
Constraint-Based Termination Analysis forCyli Ative Database Rules?Saumya Debray and Timothy HikeyAbstrat. There are many situations where yli rule ativations|where some set of ative database rules may be ativated repeatedlyuntil the database satis�es some ondition|arise naturally. However,most existing approahes to termination analysis of ative rules, whihtypially rely on heking that the triggering graph for the rules is ayli,annot infer termination for suh rules. We present a onstraint-basedapproah to termination analysis that is able to handle suh yli ruleativations for a wide lass of rules.1 IntrodutionAtive databases, whih are onventional databases extended with a mehanismto reate and exeute prodution rules that manipulate the state of the database,have attrated onsiderable interest in reent years. Suh rules provide a generalmehanism for a number of database features suh as integrity onstraint hek-ing and view maintenane, and simplify building and reasoning about databaseappliations.In general, rule ativations in ative databases an \asade," i.e., the exe-ution of an ative rule an ause a hange in the database state that ausesanother rule to be exeuted; the resulting hange an then ause the ativationof a third rule; and so on. Ensuring that suh asaded rule ativations do notgo on forever therefore beomes of fundamental importane. Analyses that ex-amine a set of ative rules to determine whether rule ativations will terminateare alled termination analyses.Almost all of the work to date on termination analysis for ative databases(see Setion 6) relies on heking that a direted graph alled the \triggeringgraph" for a set of rules is ayli. The essential intuition this expresses is thata rule should not be able to ause itself to be (re-)ativated, either diretly orindiretly. The di�erenes between various proposals for suh analyses lie in thesets of edges they are able to eliminate from the triggering graph before thisayliity hek. In most of these proposals, the underlying sets of rules beingonsidered satisfy the property of not being self-ativating in this manner, andthe analyses themselves fous on identifying and eliminating edges that ouldintrodue spurious yles into the triggering graph.? This work was supported in part by the National Siene Foundation under grantsCCR-9711166, CDA-9500991, and ASC-9720738. Authors' addresses: S. Debray, De-partment of Computer Siene, The University of Arizona, Tuson, AZ 85721, USA,E-mail: debray�s.arizona.edu; T. Hikey, Mihtom Shool of Computer Siene,Brandeis University, Waltham, MA 02454, USA, E-mail: tim�s.brandeis.edu.

2 Draft | February 15, 2000There are, however, many situations where it is natural to have a rule thatan ativate itself, but where suh self-ativations are guaranteed to eventuallyterminate. As an example, a ompany that su�ers a revenue shortfall may im-pose budget uts in all of its departments. It would make sense, in suh a ase,to impose larger uts on departments with many employees, sine they havelarger budgets to work with. Thus, suppose that the budget redution for eahdepartment is set at 1% of its total salary expenses, and expressed as an ativerule that redues the budget of eah department by the appropriate amount. Asingle round of redutions may not suÆe to meet the revenue shortfall, so therule may be ativated again. It is not hard to see, however, that eventually thebudget will be redued enough that the rule ativation will stop.Throughout this paper, we use the following example, taken from Chapter 2of a text by Zaniolo et. al. [25℄.Example 1. The following rule, de�ned by a budget-onsious manager, imposesa salary redution of 10% on every employee in an organization whenever theaverage salary exeeds a threshold (in this ase 100):rule SalaryControl on Empwhen inserted, deleted, updated(Sal)if (Selet Avg(Sal) from Emp) > 100then update Empset Sal = 0.9*SalNotie that this rule an be ativated if an employee is hired with a high initialsalary; if the initial salary is high enough, one round of salary redutions maynot suÆe to satisfy the termination ondition, so the rule may be ativatedagain. Eventually, however, the average salary must fall below 100, ausing therule ativations to terminate.While this rule seems \obviously terminating," reasoning about suh rules anbe quite subtle. For example, onsider a rule that is idential to that shownabove, the only di�erene being that the ativation ondition isif (Selet Avg(Sal) from Emp) > 0 then ...This rule is struturally very similar to that of Example 1, with a dereasingvalue for the average salary and a lower bound on how far it an derease. It is,nevertheless, non-terminating. As another example, onsider a rule that is iden-tial to that of Example 1, with the only di�erene being that the ation is toset eah employee's salary to 0.9*Sal + Bonus, where Bonus is some onstant.In this ase, it turns out that the rule is terminating if Bonus < 10, and nonter-minating if Bonus � 10. What these examples illustrate is that any terminationanalysis that aims to handle suh yli rule ativations must be able to analyzethe e�ets of yli rule exeution with a fairly high degree of preision.2 Preliminaries2.1 Ative RulesWe onsider Event-Condition-Ation (ECA) rules: a rule is triggered when er-tain events spei�ed in the rule our, and provided that their (optional) on-ditions hold; when a rule so triggered is exeuted, the ations spei�ed in the

Draft | February 15, 2000 3rule are arried out. For onreteness we use the syntax and semantis of theStarburst rule system [24℄: a rule is assumed to have the struturerule RuleName on Relationwhen EventListif C then Ationwhere EventList spei�es a set of events that ause the rule to be triggered. Theexeution of a triggered rule involves the evaluation of the ondition C, and ifthis evaluates to true, arrying out the ations spei�ed in the list Ation. Theondition C, whih determines when the rule is ativated, is referred to as theativation ondition of the rule; we sometimes also use the term terminationondition for the rule to refer to the ondition :C.Sine the handling of aggregation operations is more or less orthogonal tothe main fous of this paper, we make the simplifying assumption that anyaggregation operations in ative rules are applied to the entire relation, i.e.,there is no aggregation over partitions of the relation omputed using onstrutssuh as the `group by' lause of SQL. The basi idea is that if a rule omputesan aggregate operation f on an attribute A of a relation R, we handle this usinga dummy relation R A f ontaining a single tuple that has a single attributewhose value is that of the operation f applied to attribute A of R. Changes tothe relation R through insert, delete, or update operations|inluding those inative rules|are onsidered to also modify suh dummy relations appropriately,albeit in a onservative manner: that is, unless the new value of the aggregatevalue an be predited, its value is onsidered to be unknown and representedin the dummy relation using a null value.2.2 Constraint SystemsFor the purposes of this paper, a onstraint system is a system for maintainingand manipulating onstraints over a onstraint domain D, whih is essentially a(�rst-order) struture, i.e., a universeD together with an appropriate assignmentof funtions and relations over D to the symbols of the onstraint system. Weassume that the onstraint systems under onsideration have the funtionalityenountered in typial onstraint logi programming systems suh as CLP(R)[16℄ and SICStus Prolog [21℄ (see also the survey by Ja�ar and Maher [17℄). Moreformally, onstraints are �rst-order formulae over a signature �, suh that: thebinary prediate symbol `=' is in �; there are onstraints that are identiallytrue and identially false; and the lass of onstraints is losed under variablerenaming, onjuntion, and existential quanti�ation. Operations on onstraintssupported by the onstraint system are assumed to inlude [17℄:{ A test for onsisteny or satis�ability: D j= (9).{ A test for impliation (i.e., entailment) of one onstraint by another:D j= 0) 1.{ The projetion of a onstraint 0 onto variables �x to obtain a onstraint 1suh that D j= 1 , (9�y)0, where �y = vars(0)� �x is the set of variables in0 exept for those mentioned in �x.

4 Draft | February 15, 2000In partiular, we fous on the CLP(F) onstraint system [13℄, whih is powerfulenough for our needs and whose implementation is freely available. This is aonstraint system over the reals that supports, in addition to the usual arith-meti and omparison operators, the funtions abs(x), exp(x), log(x), xn, xy,as well as the trigonometri funtions sin(x), os(x), tan(x) and their inverses.Our implementation of this system uses interval onstraints, and handles thesefuntions using a reimplementation of the standard math library based on in-terval arithmeti. A fundamentally important aspet of the system is that theonstraint system is provably sound [13, 14℄. A detailed disussion of this sys-tem is omitted due to spae onstraints: for our purposes it suÆes to notethat the onstraint solver is queried with a quanti�er-free �rst-order onjun-tion Q(x1; : : : ; xn), interpreted as the question \do there exist any x1; : : : ; xnsuh that Q(x1; : : : ; xn)?" The solver responds either with a set of real intervalsI1; : : : ; In, interpreted as \if there exist any x1; : : : ; xn suh that Q(x1; : : : ; xn),then for all suh values it must be the ase that x1 2 I1 and . . . and xn 2 In,"or indiates that there are no values for the variables xi that satisfy the formulaQ(� � �). In other words, the answer returned by the solver ontains the projetion,on eah of the variables x1; : : : ; xn, of the onvex hull of the region ontainingall solutions to the question.3 Annotated Triggering GraphsMany of the termination analyses proposed in the literature use the notion oftriggering graphs. A triggering graph is a direted graph where eah vertexrepresents a rule and where there is an edge from vertex ri to vertex rj if theation of rule ri an ause rule rj to beome triggered [8℄. We generalize thisnotion to that of \annotated triggering graphs," whih additionally inorporateinformation, at eah vertex, about the hange(s) resulting from the ativation ofthe orresponding rule. To this end, we �rst de�ne how suh hanges might berepresented.De�nition 1. [Bounds funtion℄ A bounds funtion over a shema S maps eahattribute of S to a pair hlo; hii where eah of lo and hi is either ? or a linearexpressions over (numerial) attributes in S.If a bounds funtion maps an attribute to hlo; hii, this indiates that lo is a lowerbound on the values of that attribute while hi is an upper bound, with a valueof ? indiating a omplete lak of knowledge (i.e., indiating that we annot sayanything about the values for the orresponding attribute), and non-? valuesindiating de�nite knowledge. Note that these bounds are not restrited to benumbers, but may in general be expressions that depend on the values for otherattributes.De�nition 2. [Annotated Triggering Graph℄ Given a set of rules R with shemaS, an annotated triggering graph is a pair (G;F) where G = (V;E) is a on-ventional triggering graph, and F maps eah vertex in V to a bounds funtionover S.Thus, at eah vertex of an annotated triggering graph, eah attribute is mappedto a pair of expressions that speify upper and lower bounds on the values of that

Draft | February 15, 2000 5attribute. As an example, the rule in Example 1 would assoiate, with the ver-tex orresponding to the rule, the bounds funtion [Sal 7! h0:9 � Sal ; 0:9 � Sali℄(attributes that are not expliitly mentioned are assumed to not have hanged,and are therefore mapped to themselves). This indiates that the result of theativation of the rule is to update eah tuple so that the value of its Sal attributeis 0:9� its old Sal value, while the other attribute values are left unhanged.3.1 Construting Annotated Triggering GraphsThis setion desribes a simple algorithm for onstruting annotated trigger-ing graphs. It is quite onservative in its treatment of bounds, and an almostertainly be improved to inrease its preision. Consider a rulerule RuleName on Rwhen ...if ...then update R0set x = '(y1; : : : ; yn) where CondThe �rst question we onsider is whether all of the tuples in R0 will be modi�ed.If the �nal where lause is absent, or Cond is identially true, then we know thatall tuples in R0 will have the value of attribute x set to '(y1; : : : ; yn). So in thisase the bounds funtion maps x to h'(y1; : : : ; yn); '(y1; : : : ; yn)i.Otherwise, if it is possible that only some of the tuples will be updated, weattempt to determine the relationship of the value of the expression '(y1; : : : ; yn)with that of x. Let C0 be a onjuntion of onstraints on the possible values forvarious attributes, obtained from domain information for the database shemaas well integrity onstraints on the database (C0 is a global onstraint and needbe omputed only one, at the beginning of the analysis). We then onstruta onstraint C � C0 ^ [z = '(y1; : : : ; yn) � x℄, where z is a new variable notappearing in C0, and examine whether or not ertain onstraints on z are entailedby C (see Setion 2.2 for our assumptions regarding entailment operations inonstraint systems). We onsider the following possibilities:{ C entails z � 0. This means that the value of x is non-dereasing as a result ofthe update. Sine it is possible that only some of the tuples will be updated,an upper bound on the x attribute value is given by '(y1; : : : ; yn), while alower bound is given by x. Thus, in this ase we have the bounds funtion[x 7! hx; '(y1; : : : ; yn)i℄.{ C entails z � 0. This means that the value of x is non-inreasing. Reasoningas in the previous ase, we get the bounds funtion [x 7! h'(y1; : : : ; yn); xi℄.{ If neither of these previous two ases holds, we onlude that nothing an besaid about the value of x after the update. The resulting bounds funtion is[x 7! h?;?i℄.3.2 Reasoning About Annotated Triggering GraphsOne we have onstruted an annotated triggering graph for a set of rules, weexamine any yles in this graph to determine the net e�et of going around theyle one. Intuitively, what we need to do is to somehow ompose the bounds

6 Draft | February 15, 2000
r
1

r2r
3

[]

y x-3, x+5[] y-x, y[]

x

z

y+2, 2y-zFig. 1. An example of a yle in an annotated triggering graphfuntions at eah of the verties in the yle. Before disussing the details ofhow this should be done, we onsider an example. Consider the yle onsistingof three verties, shown in Figure 1. Suppose we wish to determine an upperbound on the hange in the value of x at vertex r1 when we go around the yleone. Let the upper bound on x be denoted by xmax : after the exeution of r1,we use the upper bound on x, from the bounds funtion at this vertex, to obtainthe onstraint xmax = 2y � z. After the exeution of rule r2, the new value ofz has bounds y � x � z � y. Sine z appears with a negative oeÆient in theexpression 2y � z, we use the lower bound to obtain the onstraint z = y � x.Composition (i.e., onjuntion) of onstraints then yields xmax = 2y � z ^ z =y� x; projeting on xmax yields xmax = y+ x. Finally, at vertex r3, the boundson y are x � 3 � y � x + 5; this time, sine the oeÆient of y is positive inthe expression y + x, we use the upper bound x + 5. As before, we omposeonstraints to obtain xmax = y + x ^ y = x + 5; this is then projeted on xmaxto yield xmax = 2x+ 5. Thus, the hange in the value of x when we go aroundthis yle one is (at most) 2x+ 5.This example illustrates how we summarize the e�ets of a yle. To estimatean upper bound on the value of x at a vertex r after going around the yle (thease for lower bounds is analogous), we start with the onstraint xmax = E,where E gives the upper bound on x after r's exeution. We then work our wayaround the yle: at eah vertex we take the onjuntion of the urrent onstrainton xmax and onstraints on the variables ouring in it, obtained from the boundson these variables at that vertex given by the annotated triggering graph; theresulting onstraint is then projeted on xmax . During this proess, we use thelower bound for a variable if it ours negatively in the onstraint assoiatedwith xmax , and the upper bound if it ours positively.Given a onstraint C and a set of variables1 X = fx1; : : : ; xng, we use thenotation 9XC to denote the onstraint obtained by projeting away the vari-ables in X , i.e., 9x1x2 � � �xnC. Let vars(E) denote the variables appearing in anexpression E. Given an annotated triggering graph (G;F) with shema S anda vertex r in G, let F(r)(v) = hlo(r)v ; hi (r)v i for any variable v 2 S. We an thenformalize the proedure skethed above as follows.1 Sine our approah uses onstraints on attribute values, we treat attributes as thevariables in suh onstraints. In the remainder of the paper, therefore, we will usethe terms attribute and variable interhangeably.

Draft | February 15, 2000 7{ Proessing a single vertex r. Given a onstraint C � xmax = E, let C 0 bethe onstraintC 0 = ^v2vars(E)fv = e j e = � lo(r)v if v appears negatively in Ehi (r)v if v appears positively in E g:Sine bounds funtions map variables to linear expressions (De�nition 1),eah variable ours at most one in E. Thus, C 0 imposes a single (equality)onstraint on any suh variable, and therefore is satis�able.The result of propagating C through the vertex r is then given byProVertex(r; C) = 9vars(E)(C ^ C 0).{ Proessing a sequene of verties. The result of propagating a onstraint Cthrough a sequene of verties s is given by ProVertexSeq(s; C), where:ProVertexSeq("; C) = CProVertexSeq(rs0; C) = ProVertexSeq(s0;ProVertex(r; C)).Here, " denotes the empty sequene while rs0 denotes the sequene whose�rst element is r and the remaining sequene is s0.{ Proessing a yle. Given a yle r1r2 � � � rnr1, an upper bound on the hangein the value of a variable x on going around the yle one is given byProCyle(x; s) = ProVertexSeq(s; `xmax = x').where s = r1r2 � � � rn.The determination of a lower bound on the hange in the value of a variable isanalogous.Sine bounds funtions map variables to linear expressions (De�nition 1),the proedure desribed above for omputing ProCyle(x; s) for a yle s isessentially involves omposing a sequene of linear funtions, and therefore yieldsa linear expression of the form ax+E. The e�et on the value of x of going aroundthe yle n times an then be expressed as a di�erene equation xn = axn�1+Ewhere xi represents the value of x after i iterations around the yle.2 In general,the proedure desribed an yield a system of simultaneous linear di�ereneequations. However, it is always possible to redue a system of linear di�ereneequations to a single linear di�erene equation in one variable [19℄, so it suÆesto onsider the solution of a single linear di�erene equation in one variable.3.3 Approximate Solution of Di�erene EquationsHaving obtained a di�erene equation as disussed above, we onsider how it maybe solved. The automati solution of general di�erene equations is a diÆultproblem, but there is a wide lass of equations that an be solved automatially,using either harateristi equations or generating funtions [9, 15, 20℄. For the2 Again, note that this represents an upper bound on x, so stritly speaking we shouldwrite xn � axn�1+E. However, sine we are onerned with proving termination inthe worst ase, when this maximum is atually realized, we simply use the equality.

8 Draft | February 15, 2000purpose of analysis of ative database rules, however, we additionally require thatthe solution method used be eÆient, even if this means sari�ing preisionin some ases. For this reason, we use a table-driven method for omputingan upper bound to the atual solution. Our approah is to use a \library" ofdi�erene equation templates together with a symboli solution for eah suhtemplate [12, 10, 11℄. The idea is to use pattern mathing to identify a templatethat mathes the equation obtained from the analysis desribed in Setion 3.2.One a math is obtained against a template, the solution to the equation anthen be obtained by substituting into the symboli solution for that template. Ingeneral, the library of di�erene equation templates will ontain many di�erententries, and the pattern mathing proess will try to math a given equationagainst these templates in inreasing order of the \size" of their solutions. If theequation annot be mathed against any template in the library, we attempt touse simplifying approximations, as desribed below. If no math an be obtainedeven after any appliable simplifying approximations, we give up and return thevalue ?, indiating that we annot say anything about the solution.The idea an be illustrated by an example. Suppose that the di�erene equa-tion library has the template:xn = Axn�k +Btogether with the symboli solutionxn = (x0 + BA�1)An=k � BA�1 , where x0 is the initial value of x.Given an equation xn = 0:9xn�1, pattern mathing against this template su-eeds with A = 0:9, B = 0, k = 1; substituting these values into the symbolisolution yields the solution xn = 0:9nx0.If the di�erene equation at hand annot be mathed against any templatein the library, we attempt to approximate it in a way that is onservative, i.e.,termination inferred from the approximating equation (as disussed in the nextsetion) must imply termination of the original equation. Spae onstraints pre-lude a detailed disussion of suh approximations: we outline the general ideasand illustrate them with an example. Suppose we have the di�erene equationxn = 0:8xn�1 � 0:15xn�2, and are trying to simplify it so as to math againstthe template shown above. To do this, we use the ativation ondition on x (seeSetion 2.1), obtained from the rule(s) involved in the yle, to determine (i)whether the values of x are bounded above or below; and (ii) whether the valuesof the xi are positive or negative. This is done using the entailment operationof the onstraint system, in a manner very similar to that disussed in Setion3.1. For example, suppose that for this partiular ase we have the ativationondition x > 100. Then, we have the following:(i) The termination ondition for the rule is x � 100, i.e., we have a lower boundon the value of x below whih the rule will not be ativated. This implies thatwe an use an upper bound on the atual di�erene equation for terminationanalysis. In other words, if we an onstrut a di�erene equation yn = f(� � �)suh that yn � xn for all n � 0, and an use this equation to determine thateventually the values of yn will satisfy the termination ondition for the rule,

Draft | February 15, 2000 9then we an onlude that the original variable xn would eventually satisfythe termination ondition of the rule as well. If the termination onditionimplied an upper bound for x, then we would, analogously, onstrut anapproximation that is a lower bound on xn.(ii) The ativation ondition x > 100 implies that x is positive. This, in turn,implies that the expression 0:8xn�1 is an upper bound on the expression0:8xn�1 � 0:15xn�2.We therefore use the equation xn = 0:8xn�1 to approximate (from above) theoriginal equation. The approximating equation an now be suessfully mathedagainst the template shown above.3.4 Handling Non-Numeri AttributesWhile the disussion thus far has foused on numerial attributes, the approahdesribed an also be used to handle rules that manipulate non-numerial at-tributes. Our approah will be to formulate and reason about di�erene equationsinvolving aggregate values suh as the number of tuples in a relation.In the absene of any additional information, we an, at the very least, usethe dummy relation R Count, for handling the aggregation operation Count ona relation R (see Setion 2), to monitor the number of tuples in R: the insertionof a tuple into R auses this value to inrease by 1, the deletion of a tuple ausesit to derease by 1, and updates leave it unhanged. As an example, this an beused to infer termination of a yle along whih two tuples are deleted from arelation and one tuple inserted: we would obtain a di�erene equation statingthat there is a net redution of 1 tuple in the size of the relation eah time aroundthe yle, and use this to determine that the deletions must eventually stop. Thisapproah an be improved further using additional semanti information aboutthe database, e.g., from integrity onstraints.4 Stati Termination AnalysisThe approah desribed in the previous setion allows us to obtain an (upperbound) solution to a di�erene equation desribing the e�ets of a yle in thetriggering graph. Ultimately, however, we are interested not so muh in thesolutions to these equations, but rather in determining whether or not the ruleativations eventually terminate. Suppose that the ativation ondition for therule under onsideration is C(x). We use the onstraint solver determine aninterval within whih all of the values of n for whih C(xn) is true, i.e., forwhih the rule will be ativated, must lie; termination an then be inferred byexamining this interval. This is done as follows:1. We add onstraints expressing upper and lower bounds on the value of x0,denoted by MAXVAL and MINVAL, obtained from domain information for thedatabase shema as well as any appliable integrity onstraints; if there areno appliable onstraints, these an simply be the largest and smallest nu-merial values representable on the system. Moreover, if C(x0) is false theyle of ative rules will not be initially triggered (see Setion 2.1), so wemay assume that C(x0) holds: this provides additional onstraints on the

10 Draft | February 15, 2000values of x0. Let the onjuntion of these onstraints on the possible valuesof x0 be denoted by Bounds(x0).2. Suppose the di�erene equation library assoiates, with the equation tem-plate we have mathed, the solution xn = E(n; x0), where E(� � �) is someexpression involving n and x0. We then solve the following onstraint for n:(9x0; xn; n)[Bounds(x0) ^ xn = E(n; x0) ^ n � 0 ^ C(xn)℄: (1)If the ativation yle is non-terminating then the onstraint (1) will be true forall n � 0. The onstraint solver will return an interval I � [0;1℄ (or, if metalevelsolvers are used [14℄, a union I of intervals) and soundness of the solver impliesthat all n whih satisfy this onstraint must lie in I . If I is a proper subset of[0;1℄ whih omits some positive integer m, then termination (in at most msteps) has been proved. If, on the other hand, I = [0;1℄, then nothing has beenproved, and rule ativation may indeed be nonterminating.Returning to the rule in Example 1, the di�erene equation we obtain isxn = 0:9xn�1. For the rule under onsideration, we have C(x) � x > 100.Suppose that in the system under onsideration, MAXVAL = 10100, whih meansBounds(x0) � `x0 > 100 ^ x0 � 10100'. We therefore solve the onstraintx0 > 100 ^ x0 � 10100 ^ xn = 0:9n � x0 ^ n � 0 ^ xn > 100.In this ase, the onstraint solver yields the solution n < 2142.3Notie that the onstraint solver gives muh more information than simplywhether or not the yle will terminate: it tells us that termination will ourafter at most 2142 iterations of the yle. This may seem high, but it is a resultof the very large bound on the initial value x0: it orresponds to starting outwith an average salary of 10100. If tighter bounds are available on the value ofx0, then the bound on the maximum number of iterations of the yle an beorrespondingly tightened. For example, suppose we know, from the integrityonstraints on the database, that the maximum (and hene the average) salaryannot exeed 100,000: the bound we get in this ase is n < 66. Informationabout the maximum number of iterations of a yle an be a useful designand/or debugging tool for the database designer, e.g., for deteting inadvertantlyomitted integrity onstraints. It an also be useful, as disussed at the end ofthe next setion, in appliation areas suh as soft real-time systems, where wemay be interested not just in whether a rule ativation terminates, but also themaximum number of iterations it may exeute.Reall that a yle in a direted graph is simple if no vertex in the yle isalso part of a di�erent yle. The following theorem gives the soundness of ourtermination analysis:Theorem 1. The proedure desribed for termination analysis is sound providedthat all yles in the triggering graph are simple. In other words, if the analysisinfers that a yle terminates, then it in fat terminates (equivalently, any ylethat may not terminate is inferred to be non-terminating).3 Atually, the solution it returns is the interval [0,2141.725842024721714551560581℄.In our urrent implementation the exeution time for this is about 10 ms.

Draft | February 15, 2000 11
cycle 1 cycle 2Fig. 2. An example of a non-simple yleThe reason for the quali�ation that yles should be simple is shown in Figure 2.The vertex in the enter is part of two di�erent yles, so it is possible to have anexeution where we go around yle 1 some number of times, then around yle2 some number of times, then bak around yle 1, and so on. It may happenthat eah of the two yles shown, onsidered on its own, an be shown to beterminating, but the two taken together do not terminate: this an happen, forexample, if yle 1 inserts some tuples into a relation until a maximum ount isreahed, while yle 2 deletes tuples from that relation until a minimum ountis reahed. We believe that our results an be extended to non-simple ylesprovided that the yles don't \interfere" with eah other, in the sense that oneof them inreases a value that is dereased by the other. We are urrently lookinginto how our ideas may be extended to deal with arbitrary yles.Finally, the disussion of the way in whih the solution to a di�erene equa-tion is used for termination analysis an be used to guide the onstrution ofthe di�erene equation library. In partiular, it makes no sense to have a verypreise solution to a partiular equation template if the onstraint system is notpowerful enough to handle that solution. Thus, knowing the apabilities of theonstraint system, we may hoose to assoiate \approximate solutions"|i.e.,upper and lower bounds, intended to be used as disussed at the end of Setion3.3|that we know an be handled by by the onstraint system, if the exatsolution annot be handled by it.5 Dynami Termination AnalysisThere may be situations where the approah desribed in the previous setiondoes not work, i.e., we are unable to prove, statially, that a yli rule ativa-tion will neessarily terminate. This may happen either beause the yle is, infat, potentially non-terminating, or beause the onstraint system is not pow-erful enough to solve the onstraint (1) suÆiently preisely. Conventional statitermination analyses would then rejet the rule set for not being provably termi-nating. An alternative, however, would be to use dynami termination analysis[6℄, where we insert ode into the appropriate ative rules to determine, whenthe rule is ativated, whether that partiular ativation of the rules an be guar-anteed to terminate. The latter approah gives us greater exibility in handlingrules, by allowing us to work with rules that may not be provably terminatingvia stati termination analyses, but nevertheless guarantee that at runtime therewill not be any nonterminating exeutions.

12 Draft | February 15, 2000The idea an be illustrated by the following variation to Example 1 mentionedat the end of Setion 1:if (Selet Avg(Sal) from Emp) > 100then update Empset Sal = 0.9*Sal + BonusThis rule will terminate if Bonus < 10; for values of Bonus � 10 the rule isnonterminating. Thus, if the value of Bonus is not known statially (e.g., if itis omputed dynamially based on other values in the database), it will not bepossible to prove the termination of this rule statially. Instead of rejeting therule, however, we an introdue ode into it to arry out dynami terminationanalysis: the result would be to allow rule ativation for situations where thevalue B of Bonus guarantees termination and rejeting it for values that do not.Suppose that at runtime, this rule is ativated with x0 = 10; 000 and Bonus = 9.Then, given the stati solution (see Setion 3.3) xn = (x0 � B0:1) � 0:9n + B0:1 forthe di�erene equation for the orresponding yle, and the value B = 9, thisruntime hek would use the onstraint solve to solve for n in the onstraintxn = (x0 � B0:1) � 0:9n + B0:1 ^ x0 = 10000^ B = 9 ^ n � 0 ^ xn > 100:In this ase, the CLP(F) onstraint solver infers the bound n < 66, whih meansthat termination (in at most 66 steps) an be guaranteed. In this ase, there-fore, the dynami termination test sueeds and the rule exeution is allowed toproeed. On the other hand, if at runtime we have Bonus = 10, the onstraintsolver infers the bound n 2 [0;+1℄, orretly indiating that the rule ativationmay not terminate.An interesting aspet of this kind of dynami termination analysis is that itallows runtime deisions based not just on whether or not a yle terminates,but, if we wish, the maximum number of iterations that may be exeuted. Thisan be used for ontrolling rule ativation in ative databases within soft real-time systems. For example, suppose that based on runtime monitoring of ruleativations, we deide that a partiular yle an be allowed to iterate at most50 times if the timing onstraints are to be satis�ed. Using our approah, we antest for this before the rule is ativated: this allows more exible systems (yliativations are permitted) but at the same time improves resoure utilization(\bad" rule ativations are rejeted ahead of time, instead of having to be abortedif they are found to be running too long).The overhead of dynami termination analysis for yles an be reduedsigni�antly by observing that, one we have veri�ed that a sequene of ylirule ativations will eventually terminate, it is not neessary to test it again andagain as we go around the yle during that sequene of rule ativations. Thedynami termination hek an therefore be moved out of the yle, in a mannersimilar to the optimization of invariant ode motion out of loops ommonlyarried out in ompilers [1℄.6 Related WorkThere is a signi�ant body of literature on termination analysis for ativedatabase rules. Among the earliest of these is the work of Aiken et al. [2℄, who

Draft | February 15, 2000 13proposed using triggering graphs to reason about termination; this approahhas subsequently been re�ned and improved by various authors [4, 5, 7, 18, 22,23℄. The general idea here is to use ayliity of the triggering graph to in-fer termination; the relative preision of di�erent analyses depend on their useof di�erent tehniques to remove edges from the triggering graph prior to theayliity test.Weik and Heuer desribe an approah to identify terminating yles in trig-gering graphs [23℄. They onsider lattie-strutured domains: a yle is theninferred to be terminating if it represents an inreasing operation in the lattie(i.e., values get mapped to \higher" values aording to the lattie ordering) witha non-dereasing step size, and there is an upper bound on the resulting values(and dually with dereasing operations). While the goals of this work are similarto ours, the details are very di�erent. Their approah is unable to infer termi-nation for rules suh as that in Example 1, sine the step size of the operationin this example does not satisfy their riterion for being non-inreasing.Bailey et al. use abstrat interpretation for termination analysis of ativerules [3℄. The idea is to reason about sequenes of database states using an \ap-proximate semantis," and use �xpoint omputation (over a lattie) to handleyles. The algorithm desribed by these authors does not have any knowledgeof arithmeti operations, and so annot infer termination of rules suh as that inExample 1. A more fundamental problem is the issue of termination of the ter-mination analysis itself. The usual approah taken in the abstrat interpretationliterature for proving termination of analyses is to assume that the abstrat do-main is Noetherian, i.e., does not ontain any in�nite asending hains; suh anassumption, while not expliitly stated, seems neessary for the work of Baileyet al. as well. This requirement restrits the struture of the abstrat domainsthey are able to use. The restrition seems espeially problemati for situationssuh as those onsidered here, where we have numeri domains suh as the inte-gers and reals, and where it may not be a priori obvious whih subsets of thesedomains may be relevant for a partiular rule set. This problem does not arisewith our approah beause we do not attempt to onstrut �xpoints iteratively.For this reason, we believe that the approah desribed in this paper is morepreise than that of Bailey et al..Baralis et al. disuss the problem of dynami termination analysis [6℄. Theirapproah is based on the idea of monitoring rule ativations at runtime to detetsituations where a database state is repeated during exeution, thereby indiat-ing nontermination. This is a suÆient ondition for nontermination in general,and is neessary and suÆient for \funtion-free" rules, whih do not introdueany new values into the database. The runtime monitoring of database statesan be quite expensive, and Baralis et al. propose a number of optimizations totheir basi sheme to redue this ost. Their approah di�ers from ours in twoimportant ways. First, our approah does not involve keeping trak of (repre-sentations or enodings of) previously enountered database states, and so anbe made more eÆient. Seond, yli ativations involving real numbers, as il-lustrated by the examples onsidered in this paper, may introdue new valuesinto the database (e.g., the series of values 0.9, 0:92, 0:93, . . .), and so are not

14 Draft | February 15, 2000funtion-free; for suh rules, the tehnique of Baralis et al. give a suÆient on-dition for nontermination but not a neessary one. This means that, at least inpriniple, there may be nonterminating exeutions that will not be deteted asnonterminating by their analysis; however, suh exeutions will be deteted asnonterminating by the approah desribed in this paper.The table-driven approah desribed here for approximate solution of di�er-ene equations was developed by us in the ontext of optimized exeution ofparallel logi programs [10℄. We have subsequently used it for query size analysisfor reursive rules in dedutive databases [11℄ and for estimating the omputa-tional ost of reursive logi programs [12℄. Caslog, a system for ost analysisof logi programs that is based on this work, is available via anonymous FTPfrom ftp.s.arizona.edu/aslog, and is part of the CIAO-Prolog distribu-tion available at www.lip.dia.fi.upm.es. Our implementation of the CLP(F)onstraint system is freely available at www.s.brandeis.edu/~tim/lip.7 ConlusionsMost existing approahes to termination analysis of ative database rules relyon verifying that the triggering graph for those rules is ayli. Beause of this,they are unable to handle rules whose triggering graphs are inherently yli.Suh rules an, nevertheless, be useful beause they allow us to express, in astraightforward and natural way, situations that involve the repeated appliationof a set of ative rules until some desired state is reahed. This paper desribesa onstraint-based approah that an be used for termination analysis in suhases. The basi idea is to use a notion of annotated triggering graphs to apturethe e�et of going around a yle in the triggering graph one, use this to estimatewhat happens after n exeutions of the yle, and verify from this that the ylirule ativation will eventually terminate. The idea an be readily generalizedto allow dynami termination testing, thereby allowing the analysis to opewith both proof systems that are not suÆiently powerful, and with rules thatterminate sometimes but not neessarily always.AknowledgementsWe are grateful to Elena Baralis for pointers to related work.Referenes1. A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Priniples, Tehniques andTools, Addison-Wesley, 1986.2. A. Aiken, J. M. Hellerstein, and J. Widom, \Stati Analysis Tehniques for Pre-diting the Behavior of Ative Database Rules", ACM Transations on DatabaseSystems, vol. 20 no. 1, pp. 63{84, Marh 1995.3. J. Bailey, L. Crnogora, K. Ramamohanarao, and H. S�ndergaard, \Abstrat In-terpretation of Ative Rules and Its Use in Termination Analysis", Pro. 6th. In-ternational Conferene on Database Theory, 1997.4. E. Baralis, S. Ceri, and J. Widom, \Better Termination Analysis for AtiveDatabases", Pro. First International Workshop on Rules in Database Systems,Aug. 1993, pp. 163{179.

Draft | February 15, 2000 155. E. Baralis, S. Ceri, and S. Paraboshi, \Improved Rule Analysis by means of Trig-gering and Ativation Graphs", Pro. 2nd. International Workshop on Rules inDatabase Systems (RIDS), Sept. 1995.6. E. Baralis, S. Ceri and S. Paraboshi, \Compile-Time and Runtime Analysis ofAtive Behaviors", IEEE Transations on Knowledge and Data Engineering vol. 10no. 3, May/June 1998, pp. 353{370.7. E. Baralis and J. Widom, \Better Stati Rule Analysis for Ative Database Sys-tems", ACM Transations on Database Systems, 2000 (to appear).8. S. Ceri and J. Widom, \Deriving Prodution Rules for Constraint Maintenane",Pro. 16th. VLDB Conferene, Aug. 1990, pp. 566{577.9. J. Cohen and J. Kato�, \Symboli Solution of Finite-Di�erene Equations," ACMTransations on Mathematial Software 3, 3 (Sept. 1977), pp. 261{271.10. S. K. Debray, N. Lin and M. Hermenegildo, \Task Granularity Analysis in LogiPrograms," Pro. ACM SIGPLAN'90 Conferene on Programming Language De-sign and Implementation, June 1990, pp. 174{188.11. S. K. Debray and N. Lin, \Stati Estimation of Query Sizes in Horn Programs,"Pro. Third International Conferene on Database Theory, Paris, Frane, Deember1990, pp. 514{528.12. S. K. Debray and N.-W. Lin, \Cost Analysis of Logi Programs", ACM Trans-ations on Programming Languages and Systems, vol. 15 no. 5, Nov. 1993, pp.826{875.13. T. J. Hikey, \Analyti Constraint Solving and Interval Arithmeti", Pro. 27th.ACM Symposium on Priniples of Programming Languages, Jan. 2000, pp. 338{351.14. T. J. Hikey, \CLIP: A CLP(Intervals) Dialet for Metaleve Constraint Solving",Pro. PADL'00, LNCS vol 173, Jan. 2000, pp. 200-214.15. J. Ivie, \Some MACSYMA Programs for Solving Reurrene Relations," ACMTransations on Mathematial Software 4, 1 (Marh 1978), pp. 24{33.16. J. Ja�ar, S. Mihaylov, P. Stukey, and R. Yap, \The CLP(R) Language andSystem", ACM Transations on Programming Languages and Systems vol. 14 no.3, July 1992, pp. 339{395.17. J. Ja�ar and M. J. Maher, \Constraint Logi Programming: A Survey", J. LogiProgramming vol. 19.20, May/July 1994, pp. 503{581.18. A. Karadime and S. Urban, \Re�ned Triggering Graphs: A Logi Based Approahto Termination Analysis in an Ative Objet-Oriented Database", Pro. 12th. In-ternational Conferene on Data Engineering, 1996.19. H. Levy and F. Lessman, Finite Di�erene Equations, Sir Isaa Pitman & Sons,London, 1959.20. M. Petkovsek, Finding Closed-Form Solutions of Di�erene Equations by SymboliMethods, PhD Thesis, Carnegie Mellon University, 1991.21. Swedish Institute of Computer Siene, SICStus Prolog User Manual, Release 3.8,Ot. 1999.22. A. Vaduva, S. Gatziu, and K. R. Dittrih, \Investigating Termination in A-tive Database Systems with Expressive Rule Languages", Pro. 3rd InternationalWorkshop on Rules in Database Systems, June 1997.23. T. Weik and A. Heuer, \An Algorithm for the Analysis of Termination of LargeTrigger Sets in an OODBMS", Pro. International Workshop on Ative and Real-Time Database Systems, June 1995.24. J. Widom, \The Starburst Ative Database Rule System", IEEE Transations onKnowledge and Data Engineering, 8(4):583-595, August 1996.25. C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subramanian, and R.Ziari, Advaned Database Systems, Morgan Kaufman, 1997.

