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the entire program. Semantic treatments of modules in logic programs have been given by a numberof authors (e.g. see [5, 29]), typically based on nontrivial extensions to Horn clause logic that lead tocomplex semantics; it appears to us that the development of abstract interpretations based on suchsemantics is not entirely straightforward. The semantics we consider here as a basis for abstractinterpretations is a simpli�cation of that proposed by Bossi et al. [3]. The idea is to treat modulesas programs in which unde�ned predicates are considered to be \open." The meaning of a moduleis given in terms of iterated unfoldings of the procedures de�ned in it, except that the open (i.e.,imported) predicates are not unfolded|the result is to specify the meaning of a module in terms ofstructures that depend only on the meaning of the open predicates. It turns out that compositionof modules is described using the same semantic function|i.e., iterated unfolding|as that used fordescribing the meaning of a module, leading to a conceptually simple and elegant treatment.This semantics is attractive for abstract interpretation purposes, since it can be seen as a gen-eralization of the approach of Falaschi et al. [17], which provides the semantic basis for abstractinterpretations such as those discussed in [2, 6]. The use of clauses as semantic objects leads tointeresting technical complications for abstract interpretation, in that there are two independentdimensions along which we might need �nite descriptions in the abstract domain, namely, �nite de-scriptions of sets of substitutions (the \usual" dimension), and also �nite descriptions of unboundedsequences of open atoms. We propose two notions of composition: symmetric composition | whichcomposes two program analyses; and directed composition | which uses the analysis of one modulein the analysis of another. The termination of an analysis based on symmetric composition dependson the inter-module dependencies of the program. A decidable su�cient condition is provided toguarantee that sequences of atoms will be bounded in length. For directed composition, terminationdepends on the order in which the modules are analyzed.The applicability of our approach depends both on the topological structure of program modulesand on the algebraic structure of the abstract domain at the basis of an analysis. This paperillustrates the constraints underwhich compositional analysis can be obtained with ease. Of coursethere is a price to be paid for compositionality. One might have to merge modules to eliminatedependencies between modules and one might have to strengthen the abstract domain to enhanceits capability to support compositional analysis. Similar properties are required by a domain tosupport goal-independent analyses as described in [10]. The technical proofs for our results can befound in [21].2 PreliminariesIn the following we assume familiarity with the standard de�nitions and notation for logic programs[27], constraint logic programs [26] and abstract interpretation [15]. Throughout, we assume a �xedset of function symbols �, a �xed set of predicate symbols � and a �xed denumerable set of variablesVar. The non-ground term algebra over � andVar is denoted Term. Herbrand constraints are �niteconjunctions of equations between terms in Term; the system of such constraints is denoted by H.Constraints are (possibly in�nite) disjunctions of Herbrand constraints. We often view a disjunctionof Herbrand constraints as a set of Herbrand constraints. We let false denote the unsatis�ableconstraint (e.g., the empty disjunction) and true the always satis�able constraint (e.g., the emptyconjunction). We write � � �0 if � logically implies �0. C denotes the set of disjunctions of Herbrandconstraints over Term modulo logical equivalence. Thus C is a complete lattice ordered by � withbottom element false and top element true.The set of atoms constructed from predicate symbols in � and terms from Term is denotedAtom. It is well known that \ordinary" logic programs can be characterized as constraint logicprograms over the constraint system H [26], and in context of this paper it is technically convenientto view logic programs in this manner. A goal is of the form � [] �a, where � is a Herbrand constraintand �a is a sequence of atoms. The empty sequence of atoms is denoted by true. We let haiini=1denote the sequence a1; : : : ; an. The concatenation of sequences �b1 and �b2 is written �b1 :: �b2. A(constrained) Horn clause is an object of the form h � [] �b where h is an atom, called the head,2



and � [] �b is a goal, called the body. When � = true we write h �b. A logic program (or module)is a �nite set of clauses. The set of clauses constructed from elements of Atom is denoted Clause.We say that a clause h � [] �b is normalized if � is in solved form and h �b is linear, i.e., containsno multiple occurrences of any variable, and at, i.e., contains no function symbols or constants.vars(t) denotes the set of variables occurring in a syntactic object t.A substitution ranging in Sub is a mapping fromVar to Term which acts as the identity almosteverywhere: it extends to apply to any syntactic object in the usual way. Following tradition, theapplication of a substitution � to an object t will be written t� rather than �(t). The satis�ability ofa Herbrand constraint �, denoted H j= �, is determined by computing a solution (a set of equationsin solved form or a most general uni�er) of �. We �x a partial function mgu which maps a pair ofsyntactic objects to an idempotent most general uni�er of the objects. For a syntactic object t andconstraint �, �(t) denotes t� where � = mgu(�). For a set of constraints �, �(t) = f�(t)j� 2 �g.A variable renaming is a (possibly non-idempotent) substitution that is a bijection on Var. Twosyntactic objects t1 and t2 are equivalent up to renaming, written t1 � t2, if t1� = t2 for somevariable renaming �. The equivalence class of t under � is denoted by [t]�. For a syntactic objects and a set I of equivalence classes under �, we denote by hc1; : : : ; cni <<s I that c1; : : : ; cn arerepresentatives of elements of I renamed apart from s and from each other. In the discussion thatfollows, we will be concerned with sets of clauses modulo the following notion of equivalence betweenclauses: we say that (h � [] �b) � (h0  �0 [] �b0) i� �(h �b) � �0(h0 �b0) and �b is a permutationof �b0. The intention is identify clauses which di�er syntactically yet specify the same implicationalrelationship between the clause body and its head. For example, a clause p([HjL])  q(L) canalso be written as p(X)  X = [HjL] [] q(L). For simplicity of exposition, we will abuse notationand assume that a clause represents its equivalence class under � and write Clause rather than[Clause]�. The powerset of a set X is denoted by }(X). An interpretation is any element inInt = }(Clause).3 Bottom-Up Semantics for CompositionIf P1; : : : ;Pn are logic program modules, then P = [ni=1Pi is a modular logic program. Such aprogram is said to be predicate disjoint if no predicate is de�ned in more than one module. Inthe following, we assume that modular programs are predicate disjoint as in [19], unless otherwisespeci�ed. For a logic program (or module) P, open(P) denotes the set of predicates that occur inthe body of a clause in P but are not de�ned in P. For any program P, we denote by �P the set� [p(�x) p(�x)]� �� p 2 open(P) 	.The modular semantics we assume is an instance of the compositional bottom-up semantics ofBossi et al. [3]. We consider two notions of composition: the �rst, \symmetric composition", isthat introduced in [3]. It is applicable to the analysis of modular logic programs for which we canguarantee that the size of clauses will be bound in the number of open predicates occurring in theirbodies. The second, \directed composition", allows us to analyze a module while \plugging in"analyses for predicates de�ned in other modules that are lower in the program call graph.The concrete semantics is formalized in terms of unfolding of clauses. The unfolding operator unfspeci�es the result of unfolding clauses from an interpretation P1 with clauses from an interpretationP2 (cf. [16]).De�nition 3.1 [unfolding]The unfolding operator unf : Int� Int! Int is de�ned asunf (P1;P2) =8>>><>>>: h �0 [] �b1 :: � � � :: �bn ��������� c = h � [] g1; : : : ;gn 2 P1;hhi �i [] �biini=1 <<c P2;�0 = � ^ n̂i=1 (�i ^ fgi = hig);H j= �0 9>>>=>>>;3



A bottom-up semantics for open logic programs is de�ned in terms of \iterated unfolding" asfollows:De�nition 3.2 [compositional �xpoint semantics [3]]The semantics of a program P is given by the function F : Int! Int, de�ned as F(P) = lfp(TP),where TP : Int! Int is de�ned as TP(I) = unf (P; I[�P).Note that the above de�nition is a generalization of the \usual" �xpoint semantics for Horn logicprograms. If open(P) = ; then the iterations of TP starting from the empty interpretation are thesame as with the (non-ground) immediate consequence operator of the s-semantics in Falaschi et al.[17].Theorem 3.1 [concrete composition [3]]Let P1 and P2 be modules. Then(1) symmetric composition : F(P1 [P2) = F(F(P1) [ F(P2)); and(2) directed composition: F(P1 [P2) = F(P1 [ F(P2)).4 Abstract Semantics and CompositionWe assume the standard framework of abstract interpretation, as de�ned by Cousot and Cousot[15], in terms of Galois insertions. We let (AInt;t;u;v) denote a complete lattice of abstractinterpretations, where each abstract interpretation describes a set of clauses, and (Int; �;AInt; )is a Galois insertion. Note that programs and interpretations have the same structure | sets ofclauses. Hence, the abstract semantics of a program P is FA(�(P)), where FA : AInt! AInt isthe semantic function. Abstract composition is analogous to concrete composition. The followingtheorem states the correctness of applying abstract composition for program analyses based on anysafe abstract semantics.Theorem 4.1 [correctness of abstract composition]Let (Int; �;AInt; ) be a Galois insertion and let FA : AInt! AInt be a monotonic and safeapproximation of F , i.e. for every I 2 Int, �(F(I)) v FA(�(I)). Then, for any program modulesP1;P2 2 Int,1. �(F(P1 [P2)) v FA(FA(�(P1)) t FA(�(P2))). [symmetric composition]2. �(F(P1 [P2)) v FA(�(P1) t FA(�(P2))). [directed composition]Proof(1) �(F(P1 [P2)) = �(F(F(P1) [ F(P2))) [ Theorem 3.1 ]v FA(�(F(P1) [F(P2))) [ safety ]= FA(�(F(P1)) t �(F(P2))) [ � is additive ]v FA(FA(�(P1)) tFA(�(P2))) [ safety and monotonicity ]The proof of (2) is similar. 2We now illustrate how a safe semantic function FA : AInt ! AInt can be induced from adomain A of abstract constraints (or substitutions). A general de�nition of abstract constraintsystem for abstract interpretation of possibly non Herbrand constraints can be found in [22].De�nition 4.1 [abstract constraints]A domain of abstract constraints is a complete lattice (A;vA) such that (C; �A;A; A) is a Galoisinsertion and for any syntactic object s and sets of constraints �1;�2 2 C, �1(s) � �2(s) impliesA�A�1(s) � A�A�2(s).The condition of De�nition 4.1 requires that A � �A preserves renamings. Similar conditions onabstract atoms and on abstract substitutions are assumed in [2, 6].4



Example 4.1 The domain Pos was �rst proposed by Marriott and S�ndergaard as a domainof abstract substitutions for groundness analysis [1]. The domain is formalized as a Galois inser-tion denoted (}(Sub); �Pos;Pos; Pos) and consists of equivalence classes of positive propositionalformulae, ordered by implication. The generalization of this domain to Herbrand constraints isstraightforward. A truth assignment � satis�es a propositional formula f , written � j= f , if �(f ) isa tautology. For groundness analysis, a constraint � 2 C is associated with a corresponding truthassignment assign� that maps a variable x to true if and only if �(x) is ground, and which is de�nedas �x:vars(�(x)) = ;. The functions Pos : Pos! C and �Pos : C ! Pos are de�ned as follows (cf.[14]) Pos(f ) = � � �� (8�0) : �0 � � ) assign�0 j= f 	 and �Pos(�) = ^� � �� � � Pos(�) 	. 2Abstract clauses are similar to normalized (concrete) clauses except that an abstract constraintoccurs instead of a concrete constraint.De�nition 4.2 [abstract clauses]Let A be a domain of abstract constraints. An abstract clause over A is an object of the formh  � [] �b such that � 2 A and h true [] �b is normalized. The set of abstract clauses over A isdenoted ClauseA.The meaning of a set of abstract clauses over A is de�ned by a concretization mapping  :}(ClauseA)! }(Clause) such that for any Ia � ClauseA:(Ia) = � [h � [] �b]� ���� h � [] �b 2 Ia� 2 A(�) �A domain of abstract interpretations is induced from (C; �A;A; A) by considering the equivalencerelation Ia1 �= Ia2 i� (Ia1) = (Ia2 ), induced by  on }(ClauseA). The intuition is that if fh  � [] �bg �= fh �0 [] �bg then � and �0 describe the same set of concrete constraints, when restrictedto vars(h �b). Notice that the equivalence relation �= also provides variable hiding and equivalenceup to renaming.De�nition 4.3 [abstract interpretations]Let A be a domain of abstract constraints and AIntA = }(ClauseA)=�=. We lift  to AIntA! Intin the standard way. Hence � : Int! AIntA is de�ned as�(I) = �� h �A(�) [] �b ���� c 2 I; h � [] �b � c;h � [] �b is normalized ���=In the following we will omit equivalence classes modulo �= when their use can be easily deducedfrom the context.The running example considered throughout the paper is the modular logic program specifyingthe quick-sort relation depicted in Figure 1. The program consists of �ve modules and is illustratedin constraint form.Example 4.2 Let A = Pos and consider the module Plg from Figure 1.�(Plg) = 8><>: gt(x;y) (x$ x0) ^ y [] num(x0);gt(x;y) x$ x0 ^ y$ y0 [] gt(x0;y0);le(x;y) x ^ (y$ y0) [] num(y0);le(x;y) x$ x0 ^ y $ y0 [] le(x0;y0) 9>=>; :2 5



Pqs: qsort(X;Y) X = [ ] ^ Y = [ ] [] true.qsort(X;Y) X = [X1jXs] ^ Ls0 = [X1jBs] []split(X1;Xs;L1;L2); qsort(L1;Ls),qsort(L2;Bs); append(Ls;Ls0;Y).Papp: append(X;Y;Z) X = [ ] ^ Y = Z [] true.append(X;Y;Z) X = [X1jXs] ^ Z = [X1jZs]) [] append(Xs;Y;Zs).Psp: split(X1;X2;X3;X4) X2 = [ ] ^ X3 = [ ] ^ X4 = [ ] [] true.split(X1;X2;X3;X4) X2 = [YjL] ^ X3 = [YjL1] ^ X4 = L2 []gt(X1;Y); split(X1;L;L1;L2):split(X1;X2;X3;X4) X2 = [YjL] ^ X3 = L1 ^ X4 = [YjL2] []le(X1;Y); split(X1;L;L1;L2):Plg: gt(s(X); 0) num(X): Pnum: num(0):gt(s(X); s(Y)) gt(X;Y): num(s(X)) num(X):le(0;Y)  num(Y):le(s(X); s(Y)) le(X;Y):Figure 1: Modular quick-sort program.Proposition 4.2If A is a domain of abstract constraints and AIntA the induced domain of abstract interpretations,then (AIntA;v) is a complete lattice where Ia1 v Ia2 i� (Ia1) � (Ia2 ) and (Int; �;AIntA; ) is aGalois insertion.We introduce an abstract unfolding operator which is de�ned in terms of an (monotonic, as-sociative and commutative) operator 
 on abstract constraints which is required to approximateconjunction on concrete constraints. A domain of abstract constraints together with such an oper-ator constitutes an abstract constraint system. The monotonicity requirement for 
 is natural fromthe perspective of abstract interpretation. The requirements for associativity and commutativity arestronger, and while they are motivated by a desire to approximate an associative and commutativeconcrete operation, namely, conjunction of constraints, it is possible that they may not be satis�edby all abstract domains. In this case, there is a tradeo�: one can either strengthen the domain tosupport compositionality, or one can manually construct larger modules so as to reduce the numberof points where these requirements do not hold. In any case, there are relevant examples of domainsfor logic program analysis that �t in our framework, e.g. 
 as ACI uni�cation of constraints fortypes and set-sharing analysis [11]. Termination is addressed in the standard way, i.e., by requiringthat the domain of abstract interpretations AIntA obtained from a set of abstract constraints Asatis�es a given �niteness property, or via the use of widening operators, as discussed by Cousot andCousot [15].De�nition 4.4 [abstract constraint system]An abstract constraint system A is a (A;vA) together with a monotonic, associative and commu-tative operator 
 : A� A ! A such that for every c1; c2 2 C, �A(c1 ^ c2) vA �A(c1) 
 �A(c2).We say that A is �nitary if for any linear clause h  �b, the set f[h  � [] �b]�= j � 2 Ag does notcontain in�nite chains.De�nition 4.5 [abstract unfolding]Let A be an abstract constraint system. The corresponding abstract unfolding operator unfA :6



AIntA �AIntA! AIntA is de�ned as:unfA(Pa1;Pa2) = 8><>: h �0 [] �b1 :: � � � :: �bn ������� c = h � [] g1; : : : ;gn 2 Pa1;hhi  �i [] �biini=1 <<c Pa2�0 = �
 n
i=1 (�i 
 �A(gi = hi)) 9>=>;The following lemma states that abstract unfolding satis�es the basic properties of concreteunfoldings (for generic properties of concrete unfoldings see [16]).Lemma 4.3 [associativity, continuity and additivity]For any abstract constraint system A, unfA is associative, continuous in the second argument andadditive in the �rst argument.In the following we assume the obvious extensions of the notions of modular logic programs, openpredicates, etc. for the abstract case. For an abstract program Pa, �Pa is the natural extension of�P. The abstract �xpoint semantics is de�ned in terms of abstract unfolding as follows.De�nition 4.6 [abstract �xpoint semantics]Let unfA be the abstract unfolding operator for an abstract constraint system A. De�ne FA :AIntA ! AIntA as FA(Pa) = lfp(TAPa) where TAPa : AIntA ! AIntA is de�ned by TAPa(Ia) =unfA(Pa; Ia [�Pa).Proposition 4.4 [correctness]Let A be an abstract constraint system. Then, unfA and FA are safe in the induced domainof abstract interpretations (Int; �;AIntA; ). Namely, for every I1; I2 2 Int: �(unf (I1; I2)) vunfA(�(I1); �(I2)) and �(F(I1)) v FA(�(I1)).5 Compositional AnalysisThe following illustrates an application for compositional groundness analysis. It is straightforwardto prove that Pos is �nitary.Example 5.1 Let A = Pos and consider the modules Plg and Pnum from Figure 1.FA(�(Plg)) = � gt(X;Y) (X$ X0) ^ Y [] num(X0)le(X;Y) X ^ (Y $ Y0) [] num(Y0) � ;FA(�(Pnum)) = � num(X) X [] true 	 :Abstract (symmetric) composition gives:FA(FA(�(Plg)) [ FA(�(Pnum))) = 8<: gt(X;Y) X ^ Y [] truele(X;Y) X ^ Y [] truenum(X) X [] true 9=; :2In the general case, an interesting technical problem arises as abstract unfolding may introducearbitrarily large clauses so that analyses can no longer be guaranteed to terminate, even if thedomain of abstract constraints is �nitary. This necessitates a second (and orthogonal) abstractionto deal with unbounded clause bodies in the abstract semantics. Observe, for example, that theabstract unfoldings of the module Psp in Figure 1 introduce arbitrarily long abstract clauses.7



This problem can be addressed in several ways. In [7], a notion of star abstraction adopted from[9] is applied to limit the length of clause bodies using a domain termed Dep for ground dependencyanalysis. The basic idea is to collapse the occurrences of calls to a predicate p in a clause body toone \canonical" call p?. While this approach indeed restricts the size of the clauses which can begenerated in the analysis, it also can result in a loss of precision in the unfolding process. Alterna-tively, in [18] it is shown that for �nite domains a characterization of the compositional semanticscan be obtained after a �nite number of unfoldings without reaching a �xed point. However, inthis approach the number of iterations and the size of the clauses that must be considered can beprohibitive. In this paper, we consider two cases for which the size of the abstract clauses gener-ated during the analysis is bound. For the general case, our techniques can be combined with anadditional layer of star abstraction to guarantee termination.Bounded Symmetric Compositional Analysis.We characterize a class of bounded program modules for which unfolding does not create clausesof unbound length. Consequently, if a program consists of bounded modules then symmetric com-position can be applied in program analyses. The basic idea is to detect the absence of loops inthe program's call graph which might cause a problem. Note that not all loops create unboundedunfoldings: it su�ces to avoid loops containing literals for open predicates. A convenient way toexpress this criterion is by way of a context free grammar.De�nition 5.1 [call grammar]Let P be a module. Let atoms(P) and open atoms(P) denote the atoms and, respectively, the callto atoms in open(P), occurring in P. The call grammar of P is the context-free grammar GP =hN;T;Q;Si de�ned as follows: the nonterminals are given byN = (atoms(P)nopen atoms(P))[fSg, where S is a distinguished nonterminal | the start symbol of GP; the terminal symbols aregiven by T = open atoms(P); and the productions Q are given by:{ For each A 2 atoms(P) n open atoms(P) there is a production S �! A.{ For each h � [] b1; : : : ;bn 2 P there is a production �(h) �! �(b1) � � ��(bn).{ For each pair of atoms b 2 atoms(P) from the body of a clause and h 2 atoms(P) from thehead of a clause, such that b uni�es with (a renaming of) h there is a production b �! h.Example 5.2 Consider the following program, which computes the transitive closure of a binaryrelation b which is an open predicate in the de�nition:tc(X;Y) b(X;Y):tc(U;V) b(U;W); tc(W;V):The productions for the call grammarGP of this program are given byS �! tc(X;Y) j tc(U;V) j tc(W;V)tc(X;Y) �! b(X;Y)tc(U;V) �! b(U;W) tc(W;V)tc(W;V) �! tc(X;Y) j tc(U;V)Observe that L(GP) is not �nite. 2Theorem 5.1Let P be a module with call grammar GP. If the language L(GP) of GP is �nite, then the numberof atoms occurring in the clauses in F(P) is bounded.8



Proof (outline)Given a program P, let the rank of a clause c in F(P) be the smallest number of unfolding stepsnecessary to obtain c from P. It can be shown that for any program P, for every clause c 2 F(P)there is a string w in L(GP) such that the number of atoms in the body of c is equal to the lengthof w: the proof is by induction on the rank of c. Now suppose that L(GP) is �nite. Let N be thelength of the longest string in L(GP), then no clause in F(P) can have more than N atoms in itsbody. The theorem follows. 2Note that it is decidable whether the language of an arbitrary context-free grammar is �nite [25].Theorem 5.1 therefore gives a decidable su�cient condition for determining whether, for any givenmodule P, the clauses in F(P) are bounded. The following example illustrates the application ofthis approach.Example 5.3 Consider the following program, which generates the list of prime numbers up toN for any given natural number N, and assume that the reverse predicate is open and importedfrom a library:primes(N;L) N < 2;L = [ ]:primes(N;L) N � 2; intlist(N;L1);primes 1(L1; [2];L): primes 1([ ];L0;L1) reverse(L0;L1):primes 1([HjL];L0;L1) divisible(L0;H);primes 1(L;L0;L1):primes 1([HjL];L0;L1) not divisible(L0;H);primes 1(L; [HjL0];L1):The program examines a list of numbers, checking each number to see if it is divisible by any of theprimes found up to that point|if it is not, it is added to the list of primes found, and the processcontinues with the remaining numbers. However, the list is generated \backwards", and has to bereversed at the end. The corresponding context-free grammar has a �nite language, and so it followsthat unfolding this program does not produce clauses of unbounded size. 2Directed Compositional Analysis.A compositional analysis that �rst analyzes di�erent modules in isolation, then composes the re-sulting analyses, may have to deal with the possibility of unbounded clause bodies during analysis.However, a common program design technique is to structure di�erent modules in a hierarchicalway, so that components of a program are de�ned and understood in terms of previously de�nedcomponents. In this case it is always possible to obtain a compositional evaluation for program anal-ysis that does not involve clause structures of unbounded size. The abstract meanings of moduleswhich are lower in the hierarchy can be used when evaluating the abstract meanings of the highermodules. In this way, if the hierarchy is \closed," i.e., for every module, each of its open predicates isde�ned in a module that is lower in the hierarchy, then unfoldings will always produce unit clauses.This corresponds to \plugging in" the analyses of the lower modules into the analyses of the highermodules, and can be useful in the bottom-up approach to program design. The following exampleillustrates a hierarchical groundness analysis, taking A = Pos.Example 5.4 Consider the quick-sort program from Figure 1. The analysis for Pnum and Plgmay be performed using a symmetrical composition as there is no problem of unbounded bodies. Ahierarchical analysis starting with the lower modules will then consider Papp:F(Papp) = � append(x1;x2;x3) (x1 ^ x2)$ x3 [] true: 	Next the analysis of Plg [Pnum is plugged into Psp. Directed composition gives:FA(�(Psp) [ FA(�(Plg [Pnum))) = 8><>: split(x1;x2;x3;x4) x2 ^ x3 ^ x4 [] truegt(x;y) x ^ y [] true;le(x;y) x ^ y [] true;num(x) x [] true; 9>=>;9



Two additional applications of directed composition plug the analyses for split and append intothe analysis of qsort giving as expected:fqsort(x1;x2) x1 $ x2 [] trueg:2 A richer class of semi-hierarchical programs is de�ned to allow predicates which are unde�nedin all modules. To this end it is necessary to disallow certain combinations of recursion and callsto open predicates. Modules which call open predicates may be allowed in the hierarchy as long asthere exists a bound on the number of their occurrences in unfoldings. This can be formalized interms of the condition for checking bounded modules.De�nition 5.2 [leveling, closure]Let P = [ni=1Pi be a modular logic program. A leveling of P is a partial order � on the modules ofP. The closure of a module Pi 2 P (with respect to a leveling �) is the program :closure�(Pi) = [Pj�Pi Pj:We say that P is semi-hierarchical if there exists a leveling � of P such that closure�(Pi) isbounded for i = 1::n.In particular, note that a program consisting of bounded modules is semi-hierarchical. Thefollowing example considers the public domain tokenizer for Prolog due to O'Keefe.Example 5.5 Consider a program consisting of the following modules:Ptok : De�nes a tokenizer for Prolog. The open predicates of this module are append, de�ned inPutil , and I/O primitives de�ned in Psys .Putil : De�nes a set of user de�ned utilities, including the append program from Example 5.4. Itcontains no open predicates.Psys : De�nes a set of system de�ned I/O primitives. It contains no open predicates.We include here part of Ptok (the predicate read tokens is de�ned by a great many clauses havingessentially the same structure, we include only a few of these to illustrate the point):read tokens(TokenList;Dictionary) read tokens(32;Dict;ListOfTokens);append(Dict; [ ];Dict);Dictionary =Dict;TokenList = ListOfTokens:read tokens([atom(end of �le)]; [ ]):read tokens(41;Dict; [0)0jTokens]) get0(NextCh);read tokens(NextCh;Dict;Tokens): read tokens(�1; ; ) fail:read tokens(Ch;Dict;Tokens) Ch =< 32;get0(NextCh);read tokens(NextCh;Dict;Tokens):read tokens(40;Dict; [0(0jTokens]) get0(NextCh);read tokens(NextCh;Dict;Tokens):The program Ptok [Putil [Psys is hierarchical: Ptok is \above" the modules Putil and Psys . Whilethe program P = Ptok [ Psys is not hierarchical, it is semi-hierarchical. Hence P can be analyzedwithout considering the meaning of append. 2 10



6 More General CompositionThe main focus of this paper has been on the compositional analysis of predicate disjoint modules.This choice is motivated by the fact that module based implementations of logic programming lan-guages typically provide this functionality. Moreover from a technical point of view, the assumptionthat modules are predicate disjoint simpli�es our presentation somewhat. For example, we do notneed to introduce \import" declarations to the syntax since only predicates which are not de�nedin a module may be open. However, it is worth noting that there is no real obstacle in providing acompositional analysis for programs which are not predicate disjoint, and in fact the semantic basisde�ned in [3] is not restricted to predicate disjoint modules. The possibility of spreading the de�ni-tions of a predicate in di�erent modules is useful, for example, in distributed deductive databases.This allows di�erent modules to represent di�erent views of the knowledge about a predicate. Themain result in Theorem 4.1 extends easily for this case.We illustrate the application of a compositional approach to provide a goal-independent analysisof the calls which arise in the execution of a given initial goal for a (closed) program P. The analysisis based on a variant of the well known Magic Set transformation [30] which characterizes the callsfor a program P and initial goal G in terms of a transformed program magic(P;G). Following[8] we specify the transformation using a modular approach distinguishing between clauses whichdepend on the goal G and those which do not.Let P be a (closed) program and G = � [] g1; : : :gk an initial goal. The corresponding magicprogram is magic(P;G) = P [PM [GM where:GM = � call gi  � [] g1; : : : ;gi�1 �� 1 � i � k 	; andPM = � call bi  � [] callh;b1; : : : ;bi�1 ���� h � [] b1; : : : ;bn 2 P;1 � i � n �.The program magic(P;G) has the property that if p is a call in a computation of G with P(assuming a left-to-right computation rule), then call p is implied by magic(P;G). The magicprogram consists of three modules. The �rst is P itself; the second, PM is goal independent | itsde�nition does not depend on the initial goal; and the third, GM, depends on the particular choiceof initial goal. Observe that the modules PM and GM are in general not predicate disjoint. In [8]the authors describe an implementation for goal independent analysis of call patterns. The basicidea is to evaluate the meaningFA(�(calls(P;G)) = FA(�(P) [ �(PM) [ �(GM))of the abstract magic program as follows. The goal-independent part FA[�(P)[�(PM)] is evaluated�rst by applying symmetric composition { which in this case is always guaranteed to generatebounded (in fact, binary) clauses. Then, when the initial goal is speci�ed, the rest of the analysisis carried out using directed composition with the goal dependent part. This approach is shown togive call patterns for an initial goal in a highly e�cient manner, once the goal independent phase ofthe analysis has been performed.7 Related WorkSeveral other compositional semantics for logic programs have been proposed in the literature. Theseinclude the work of Brogi and Turini [4], and Gaifmann et al. [20]. In [4] the compositional semanticsis provided by composing the TP functions associated with program modules. Gaifmann et al.propose to adopt clauses as semantic objects in order to characterize partial computations (from thehead to the body) and to enable di�erent notions of composition. Logical semantics for modules inlogic programs have been proposed by a number of authors [5, 29]. These are typically based onvarious extensions to Horn logic: for example, Chen's treatment of modules [5] is based on second-order logic, while Miller's [29] uses implication goals in clause bodies. In [12] Comini et al. de�ne11



a taxonomy of semantics that can be derived by abstracting SLD trees, and preserve propertieslike compositionality. In [23], the authors introduce an operation for functional combination ofsemantics, providing a systematic way to derive compositional semantics for logic programs. Inthese works, the semantics appear to be somewhat more complicated than that considered in [3],and we conjecture that a formal treatment of abstract interpretation based on such semantics wouldrequire considerably more machinery than that given here.The problem of incremental analysis of logic programs, where analysis can be carried out even ifthe program being analyzed is not available in its entirety, has been investigated by Hermenegildoet al. [24]. While the underlying motivation for this work resembles ours in many ways, the detailsdi�er substantially. In particular, the approach of Hermenegildo et al. involves re-analyzing (partsof) a program in response to changes to the program, while our approach involves �rst computingthe abstract semantics for di�erent modules and then composing these abstract semantics.The problem of program analysis across module boundaries for imperative languages has beenconsidered by a number of researchers: Cooper et al. [13] and Tichy et al. [32] are concernedprimarily with low-level details of maintaining information to allow a compiler to determine whethera change to one program unit necessitates the recompilation of another, separately-compiled, unit,while Santhanam and Odnert [31] consider register allocation across module boundaries. Whilethe motivation for their work is related to ours, the treatment is signi�cantly di�erent in thatno attempt is made to give a formal semantic account of the problem or the proposed solutions.In particular, there is no notion of \composition of abstract semantics" and because of this, if thedataow characteristics of a module in a program changes, it is necessary to reanalyze other modulesthat depend on it|in the worst case, this can lead to reanalysis of every module in the program.By contrast, in our approach, if symmetric composition is applied, it is necessary to reanalyze onlythe modules that have actually changed: the e�ects of these changes are propagated by compositionof abstract semantics.References[1] T. Armstrong, K. Marriott, P. Schachte, and H. S�ndergaard. Boolean functions for dependencyanalysis: algebraic properties and e�cient representation. In B. Le Charlier, editor, Proceedingsof the 1st Int. Static Analysis Symp. (SAS '94), volume 864 of Lecture Notes in ComputerScience, pages 266{280. Springer-Verlag, Berlin, 1994.[2] R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-based Bottom-upAbstract Interpretation of Logic Programs. ACM Transactions on Programming Languages andSystems, 15(1):133{181, 1993.[3] A. Bossi, M. Gabbrielli, G. Levi, and M.C. Meo. A compositional semantics for logic programs.Theoretical Computer Science, 122(1{2):3{47, 1994.[4] A. Brogi and F. Turini. Fully abstract compositional semantics for an algebra of logic programs.Theoretical Computer Science, 149(2):201{229, 1995.[5] W. Chen. A Theory of Modules Based on Second-Order Logic. In Proc. Fourth IEEE Int'lSymp. on Logic Programming, pages 24{33. IEEE Comp. Soc. Press, 1987.[6] M. Codish, D. Dams, and E. Yardeni. Bottom-up abstract interpretation of logic programs.Theoretical Computer Science, 124(1):93{126, 1994.[7] M. Codish, S. K. Debray, and R. Giacobazzi. Compositional Analysis of Modular Logic Pro-grams. In Proc. Twentieth Annual ACM Symp. on Principles of Programming Languages, pages451{464. ACM Press, 1993.[8] M. Codish and B. Demoen. Analysing Logic Programs using \Prop"-ositional Logic Programsand a Magic Wand. The Journal of Logic Programming , 25(3):249-274, 1995.12
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