b, the set {[h + % | bl | & € A} does not
contain infinite chains. 1

Definition 4.5 [abstract unfolding]
Let A be an abstract constraint system. The corresponding abstract unfolding operator unf# :



AInt 4 x AInt4 — Alnt4 is defined as:

c=h«rx[gr .. .,gn€EPY
uan(P‘f,P‘;) ={ hew' bbby (hi & r; ILbi>i=1 <e P3
K= kO O (ki ©aa(gi = hi)

The following lemma states that abstract unfolding satisfies the basic properties of concrete
unfoldings (for generic properties of concrete unfoldings see [16]).

Lemma 4.3 [associalivity, continuity and additivity]
For any abstract constraint system A, unf# is associative, continuous in the second argument and
additive in the first argument.

In the following we assume the obvious extensions of the notions of modular logic programs, open
predicates, etc. for the abstract case. For an abstract program P? ®pa is the natural extension of
®p. The abstract fixpoint semantics is defined in terms of abstract unfolding as follows.

Definition 4.6 [abstract fixpoint semantics]
Let unf# be the abstract unfolding operator for an abstract constraint system .A. Define FA :
AlInt4 — Alnt 4 as FA(P?) = Ifp(T#.) where TH. : Alnts — Alnt, is defined by Th. (I?) =
unf4 (P2 18 U pa).

]

Proposition 4.4 [correctness]

Let A be an abstract constraint system. Then, unf? and F* are safe in the induced domain
of abstract interpretations (Int, o, AInt4,v). Namely, for every I;,Io € Int: a(unf(I;,I,)) C
uan(oz(Il),oz(Iz)) and o(F(Iy)) E}"A(oz(ll)).

5 Compositional Analysis

The following illustrates an application for compositional groundness analysis. It is straightforward
to prove that Pos is finitary.

Example 5.1 Let A = Pos and consider the modules Pig and Pyyum, from Figure 1.

t(X,Y XX Y [ num(X’
FAa(Py)) = { ige((X,Y)):}({ /\H (3; ;\Y’) |]|] num((Y’)) };
FA (0(Pam) = { num(X) X | true |

Abstract (symmetric) composition gives:

gt(X,Y) <X A Y [ true
fA(fA(a(Plg‘)) UfA(O‘(Pnum))) = le(X,Y) — X A Y I] true
num(X) « X [ true

O

In the general case, an interesting technical problem arises as abstract unfolding may introduce
arbitrarily large clauses so that analyses can no longer be guaranteed to terminate, even if the
domain of abstract constraints is finitary. This necessitates a second (and orthogonal) abstraction
to deal with unbounded clause bodies in the abstract semantics. Observe, for example, that the
abstract unfoldings of the module Py, in Figure 1 introduce arbitrarily long abstract clauses.



This problem can be addressed in several ways. In [7], a notion of star abstraction adopted from
[9] is applied to limit the length of clause bodies using a domain termed Dep for ground dependency
analysis. The basic idea is to collapse the occurrences of calls to a predicate p in a clause body to
one “canonical” call p,. While this approach indeed restricts the size of the clauses which can be
generated in the analysis, it also can result in a loss of precision in the unfolding process. Alterna-
tively, in [18] it is shown that for finite domains a characterization of the compositional semantics
can be obtained after a finite number of unfoldings without reaching a fixed point. However, in
this approach the number of iterations and the size of the clauses that must be considered can be
prohibitive. In this paper, we consider two cases for which the size of the abstract clauses gener-
ated during the analysis is bound. For the general case, our techniques can be combined with an
additional layer of star abstraction to guarantee termination.

Bounded Symmetric Compositional Analysis.

We characterize a class of bounded program modules for which unfolding does not create clauses
of unbound length. Consequently, if a program consists of bounded modules then symmetric com-
position can be applied in program analyses. The basic idea is to detect the absence of loops in
the program’s call graph which might cause a problem. Note that not all loops create unbounded
unfoldings: it suffices to avoid loops containing literals for open predicates. A convenient way to
express this criterion is by way of a context free grammar.

Definition 5.1 [call grammar]

Let P be a module. Let atoms(P) and open_atoms(P) denote the atoms and, respectively, the call
to atoms in open(P), occurring in P. The call grammar of P is the context-free grammar Gp =
(N, T, Q,S) defined as follows: the nonterminals are given by N = (atoms(P) \ open_atoms(P))U
{S}, where S is a distinguished nonterminal — the start symbol of Gp; the terminal symbols are
given by T = open_atoms(P); and the productions Q are given by:

— For each A € atoms(P) \ open_atoms(P) there is a production § — A.
— For each h «+ ¢ | by,..., by € P there is a production o(h) — o(by) -+ - o(ba).

— For each pair of atoms b € atoms(P) from the body of a clause and h € atoms(P) from the
head of a clause, such that b unifies with (a renaming of) h there is a production b — h.

Example 5.2 Consider the following program, which computes the transitive closure of a binary
relation b which is an open predicate in the definition:

te(X,Y) « b(X,Y).
tce(U, V) « b(U, W), te(W, V).

The productions for the call grammar Gp of this program are given by

S — te(X,Y) | te(U, V) | tc(W,V)
te(X,Y) — b(X,Y)

te(U, V) — b(U, W) te(W, V)
te(W,V) — te(X,Y) | tc(U, V)

Observe that L(Gp) is not finite. O

Theorem 5.1
Let P be a module with call grammar Gp. If the language L(Gp) of Gp is finite, then the number
of atoms occurring in the clauses in F(P) is bounded.



Proof (outline)
Given a program P, let the rank of a clause ¢ in F(P) be the smallest number of unfolding steps
necessary to obtain ¢ from P. It can be shown that for any program P, for every clause ¢ € F(P)
there is a string w in L(Gp) such that the number of atoms in the body of ¢ is equal to the length
of w: the proof is by induction on the rank of ¢. Now suppose that L(Gp) is finite. Let N be the
length of the longest string in L(Gp), then no clause in F(P) can have more than N atoms in its
body. The theorem follows. O

Note that it is decidable whether the language of an arbitrary context-free grammar is finite [25].
Theorem 5.1 therefore gives a decidable sufficient condition for determining whether, for any given
module P, the clauses in F(P) are bounded. The following example illustrates the application of
this approach.

Example 5.3 Consider the following program, which generates the list of prime numbers up to
N for any given natural number N, and assume that the reverse predicate is open and imported
from a library:

primes_1([ ], L0, L1) +

reverse(L0, L1).

primes_1([H|L],LO, L1) +
1) divisible(LO, H), primes_1(L, L0, L1).
) ’ primes_1([H|L],LO, L1) +
' not _divisible(LO, H), primes_1(L, [H|LO],L1).
The program examines a list of numbers, checking each number to see if it 1s divisible by any of the
primes found up to that point—if it is not, it is added to the list of primes found, and the process
continues with the remaining numbers. However, the list is generated “backwards”, and has to be
reversed at the end. The corresponding context-free grammar has a finite language, and so it follows
that unfolding this program does not produce clauses of unbounded size. O

primes(N, L) +
N<2L=[]

primes(N, L) +
N > 2, intlist(N

L
primes_1(L1,[2],L

Directed Compositional Analysis.

A compositional analysis that first analyzes different modules in isolation, then composes the re-
sulting analyses, may have to deal with the possibility of unbounded clause bodies during analysis.
However, a common program design technique is to structure different modules in a hierarchical
way, so that components of a program are defined and understood in terms of previously defined
components. In this case it is always possible to obtain a compositional evaluation for program anal-
ysis that does not involve clause structures of unbounded size. The abstract meanings of modules
which are lower in the hierarchy can be used when evaluating the abstract meanings of the higher
modules. In this way, if the hierarchy is “closed,” 1.e., for every module, each of its open predicates 1s
defined in a module that is lower in the hierarchy, then unfoldings will always produce unit clauses.
This corresponds to “plugging in” the analyses of the lower modules into the analyses of the higher
modules, and can be useful in the bottom-up approach to program design. The following example
illustrates a hierarchical groundness analysis, taking 4 = Pos.

Example 5.4 Consider the quick-sort program from Figure 1. The analysis for Pyum and Pig
may be performed using a symmetrical composition as there is no problem of unbounded bodies. A
hierarchical analysis starting with the lower modules will then consider Papp:

F(Papp) = { append(x1,X2,X3) ¢ (X1 AX2) & X3 | true. }

Next the analysis of Pig U Pypum is plugged into Pgp. Directed composition gives:

split(xy, X2, X3,X4) ¢ X2 A X3 A X4 | true
gt(x,y) « xAy [ true,

le(x,y) « x Ay | true,

num(x) < x || true,

FA(a(Pap) U FA((P1g U Prum))) =



Two additional applications of directed composition plug the analyses for split and append into
the analysis of gsort giving as expected:

{gsort(x1,x2) ¢ x1 & X2 || true}.

A richer class of semi-hierarchical programs is defined to allow predicates which are undefined
in all modules. To this end it is necessary to disallow certain combinations of recursion and calls
to open predicates. Modules which call open predicates may be allowed in the hierarchy as long as
there exists a bound on the number of their occurrences in unfoldings. This can be formalized in
terms of the condition for checking bounded modules.

Definition 5.2 [leveling, closure]
Let P = UL, P; be a modular logic program. A leveling of P is a partial order < on the modules of
P. The closure of a module P; € P (with respect to a leveling <) is the program :

closure<(Pj) =5 L<JP P;.
i

We say that P is semi-hierarchical if there exists a leveling < of P such that closure<(Pj) is
bounded fori=1..n. 1

In particular, note that a program consisting of bounded modules is semi-hierarchical. The
following example considers the public domain tokenizer for Prolog due to O’Keefe.

Example 5.5 Consider a program consisting of the following modules:

Py,; : Defines a tokenizer for Prolog. The open predicates of this module are append, defined in
P i, and I/O primitives defined in Py,.

P : Defines a set of user defined utilities, including the append program from Example 5.4. It
contains no open predicates.

P,y : Defines a set of system defined I/O primitives. It contains no open predicates.

We include here part of Py (the predicate read_tokens is defined by a great many clauses having
essentially the same structure, we include only a few of these to illustrate the point):

read_tokens(TokenList, Dictionary) « read_tokens(—1, _, _) « fail.

read_tokens(32, Dict, ListOf Tokens), read_tokens(Ch, Dict, Tokens) +

append(Dict,[ ], Dict), Ch =< 32,

Dictionary = Dict, getO(NextCh),

TokenList = ListOfTokens. read_tokens(NextCh, Dict, Tokens).
read_tokens([atom(end_of file)],[ ]). read_tokens(40, Dict, ['('| Tokens]) «
read_tokens(41, Dict, [')'| Tokens]) « get0(NextCh),

getO(NextCh), read_tokens(NextCh, Dict, Tokens).

read_tokens(NextCh, Dict, Tokens).

The program Piop UP 415 U Py is hierarchical: Py, is “above” the modules Py, and Pyy,. While
the program P = P, U Pgys is not hierarchical, it is semi-hierarchical. Hence P can be analyzed
without considering the meaning of append. O
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6 More General Composition

The main focus of this paper has been on the compositional analysis of predicate disjoint modules.
This choice is motivated by the fact that module based implementations of logic programming lan-
guages typically provide this functionality. Moreover from a technical point of view, the assumption
that modules are predicate disjoint simplifies our presentation somewhat. For example, we do not
need to introduce “import” declarations to the syntax since only predicates which are not defined
in a module may be open. However, it is worth noting that there is no real obstacle in providing a
compositional analysis for programs which are not predicate disjoint, and in fact the semantic basis
defined in [3] is not restricted to predicate disjoint modules. The possibility of spreading the defini-
tions of a predicate in different modules is useful, for example, in distributed deductive databases.
This allows different modules to represent different views of the knowledge about a predicate. The
main result in Theorem 4.1 extends easily for this case.

We illustrate the application of a compositional approach to provide a goal-independent analysis
of the calls which arise in the execution of a given initial goal for a (closed) program P. The analysis
is based on a variant of the well known Magic Set transformation [30] which characterizes the calls
for a program P and initial goal G in terms of a transformed program magic(P; G). Following
[8] we specify the transformation using a modular approach distinguishing between clauses which
depend on the goal G and those which do not.

Let P be a (closed) program and G = o || g1,...gk an initial goal. The corresponding magic
program is magic(P; G) = P UP a U Gaq where:

GM:{call_gieaﬂgl,...,gi_ﬂ 1<i<k };and
_ h«o[]by....b,eP,
PM_{call_bieaHcallh,bl,...,bi_l 1<i<n }

The program magic(P; G) has the property that if p is a call in a computation of G with P
(assuming a left-to-right computation rule), then call_p is implied by magic(P;G). The magic
program consists of three modules. The first is P itself; the second, P4 is goal independent — its
definition does not depend on the initial goal; and the third, G4, depends on the particular choice
of initial goal. Observe that the modules P a4 and Gy are in general not predicate disjoint. In [8]
the authors describe an implementation for goal independent analysis of call patterns. The basic
idea is to evaluate the meaning

fA(a(calls(P; G)) = fA(a(P) Ua(Pam)Ua(Gum))

of the abstract magic program as follows. The goal-independent part F4[a(P)Ua (P )] is evaluated
first by applying symmetric composition — which in this case is always guaranteed to generate
bounded (in fact, binary) clauses. Then, when the initial goal is specified, the rest of the analysis
is carried out using directed composition with the goal dependent part. This approach is shown to
give call patterns for an initial goal in a highly efficient manner, once the goal independent phase of
the analysis has been performed.

7 Related Work

Several other compositional semantics for logic programs have been proposed in the literature. These
include the work of Brogi and Turini [4], and Gaifmann et al. [20]. In [4] the compositional semantics
is provided by composing the Tp functions associated with program modules. Gaifmann et al.
propose to adopt clauses as semantic objects in order to characterize partial computations (from the
head to the body) and to enable different notions of composition. Logical semantics for modules in
logic programs have been proposed by a number of authors [5, 29]. These are typically based on
various extensions to Horn logic: for example, Chen’s treatment of modules [5] is based on second-
order logic, while Miller’s [29] uses implication goals in clause bodies. In [12] Comini et al. define
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a taxonomy of semantics that can be derived by abstracting SLD trees, and preserve properties
like compositionality. In [23], the authors introduce an operation for functional combination of
semantics, providing a systematic way to derive compositional semantics for logic programs. In
these works, the semantics appear to be somewhat more complicated than that considered in [3],
and we conjecture that a formal treatment of abstract interpretation based on such semantics would
require considerably more machinery than that given here.

The problem of incremental analysis of logic programs, where analysis can be carried out even if
the program being analyzed is not available in its entirety, has been investigated by Hermenegildo
et al. [24]. While the underlying motivation for this work resembles ours in many ways, the details
differ substantially. In particular, the approach of Hermenegildo et al. involves re-analyzing (parts
of) a program in response to changes to the program, while our approach involves first computing
the abstract semantics for different modules and then composing these abstract semantics.

The problem of program analysis across module boundaries for imperative languages has been
considered by a number of researchers: Cooper et al. [13] and Tichy et al. [32] are concerned
primarily with low-level details of maintaining information to allow a compiler to determine whether
a change to one program unit necessitates the recompilation of another, separately-compiled, unit,
while Santhanam and Odnert [31] consider register allocation across module boundaries. While
the motivation for their work is related to ours, the treatment is significantly different in that
no attempt is made to give a formal semantic account of the problem or the proposed solutions.
In particular, there 1s no notion of “composition of abstract semantics” and because of this, if the
dataflow characteristics of a module in a program changes, it is necessary to reanalyze other modules
that depend on it—in the worst case, this can lead to reanalysis of every module in the program.
By contrast, in our approach, if symmetric composition is applied, it is necessary to reanalyze only
the modules that have actually changed: the effects of these changes are propagated by composition
of abstract semantics.
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