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Abstract. There are many situations where cyclic rule activations
where some set of active database rules may be activated repeatedly
until the database satisfies some condition—arise naturally. However,
most existing approaches to termination analysis of active rules, which
typically rely on checking that the triggering graph for the rules is acyclic,
cannot infer termination for such rules. We present a constraint-based
approach to termination analysis that is able to handle such cyclic rule
activations for a wide class of rules.

1 Introduction

Active databases, which are conventional databases extended with a mechanism
to create and execute production rules that manipulate the state of the database,
have attracted considerable interest in recent years. Such rules provide a general
mechanism for a number of database features such as integrity constraint check-
ing and view maintenance, and simplify building and reasoning about database
applications.

In general, rule activations in active databases can “cascade,” i.e., the exe-
cution of an active rule can cause a change in the database state that causes
another rule to be executed; the resulting change can then cause the activation
of a third rule; and so on. Ensuring that such cascaded rule activations do not
go on forever therefore becomes of fundamental importance. Analyses that ex-
amine a set of active rules to determine whether rule activations will terminate
are called termination analyses.

Almost all of the work to date on termination analysis for active databases
(see Section 6) relies on checking that a directed graph called the “triggering
graph” for a set of rules is acyclic. The essential intuition this expresses is that
a rule should not be able to cause itself to be (re-)activated, either directly or
indirectly. The differences between various proposals for such analyses lie in the
sets of edges they are able to eliminate from the triggering graph before this
acyclicity check. In most of these proposals, the underlying sets of rules being
considered satisfy the property of not being self-activating in this manner, and
the analyses themselves focus on identifying and eliminating edges that could
introduce spurious cycles into the triggering graph.
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There are, however, many situations where it is natural to have a rule that
can activate itself, but where such self-activations are guaranteed to eventually
terminate. As an example, a company that suffers a revenue shortfall may im-
pose budget cuts in all of its departments. It would make sense, in such a case,
to impose larger cuts on departments with many employees, since they have
larger budgets to work with. Thus, suppose that the budget reduction for each
department is set at 1% of its total salary expenses, and expressed as an active
rule that reduces the budget of each department by the appropriate amount. A
single round of reductions may not suffice to meet the revenue shortfall, so the
rule may be activated again. It is not hard to see, however, that eventually the
budget will be reduced enough that the rule activation will stop.

Throughout this paper, we use the following example, taken from Chapter 2
of a text by Zaniolo et. al. [25].

Ezample 1. The following rule, defined by a budget-conscious manager, imposes
a salary reduction of 10% on every employee in an organization whenever the
average salary exceeds a threshold (in this case 100):

rule SalaryControl on Emp
when inserted, deleted, updated(Sal)
if (Select Avg(Sal) from Emp) > 100
then update Emp

set Sal = 0.9%Sal

Notice that this rule can be activated if an employee is hired with a high initial
salary; if the initial salary is high enough, one round of salary reductions may
not suffice to satisfy the termination condition, so the rule may be activated
again. Eventually, however, the average salary must fall below 100, causing the
rule activations to terminate.

While this rule seems “obviously terminating,” reasoning about such rules can
be quite subtle. For example, consider a rule that is identical to that shown
above, the only difference being that the activation condition is

if (Select Avg(Sal) from Emp) > O then ...

This rule is structurally very similar to that of Example 1, with a decreasing
value for the average salary and a lower bound on how far it can decrease. It is,
nevertheless, non-terminating. As another example, consider a rule that is iden-
tical to that of Example 1, with the only difference being that the action is to
set each employee’s salary to 0.9*Sal + Bonus, where Bonus is some constant,.
In this case, it turns out that the rule is terminating if Bonus < 10, and nonter-
minating if Bonus > 10. What these examples illustrate is that any termination
analysis that aims to handle such cyclic rule activations must, be able to analyze
the effects of cyclic rule execution with a fairly high degree of precision.

2 Preliminaries
2.1 Active Rules

We consider Event-Condition-Action (ECA) rules: a rule is triggered when cer-
tain events specified in the rule occur, and provided that their (optional) con-
ditions hold; when a rule so triggered is executed, the actions specified in the
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rule are carried out. For concreteness we use the syntax and semantics of the
Starburst rule system [24]: a rule is assumed to have the structure

rule RuleName on Relation
when FEwventList
if C then Action

where FventList specifies a set of events that cause the rule to be triggered. The
execution of a triggered rule involves the evaluation of the condition C', and if
this evaluates to true, carrying out the actions specified in the list Action. The
condition C, which determines when the rule is activated, is referred to as the
activation condition of the rule; we sometimes also use the term termination
condition for the rule to refer to the condition =C.

Since the handling of aggregation operations is more or less orthogonal to
the main focus of this paper, we make the simplifying assumption that any
aggregation operations in active rules are applied to the entire relation, i.e.,
there is no aggregation over partitions of the relation computed using constructs
such as the ‘group by’ clause of SQL. The basic idea is that if a rule computes
an aggregate operation f on an attribute A of a relation R, we handle this using
a dummy relation R_A_f containing a single tuple that has a single attribute
whose value is that of the operation f applied to attribute A of R. Changes to
the relation R through insert, delete, or update operations including those in
active rules are considered to also modify such dummy relations appropriately,
albeit in a conservative manner: that is, unless the new value of the aggregate
value can be predicted, its value is considered to be unknown and represented
in the dummy relation using a null value.

2.2 Constraint Systems

For the purposes of this paper, a constraint system is a system for maintaining
and manipulating constraints over a constraint domain D, which is essentially a
(first-order) structure, i.e., a universe D together with an appropriate assignment
of functions and relations over D to the symbols of the constraint system. We
assume that the constraint systems under consideration have the functionality
encountered in typical constraint logic programming systems such as CLP(R)
[16] and SICStus Prolog [21] (see also the survey by Jaffar and Maher [17]). More
formally, constraints are first-order formulae over a signature X, such that: the
binary predicate symbol ‘=’ is in Y; there are constraints that are identically
true and identically false; and the class of constraints is closed under variable
renaming, conjunction, and existential quantification. Operations on constraints
supported by the constraint system are assumed to include [17]:

— A test for consistency or satisfiability: D |= (I)c.

— A test for implication (i.e., entailment) of one constraint by another:
D ‘: Cop = Cq.

— The projection of a constraint ¢y onto variables Z to obtain a constraint c¢;
such that D = ¢; & (3y)co, where g = vars(cp) — & is the set of variables in
co except for those mentioned in Z.
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In particular, we focus on the CLP(F) constraint system [13], which is powerful
enough for our needs and whose implementation is freely available. This is a
constraint system over the reals that supports, in addition to the usual arith-
metic and comparison operators, the functions abs(z), exp(x), log(z), =", =¥,
as well as the trigonometric functions sin(z), cos(z), tan(z) and their inverses.
Our implementation of this system uses interval constraints, and handles these
functions using a reimplementation of the standard math library based on in-
terval arithmetic. A fundamentally important aspect of the system is that the
constraint system is provably sound [13,14]. A detailed discussion of this sys-
tem is omitted due to space constraints: for our purposes it suffices to note
that the constraint solver is queried with a quantifier-free first-order conjunc-

tion Q(z1,...,%,), interpreted as the question “do there exist any x1,...,x,
such that Q(x1,...,x,)? The solver responds either with a set of real intervals
Iy, ..., I, interpreted as “if there exist any x1,. .., such that Q(z1,...,zy),

then for all such values it must be the case that x1 € I and ...and z,, € I,,”
or indicates that there are no values for the variables z; that satisfy the formula
Q(---). In other words, the answer returned by the solver contains the projection,
on each of the variables x1,...,x,, of the convex hull of the region containing
all solutions to the question.

3 Annotated Triggering Graphs

Many of the termination analyses proposed in the literature use the notion of
triggering graphs. A triggering graph is a directed graph where each vertex
represents a rule and where there is an edge from vertex r; to vertex r; if the
action of rule r; can cause rule r; to become triggered [8]. We generalize this
notion to that of “annotated triggering graphs,” which additionally incorporate
information, at each vertex, about the change(s) resulting from the activation of
the corresponding rule. To this end, we first define how such changes might be
represented.

Definition 1. [Bounds function] A bounds function over a schema S maps each
attribute of S to a pair (lo,hi) where each of lo and hi is either L or a linear
expressions over (numerical) attributes in S.

If a bounds function maps an attribute to (lo, hi), this indicates that lo is a lower
bound on the values of that attribute while hi is an upper bound, with a value
of L indicating a complete lack of knowledge (i.e., indicating that we cannot say
anything about the values for the corresponding attribute), and non-L values
indicating definite knowledge. Note that these bounds are not restricted to be
numbers, but may in general be expressions that depend on the values for other

attributes.

Definition 2. [Annotated Triggering Graph] Given a set of rules R with schema
S, an annotated triggering graph is a pair (G,F) where G = (V,E) is a con-
ventional triggering graph, and F maps each vertex in V to a bounds function
over S.

Thus, at each vertex of an annotated triggering graph, each attribute is mapped
to a pair of expressions that specify upper and lower bounds on the values of that
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attribute. As an example, the rule in Example 1 would associate, with the ver-
tex corresponding to the rule, the bounds function [Sal — (0.9 x Sal, 0.9 x Sal)]
(attributes that are not explicitly mentioned are assumed to not have changed,
and are therefore mapped to themselves). This indicates that the result of the
activation of the rule is to update each tuple so that the value of its Sal attribute
is 0.9x its old Sal value, while the other attribute values are left unchanged.

3.1 Constructing Annotated Triggering Graphs

This section describes a simple algorithm for constructing annotated trigger-
ing graphs. It is quite conservative in its treatment of bounds, and can almost
certainly be improved to increase its precision. Consider a rule

rule RuleName on R
when ...
if ...
then update R’
set x = p(y1,...,Yyn) where Cond

The first question we consider is whether all of the tuples in R’ will be modified.
If the final where clause is absent, or Cond is identically true, then we know that
all tuples in R' will have the value of attribute = set to ¢(y1,...,¥yn). So in this
case the bounds function maps « to (0(Y1,---,Yn), @Y1, - -, Yn))-

Otherwise, if it is possible that only some of the tuples will be updated, we
attempt to determine the relationship of the value of the expression ¢(y1,. .., yn)
with that of z. Let Cy be a conjunction of constraints on the possible values for
various attributes, obtained from domain information for the database schema
as well integrity constraints on the database (Cg is a global constraint and need
be computed only once, at the beginning of the analysis). We then construct
a constraint C = Co A [z = ¢(y1,...,yn) — x|, where z is a new variable not
appearing in Cy, and examine whether or not certain constraints on z are entailed
by C (see Section 2.2 for our assumptions regarding entailment operations in

constraint systems). We consider the following possibilities:

— C entails z > 0. This means that the value of x is non-decreasing as a result of
the update. Since it is possible that only some of the tuples will be updated,
an upper bound on the z attribute value is given by ¢(y1,...,ys), while a
lower bound is given by z. Thus, in this case we have the bounds function
[z = (2, 0(y1,. -, yn))]-

— C entails z < 0. This means that the value of = is non-increasing. Reasoning
as in the previous case, we get the bounds function [z — (¢(y1,...,yn), x)].

— If neither of these previous two cases holds, we conclude that nothing can be
said about the value of z after the update. The resulting bounds function is
[ — (L, L1)].

3.2 Reasoning About Annotated Triggering Graphs

Once we have constructed an annotated triggering graph for a set of rules, we
examine any cycles in this graph to determine the net effect of going around the
cycle once. Intuitively, what we need to do is to somehow compose the bounds
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y [x-3, x+51 /_\@ zr>lyx, y1

x> [y+2, 2y-z ]
Fig. 1. An example of a cycle in an annotated triggering graph

functions at each of the vertices in the cycle. Before discussing the details of
how this should be done, we consider an example. Consider the cycle consisting
of three vertices, shown in Figure 1. Suppose we wish to determine an upper
bound on the change in the value of z at vertex r1 when we go around the cycle
once. Let the upper bound on z be denoted by x,,,;: after the execution of rq,
we use the upper bound on z, from the bounds function at this vertex, to obtain
the constraint x,,,, = 2y — z. After the execution of rule ry, the new value of
z has bounds y — z < z < y. Since z appears with a negative coefficient in the
expression 2y — z, we use the lower bound to obtain the constraint z = y — .
Composition (i.e., conjunction) of constraints then yields &0, = 2y — 2 Az =
Yy — x; projecting on x4, yields z,,4. = y + x. Finally, at vertex r3, the bounds
ony are z — 3 < y < x + 5; this time, since the coefficient of y is positive in
the expression y + x, we use the upper bound z + 5. As before, we compose
constraints to obtain x,,.; = y + © Ay = x + 5; this is then projected on 4,
to yield Z.4; = 22 + 5. Thus, the change in the value of x when we go around
this cycle once is (at most) 2z + 5.

This example illustrates how we summarize the effects of a cycle. To estimate
an upper bound on the value of z at a vertex r after going around the cycle (the
case for lower bounds is analogous), we start with the constraint x,,,;, = FE,
where E gives the upper bound on z after r’s execution. We then work our way
around the cycle: at each vertex we take the conjunction of the current constraint
ONl Zyyq, and constraints on the variables occuring in it, obtained from the bounds
on these variables at that vertex given by the annotated triggering graph; the
resulting constraint is then projected on x,,,. During this process, we use the
lower bound for a variable if it occurs negatively in the constraint associated
with 4., and the upper bound if it occurs positively.

Given a constraint C' and a set of variables! X = {xy,...,7,}, we use the
notation IxC to denote the constraint obtained by projecting away the vari-
ables in X, i.e., Iz 29 -+ - 2,C. Let vars(E) denote the variables appearing in an
expression E. Given an annotated triggering graph (G, F) with schema S and
a vertex r in @, let F(r)(v) = (lo{", hi{") for any variable v € S. We can then
formalize the procedure sketched above as follows.

! Since our approach uses constraints on attribute values, we treat attributes as the
variables in such constraints. In the remainder of the paper, therefore, we will use
the terms attribute and variable interchangeably.
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Processing a single vertex r. Given a constraint C = xp., = F, let C' be
the constraint

! lo
C' = /\ {v:e|e:{hi

vEvars(E)

—

") if v appears negatively in E

S

") if v appears positively in E 7

Since bounds functions map variables to linear expressions (Definition 1),
each variable occurs at most once in E. Thus, C' imposes a single (equality)
constraint on any such variable, and therefore is satisfiable.

The result of propagating C through the vertex r is then given by

ProcVertex(r, C) = Jyars(m) (C A C').

— Processing a sequence of vertices. The result of propagating a constraint C'
through a sequence of vertices s is given by ProcVertexSeq(s, C), where:

ProcVertexSeq(e,C) = C
ProcVertexSeq(rs', C) = ProcVertexSeq(s', ProcVertex(r, C)).

Here, & denotes the empty sequence while s’ denotes the sequence whose
first element is r and the remaining sequence is s'.

Processing a cycle. Given a cycle ryry - - - 111, an upper bound on the change
in the value of a variable £ on going around the cycle once is given by

ProcCycle(x, s) = ProcVertexSeq(s, ‘Tmaz = 7).
where s = ryry---1p,.

The determination of a lower bound on the change in the value of a variable is
analogous.

Since bounds functions map variables to linear expressions (Definition 1),
the procedure described above for computing ProcCycle(x, s) for a cycle s is
essentially involves composing a sequence of linear functions, and therefore yields
a linear expression of the form az+ E. The effect on the value of z of going around
the cycle n times can then be expressed as a difference equation x, = ax, 1+ F
where z; represents the value of z after i iterations around the cycle.? In general,
the procedure described can yield a system of simultaneous linear difference
equations. However, it is always possible to reduce a system of linear difference
equations to a single linear difference equation in one variable [19], so it suffices
to consider the solution of a single linear difference equation in one variable.

3.3 Approximate Solution of Difference Equations

Having obtained a difference equation as discussed above, we consider how it may
be solved. The automatic solution of general difference equations is a difficult
problem, but there is a wide class of equations that can be solved automatically,
using either characteristic equations or generating functions [9,15,20]. For the

2 Again, note that this represents an upper bound on z, so strictly speaking we should
write £, < azn—1+ E. However, since we are concerned with proving termination in
the worst case, when this maximum is actually realized, we simply use the equality.
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purpose of analysis of active database rules, however, we additionally require that
the solution method used be efficient, even if this means sacrificing precision
in some cases. For this reason, we use a table-driven method for computing
an upper bound to the actual solution. Our approach is to use a “library” of
difference equation templates together with a symbolic solution for each such
template [12,10,11]. The idea is to use pattern matching to identify a template
that matches the equation obtained from the analysis described in Section 3.2.
Once a match is obtained against a template, the solution to the equation can
then be obtained by substituting into the symbolic solution for that template. In
general, the library of difference equation templates will contain many different
entries, and the pattern matching process will try to match a given equation
against these templates in increasing order of the “size” of their solutions. If the
equation cannot be matched against any template in the library, we attempt to
use simplifying approximations, as described below. If no match can be obtained
even after any applicable simplifying approximations, we give up and return the
value 1, indicating that we cannot say anything about the solution.

The idea can be illustrated by an example. Suppose that the difference equa-
tion library has the template:

T, = Ax,_ + B
together with the symbolic solution
Tn = (o + %)A”/k — %, where g is the initial value of x.

Given an equation z, = 0.9z, _;, pattern matching against this template suc-
ceeds with A = 0.9, B = 0, k = 1; substituting these values into the symbolic
solution yields the solution z,, = 0.9"z.

If the difference equation at hand cannot be matched against any template
in the library, we attempt to approximate it in a way that is conservative, i.e.,
termination inferred from the approximating equation (as discussed in the next
section) must imply termination of the original equation. Space constraints pre-
clude a detailed discussion of such approximations: we outline the general ideas
and illustrate them with an example. Suppose we have the difference equation
zn, = 0.8x,_1 — 0.15z,,_ 5, and are trying to simplify it so as to match against
the template shown above. To do this, we use the activation condition on z (see
Section 2.1), obtained from the rule(s) involved in the cycle, to determine (i)
whether the values of z are bounded above or below; and (ii) whether the values
of the z; are positive or negative. This is done using the entailment operation
of the constraint system, in a manner very similar to that discussed in Section
3.1. For example, suppose that for this particular case we have the activation
condition = > 100. Then, we have the following:

(i) The termination condition for the rule is z < 100, i.e., we have a lower bound
on the value of z below which the rule will not be activated. This implies that
we can use an upper bound on the actual difference equation for termination
analysis. In other words, if we can construct a difference equation y,, = f(-- )
such that y,, > x, for all n > 0, and can use this equation to determine that
eventually the values of y,, will satisfy the termination condition for the rule,



Draft  February 15, 2000 9

then we can conclude that the original variable z,, would eventually satisfy
the termination condition of the rule as well. If the termination condition
implied an upper bound for z, then we would, analogously, construct an
approximation that is a lower bound on z,,.

(i1) The activation condition x > 100 implies that x is positive. This, in turn,
implies that the expression 0.8z, 1 is an upper bound on the expression
0.8z, 1 —0.15z,_».

We therefore use the equation z, = 0.8x,, 1 to approximate (from above) the
original equation. The approximating equation can now be successfully matched
against the template shown above.

3.4 Handling Non-Numeric Attributes

While the discussion thus far has focused on numerical attributes, the approach
described can also be used to handle rules that manipulate non-numerical at-
tributes. Our approach will be to formulate and reason about difference equations
involving aggregate values such as the number of tuples in a relation.

In the absence of any additional information, we can, at the very least, use
the dummy relation R_Count, for handling the aggregation operation Count on
a relation R (see Section 2), to monitor the number of tuples in R: the insertion
of a tuple into R causes this value to increase by 1, the deletion of a tuple causes
it to decrease by 1, and updates leave it unchanged. As an example, this can be
used to infer termination of a cycle along which two tuples are deleted from a
relation and one tuple inserted: we would obtain a difference equation stating
that there is a net reduction of 1 tuple in the size of the relation each time around
the cycle, and use this to determine that the deletions must eventually stop. This
approach can be improved further using additional semantic information about
the database, e.g., from integrity constraints.

4 Static Termination Analysis

The approach described in the previous section allows us to obtain an (upper
bound) solution to a difference equation describing the effects of a cycle in the
triggering graph. Ultimately, however, we are interested not so much in the
solutions to these equations, but rather in determining whether or not the rule
activations eventually terminate. Suppose that the activation condition for the
rule under consideration is C(z). We use the constraint solver determine an
interval within which all of the values of n for which C(zy) is true, i.e., for
which the rule will be activated, must lie; termination can then be inferred by
examining this interval. This is done as follows:

1. We add constraints expressing upper and lower bounds on the value of z,
denoted by MAXVAL and MINVAL, obtained from domain information for the
database schema as well as any applicable integrity constraints; if there are
no applicable constraints, these can simply be the largest and smallest nu-
merical values representable on the system. Moreover, if C(zg) is false the
cycle of active rules will not be initially triggered (see Section 2.1), so we
may assume that C(x) holds: this provides additional constraints on the
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values of xg. Let the conjunction of these constraints on the possible values
of zq be denoted by Bounds(zo).

2. Suppose the difference equation library associates, with the equation tem-
plate we have matched, the solution z,, = &(n,zg), where £(---) is some
expression involving n and zy. We then solve the following constraint for n:

(3zo, x4, n)[Bounds(zo) A x,, = E(n,z0) An > 0AC(xy,)]. (1)

If the activation cycle is non-terminating then the constraint (1) will be true for
all n > 0. The constraint solver will return an interval I C [0, co] (or, if metalevel
solvers are used [14], a union I of intervals) and soundness of the solver implies
that all n which satisfy this constraint must lie in I. If I is a proper subset of
[0, 00] which omits some positive integer m, then termination (in at most m
steps) has been proved. If, on the other hand, I = [0, o¢], then nothing has been
proved, and rule activation may indeed be nonterminating.

Returning to the rule in Example 1, the difference equation we obtain is
z, = 0.9z,_,. For the rule under consideration, we have C(z) = = > 100.
Suppose that in the system under consideration, MAXVAL = 10'°°, which means
Bounds(xg) = ‘zg > 100 A 79 < 10199°. We therefore solve the constraint

zo > 100 A 29 < 10199 Az, =0.9" %29 An > 0Ax, > 100.

In this case, the constraint solver yields the solution n < 2142.3

Notice that the constraint solver gives much more information than simply
whether or not the cycle will terminate: it tells us that termination will occur
after at most 2142 iterations of the cycle. This may seem high, but it is a result
of the very large bound on the initial value zg: it corresponds to starting out
with an average salary of 10199, Tf tighter bounds are available on the value of
zg, then the bound on the maximum number of iterations of the cycle can be
correspondingly tightened. For example, suppose we know, from the integrity
constraints on the database, that the maximum (and hence the average) salary
cannot exceed 100,000: the bound we get in this case is n < 66. Information
about the maximum number of iterations of a cycle can be a useful design
and/or debugging tool for the database designer, e.g., for detecting inadvertantly
omitted integrity constraints. It can also be useful, as discussed at the end of
the next section, in application areas such as soft real-time systems, where we
may be interested not just in whether a rule activation terminates, but also the
maximum number of iterations it may execute.

Recall that a cycle in a directed graph is simple if no vertex in the cycle is
also part of a different cycle. The following theorem gives the soundness of our
termination analysis:

Theorem 1. The procedure described for termination analysis is sound provided
that all cycles in the triggering graph are simple. In other words, if the analysis
infers that a cycle terminates, then it in fact terminates (equivalently, any cycle
that may not terminate is inferred to be non-terminating).

% Actually, the solution it returns is the interval [0,2141.725842024721714551560581].
In our current implementation the execution time for this is about 10 ms.
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Fig. 2. An example of a non-simple cycle

The reason for the qualification that cycles should be simple is shown in Figure 2.
The vertex in the center is part of two different cycles, so it is possible to have an
execution where we go around cycle 1 some number of times, then around cycle
2 some number of times, then back around cycle 1, and so on. It may happen
that each of the two cycles shown, considered on its own, can be shown to be
terminating, but the two taken together do not terminate: this can happen, for
example, if cycle 1 inserts some tuples into a relation until a maximum count is
reached, while cycle 2 deletes tuples from that relation until a minimum count
is reached. We believe that our results can be extended to non-simple cycles
provided that the cycles don’t “interfere” with each other, in the sense that one
of them increases a value that is decreased by the other. We are currently looking
into how our ideas may be extended to deal with arbitrary cycles.

Finally, the discussion of the way in which the solution to a difference equa-
tion is used for termination analysis can be used to guide the construction of
the difference equation library. In particular, it makes no sense to have a very
precise solution to a particular equation template if the constraint system is not
powerful enough to handle that solution. Thus, knowing the capabilities of the
constraint system, we may choose to associate “approximate solutions”—i.e.,
upper and lower bounds, intended to be used as discussed at the end of Section
3.3—that we know can be handled by by the constraint system, if the exact
solution cannot be handled by it.

5 Dynamic Termination Analysis

There may be situations where the approach described in the previous section
does not work, i.e., we are unable to prove, statically, that a cyclic rule activa-
tion will necessarily terminate. This may happen either because the cycle is, in
fact, potentially non-terminating, or because the constraint system is not pow-
erful enough to solve the constraint (1) sufficiently precisely. Conventional static
termination analyses would then reject the rule set for not being provably termi-
nating. An alternative, however, would be to use dynamic termination analysis
[6], where we insert code into the appropriate active rules to determine, when
the rule is activated, whether that particular activation of the rules can be guar-
anteed to terminate. The latter approach gives us greater flexibility in handling
rules, by allowing us to work with rules that may not be provably terminating
via static termination analyses, but nevertheless guarantee that at runtime there
will not be any nonterminating executions.
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The idea can be illustrated by the following variation to Example 1 mentioned
at the end of Section 1:

if (Select Avg(Sal) from Emp) > 100
then update Emp
set Sal = 0.9%Sal + Bonus

This rule will terminate if Bonus < 10; for values of Bonus > 10 the rule is
nonterminating. Thus, if the value of Bonus is not known statically (e.g., if it
is computed dynamically based on other values in the database), it will not be
possible to prove the termination of this rule statically. Instead of rejecting the
rule, however, we can introduce code into it to carry out dynamic termination
analysis: the result would be to allow rule activation for situations where the
value B of Bonus guarantees termination and rejecting it for values that do not.
Suppose that at runtime, this rule is activated with =y = 10,000 and Bonus = 9.
Then, given the static solution (see Section 3.3) z,, = (20 — g% ) * 0.9" + & for
the difference equation for the corresponding cycle, and the value B = 9, this
runtime check would use the constraint solve to solve for n in the constraint

Ty = (zo — &) #0.9" + & Azg =10000AB=9An>0Az, > 100.

In this case, the CLP(F) constraint solver infers the bound n < 66, which means
that termination (in at most 66 steps) can be guaranteed. In this case, there-
fore, the dynamic termination test succeeds and the rule execution is allowed to
proceed. On the other hand, if at runtime we have Bonus = 10, the constraint
solver infers the bound n € [0, +00], correctly indicating that the rule activation
may not terminate.

An interesting aspect of this kind of dynamic termination analysis is that it
allows runtime decisions based not just on whether or not a cycle terminates,
but, if we wish, the maximum number of iterations that may be executed. This
can be used for controlling rule activation in active databases within soft real-
time systems. For example, suppose that based on runtime monitoring of rule
activations, we decide that a particular cycle can be allowed to iterate at most
50 times if the timing constraints are to be satisfied. Using our approach, we can
test for this before the rule is activated: this allows more flexible systems (cyclic
activations are permitted) but at the same time improves resource utilization
(“bad” rule activations are rejected ahead of time, instead of having to be aborted
if they are found to be running too long).

The overhead of dynamic termination analysis for cycles can be reduced
significantly by observing that, once we have verified that a sequence of cyclic
rule activations will eventually terminate, it is not necessary to test it again and
again as we go around the cycle during that sequence of rule activations. The
dynamic termination check can therefore be moved out of the cycle, in a manner
similar to the optimization of invariant code motion out of loops commonly
carried out in compilers [1].

6 Related Work

There is a significant body of literature on termination analysis for active
database rules. Among the earliest of these is the work of Aiken et al. [2], who
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proposed using triggering graphs to reason about termination; this approach
has subsequently been refined and improved by various authors [4,5,7,18, 22,
23]. The general idea here is to use acyclicity of the triggering graph to in-
fer termination; the relative precision of different analyses depend on their use
of different techniques to remove edges from the triggering graph prior to the
acyclicity test.

Weik and Heuer describe an approach to identify terminating cycles in trig-
gering graphs [23]. They consider lattice-structured domains: a cycle is then
inferred to be terminating if it represents an increasing operation in the lattice
(i.e., values get mapped to “higher” values according to the lattice ordering) with
a non-decreasing step size, and there is an upper bound on the resulting values
(and dually with decreasing operations). While the goals of this work are similar
to ours, the details are very different. Their approach is unable to infer termi-
nation for rules such as that in Example 1, since the step size of the operation
in this example does not satisfy their criterion for being non-increasing.

Bailey et al. use abstract interpretation for termination analysis of active
rules [3]. The idea is to reason about sequences of database states using an “ap-
proximate semantics,” and use fixpoint computation (over a lattice) to handle
cycles. The algorithm described by these authors does not have any knowledge
of arithmetic operations, and so cannot infer termination of rules such as that in
Example 1. A more fundamental problem is the issue of termination of the ter-
mination analysis itself. The usual approach taken in the abstract interpretation
literature for proving termination of analyses is to assume that the abstract do-
main is Noetherian, i.e., does not contain any infinite ascending chains; such an
assumption, while not explicitly stated, seems necessary for the work of Bailey
et al. as well. This requirement restricts the structure of the abstract domains
they are able to use. The restriction seems especially problematic for situations
such as those considered here, where we have numeric domains such as the inte-
gers and reals, and where it may not be a priori obvious which subsets of these
domains may be relevant for a particular rule set. This problem does not arise
with our approach because we do not attempt to construct fixpoints iteratively.
For this reason, we believe that the approach described in this paper is more
precise than that of Bailey et al..

Baralis et al. discuss the problem of dynamic termination analysis [6]. Their
approach is based on the idea of monitoring rule activations at runtime to detect
situations where a database state is repeated during execution, thereby indicat-
ing nontermination. This is a sufficient condition for nontermination in general,
and is necessary and sufficient for “function-free” rules, which do not introduce
any new values into the database. The runtime monitoring of database states
can be quite expensive, and Baralis et al. propose a number of optimizations to
their basic scheme to reduce this cost. Their approach differs from ours in two
important ways. First, our approach does not involve keeping track of (repre-
sentations or encodings of) previously encountered database states, and so can
be made more efficient. Second, cyclic activations involving real numbers, as il-
lustrated by the examples considered in this paper, may introduce new values
into the database (e.g., the series of values 0.9, 0.9, 0.9%, ...), and so are not
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function-free; for such rules, the technique of Baralis et al. give a sufficient con-
dition for nontermination but not a necessary one. This means that, at least in
principle, there may be nonterminating executions that will not be detected as
nonterminating by their analysis; however, such executions will be detected as
nonterminating by the approach described in this paper.

The table-driven approach described here for approximate solution of differ-
ence equations was developed by us in the context of optimized execution of
parallel logic programs [10]. We have subsequently used it for query size analysis
for recursive rules in deductive databases [11] and for estimating the computa-
tional cost of recursive logic programs [12]. Caslog, a system for cost analysis
of logic programs that is based on this work, is available via anonymous FTP
from ftp.cs.arizona.edu/caslog, and is part of the CIAO-Prolog distribu-
tion available at www.clip.dia.fi.upm.es. Our implementation of the CLP(F)
constraint system is freely available at www.cs.brandeis.edu/~tim/clip.

7 Conclusions

Most existing approaches to termination analysis of active database rules rely
on verifying that the triggering graph for those rules is acyclic. Because of this,
they are unable to handle rules whose triggering graphs are inherently cyclic.
Such rules can, nevertheless, be useful because they allow us to express, in a
straightforward and natural way, situations that involve the repeated application
of a set of active rules until some desired state is reached. This paper describes
a constraint-based approach that can be used for termination analysis in such
cases. The basic idea is to use a notion of annotated triggering graphs to capture
the effect of going around a cycle in the triggering graph once, use this to estimate
what happens after n executions of the cycle, and verify from this that the cyclic
rule activation will eventually terminate. The idea can be readily generalized
to allow dynamic termination testing, thereby allowing the analysis to cope
with both proof systems that are not sufficiently powerful, and with rules that
terminate sometimes but not necessarily always.
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