
Constraint-Based Termination Analysis forCy
li
 A
tive Database Rules?Saumya Debray and Timothy Hi
keyAbstra
t. There are many situations where
y
li
 rule a
tivations|where some set of a
tive database rules may be a
tivated repeatedlyuntil the database satis�es some
ondition|arise naturally. However,most existing approa
hes to termination analysis of a
tive rules, whi
htypi
ally rely on
he
king that the triggering graph for the rules is a
y
li
,
annot infer termination for su
h rules. We present a
onstraint-basedapproa
h to termination analysis that is able to handle su
h
y
li
 rulea
tivations for a wide
lass of rules.1 Introdu
tionA
tive databases, whi
h are
onventional databases extended with a me
hanismto
reate and exe
ute produ
tion rules that manipulate the state of the database,have attra
ted
onsiderable interest in re
ent years. Su
h rules provide a generalme
hanism for a number of database features su
h as integrity
onstraint
he
k-ing and view maintenan
e, and simplify building and reasoning about databaseappli
ations.In general, rule a
tivations in a
tive databases
an \
as
ade," i.e., the exe-
ution of an a
tive rule
an
ause a
hange in the database state that
ausesanother rule to be exe
uted; the resulting
hange
an then
ause the a
tivationof a third rule; and so on. Ensuring that su
h
as
aded rule a
tivations do notgo on forever therefore be
omes of fundamental importan
e. Analyses that ex-amine a set of a
tive rules to determine whether rule a
tivations will terminateare
alled termination analyses.Almost all of the work to date on termination analysis for a
tive databases(see Se
tion 6) relies on
he
king that a dire
ted graph
alled the \triggeringgraph" for a set of rules is a
y
li
. The essential intuition this expresses is thata rule should not be able to
ause itself to be (re-)a
tivated, either dire
tly orindire
tly. The di�eren
es between various proposals for su
h analyses lie in thesets of edges they are able to eliminate from the triggering graph before thisa
y
li
ity
he
k. In most of these proposals, the underlying sets of rules being
onsidered satisfy the property of not being self-a
tivating in this manner, andthe analyses themselves fo
us on identifying and eliminating edges that
ouldintrodu
e spurious
y
les into the triggering graph.? This work was supported in part by the National S
ien
e Foundation under grantsCCR-9711166, CDA-9500991, and ASC-9720738. Authors' addresses: S. Debray, De-partment of Computer S
ien
e, The University of Arizona, Tu
son, AZ 85721, USA,E-mail: debray�
s.arizona.edu; T. Hi
key, Mi
htom S
hool of Computer S
ien
e,Brandeis University, Waltham, MA 02454, USA, E-mail: tim�
s.brandeis.edu.

2 Draft | February 15, 2000There are, however, many situations where it is natural to have a rule that
an a
tivate itself, but where su
h self-a
tivations are guaranteed to eventuallyterminate. As an example, a
ompany that su�ers a revenue shortfall may im-pose budget
uts in all of its departments. It would make sense, in su
h a
ase,to impose larger
uts on departments with many employees, sin
e they havelarger budgets to work with. Thus, suppose that the budget redu
tion for ea
hdepartment is set at 1% of its total salary expenses, and expressed as an a
tiverule that redu
es the budget of ea
h department by the appropriate amount. Asingle round of redu
tions may not suÆ
e to meet the revenue shortfall, so therule may be a
tivated again. It is not hard to see, however, that eventually thebudget will be redu
ed enough that the rule a
tivation will stop.Throughout this paper, we use the following example, taken from Chapter 2of a text by Zaniolo et. al. [25℄.Example 1. The following rule, de�ned by a budget-
ons
ious manager, imposesa salary redu
tion of 10% on every employee in an organization whenever theaverage salary ex
eeds a threshold (in this
ase 100):rule SalaryControl on Empwhen inserted, deleted, updated(Sal)if (Sele
t Avg(Sal) from Emp) > 100then update Empset Sal = 0.9*SalNoti
e that this rule
an be a
tivated if an employee is hired with a high initialsalary; if the initial salary is high enough, one round of salary redu
tions maynot suÆ
e to satisfy the termination
ondition, so the rule may be a
tivatedagain. Eventually, however, the average salary must fall below 100,
ausing therule a
tivations to terminate.While this rule seems \obviously terminating," reasoning about su
h rules
anbe quite subtle. For example,
onsider a rule that is identi
al to that shownabove, the only di�eren
e being that the a
tivation
ondition isif (Sele
t Avg(Sal) from Emp) > 0 then ...This rule is stru
turally very similar to that of Example 1, with a de
reasingvalue for the average salary and a lower bound on how far it
an de
rease. It is,nevertheless, non-terminating. As another example,
onsider a rule that is iden-ti
al to that of Example 1, with the only di�eren
e being that the a
tion is toset ea
h employee's salary to 0.9*Sal + Bonus, where Bonus is some
onstant.In this
ase, it turns out that the rule is terminating if Bonus < 10, and nonter-minating if Bonus � 10. What these examples illustrate is that any terminationanalysis that aims to handle su
h
y
li
 rule a
tivations must be able to analyzethe e�e
ts of
y
li
 rule exe
ution with a fairly high degree of pre
ision.2 Preliminaries2.1 A
tive RulesWe
onsider Event-Condition-A
tion (ECA) rules: a rule is triggered when
er-tain events spe
i�ed in the rule o

ur, and provided that their (optional)
on-ditions hold; when a rule so triggered is exe
uted, the a
tions spe
i�ed in the

Draft | February 15, 2000 3rule are
arried out. For
on
reteness we use the syntax and semanti
s of theStarburst rule system [24℄: a rule is assumed to have the stru
turerule RuleName on Relationwhen EventListif C then A
tionwhere EventList spe
i�es a set of events that
ause the rule to be triggered. Theexe
ution of a triggered rule involves the evaluation of the
ondition C, and ifthis evaluates to true,
arrying out the a
tions spe
i�ed in the list A
tion. The
ondition C, whi
h determines when the rule is a
tivated, is referred to as thea
tivation
ondition of the rule; we sometimes also use the term termination
ondition for the rule to refer to the
ondition :C.Sin
e the handling of aggregation operations is more or less orthogonal tothe main fo
us of this paper, we make the simplifying assumption that anyaggregation operations in a
tive rules are applied to the entire relation, i.e.,there is no aggregation over partitions of the relation
omputed using
onstru
tssu
h as the `group by'
lause of SQL. The basi
 idea is that if a rule
omputesan aggregate operation f on an attribute A of a relation R, we handle this usinga dummy relation R A f
ontaining a single tuple that has a single attributewhose value is that of the operation f applied to attribute A of R. Changes tothe relation R through insert, delete, or update operations|in
luding those ina
tive rules|are
onsidered to also modify su
h dummy relations appropriately,albeit in a
onservative manner: that is, unless the new value of the aggregatevalue
an be predi
ted, its value is
onsidered to be unknown and representedin the dummy relation using a null value.2.2 Constraint SystemsFor the purposes of this paper, a
onstraint system is a system for maintainingand manipulating
onstraints over a
onstraint domain D, whi
h is essentially a(�rst-order) stru
ture, i.e., a universeD together with an appropriate assignmentof fun
tions and relations over D to the symbols of the
onstraint system. Weassume that the
onstraint systems under
onsideration have the fun
tionalityen
ountered in typi
al
onstraint logi
 programming systems su
h as CLP(R)[16℄ and SICStus Prolog [21℄ (see also the survey by Ja�ar and Maher [17℄). Moreformally,
onstraints are �rst-order formulae over a signature �, su
h that: thebinary predi
ate symbol `=' is in �; there are
onstraints that are identi
allytrue and identi
ally false; and the
lass of
onstraints is
losed under variablerenaming,
onjun
tion, and existential quanti�
ation. Operations on
onstraintssupported by the
onstraint system are assumed to in
lude [17℄:{ A test for
onsisten
y or satis�ability: D j= (9)
.{ A test for impli
ation (i.e., entailment) of one
onstraint by another:D j=
0)
1.{ The proje
tion of a
onstraint
0 onto variables �x to obtain a
onstraint
1su
h that D j=
1 , (9�y)
0, where �y = vars(
0)� �x is the set of variables in
0 ex
ept for those mentioned in �x.

4 Draft | February 15, 2000In parti
ular, we fo
us on the CLP(F)
onstraint system [13℄, whi
h is powerfulenough for our needs and whose implementation is freely available. This is a
onstraint system over the reals that supports, in addition to the usual arith-meti
 and
omparison operators, the fun
tions abs(x), exp(x), log(x), xn, xy,as well as the trigonometri
 fun
tions sin(x),
os(x), tan(x) and their inverses.Our implementation of this system uses interval
onstraints, and handles thesefun
tions using a reimplementation of the standard math library based on in-terval arithmeti
. A fundamentally important aspe
t of the system is that the
onstraint system is provably sound [13, 14℄. A detailed dis
ussion of this sys-tem is omitted due to spa
e
onstraints: for our purposes it suÆ
es to notethat the
onstraint solver is queried with a quanti�er-free �rst-order
onjun
-tion Q(x1; : : : ; xn), interpreted as the question \do there exist any x1; : : : ; xnsu
h that Q(x1; : : : ; xn)?" The solver responds either with a set of real intervalsI1; : : : ; In, interpreted as \if there exist any x1; : : : ; xn su
h that Q(x1; : : : ; xn),then for all su
h values it must be the
ase that x1 2 I1 and . . . and xn 2 In,"or indi
ates that there are no values for the variables xi that satisfy the formulaQ(� � �). In other words, the answer returned by the solver
ontains the proje
tion,on ea
h of the variables x1; : : : ; xn, of the
onvex hull of the region
ontainingall solutions to the question.3 Annotated Triggering GraphsMany of the termination analyses proposed in the literature use the notion oftriggering graphs. A triggering graph is a dire
ted graph where ea
h vertexrepresents a rule and where there is an edge from vertex ri to vertex rj if thea
tion of rule ri
an
ause rule rj to be
ome triggered [8℄. We generalize thisnotion to that of \annotated triggering graphs," whi
h additionally in
orporateinformation, at ea
h vertex, about the
hange(s) resulting from the a
tivation ofthe
orresponding rule. To this end, we �rst de�ne how su
h
hanges might berepresented.De�nition 1. [Bounds fun
tion℄ A bounds fun
tion over a s
hema S maps ea
hattribute of S to a pair hlo; hii where ea
h of lo and hi is either ? or a linearexpressions over (numeri
al) attributes in S.If a bounds fun
tion maps an attribute to hlo; hii, this indi
ates that lo is a lowerbound on the values of that attribute while hi is an upper bound, with a valueof ? indi
ating a
omplete la
k of knowledge (i.e., indi
ating that we
annot sayanything about the values for the
orresponding attribute), and non-? valuesindi
ating de�nite knowledge. Note that these bounds are not restri
ted to benumbers, but may in general be expressions that depend on the values for otherattributes.De�nition 2. [Annotated Triggering Graph℄ Given a set of rules R with s
hemaS, an annotated triggering graph is a pair (G;F) where G = (V;E) is a
on-ventional triggering graph, and F maps ea
h vertex in V to a bounds fun
tionover S.Thus, at ea
h vertex of an annotated triggering graph, ea
h attribute is mappedto a pair of expressions that spe
ify upper and lower bounds on the values of that

Draft | February 15, 2000 5attribute. As an example, the rule in Example 1 would asso
iate, with the ver-tex
orresponding to the rule, the bounds fun
tion [Sal 7! h0:9 � Sal ; 0:9 � Sali℄(attributes that are not expli
itly mentioned are assumed to not have
hanged,and are therefore mapped to themselves). This indi
ates that the result of thea
tivation of the rule is to update ea
h tuple so that the value of its Sal attributeis 0:9� its old Sal value, while the other attribute values are left un
hanged.3.1 Constru
ting Annotated Triggering GraphsThis se
tion des
ribes a simple algorithm for
onstru
ting annotated trigger-ing graphs. It is quite
onservative in its treatment of bounds, and
an almost
ertainly be improved to in
rease its pre
ision. Consider a rulerule RuleName on Rwhen ...if ...then update R0set x = '(y1; : : : ; yn) where CondThe �rst question we
onsider is whether all of the tuples in R0 will be modi�ed.If the �nal where
lause is absent, or Cond is identi
ally true, then we know thatall tuples in R0 will have the value of attribute x set to '(y1; : : : ; yn). So in this
ase the bounds fun
tion maps x to h'(y1; : : : ; yn); '(y1; : : : ; yn)i.Otherwise, if it is possible that only some of the tuples will be updated, weattempt to determine the relationship of the value of the expression '(y1; : : : ; yn)with that of x. Let C0 be a
onjun
tion of
onstraints on the possible values forvarious attributes, obtained from domain information for the database s
hemaas well integrity
onstraints on the database (C0 is a global
onstraint and needbe
omputed only on
e, at the beginning of the analysis). We then
onstru
ta
onstraint C � C0 ^ [z = '(y1; : : : ; yn) � x℄, where z is a new variable notappearing in C0, and examine whether or not
ertain
onstraints on z are entailedby C (see Se
tion 2.2 for our assumptions regarding entailment operations in
onstraint systems). We
onsider the following possibilities:{ C entails z � 0. This means that the value of x is non-de
reasing as a result ofthe update. Sin
e it is possible that only some of the tuples will be updated,an upper bound on the x attribute value is given by '(y1; : : : ; yn), while alower bound is given by x. Thus, in this
ase we have the bounds fun
tion[x 7! hx; '(y1; : : : ; yn)i℄.{ C entails z � 0. This means that the value of x is non-in
reasing. Reasoningas in the previous
ase, we get the bounds fun
tion [x 7! h'(y1; : : : ; yn); xi℄.{ If neither of these previous two
ases holds, we
on
lude that nothing
an besaid about the value of x after the update. The resulting bounds fun
tion is[x 7! h?;?i℄.3.2 Reasoning About Annotated Triggering GraphsOn
e we have
onstru
ted an annotated triggering graph for a set of rules, weexamine any
y
les in this graph to determine the net e�e
t of going around the
y
le on
e. Intuitively, what we need to do is to somehow
ompose the bounds

6 Draft | February 15, 2000
r
1

r2r
3

[]

y x-3, x+5[] y-x, y[]

x

z

y+2, 2y-zFig. 1. An example of a
y
le in an annotated triggering graphfun
tions at ea
h of the verti
es in the
y
le. Before dis
ussing the details ofhow this should be done, we
onsider an example. Consider the
y
le
onsistingof three verti
es, shown in Figure 1. Suppose we wish to determine an upperbound on the
hange in the value of x at vertex r1 when we go around the
y
leon
e. Let the upper bound on x be denoted by xmax : after the exe
ution of r1,we use the upper bound on x, from the bounds fun
tion at this vertex, to obtainthe
onstraint xmax = 2y � z. After the exe
ution of rule r2, the new value ofz has bounds y � x � z � y. Sin
e z appears with a negative
oeÆ
ient in theexpression 2y � z, we use the lower bound to obtain the
onstraint z = y � x.Composition (i.e.,
onjun
tion) of
onstraints then yields xmax = 2y � z ^ z =y� x; proje
ting on xmax yields xmax = y+ x. Finally, at vertex r3, the boundson y are x � 3 � y � x + 5; this time, sin
e the
oeÆ
ient of y is positive inthe expression y + x, we use the upper bound x + 5. As before, we
ompose
onstraints to obtain xmax = y + x ^ y = x + 5; this is then proje
ted on xmaxto yield xmax = 2x+ 5. Thus, the
hange in the value of x when we go aroundthis
y
le on
e is (at most) 2x+ 5.This example illustrates how we summarize the e�e
ts of a
y
le. To estimatean upper bound on the value of x at a vertex r after going around the
y
le (the
ase for lower bounds is analogous), we start with the
onstraint xmax = E,where E gives the upper bound on x after r's exe
ution. We then work our wayaround the
y
le: at ea
h vertex we take the
onjun
tion of the
urrent
onstrainton xmax and
onstraints on the variables o

uring in it, obtained from the boundson these variables at that vertex given by the annotated triggering graph; theresulting
onstraint is then proje
ted on xmax . During this pro
ess, we use thelower bound for a variable if it o

urs negatively in the
onstraint asso
iatedwith xmax , and the upper bound if it o

urs positively.Given a
onstraint C and a set of variables1 X = fx1; : : : ; xng, we use thenotation 9XC to denote the
onstraint obtained by proje
ting away the vari-ables in X , i.e., 9x1x2 � � �xnC. Let vars(E) denote the variables appearing in anexpression E. Given an annotated triggering graph (G;F) with s
hema S anda vertex r in G, let F(r)(v) = hlo(r)v ; hi (r)v i for any variable v 2 S. We
an thenformalize the pro
edure sket
hed above as follows.1 Sin
e our approa
h uses
onstraints on attribute values, we treat attributes as thevariables in su
h
onstraints. In the remainder of the paper, therefore, we will usethe terms attribute and variable inter
hangeably.

Draft | February 15, 2000 7{ Pro
essing a single vertex r. Given a
onstraint C � xmax = E, let C 0 bethe
onstraintC 0 = ^v2vars(E)fv = e j e = � lo(r)v if v appears negatively in Ehi (r)v if v appears positively in E g:Sin
e bounds fun
tions map variables to linear expressions (De�nition 1),ea
h variable o

urs at most on
e in E. Thus, C 0 imposes a single (equality)
onstraint on any su
h variable, and therefore is satis�able.The result of propagating C through the vertex r is then given byPro
Vertex(r; C) = 9vars(E)(C ^ C 0).{ Pro
essing a sequen
e of verti
es. The result of propagating a
onstraint Cthrough a sequen
e of verti
es s is given by Pro
VertexSeq(s; C), where:Pro
VertexSeq("; C) = CPro
VertexSeq(rs0; C) = Pro
VertexSeq(s0;Pro
Vertex(r; C)).Here, " denotes the empty sequen
e while rs0 denotes the sequen
e whose�rst element is r and the remaining sequen
e is s0.{ Pro
essing a
y
le. Given a
y
le r1r2 � � � rnr1, an upper bound on the
hangein the value of a variable x on going around the
y
le on
e is given byPro
Cy
le(x; s) = Pro
VertexSeq(s; `xmax = x').where s = r1r2 � � � rn.The determination of a lower bound on the
hange in the value of a variable isanalogous.Sin
e bounds fun
tions map variables to linear expressions (De�nition 1),the pro
edure des
ribed above for
omputing Pro
Cy
le(x; s) for a
y
le s isessentially involves
omposing a sequen
e of linear fun
tions, and therefore yieldsa linear expression of the form ax+E. The e�e
t on the value of x of going aroundthe
y
le n times
an then be expressed as a di�eren
e equation xn = axn�1+Ewhere xi represents the value of x after i iterations around the
y
le.2 In general,the pro
edure des
ribed
an yield a system of simultaneous linear di�eren
eequations. However, it is always possible to redu
e a system of linear di�eren
eequations to a single linear di�eren
e equation in one variable [19℄, so it suÆ
esto
onsider the solution of a single linear di�eren
e equation in one variable.3.3 Approximate Solution of Di�eren
e EquationsHaving obtained a di�eren
e equation as dis
ussed above, we
onsider how it maybe solved. The automati
 solution of general di�eren
e equations is a diÆ
ultproblem, but there is a wide
lass of equations that
an be solved automati
ally,using either
hara
teristi
 equations or generating fun
tions [9, 15, 20℄. For the2 Again, note that this represents an upper bound on x, so stri
tly speaking we shouldwrite xn � axn�1+E. However, sin
e we are
on
erned with proving termination inthe worst
ase, when this maximum is a
tually realized, we simply use the equality.

8 Draft | February 15, 2000purpose of analysis of a
tive database rules, however, we additionally require thatthe solution method used be eÆ
ient, even if this means sa
ri�
ing pre
isionin some
ases. For this reason, we use a table-driven method for
omputingan upper bound to the a
tual solution. Our approa
h is to use a \library" ofdi�eren
e equation templates together with a symboli
 solution for ea
h su
htemplate [12, 10, 11℄. The idea is to use pattern mat
hing to identify a templatethat mat
hes the equation obtained from the analysis des
ribed in Se
tion 3.2.On
e a mat
h is obtained against a template, the solution to the equation
anthen be obtained by substituting into the symboli
 solution for that template. Ingeneral, the library of di�eren
e equation templates will
ontain many di�erententries, and the pattern mat
hing pro
ess will try to mat
h a given equationagainst these templates in in
reasing order of the \size" of their solutions. If theequation
annot be mat
hed against any template in the library, we attempt touse simplifying approximations, as des
ribed below. If no mat
h
an be obtainedeven after any appli
able simplifying approximations, we give up and return thevalue ?, indi
ating that we
annot say anything about the solution.The idea
an be illustrated by an example. Suppose that the di�eren
e equa-tion library has the template:xn = Axn�k +Btogether with the symboli
 solutionxn = (x0 + BA�1)An=k � BA�1 , where x0 is the initial value of x.Given an equation xn = 0:9xn�1, pattern mat
hing against this template su
-
eeds with A = 0:9, B = 0, k = 1; substituting these values into the symboli
solution yields the solution xn = 0:9nx0.If the di�eren
e equation at hand
annot be mat
hed against any templatein the library, we attempt to approximate it in a way that is
onservative, i.e.,termination inferred from the approximating equation (as dis
ussed in the nextse
tion) must imply termination of the original equation. Spa
e
onstraints pre-
lude a detailed dis
ussion of su
h approximations: we outline the general ideasand illustrate them with an example. Suppose we have the di�eren
e equationxn = 0:8xn�1 � 0:15xn�2, and are trying to simplify it so as to mat
h againstthe template shown above. To do this, we use the a
tivation
ondition on x (seeSe
tion 2.1), obtained from the rule(s) involved in the
y
le, to determine (i)whether the values of x are bounded above or below; and (ii) whether the valuesof the xi are positive or negative. This is done using the entailment operationof the
onstraint system, in a manner very similar to that dis
ussed in Se
tion3.1. For example, suppose that for this parti
ular
ase we have the a
tivation
ondition x > 100. Then, we have the following:(i) The termination
ondition for the rule is x � 100, i.e., we have a lower boundon the value of x below whi
h the rule will not be a
tivated. This implies thatwe
an use an upper bound on the a
tual di�eren
e equation for terminationanalysis. In other words, if we
an
onstru
t a di�eren
e equation yn = f(� � �)su
h that yn � xn for all n � 0, and
an use this equation to determine thateventually the values of yn will satisfy the termination
ondition for the rule,

Draft | February 15, 2000 9then we
an
on
lude that the original variable xn would eventually satisfythe termination
ondition of the rule as well. If the termination
onditionimplied an upper bound for x, then we would, analogously,
onstru
t anapproximation that is a lower bound on xn.(ii) The a
tivation
ondition x > 100 implies that x is positive. This, in turn,implies that the expression 0:8xn�1 is an upper bound on the expression0:8xn�1 � 0:15xn�2.We therefore use the equation xn = 0:8xn�1 to approximate (from above) theoriginal equation. The approximating equation
an now be su

essfully mat
hedagainst the template shown above.3.4 Handling Non-Numeri
 AttributesWhile the dis
ussion thus far has fo
used on numeri
al attributes, the approa
hdes
ribed
an also be used to handle rules that manipulate non-numeri
al at-tributes. Our approa
h will be to formulate and reason about di�eren
e equationsinvolving aggregate values su
h as the number of tuples in a relation.In the absen
e of any additional information, we
an, at the very least, usethe dummy relation R Count, for handling the aggregation operation Count ona relation R (see Se
tion 2), to monitor the number of tuples in R: the insertionof a tuple into R
auses this value to in
rease by 1, the deletion of a tuple
ausesit to de
rease by 1, and updates leave it un
hanged. As an example, this
an beused to infer termination of a
y
le along whi
h two tuples are deleted from arelation and one tuple inserted: we would obtain a di�eren
e equation statingthat there is a net redu
tion of 1 tuple in the size of the relation ea
h time aroundthe
y
le, and use this to determine that the deletions must eventually stop. Thisapproa
h
an be improved further using additional semanti
 information aboutthe database, e.g., from integrity
onstraints.4 Stati
 Termination AnalysisThe approa
h des
ribed in the previous se
tion allows us to obtain an (upperbound) solution to a di�eren
e equation des
ribing the e�e
ts of a
y
le in thetriggering graph. Ultimately, however, we are interested not so mu
h in thesolutions to these equations, but rather in determining whether or not the rulea
tivations eventually terminate. Suppose that the a
tivation
ondition for therule under
onsideration is C(x). We use the
onstraint solver determine aninterval within whi
h all of the values of n for whi
h C(xn) is true, i.e., forwhi
h the rule will be a
tivated, must lie; termination
an then be inferred byexamining this interval. This is done as follows:1. We add
onstraints expressing upper and lower bounds on the value of x0,denoted by MAXVAL and MINVAL, obtained from domain information for thedatabase s
hema as well as any appli
able integrity
onstraints; if there areno appli
able
onstraints, these
an simply be the largest and smallest nu-meri
al values representable on the system. Moreover, if C(x0) is false the
y
le of a
tive rules will not be initially triggered (see Se
tion 2.1), so wemay assume that C(x0) holds: this provides additional
onstraints on the

10 Draft | February 15, 2000values of x0. Let the
onjun
tion of these
onstraints on the possible valuesof x0 be denoted by Bounds(x0).2. Suppose the di�eren
e equation library asso
iates, with the equation tem-plate we have mat
hed, the solution xn = E(n; x0), where E(� � �) is someexpression involving n and x0. We then solve the following
onstraint for n:(9x0; xn; n)[Bounds(x0) ^ xn = E(n; x0) ^ n � 0 ^ C(xn)℄: (1)If the a
tivation
y
le is non-terminating then the
onstraint (1) will be true forall n � 0. The
onstraint solver will return an interval I � [0;1℄ (or, if metalevelsolvers are used [14℄, a union I of intervals) and soundness of the solver impliesthat all n whi
h satisfy this
onstraint must lie in I . If I is a proper subset of[0;1℄ whi
h omits some positive integer m, then termination (in at most msteps) has been proved. If, on the other hand, I = [0;1℄, then nothing has beenproved, and rule a
tivation may indeed be nonterminating.Returning to the rule in Example 1, the di�eren
e equation we obtain isxn = 0:9xn�1. For the rule under
onsideration, we have C(x) � x > 100.Suppose that in the system under
onsideration, MAXVAL = 10100, whi
h meansBounds(x0) � `x0 > 100 ^ x0 � 10100'. We therefore solve the
onstraintx0 > 100 ^ x0 � 10100 ^ xn = 0:9n � x0 ^ n � 0 ^ xn > 100.In this
ase, the
onstraint solver yields the solution n < 2142.3Noti
e that the
onstraint solver gives mu
h more information than simplywhether or not the
y
le will terminate: it tells us that termination will o

urafter at most 2142 iterations of the
y
le. This may seem high, but it is a resultof the very large bound on the initial value x0: it
orresponds to starting outwith an average salary of 10100. If tighter bounds are available on the value ofx0, then the bound on the maximum number of iterations of the
y
le
an be
orrespondingly tightened. For example, suppose we know, from the integrity
onstraints on the database, that the maximum (and hen
e the average) salary
annot ex
eed 100,000: the bound we get in this
ase is n < 66. Informationabout the maximum number of iterations of a
y
le
an be a useful designand/or debugging tool for the database designer, e.g., for dete
ting inadvertantlyomitted integrity
onstraints. It
an also be useful, as dis
ussed at the end ofthe next se
tion, in appli
ation areas su
h as soft real-time systems, where wemay be interested not just in whether a rule a
tivation terminates, but also themaximum number of iterations it may exe
ute.Re
all that a
y
le in a dire
ted graph is simple if no vertex in the
y
le isalso part of a di�erent
y
le. The following theorem gives the soundness of ourtermination analysis:Theorem 1. The pro
edure des
ribed for termination analysis is sound providedthat all
y
les in the triggering graph are simple. In other words, if the analysisinfers that a
y
le terminates, then it in fa
t terminates (equivalently, any
y
lethat may not terminate is inferred to be non-terminating).3 A
tually, the solution it returns is the interval [0,2141.725842024721714551560581℄.In our
urrent implementation the exe
ution time for this is about 10 ms.

Draft | February 15, 2000 11
cycle 1 cycle 2Fig. 2. An example of a non-simple
y
leThe reason for the quali�
ation that
y
les should be simple is shown in Figure 2.The vertex in the
enter is part of two di�erent
y
les, so it is possible to have anexe
ution where we go around
y
le 1 some number of times, then around
y
le2 some number of times, then ba
k around
y
le 1, and so on. It may happenthat ea
h of the two
y
les shown,
onsidered on its own,
an be shown to beterminating, but the two taken together do not terminate: this
an happen, forexample, if
y
le 1 inserts some tuples into a relation until a maximum
ount isrea
hed, while
y
le 2 deletes tuples from that relation until a minimum
ountis rea
hed. We believe that our results
an be extended to non-simple
y
lesprovided that the
y
les don't \interfere" with ea
h other, in the sense that oneof them in
reases a value that is de
reased by the other. We are
urrently lookinginto how our ideas may be extended to deal with arbitrary
y
les.Finally, the dis
ussion of the way in whi
h the solution to a di�eren
e equa-tion is used for termination analysis
an be used to guide the
onstru
tion ofthe di�eren
e equation library. In parti
ular, it makes no sense to have a verypre
ise solution to a parti
ular equation template if the
onstraint system is notpowerful enough to handle that solution. Thus, knowing the
apabilities of the
onstraint system, we may
hoose to asso
iate \approximate solutions"|i.e.,upper and lower bounds, intended to be used as dis
ussed at the end of Se
tion3.3|that we know
an be handled by by the
onstraint system, if the exa
tsolution
annot be handled by it.5 Dynami
 Termination AnalysisThere may be situations where the approa
h des
ribed in the previous se
tiondoes not work, i.e., we are unable to prove, stati
ally, that a
y
li
 rule a
tiva-tion will ne
essarily terminate. This may happen either be
ause the
y
le is, infa
t, potentially non-terminating, or be
ause the
onstraint system is not pow-erful enough to solve the
onstraint (1) suÆ
iently pre
isely. Conventional stati
termination analyses would then reje
t the rule set for not being provably termi-nating. An alternative, however, would be to use dynami
 termination analysis[6℄, where we insert
ode into the appropriate a
tive rules to determine, whenthe rule is a
tivated, whether that parti
ular a
tivation of the rules
an be guar-anteed to terminate. The latter approa
h gives us greater
exibility in handlingrules, by allowing us to work with rules that may not be provably terminatingvia stati
 termination analyses, but nevertheless guarantee that at runtime therewill not be any nonterminating exe
utions.

12 Draft | February 15, 2000The idea
an be illustrated by the following variation to Example 1 mentionedat the end of Se
tion 1:if (Sele
t Avg(Sal) from Emp) > 100then update Empset Sal = 0.9*Sal + BonusThis rule will terminate if Bonus < 10; for values of Bonus � 10 the rule isnonterminating. Thus, if the value of Bonus is not known stati
ally (e.g., if itis
omputed dynami
ally based on other values in the database), it will not bepossible to prove the termination of this rule stati
ally. Instead of reje
ting therule, however, we
an introdu
e
ode into it to
arry out dynami
 terminationanalysis: the result would be to allow rule a
tivation for situations where thevalue B of Bonus guarantees termination and reje
ting it for values that do not.Suppose that at runtime, this rule is a
tivated with x0 = 10; 000 and Bonus = 9.Then, given the stati
 solution (see Se
tion 3.3) xn = (x0 � B0:1) � 0:9n + B0:1 forthe di�eren
e equation for the
orresponding
y
le, and the value B = 9, thisruntime
he
k would use the
onstraint solve to solve for n in the
onstraintxn = (x0 � B0:1) � 0:9n + B0:1 ^ x0 = 10000^ B = 9 ^ n � 0 ^ xn > 100:In this
ase, the CLP(F)
onstraint solver infers the bound n < 66, whi
h meansthat termination (in at most 66 steps)
an be guaranteed. In this
ase, there-fore, the dynami
 termination test su

eeds and the rule exe
ution is allowed topro
eed. On the other hand, if at runtime we have Bonus = 10, the
onstraintsolver infers the bound n 2 [0;+1℄,
orre
tly indi
ating that the rule a
tivationmay not terminate.An interesting aspe
t of this kind of dynami
 termination analysis is that itallows runtime de
isions based not just on whether or not a
y
le terminates,but, if we wish, the maximum number of iterations that may be exe
uted. This
an be used for
ontrolling rule a
tivation in a
tive databases within soft real-time systems. For example, suppose that based on runtime monitoring of rulea
tivations, we de
ide that a parti
ular
y
le
an be allowed to iterate at most50 times if the timing
onstraints are to be satis�ed. Using our approa
h, we
antest for this before the rule is a
tivated: this allows more
exible systems (
y
li
a
tivations are permitted) but at the same time improves resour
e utilization(\bad" rule a
tivations are reje
ted ahead of time, instead of having to be abortedif they are found to be running too long).The overhead of dynami
 termination analysis for
y
les
an be redu
edsigni�
antly by observing that, on
e we have veri�ed that a sequen
e of
y
li
rule a
tivations will eventually terminate, it is not ne
essary to test it again andagain as we go around the
y
le during that sequen
e of rule a
tivations. Thedynami
 termination
he
k
an therefore be moved out of the
y
le, in a mannersimilar to the optimization of invariant
ode motion out of loops
ommonly
arried out in
ompilers [1℄.6 Related WorkThere is a signi�
ant body of literature on termination analysis for a
tivedatabase rules. Among the earliest of these is the work of Aiken et al. [2℄, who

Draft | February 15, 2000 13proposed using triggering graphs to reason about termination; this approa
hhas subsequently been re�ned and improved by various authors [4, 5, 7, 18, 22,23℄. The general idea here is to use a
y
li
ity of the triggering graph to in-fer termination; the relative pre
ision of di�erent analyses depend on their useof di�erent te
hniques to remove edges from the triggering graph prior to thea
y
li
ity test.Weik and Heuer des
ribe an approa
h to identify terminating
y
les in trig-gering graphs [23℄. They
onsider latti
e-stru
tured domains: a
y
le is theninferred to be terminating if it represents an in
reasing operation in the latti
e(i.e., values get mapped to \higher" values a

ording to the latti
e ordering) witha non-de
reasing step size, and there is an upper bound on the resulting values(and dually with de
reasing operations). While the goals of this work are similarto ours, the details are very di�erent. Their approa
h is unable to infer termi-nation for rules su
h as that in Example 1, sin
e the step size of the operationin this example does not satisfy their
riterion for being non-in
reasing.Bailey et al. use abstra
t interpretation for termination analysis of a
tiverules [3℄. The idea is to reason about sequen
es of database states using an \ap-proximate semanti
s," and use �xpoint
omputation (over a latti
e) to handle
y
les. The algorithm des
ribed by these authors does not have any knowledgeof arithmeti
 operations, and so
annot infer termination of rules su
h as that inExample 1. A more fundamental problem is the issue of termination of the ter-mination analysis itself. The usual approa
h taken in the abstra
t interpretationliterature for proving termination of analyses is to assume that the abstra
t do-main is Noetherian, i.e., does not
ontain any in�nite as
ending
hains; su
h anassumption, while not expli
itly stated, seems ne
essary for the work of Baileyet al. as well. This requirement restri
ts the stru
ture of the abstra
t domainsthey are able to use. The restri
tion seems espe
ially problemati
 for situationssu
h as those
onsidered here, where we have numeri
 domains su
h as the inte-gers and reals, and where it may not be a priori obvious whi
h subsets of thesedomains may be relevant for a parti
ular rule set. This problem does not arisewith our approa
h be
ause we do not attempt to
onstru
t �xpoints iteratively.For this reason, we believe that the approa
h des
ribed in this paper is morepre
ise than that of Bailey et al..Baralis et al. dis
uss the problem of dynami
 termination analysis [6℄. Theirapproa
h is based on the idea of monitoring rule a
tivations at runtime to dete
tsituations where a database state is repeated during exe
ution, thereby indi
at-ing nontermination. This is a suÆ
ient
ondition for nontermination in general,and is ne
essary and suÆ
ient for \fun
tion-free" rules, whi
h do not introdu
eany new values into the database. The runtime monitoring of database states
an be quite expensive, and Baralis et al. propose a number of optimizations totheir basi
 s
heme to redu
e this
ost. Their approa
h di�ers from ours in twoimportant ways. First, our approa
h does not involve keeping tra
k of (repre-sentations or en
odings of) previously en
ountered database states, and so
anbe made more eÆ
ient. Se
ond,
y
li
 a
tivations involving real numbers, as il-lustrated by the examples
onsidered in this paper, may introdu
e new valuesinto the database (e.g., the series of values 0.9, 0:92, 0:93, . . .), and so are not

14 Draft | February 15, 2000fun
tion-free; for su
h rules, the te
hnique of Baralis et al. give a suÆ
ient
on-dition for nontermination but not a ne
essary one. This means that, at least inprin
iple, there may be nonterminating exe
utions that will not be dete
ted asnonterminating by their analysis; however, su
h exe
utions will be dete
ted asnonterminating by the approa
h des
ribed in this paper.The table-driven approa
h des
ribed here for approximate solution of di�er-en
e equations was developed by us in the
ontext of optimized exe
ution ofparallel logi
 programs [10℄. We have subsequently used it for query size analysisfor re
ursive rules in dedu
tive databases [11℄ and for estimating the
omputa-tional
ost of re
ursive logi
 programs [12℄. Caslog, a system for
ost analysisof logi
 programs that is based on this work, is available via anonymous FTPfrom ftp.
s.arizona.edu/
aslog, and is part of the CIAO-Prolog distribu-tion available at www.
lip.dia.fi.upm.es. Our implementation of the CLP(F)
onstraint system is freely available at www.
s.brandeis.edu/~tim/
lip.7 Con
lusionsMost existing approa
hes to termination analysis of a
tive database rules relyon verifying that the triggering graph for those rules is a
y
li
. Be
ause of this,they are unable to handle rules whose triggering graphs are inherently
y
li
.Su
h rules
an, nevertheless, be useful be
ause they allow us to express, in astraightforward and natural way, situations that involve the repeated appli
ationof a set of a
tive rules until some desired state is rea
hed. This paper des
ribesa
onstraint-based approa
h that
an be used for termination analysis in su
h
ases. The basi
 idea is to use a notion of annotated triggering graphs to
apturethe e�e
t of going around a
y
le in the triggering graph on
e, use this to estimatewhat happens after n exe
utions of the
y
le, and verify from this that the
y
li
rule a
tivation will eventually terminate. The idea
an be readily generalizedto allow dynami
 termination testing, thereby allowing the analysis to
opewith both proof systems that are not suÆ
iently powerful, and with rules thatterminate sometimes but not ne
essarily always.A
knowledgementsWe are grateful to Elena Baralis for pointers to related work.Referen
es1. A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Prin
iples, Te
hniques andTools, Addison-Wesley, 1986.2. A. Aiken, J. M. Hellerstein, and J. Widom, \Stati
 Analysis Te
hniques for Pre-di
ting the Behavior of A
tive Database Rules", ACM Transa
tions on DatabaseSystems, vol. 20 no. 1, pp. 63{84, Mar
h 1995.3. J. Bailey, L. Crnogora
, K. Ramamohanarao, and H. S�ndergaard, \Abstra
t In-terpretation of A
tive Rules and Its Use in Termination Analysis", Pro
. 6th. In-ternational Conferen
e on Database Theory, 1997.4. E. Baralis, S. Ceri, and J. Widom, \Better Termination Analysis for A
tiveDatabases", Pro
. First International Workshop on Rules in Database Systems,Aug. 1993, pp. 163{179.

Draft | February 15, 2000 155. E. Baralis, S. Ceri, and S. Parabos
hi, \Improved Rule Analysis by means of Trig-gering and A
tivation Graphs", Pro
. 2nd. International Workshop on Rules inDatabase Systems (RIDS), Sept. 1995.6. E. Baralis, S. Ceri and S. Parabos
hi, \Compile-Time and Runtime Analysis ofA
tive Behaviors", IEEE Transa
tions on Knowledge and Data Engineering vol. 10no. 3, May/June 1998, pp. 353{370.7. E. Baralis and J. Widom, \Better Stati
 Rule Analysis for A
tive Database Sys-tems", ACM Transa
tions on Database Systems, 2000 (to appear).8. S. Ceri and J. Widom, \Deriving Produ
tion Rules for Constraint Maintenan
e",Pro
. 16th. VLDB Conferen
e, Aug. 1990, pp. 566{577.9. J. Cohen and J. Kat
o�, \Symboli
 Solution of Finite-Di�eren
e Equations," ACMTransa
tions on Mathemati
al Software 3, 3 (Sept. 1977), pp. 261{271.10. S. K. Debray, N. Lin and M. Hermenegildo, \Task Granularity Analysis in Logi
Programs," Pro
. ACM SIGPLAN'90 Conferen
e on Programming Language De-sign and Implementation, June 1990, pp. 174{188.11. S. K. Debray and N. Lin, \Stati
 Estimation of Query Sizes in Horn Programs,"Pro
. Third International Conferen
e on Database Theory, Paris, Fran
e, De
ember1990, pp. 514{528.12. S. K. Debray and N.-W. Lin, \Cost Analysis of Logi
 Programs", ACM Trans-a
tions on Programming Languages and Systems, vol. 15 no. 5, Nov. 1993, pp.826{875.13. T. J. Hi
key, \Analyti
 Constraint Solving and Interval Arithmeti
", Pro
. 27th.ACM Symposium on Prin
iples of Programming Languages, Jan. 2000, pp. 338{351.14. T. J. Hi
key, \CLIP: A CLP(Intervals) Diale
t for Metaleve Constraint Solving",Pro
. PADL'00, LNCS vol 173, Jan. 2000, pp. 200-214.15. J. Ivie, \Some MACSYMA Programs for Solving Re
urren
e Relations," ACMTransa
tions on Mathemati
al Software 4, 1 (Mar
h 1978), pp. 24{33.16. J. Ja�ar, S. Mi
haylov, P. Stu
key, and R. Yap, \The CLP(R) Language andSystem", ACM Transa
tions on Programming Languages and Systems vol. 14 no.3, July 1992, pp. 339{395.17. J. Ja�ar and M. J. Maher, \Constraint Logi
 Programming: A Survey", J. Logi
Programming vol. 19.20, May/July 1994, pp. 503{581.18. A. Karadim
e and S. Urban, \Re�ned Triggering Graphs: A Logi
 Based Approa
hto Termination Analysis in an A
tive Obje
t-Oriented Database", Pro
. 12th. In-ternational Conferen
e on Data Engineering, 1996.19. H. Levy and F. Lessman, Finite Di�eren
e Equations, Sir Isaa
 Pitman & Sons,London, 1959.20. M. Petkovsek, Finding Closed-Form Solutions of Di�eren
e Equations by Symboli
Methods, PhD Thesis, Carnegie Mellon University, 1991.21. Swedish Institute of Computer S
ien
e, SICStus Prolog User Manual, Release 3.8,O
t. 1999.22. A. Vaduva, S. Gatziu, and K. R. Dittri
h, \Investigating Termination in A
-tive Database Systems with Expressive Rule Languages", Pro
. 3rd InternationalWorkshop on Rules in Database Systems, June 1997.23. T. Weik and A. Heuer, \An Algorithm for the Analysis of Termination of LargeTrigger Sets in an OODBMS", Pro
. International Workshop on A
tive and Real-Time Database Systems, June 1995.24. J. Widom, \The Starburst A
tive Database Rule System", IEEE Transa
tions onKnowledge and Data Engineering, 8(4):583-595, August 1996.25. C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subramanian, and R.Zi
ari, Advan
ed Database Systems, Morgan Kaufman, 1997.

