
J. LOGIC PROGRAMMING 1995:25:191{247 1GENERALIZED SEMANTICS ANDABSTRACT INTERPRETATION FORCONSTRAINT LOGIC PROGRAMS �ROBERTO GIACOBAZZI, SAUMYA K. DEBRAY, ANDGIORGIO LEVI� We present a simple and powerful generalized algebraic semantics for con-straint logic programs that is parameterized with respect to the underlyingconstraint system. The idea is to abstract away from standard semantic ob-jects by focusing on the general properties of any|possibly non-standard|semantic de�nition. In constraint logic programming, this corresponds toa suitable de�nition of the constraint system supporting the semantic def-inition. An algebraic structure is introduced to formalize the notion of aconstraint system, thus making classical mathematical results applicable.Both top-down and bottom-up semantics are considered. Non-standard se-mantics for constraint logic programs can then be formally speci�ed usingthe same techniques used to de�ne standard semantics. Di�erent non-standard semantics for constraint logic languages can be speci�ed in thisframework. In particular abstract interpretation of constraint logic pro-grams can be viewed as an instance of the constraint logic programmingframework itself. ��The work of R. Giacobazzihas been partly supportedby the EEC Human Capital and Mobilityindividual grant: \Semantic De�nitions, Abstract Interpretation and Constraint Reasoning", N.ERB4001GT930817 and by the Esprit Basic Research Action 3012 - Compulog I. The work of G.Levi has been partly supported by \Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo"of C.N.R. under grants no. 9100880.PF69. The work of S. Debray was supported in part by theNational Science Foundation under grants CCR-8901283 and CCR-9123520.Address correspondence to Roberto Giacobazzi, Dipartimento di Informatica, Universit�a diPisa, Corso Italia 40, 56125 Pisa, E-mail: giaco@di.unipi.itTHE JOURNAL OF LOGIC PROGRAMMINGcElsevier Science Publishing Co., Inc., 1995655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

21. INTRODUCTIONConstraint logic programming is a generalization of the pure logic programmingparadigm, having similar model-theoretic, declarative and operational semantics[45]. Since the fundamental linguistic aspects of constraint logic programming canbe separated from the details speci�c to particular constraint systems, it seems nat-ural to parameterize the semantics of constraint logic programming languages withrespect to the underlying constraint systems. We refer to such a semantics as ageneralized semantics. Such generalized semantics provide a powerful tool for deal-ing with a variety of applications relating to the semantics of CLP programs. Forexample, by considering a domain of \abstract constraints" instead of the \concreteconstraints" that are actually manipulated during program execution, we obtain forfree a formal treatment of abstract interpretation. In this paper we focus on alge-braic properties that characterize (possibly non-standard) semantic constructionsin constraint logic programming. In particular we will focus on computed answerconstraint semantics and abstraction. Our framework is therefore suitable to ana-lyze successful computations and call patterns (the latter case can be obtained witha magic-like transformation as in [15]) of constraint logic programs. The algebraicapproach we take to constraint interpretation makes it easy to identify a suitableset of operators that can be instantiated in di�erent ways to obtain both standardand non-standard interpretations, relying on some simple axioms to ensure thatdesirable semantic properties are satis�ed.This work has two main technical contributions. The �rst is the de�nition of astructure for constraint interpretation that is weak enough to have general applica-bility, thus dealing with a variety of non-standard interpretations, and at the sametime strong enough to ensure that relevant properties of the standard semanticconstruction, such as the existence of the �xed-point semantics and the equivalencebetween the top-down and the bottom-up semantics, still hold. The second is toshow how a wide class of analysis techniques developed for pure and constraint-based logic programs can themselves be viewed as instances of the constraint logicprogramming paradigm. Indeed, the approximation of the meaning of programs bymeans of relations among the variables involved in the computation is a well knowntechnique for specifying a space of approximate assertions for program analysis.We argue that the ability of the constraint logic programming paradigm to handlerelations on a variety of semantic domains (e.g., real arithmetics, boolean algebras,etc.) allows this paradigm to be used for program analysis, both as a tool for theformal speci�cation of abstract domains, and for the rapid prototyping of staticanalysis systems. Of course, in order that abstract domains and operators formconstraint systems, we require additional (and orthogonal) conditions than simplecorrectness for semantic operators. Correctness is obviously necessary to get soundapproximations in abstract interpretation (most frameworks for static analysis oflogic programs require only correctness [5, 11, 15]), so apparently our approachmay result a simple restriction of the standard abstract interpretation theory (atthe current \state of the art", some analyses like freeness are not directly de�nableas constraint systems). However, lot of interesting semantic properties of analysis(e.g. the equivalence between forward and backward evaluations) are orthogonalto soundness. We prove that all the (abstract) domains and operators that satisfythe constraint system conditions, provide (abstract) interpretations that satisfy thestandard results of constraint logic programming semantics as proposed by Ja�ar

3and Lassez [45]. This approach has some interesting practical applications, suchas the ability to compile the dataow analysis directly to an abstract machine forconstraint logic programs|a logical extension of the \abstract compilation" schemediscussed by Hermenegildo et al. [42]. This removes the overhead of program inter-pretation incurred by keeping separate abstract and concrete interpretations, andcan lead to signi�cant improvements in the speed of analysis (e.g., see [17, 42, 68]).Our approach also makes it possible to close the gap that often exists betweenthe formalization of dataow analyses in terms of abstract interpretation and therealization of e�cient implementations by means of appropriate data-structuresand e�cient algorithms. Applications of our framework to systematically derivee�cient algorithms for dataow analysis (e.g., by means of constraint propaga-tion techniques for constraint solving) have been recently studied in [4]. Moreover,while non-standard semantics such as those considered in various dataow analyses,are typically more abstract than the standard semantics, it is also possible, in ourframework, to de�ne non-standard semantics that are much more concrete than thestandard semantics, i.e., take into account details of a particular implementation.Such semantics, illustrated in Section 4.3, can be used, for example, for reasoningabout the correctness of compilers, debuggers, and other low-level tools for programmanipulation.The paper is structured as follows: in Section 2 we introduce the basic mathe-matical notations used throughout the paper. Section 3 introduces an incrementalstep-by-step algebraic speci�cation for constraint systems. Section 4 provides botha top-down and a bottom-up semantics for constraint logic programs, parameter-ized with respect to the constraint system. In Section 5 we consider generalizedsemantics for constraint logic programs as a framework for semantics-based analysesfor constraint logic programs. An example, namely rigidity analysis, is consideredassociating Boolean constraints with standard equations on terms. Some resultson approximating constraints by means of upper closure operators on constraintsystems are also given. This approach points out how some well-known programanalysis techniques can be obtained by evaluating an abstract program into a vari-ation of some existing CLP systems, such as CLP (Bool) for rigidity analysis; and,as shown in Section 6, CLP (R), where a weaker notion of \constraint system" forprogram analysis purposes is introduced by illustrating how a compile-time analy-sis problem, linear relationships analysis, can be formulated in terms of constraintlogic programming over an appropriate constraint system. Section 7 contains asurvey of the most important related works, and a discussion on limitations of ourapproach. Section 8 concludes. For continuity and ease of readability, the proofsof most of the results, together with auxiliary lemmata, have been moved to theappendix. This paper is an extended version of [36] and [37].2. PRELIMINARIESThroughout the paper we will assume familiarity with the basic notions of latticetheory (Birkho�'s text [8] provides the necessary background) and abstract inter-pretation (see [22, 24]). In the following we summarize some of the mathematicalnotation used in the paper.The set of natural numbers and reals are denoted by N and < respectively. Thecardinality of a set A is denoted jAj. Given sets A and B, A nB denotes the set A

4 where the elements in B have been removed. The powerset of a set S is denotedby }(S). The class of �nite (possibly empty) subsets of a set S is denoted }f (S).Let � be a possibly in�nite set of symbols. Sequences are typically denoted byha1; :::; ani or simply a1; :::; an, where ai 2 � and n � 0. The empty sequence isdenoted by ". The set (family) of objects ai indexed on a set of symbols � is denotedfaigi2�. The set of n-tuples of symbols in � is denoted �n. When the length ofsequences is �xed, sequences and tuples will be often considered equivalent notions.We occasionally abuse notation and treat sequences as sets. The transitive closureof a binary relation R is denoted by R�. Syntactic identity is denoted �.A partial ordering is a binary relation that is reexive, transitive and antisym-metric. A set P equipped with a partial order � is said to be partially ordered, andsometimes written hP;�i. Let hP;�i be a partially ordered set (poset), S � P isconvex i� for each c; c00 2 S, c0 2 P such that c � c0 � c00 then c0 2 S. A chain is a(possibly empty) subset X of a partially ordered set P such that for all x; x0 2 X:x � x0 or x0 � x. Given a partially ordered set hP;�i and X � P , y 2 P is anupper bound for X i� x � y for each x 2 X. An upper bound y for X is the leastupper bound i� for every upper bound y0: y � y0; lower bounds and greatest lowerbounds are de�ned dually. A complete lattice is a partially ordered set L such thatevery subset of L has a least upper bound and a greatest lower bound. A com-plete lattice L with partial ordering �, least upper bound _, greatest lower bound^, least element ? = _; = ^L, and greatest element > = ^; = _L, is denoted(L;�;?;>;_;^). In the following we will often abuse notation by denoting latticeswith their poset notation. We write f : A ! B to mean that f is a total functionof A into B. Function composition is denoted � . Let f : A ! B be a mapping,for each C � A we denote by f(C) the image of C by f : ff(x) j x 2 Cg. Functionsfrom a set to the same set are usually called operators. The identity operator �x:xis often denoted id. Given partially ordered sets hA;�Ai and hB;�Bi, a functionf : A ! B is monotonic if for all x; x0 2 A : x �A x0 implies f(x) �B f(x0). If Aand B are complete lattices, f is continuous i� for each non-empty chain X � A:f(_AX) = _Bf(X). A function f is additive i� the previous condition is satis�edfor each non-empty set X � A (f is also called complete join-morphism). An upperclosure operator on a partially ordered set hA;�i is a function � : A ! A that isidempotent, i.e., �(�(c)) = �(c); extensive, i.e., c � �(c); and monotonic (more onclosure operators can be found in [23]).Let (L;�;?;>;_;^) be a non-empty complete lattice. Let f : L ! L be afunction. The ordinal powers of f are de�ned as follows for x 2 L:f "0(x) = xf "�(x) = f(f " (�� 1)(x)) for every successor ordinal �; andf "�(x) = _�<� f "�(x) for every limit ordinal �.The �rst limit ordinal equipotent with the set of natural numbers is denoted by !.The Knaster-Tarski �xed-point theorem states that the set of �xed-points fp(f) ofa monotonic function f over a complete lattice is itself a complete lattice [69]; inparticular, this implies that a monotonic function f over a complete lattice has aleast �xed-point lfp(f). Moreover, if f is continuous then lfp(f) = f "!(?).An algebraic structure [41] is a pair (C;Q) where C is a non-empty set, calledthe universe of the structure and Q is a function ranging over an index set I suchthat for each i 2 I, Qi are �nitary operations on and to elements of C. Algebraic

5structures are also denoted as (C;Qi)i2I . In addition to the operations Qi, somespecial symbols (e.g.,
, �, 0,...) will be used to denote algebraic operations,including constants. With an abuse of notation, we will often denote distinguishedelements of C as constant operations Qi on C. A structure is (Qi) �-complete forsome i 2 I and an in�nite cardinal number �, if Qi(X) is de�ned for every setX � C such that jXj � �. It is complete if it is �-complete for any �. Givenalgebraic structures (A;QA) and (B;QB) with universes A and B and providedwith a common set of basic operators Q, (we denote QA and QB the operators inQ de�ned on A and B respectively) a (homo)morphism � from (A;QA) to (B;QB),denoted by � : (A;QA) m�! (B;QB) is a function � : A! B such that: �(fA) = fBfor each constant symbol in Q and �(fA(a1; :::; an)) = fB(�(a1); :::; �(an)) for eachn-ary operation f in Q and a1:::an 2 A. Let (A;QA) and (B;QB) as above. Givenpartially ordered sets hA;�Ai and hB;�Bi, a semimorphism is a function � : A! Bsuch that �(fA) �B fB, for each constant symbol f in Q, and �(fA(a1; :::; an)) �BfB(�(a1); :::; �(an)), for each n-ary operation symbol f in Q.3. CONSTRAINT ALGEBRASAs de�ned by Ja�ar and Lassez [45], and Ja�ar and Maher [46], the semantics ofconstraints are given in terms of an algebraic structure that interprets constraintformulae, while the semantics of a constraint logic program is given in terms of�xed-point, model-theoretic and operational characterizations. In this section weintroduce an incremental algebraic speci�cation for constraint systems: our interestis in the algebraic properties on which the semantic constructions are based. Con-straints are then viewed as elements of an algebraic structure, providing a uniformtreatment of semantic domains (collections of constraints) and domain-dependentoperators. For this purpose we adapt a widely known algebraic de�nition of �rstorder logic, namely, cylindric algebras [41].We start from a general notion of term system that provides an algebraic treat-ment for the data objects of a program. Constraint systems are then de�ned asalgebraic structures whose universe represents constraints and whose operationsinclude term substitution, constraint composition and projection. The use of suchstructures in the de�nition of operational and �xpoint semantics for constraintlogic programs is discussed in Section 4. Such a construction has several advan-tages. First, it provides a uniform algebraic treatment of data objects and domaindependent operators. This is particularly helpful in dataow analysis by abstractinterpretation, as it allows the derivation of the standard properties of (possiblyabstract) semantics from few simple axioms (see Section 5). Second, it treats termsexplicitly in the algebraic treatment of constraints. This provides a treatment ofnotions such as term substitution, which play a fundamental role in logic program-ming, that is general enough to be applicable to abstract data descriptions as wellas concrete ones. This includes a formal treatment of variable renaming on abstractdata objects, something that is glossed over in much of the literature on abstractinterpretation of logic languages. Moreover, this corresponds precisely to the alge-braic generalization of the original CLP framework of Ja�ar and Lassez [45], whereequality is applied on arbitrary terms to provide (for instance) parameter passing inprocedure calls. Finally, it distinguishes between two typical processes in semantic

6 abstraction: term abstraction and constraint abstraction. The �rst provides stan-dard data-abstraction (e.g., type information, groundness etc.) while the second isactually oriented to interpret relations between abstract data objects as (abstract)constraints.It is worth noting that cylindric algebras, as formulated by Henkin, Monk andTarski [41], are actually oriented towards languages without function symbols, thusignoring all terms but variables. There is a great deal of literature devoted toextending cylindric algebras to deal with terms (see [13] for some references). Theidea is that the algebraic de�nition of a system deals not only with its formulae (theelements of the underlying structure) but also with terms. To motivate this choice,we follow Cirulis [13] and see what arises in logic. Given a �rst order languagewith equality (note that equality is always assumed in any constraint system [45]),denote by F and T the sets, respectively, of formulae and terms in the language andby V � T the set of variables. Let furthermore � be a theory in the language, i.e.,a set of sentences closed with respect to logical consequence. A Boolean algebracan be obtained by considering F= ��, which can be extended by de�ning a unaryoperator 9x : F= ���! F= �� for x 2 V , specifying existential quanti�cationas in [41]. To obtain a cylindric algebra, we have to specify diagonal elements,i.e., equations of the form x = y for arbitrary variables x and y. If we consider amore extensive set of possible equations including terms, such as s = t for s; t 2 T ,then it is easy to see that the structure (F= ��; 9x; (s = t))x2V;s;t2T does notreect the information � contains about equality of terms. In fact � gives risealso to an equivalence on T , denoted with abuse of notation ��. Hence a moreadequate structure is: (F= ��; 9x; (s = t))x2V;s;t2T=��. Therefore, to axiomaticallycharacterize this extension, we have to take into account the structure of T= ��in the whole construction of the algebra. Cirulis solves this problem by specifyingT= �� as a term system and by making cylindric algebras parametric on it [13].We follow this construction in our de�nition of constraint systems.3.1. Term SystemsIn the following we introduce the notion of term system as an algebra of termsprovided with a binary operator which realizes substitutions ([13]). We are inter-ested in term systems where each term depends only on a �nite number of variables(also called �nitary term systems). They represent the �rst basic de�nition in thesemantics construction.De�nition 3.1. [term systems [13]]A term system of dimension � is an algebraic structure (�; S; V) (later abbrevi-ated by �) where � is a set of objects called � -terms (terms for short); V is acountable set of � -variables (variables, for short) in � ; jV j = �; S is a countableset of binary operations on � , indexed by V ; and the following conditions aresatis�ed, for all x; y 2 V and t; t0; t00 2 � :T1: sx(t; x) = t, identityT2: sx(t; y) = y, where x 6= y, annihilationT3: sx(t; sx(y; t0)) = sx(y; t0) where x 6= y, renaming

7T4: sx(t0; sy(t00; t)) = sy(sx(t0; t00); sx(t0; t)) where x 6= y and y ind t0independent compositionwhere a � -term t is independent on the � -variable x, denoted by \x ind t", ifsx(t0; t) = t for any t0 2 � . If X � V then X ind t i� x ind t for all x 2 X.We say that a variable v occurs in a term t if :(x ind t). We denote the set ofvariables occurring in a term t as var(t). If � = V , the term system is said tobe trivial.Observe that all trivial term systems with same dimension are isomorphic [13]. Inthe following we will often omit the speci�cation of the dimension in term systems,when this is obvious from the context.Intuitively, sx(t; t0) denotes the operation \substitute t for every occurrence ofthe variable x in t0". It is easy to see that axioms T1{T4 are indeed satis�ed bythe standard notion of substitutions as �nite mappings from variables to terms(e.g., [2]). In particular: renaming (T3) speci�es that renaming a variable x ina term t0 with y (x 6= y) makes the resulting term invariant under further sub-stitutions on x; while independent composition (T4) speci�es the independency onthe order of substitution composition. Notice that in general, the substitution op-erators do not perform idempotent substitutions. For notational convenience, weoften denote sx(t; t0) as [t=x] t0. This notation can be extended to substitutions onmultiple (but �nitely many) variables, by writing sx1(t1; sx2(t2; � � �sxk(tk; t) � � �))as [t1=x1 : : : tk=xk] t, where i 6= j implies xi 6= xj. Notice that, from T4, if alsox ind t00 then [t0=x] [t00=y] t = [t00=y] [t0=x] t. Moreover, by T2, for each x; y 2 V :x ind y i� x 6= y. The condition that terms depend on a �nite number of variablescan be formalized by requiring that the set fx 2 V j [t=x] t0 6= t0 for some t 2 �gis �nite for every t0 2 � . Our interest in �nitary term systems is not related onlyto their common use in logic programming. Finitary term systems in fact can beinduced (built) from any free algebra � with generators V . This is important in thecontext of this work, where we need a generalized notion of terms. De�ne a termsystem (�; sx; V)x2V to be algebraic if there exists a relatively free algebra � withgenerators V (i.e., where each element of � is generated by a �nite subset of V andany mapping f : V �! � can be extended to an endomorphism of �) such thatsx(t; t0) = stxt0 where stx is the endomorphism of � that takes x into t and agreeswith the identity everywhere else. Then, a crucial result on term systems statesthat a term system is algebraic i� it is �nitary [13]. Standard properties of termsystems and substitutions, such as the properties of composition, can be found in[13].Example 3.1. Let � be a �nite collection of function symbols. T (�; V) denotesthe family of �rst-order terms de�ned on � and V . The standard term system�(�;V) = (T (�; V); Sub; V) is a term system provided that substitutions in Subperform standard substitutions.Atoms are constructed in the standard way on an arbitrary term system, asspeci�ed by the following

8 De�nition 3.2.Let � be a �nite collection of predicate symbols and � be a term system. A (�;�)-atom has the form p(t1; :::; tn) where p 2 � and ti 2 � , for each i = 1; :::; n. If tiare distinct variables, we say that the atom is at.When clear from the context, we sometimes denote by �o both a tuple and a setof syntactic objects o (terms, atoms, etc.). In particular we denote by �x a tuple(set) of distinct variables.The following example shows a non-standard instance of the term system alge-braic structure. It provides an adequate term system for the ground dependencyanalysis discussed in Section 5.1.Example 3.2. Let � be a �nite set of symbols. Let �� = (}f (�);S;�), where S isthe family of basic operators sx, for x 2 �, such that for each X1; X2 2 }f (�):sx(X1; X2) = � (X2 n fxg)[X1 if x 2 X2X2 otherwiseIn this case, for each x 2 � and �nite set X � �: x ind X i� x 62 X. Then, ��is a term system. It is straightforward to show that �� satis�es the axioms ofidentity (T1), annihilation (T2), and renaming (T3). To show that it satis�es theaxiom of independent composition (T4), assume that X;X 0; X 00 � � are �nitesets, x; y 2 �, x 6= y and y 62 X 0. If any of X, X 0 and X 00 is empty, the proofis trivial. If y 62 X or x 62 X [X 00, the proof is straightforward. Assume y 2 Xand x 2 X [X 00:sx(X 0; sy(X 00; X)) = (((X n fyg) [X 00) n fxg)[X 0[de�nition]= (((X n fxg)[X 0) n fyg) [((X 00 n fxg) [X 0)[distributing fxg [X0 and x 62 X]= sy(sx(X 0; X 00); sx(X 0; X))[de�nition]3.2. An Algebraic Framework for Constraint SystemsWe give now a formal algebraic speci�cation for the language of constraints on agiven term system. The process of building constraints in any �xed-point evaluationof a given CLP program is mainly based on set union and conjunction. We want togive an algebraic characterization of this process in order to provide a frameworkfor generalized interpretations of constraint logic programs.De�nition 3.3. [closed semirings [1, 30]]A closed semiring1 is an algebraic structure (C;
;�;1;0) satisfying the follow-ing:1They are known as (join) complete semirings in the literature (e.g., see [30]). Note that, withrespect to [30], in our construction we assume � be idempotent on in�nite applications of �. Wewill use the slightly naive name of closed semirings adopted from [1] to distinguish them from themore general complete case.

9R1. (C;
;1) and (C;�;0) are monoids.R2. � is commutative and idempotent.R3. 0 is an annihilator for
 , i.e., for every c 2 C, c
 0 = 0
 c = 0.R4. for any possibly in�nite family faigi2I of elements in C: the sum a1 � a2 �� � �, denoted Pi2I ai exists and is unique, i.e., it is a well de�ned element inC. Moreover associativity, commutativity and idempotence of � apply toin�nite as well as to �nite applications of �.R5.
 is left- and right-distributive over �nite and in�nite applications of �, i.e.,if C = faigi2I is a possibly in�nite family of elements in C and c 2 C, thenc
 (PC) =P(fc
 ai j i 2 Ig) and (PC)
 c =P(fai
 c j i 2 Ig), wherePC =Pi2I ai.Closed semirings provide an algebraic characterization of multiplicity in au-tomata [30]. This phenomenon is evident when multiple paths (or computations)are possible for a given automata. Ioannides and Wong have also shown that theclass of relational operators form a closed semiring [43], thus providing a formaliza-tion of recursion in the database context. In logic programming, closed semiringssummarize, in an algebraic framework, all aspects of dealing with composition ofterms, such as uni�cation and set union. The idea is that of �nding the (possiblyin�nite) set of all paths in the semantic construction. From a semantic viewpoint,each path is a sequence of constraints between vertices in the call graph associatedwith the program. Each successful path constitutes a computation, and will bea sequence (conjunction) of constraints. The multiplicity of paths corresponds tomultiple solutions for a query. Idempotence, associativity and commutativity arenecessary to allow the operator � (join) to model, in a general way, the \merging"together of information via set union. The operator
 (meet) corresponds to con-junction of constraints and plays the important role of collecting information duringcomputation. Distributivity allows the representation of constraints as possibly in-�nite joins of �nite meets (also called simple constraints). Distributivity plays afundamental role in the equivalence between the bottom-up and the top-down se-mantics constructions. Closure on in�nite sequences of elements in C is necessaryto admit constraints that are in�nite joins of constraints (this is important in thesemantic development given in Section 4). Closed semirings are thus an appro-priate algebraic generalization to model constraint construction as an observableproperty. Indeed, the asymmetry between joins (disjunctions) and meets (conjunc-tions) corresponds precisely to the traditional interpretation of observables: in�nitedisjunctions of observable properties are still observables|to see that _i2I ai holdsof a process we only need to observe that any one of the ai holds|while in�niteconjunctions clearly cannot be observed on the basis of a �nite amount of informa-tion (e.g., see [66]). A topology for closed (complete) semirings has been recentlystudied in [51].Semirings can be naturally ordered by de�ning a binary relation � such that forany a; b 2 C: a � b i� a � c = b for some c 2 C ([30]). In our case, since � isidempotent, there exists a unique natural order for a semiring:

10 De�nition 3.4.Given a closed semiring (C;
;�;1;0), the relation � � C � C is de�ned asfollows: for any c1; c2 2 C, c1 � c2 i� c1 � c2 = c2.Proposition 3.1. Closed semirings are continuous, namely for any in�nite familyfaigi2I of elements in C and c 2 C:if Pi2F ai � c for all F 2 }f (I) then Pi2I ai � c.Karner gives a general treatment of continuous complete semirings [50]. Conti-nuity here corresponds to requiring that Pfai j i 2 Ig is the least upper boundof all Pfai j i 2 Fg for any �nite subset F of I, and is essential for proving thefollowing proposition.Proposition 3.2.C is partially ordered by �, and forms a complete lattice.A semantic de�nition necessarily implies some notion of \observable behavior":programs that have the same semantics must not be observationally di�erent. Mod-elling the semantics of constraint logic programs in terms of answer constraints cor-responds to considering answer constraints as the appropriate observable property(this approach to semantics has been considered in [33]), and requires the abilityto restrict an answer constraint to the variables appearing in the query. Closedsemirings are too weak to capture this restriction operation. We follow Saraswatet al. [64] in handling this using a family of \hiding" operators. Cylindric al-gebras, formed by enhancing Boolean algebras with a family of unary operationscalled cylindri�cations, provide a suitable framework for this [41]. The intuitionhere is that given a constraint c, the cylindri�cation operation 9S(c) yields theconstraint obtained by \projecting out" from c all information about the variablesin S. Technically, cylindric algebras allow us to make projections on �nite sets ofvariables. However, since our semantic formulation is in terms of in�nite unfolding,as discussed later in the paper, it may also be necessary to allow projections onin�nite sets. To this end, we allow possibly countably many cylindri�cations. Di-agonal elements [41], which represent equations on elements of the underlying termsystem, are considered as a way to provide parameter passing. However, cylindricalgebras, which are oriented towards �rst-order languages without function sym-bols, are not adequate as an algebraic semantic framework for general constraintlogic programs where parameter passing between procedures is de�ned by syntacticequality on terms (as in [45]). Therefore, we extend diagonal elements to deal withgeneric terms, following the approach of Cirulis [13]. This provides an algebraicgeneralization for syntactic equality on terms as parameter passing applied in [45].De�nition 3.5. [constraint systems]Given a term system � of dimension � with variables V , a � -based constraint sys-tem A of dimension � is an algebraic structure (C;
;�;1;0; 9X; dt;t0)X�V ;t;t02�where C is a set of A-constraints generated by a given set of atomic constraintsover terms from � , and is called the universe of A; 0;1; dt;t0 are distinct (atomic)elements of C, for each t; t0 2 � ; f9XgX�V is a family of unary operations on C;

11
;� are binary operations on C; such that the following postulates are satis�edfor any c; c0 2 C; fxg; X; Y � V and t; t0; t00 2 � :R : the structure (C;
;�;1;0) is a closed semiring;C1: 9X0 = 0C2: c� 9Xc = 9Xc;C3: 9X (c
 9Xc0) = 9X (9Xc
 c0) = 9Xc
 9Xc0;C4: 9X9Y c = 9(X[Y)c;C5: 9X distributes over �nite and in�nite joins;D1: dt;t = 1;D2: dt;t0 = dt0;t;D3: 9fxg(dx;t
 dt0;t00) = d[t=x]t0;[t=x]t00 for x ind t;D4: 9fxg(dx;t
 (c
 c0)) = 9fxg(dx;t
 c)
 9fxg(dx;t
 c0).Where the underlying term system � for a � -based constraint system is unim-portant or is obvious from the context, we will omit reference to it.The meaning of cylindri�cation is given by the axioms from C1 to C5, whilediagonal elements are speci�ed by the axioms from D1 to D4. Notice that AxiomsD3 and D4 relate the notion of substitution in the term system � with diagonalelements of C (which intuitively correspond to the notion of equality constraints) inthe expected way. We follow Henkin, Monk and Tarski [41] in considering a familyof (derived) operations @tx, de�ned on C for x 2 V and t 2 � such that x ind t:@txc = 9fxg(dx;t
 c):We call these operations substitutions, since intuitively they extend the notion ofsubstitution from the underlying term system to the universe of constraints. Withan abuse of notation, we denote @tx(c) as [t=x] c when the meaning is clear from thecontext.In the following we distinguish between constraints and simple constraints. Aconstraint is any object in the universe of a constraint system, while a simpleconstraint is an atomic constraint, or the cylindri�cation of a simple constraint, ora �nite conjunction (i.e., meet) of simple constraints. Therefore, simple constraintsdo not contain joins. The compact constraints of a constraint system A are thecompact elements in C, namely the �nite joins of simple constraints. As we willsee later in the semantic construction, an answer of a query to a program will bea compact constraint, corresponding to a single �nite computation for the query.The join operator is applied to model the non-deterministic clause choice in logicprograms, which may provide possibly multiple answers for a query.The function var and the notions of \independence" and \occurrence" of vari-ables extend in the obvious way from terms in � to constraints in C. Let c 2 C andx 2 V : x ind c i� @txc = c for any t 2 � such that x ind t. A variable x is bound inc i� it is existentially quanti�ed in c; x is free in c i� x 2 var(c) and x is not bound

12 in c. The set of free variables in a constraint c is denoted by FV (c). A renamingof c with respect to x is a constraint @yxc such that x 6= y and y ind c.Let � be a term system with variables V and (C;
;�;1;0) be a closed semiring.(C;
;�;1;0) can be extended to a constraint system by letting dt;t0 = 1 for eacht; t0 2 � and 9Xc = c for each c 2 C and X � V (here @txc = c for each x 2 V andt 2 �). Following Henkin et al. [41], we refer to these as discrete constraint systems.Let X � V , in the following we will denote 9var(c)nXc, i.e., hiding all the variablesin c except X, as 9(c)X . We will often omit parentheses in cylindri�cations on setsof variables. We also denote by dht1;:::;tni;ht01;:::;t0ni the element dt1;t01
 :::
 dtn;t0n ,where t1; :::; tn; t01; :::; t0n 2 � .In the following we use A to denote an arbitrary constraint system.Theorem 3.1 (elementary properties of constraint systems).Let A be an arbitrary constraint system. For any c; c0 2 C, x 2 V , X � V andt; t0; t00 2 � such that x ind t, the following properties hold:9X9Xc = 9Xc;P1:P2: c � c0) 9Xc � 9Xc0;P3: 8c; c0 2 C : c0 � 9Xc , 9Xc0 � 9Xc;2P4: 8c; c0 2 C : c � c0 ^ c0 � 9Xc) 9Xc = 9Xc0;P5: 9fxgc = c i� 9fxg~c = c for some ~c 2 C;P6: 9fxgc = c if x ind c (in particular 9fxgdt0;t00 = dt0;t00 when x ind t0; t00);P7: dt;t0 = 9fxg(dt;x
 dx;t0) where x ind t; t0,P8: c � c0) @txc � @txc0;P9: @tx9fxgc = 9fxgc;P10: @tx c = c i� @tx~c = c for some ~c 2 C;P11: 9X1 = 1; 9Xc = 0 i� c = 0;P12: 9fxgdx;t = 1;P13: (dt;t0
 dt0;t00) � dt;t00 = dt;t00 (transitivity).In particular, from properties P1, P2, and axioms C2 and C5, 9X is an additiveupper closure operator on C for each X � V . Moreover, by properties P8, P10, andfrom the distributivity of 9 and
 over �, the substitution operator on constraintsde�nes an additive retraction on C, where a retraction on a partially ordered setA is an idempotent and monotonic mapping over A. Notice that substitution isnot, in general, extensive. Other elementary properties of constraint systems canbe derived from similar properties of cylindric algebras in [41]. Notice that (by P9)@txc � 9fxgc and if x is bound in c then x ind c. Therefore, if c is a renaming apartof c0 with respect to x, then x ind c.The following lemma describes the interaction of variable projection with (hid-den) variables in constraints, thus extending the elementary property P6 to con-junctions of constraints.Lemma 3.1 (independence).For any constraint system A, if c and c0 are A-constraints and X is a set ofvariables such that x ind c for every x 2 X, then 9X (c
 c0) = c
 9X (c0):2This property corresponds to Morgado's characterization of closure operators by means of asingle axiom [61].

13The following lemma shows an important relation between cylindri�cation (hid-ing variables) and renaming apart of constraints with \fresh" variables.Lemma 3.2.For any constraints c and c0 in a constraint system A, c
 9fxgc0 = 9fyg(c
 ~c0),where y ind c; c0; y 6= x and ~c0 = @yxc0.The following examples show some standard constraint systems.Example 3.3. [CLP (H)]Let � be a �nite collection of function symbols. Atomic constraints are equa-tions on the term system �(�;V) (see Example 1). Let EH be the set of possiblyexistentially quanti�ed �nite conjunctions of equations over �(�;V), and let IHrepresent the Herbrand interpretation structure, interpreting diagonal elementsas syntactic equality [45]. In this case, a solution � for a possibly quanti�ed �niteconjunction (set) of equations 9XE = 9Xfs1 = t1; :::; sn = tng is a groundingsubstitution for the free variables in E such that there exists a grounding sub-stitution � for the bound variables X, and s1�� � t1�� ; : : : ; sn�� � tn��.IH j= E� denotes that � is a solution for E. We extend this de�nition to dealwith possibly in�nite joins: � is a solution for [i2I Ei i� there exists i 2 I suchthat � is a solution for Ei. 9 is existential quanti�cation, which is assumed tobe distributive (as well as conjunction) over arbitrary joins: if X � V , � is asolution for 9X ([i2I Ei) i� � is a solution for 9XEi for some i 2 I; true denotesany constraint having every grounding substitution as a solution while falsedenotes any constraint having an empty set of solutions. Note that @tx, for x notoccurring in t, performs idempotent substitutions on constraints, by extending inthe obvious way the term substitution notion to constraints. Moreover, for eachc1 = [i2I1 Ei and c2 = [i2I2 E0i denoting possibly in�nite joins of (�nite) quanti�edsets of atomic constraints (equations) Ei and E0i:c1 �EQ c2 i� [i2I1 � # �� IH j= Ei# 	 = [i2I2 � # �� IH j= E0i# 	 :Then, the Herbrand constraint system H is the quotient algebra(}(EH);^;[; true; false; 9X ; ft = t0g)X�V ;t;t02�(�;V)=�EQ;Example 3.4. [CLP (LRn)]This example describes the case of CLP (R) [45] on linear constraints, where thenumber of variables is restricted a priori to some �xed value n, as an instance ofour framework (the case with n = ! is of little interest in our construction sinceconstraint logic programs can de�ne only �nitary predicates). This constraintsystem will be used for static analysis of CLP (H) programs in Section 6.1. Inthe following ~x = (x1; : : : ; xn) is a point in <n and xi is its i-th element. Ahyperplane (atomic constraint) is the set of points ~x 2 <n satisfying an equationof the form a1x1 + � � �+ anxn = b, and de�nes two halfspaces in the obviousway. A convex polyhedron is the (possibly unbounded) set of points constitutingthe intersection of a �nite number of halfspaces. For any �nite n, the constraint

14 system of n-dimension linear constraints (the non-linear case is a straightforwardextension), denoted by LRn, is: (P;\;[;<n; ;; 9̂X; [t1 = t2])X�Vn;t1;t22�Exp ,where Vn = fx1; :::; xng is a set of n variables, �Exp is a term system of linearexpressions on Vn (an example of de�nition for �Exp is in Section 6.1) and P isthe set of all space regions in <n de�ned as possibly in�nite unions of convexpolyhedra. Each constraint c 2 P can be represented as a possibly in�nite setof �nite conjunctions of linear equations and disequations on Vn. The variablerestriction operation 9̂ is performed by cylindri�cation parallel to an axis [41]: ifc is a constraint in <n and i � n, we de�ne:9̂xic = � ~y 2 <n �� yj = xj for ~x 2 c and j 6= i 	 :9̂xic is the cylinder generated by moving the point set c parallel to the xi axis.For any two linear expressions t; t0 2 �Exp and R 2 f=;�;�; >;<g we denoteby [t R t0] the corresponding space. It is not di�cult to show that the resultingstructure is a constraint system (see [34]).4. GENERALIZED SEMANTICSConstraint logic programming was de�ned by Ja�ar and Lassez to specify relationson a constraint language by means of constraint-based Horn clauses. We follow thisapproach by de�ning Horn-like clauses on constraint systems. Constraint logic pro-grams are de�ned in the usual way: let A be a constraint system on a term system� and � be a �nite set of predicate symbols. An A-goal is a formula `c [] B1; :::; Bn,'with n � 0, where c is a compact A-constraint and B1; : : : ; Bn is a sequence of(�;�)-atoms. An A-clause is a formula of the form `H :� c [] B1; :::; Bn' where H(the head) is a (�;�)-atom and `c [] B1; :::; Bn' (the body) is an A-goal. If the bodyis empty, the clause is a unit clause. Given a set of clauses S, we use preds(S) todenote the set of predicate symbols in the heads of clauses in S. A (generalized)constraint logic program, also called A-program, is a �nite set of clauses. If theconstraint system under consideration is obvious from the context, we will some-times not indicate it explicitly in the various semantic functions. The family ofA-programs is denoted by CLP (A). Finally, the notion of renamings of variablesin constraints and terms, as well as the function var and the notion of indepen-dence, extend their meaning in the obvious way to syntactic objects such as atoms,goals, clauses, and programs.4.1. Top-Down Operational SemanticsLet A be a constraint system and P 2 CLP (A). De�ne;P (an A-derivation step)to be the least relation on A-goals such that G;P G0 i� the following hold:(i) G = c0 [] p1(�t1); :::; pn(�tn);(ii) there is a renamed version of a clause in P : p1(�t01) :� c1 [] �B1, such thatvar(G) \ var(�B1 [�t01) = ;;(iii) G0 = c0
 d�t1;�t01
 9(c1)var(�B1[�t01) [] �B1; p2(�t2); :::; pn(�tn).

15An A-derivation from an A-goal G is a �nite or in�nite sequence of A-goals suchthat every goal is obtained from the previous one by means of a single A-derivationstep. A successful derivation is a �nite sequence whose last element has an emptybody. The constraint obtained from a successful derivation is the answer con-straint. Notice that, since projection of the local variables is performed after thewhole computation, an accurate de�nition of the operational semantics requires adenumerable set of variables on which to perform renamings (a di�erent solutioncan be obtained by extending the scope of cylindri�cation to clause bodies).The goal-dependent success set semantics of a program P is de�ned in termsof a function JP that yields the set of computed answer constraints for any A-goal, such that JP (G) = f9(c)var(G) j G ;�P c [] "g. Since the operator
 in aconstraint system may not be commutative, the independence of the selection ruledoes not hold in general in these semantic characterizations, and for simplicity wehave assumed a left-to-right selection rule. If
 is commutative it is straightforwardto prove the independence on the selection rule for the success set [54].The following lemma speci�es an important equivalence between syntacticallydi�erent goals. This result will be useful later in proving the equivalence betweentop-down and bottom-up semantics. Here, a variable is said to be \used" in aderivation if it occurs in some goal in that derivation.Lemma 4.1.1 [] p(�t) ;�P c [] " i� d�x;�t [] p(�x) ;�P c0 [] " and 9f�xgc0 = c, where no variable in�x is used in the derivation 1 [] p(�t);�P c [] ".It is worth noting that a similar argument can be applied to prove that if P is aprogram and P 0 is obtained fromP by transforming each clause C = `p(�t) :� c [] �B'2 P to `p(�x) :� d�x;�t
 c [] �B' for x ind C, then for any goal G it is the case thatJP (G) = JP 0 (G). Both this observation and Lemma 4.1 are consequences of theconstraint system structure, extending diagonal elements (i.e., parameter passing)to terms. Because of this observation, in the following we will always write programclauses with at heads.Observation 4.1. The explicit treatment of terms in constraint systems also providesa characterization for a number of expected equivalences among syntacticallydi�erent programs. All of these are consequences of the axioms and thereforeare satis�ed in any constraint system. For example, it is easy to prove from theaxioms that the following two programs have the same goal dependent success setsemantics for any goal.f p(t) :� q(x)q(t0) :� 1 g f p([t0=x] t) :� 1q(t0) :� 1 gThis is a typical consequence of the equivalence induced by the constraint systemstructure on formulae including terms, like those obtained from term substitutionand parameter passing.4.2. Success-Set and Bottom-up Fixed-point SemanticsIn this section we de�ne a bottom-up �xed-point semantics that is proved to beequivalent to the operational semantics of successful computations for any con-straint system. We also study a condensing operator which will be useful in abstract

16 interpretation of CLP programs by abstraction of constraints. The approach wetake follows that of Falaschi et al. [31] and Gabbrielli and Levi [33], and derivesa bottom-up �xed-point based semantics from the operational notion of computedanswer constraint for atomic goal.De�nition 4.1.Let A be a constraint system. A constrained atom has the form `A :� c' whereA is an (�;�)-atom, c is an A-constraint, and FV (c) � var(A). We denote BAthe set of constrained atoms on a constraint system A.The (operational) computed answer constraint semantics is de�ned in terms ofthe the set of successful computations speci�ed by the transitive closure of thederivation relation ; on atomic A-goals:O(P) = � p(�x) :� 9(c)�x �� 1 [] p(�x);�P c [] " 	 :This generalizes the computed answer constraint semantics of Gabbrielli and Levi[33] to arbitrary constraint systems. Intuitively, a constrained atom `p(�x) :� c'in O(P) represents the set of instances p(�(�x)), where � is a solution to the an-swer constraint c. The following lemma proves the AND-compositionality for theoperational semantics of constraint logic programs, providing a characterizationof answer constraints for conjunctive goals in terms of the computed answer con-straint semantics (an equivalent lemma is proved in [33] for the classical constraintstructure of Ja�ar and Lassez [45]).Lemma 4.2.Let G = c0 [] p1(�t1); :::; pn(�tn) be an A-goal and P 2 CLP (A). JP (G) = ci� there exist pi(�xi) :� ci 2 O(P), such that �xi ind G and �xi \ �xj = ; for1 � i; j � n, i 6= j; and c = 9(c0
 d�x1;�t1
 c1:::
 d�xn;�tn
 cn)var(G).It can be shown that the unfolding of a clause (goal) with constrained atoms isindependent from the variable names used in constrained atoms (see Lemma A.1 inAppendix). This can be expressed in the semantics by a relation � that capturesthe notion of equivalence upto renaming on constrained atoms. De�ne the binaryrelation � on BA as follows: given A1 � `p(�x1) :� c1' and A2 � `p(�x2) :� c2' inBA, A1 � A2 if and only if there exist \renaming apart" variables �x0 such that �x0,�x1, and �x2 are mutually disjoint; �x0 ind c1; c2; and @�x0�x1c1 = @�x0�x2c2. It is easy to showthat � is an equivalence relation.De�nition 4.2.The A-base of interpretations is BA=�.In the remainder of the paper we will be concerned primarily with the quotientstructure BA=�, and for notational simplicity, denote this by BA. Given a syn-tactic object o, we denote by `p(�x) :� c <<o I' a variant of a constrained atom`p(�x) :� c' in I that has been renamed apart from o, i.e., such that [p(�x) :� c]� 2I and �x ind o. We extend this to specify tuples of syntactic objects that have beenrenamed apart, so that hA1; : : : ; Ani <<o I represents a tuple hA01; : : : ; A0ni whereeach of the A0i is a variant of an element Ai in I that has been renamed apart fromo, and where i 6= j implies Ai and Aj are variable-disjoint.

17The �xed-point semantics is de�ned in terms of an immediate consequence op-erator on the complete lattice h}(BA);�i, in the style of van Emden and Kowalski[71].De�nition 4.3.Let A be a constraint system and P 2 CLP (A). The mapping TP : }(BA) !}(BA), is de�ned as followsTP (I) = [C2P 8>>>><>>>>: [p(�x) :� 9(~c)�x]� ���������� C � `p(t) :� c [] p1(�t1); : : : ; pn(�tn)'n � 0; �x ind C and for each i = 1:::n :pi(�xi) :� ci <<C;�x1 ;:::;�xi�1 I�xi \ �x = ;; c0i = d�xi;�ti
 ci;~c = d�x;�t
 c
 c01
 � � �
 c0n 9>>>>=>>>>;Interestingly, it turns out that the �xed-point semantics of a program can alwaysbe computed into a �nite dimension constraint system. This follows from the prop-erties of cylindri�cation with respect to substitution (see Theorem 3.1). Intuitively,the hiding operator allows the de�nition of \local environments" that cannot beinuenced by substitution, and allows hidden variables to be \recycled" outside thescope of the hiding operator, making it possible to get by with only a �nite setof variables that are recycled over and over. This is useful for program analysispurposes, since it simpli�es the construction of Noetherian abstract domains (e.g.,see the a�ne relation analysis in Section 6.1).By analogy with the operator �, which expresses the notion of \merging to-gether" the information present in two constraints, we de�ne a condensing operator[: }(BA) �! }(BA) such that for any I 2 BA:I[= n[p(�x) :� Xf@�x�y c0 j p(�y) :� c0 <<�x Ig]� j p 2 preds(I)oThe operator [captures the notion of merging together the information present ina set of constrained atoms. The result of condensing is an interpretation containingat most one constrained atom for each predicate symbol p in the program. Suchconstrained atoms have the form `p(�x) :� P cj ' and represent the join (intuitivelycorresponding to disjunction) of all the answer constraints cj for the goal p(�x). Sincethe number of such answer constraints can be in�nite, in�nite joins of constraintsare allowed in constrained atoms. This is modeled by having the universe C of aconstraint system be closed under in�nite joins. Note that this closure propertycannot be speci�ed by any �nitary �rst-order formula.To specify the relation between interpretations and condensed interpretations,we consider a lower powerdomain preorder v. Let a << I denote a variant of anobject a 2 I that has been renamed apart from all elements of I. The preorder v isde�ned as follows: I v I 0 i� for each p(�x) :� c << I there exists p(�x) :� c0 << I 0such that c � c0. Let � denote the induced equivalence relation: I1 � I2 i� I1 v I2and I2 v I1. In the discussion that follows, we will be concerned primarily withthe partial order over }(BA)= � induced by v. For simplicity of exposition, weabuse notation and use v to denote this partial order and }(BA) to denote theset }(BA)= �. It is easy to prove that h}(BA);vi is a complete lattice, with joinoperator t de�ned as I t I 0 = (I [I 0)[.

18 Proposition 4.1.[is an upper closure operator on h}(BA);vi.We denote by }[(BA) the set of condensed interpretations (}(BA))[. It is easyto prove that for any I; I 0 2 }[(BA): I v I 0 i� (I [I 0)[= I 0, and that h}[(BA);viis a complete lattice.An analogous operator T [P : }[(BA) �! }[(BA) on condensed interpretationscan be de�ned as T [P (I) = (TP (I))[. The existence and uniqueness of the least�xpoints of these operators is, in both cases, a consequence of continuity of TP andT [P :Lemma 4.3.Let A be a constraint system and P 2 CLP (A). For any I 2 }(BA): (TP (I[))[=(TP (I))[.Proposition 4.2.Let A be a constraint system and P 2 CLP (A). TP is a continuous functionon the complete lattice h}(BA);�i and T [P is continuous on the complete latticeh}[(BA);vi.De�nition 4.4. [�xed-point semantics]The �xed-point semantics of a program P over a constraint system A is given byF(P) = lfp(TP) and F [(P) = lfp(T [P) .The following result states the equivalence between the operational and the (pos-sibly condensed) �xed-point semantics, for any constraint system A.Theorem 4.1.Let A be a constraint system with dimension !, and P 2 CLP (A), then F(P) =O(P)=� and F [(P) = (O(P)=�)[.It is worth noting that the condensing operator [is actually an abstract inter-pretation. Indeed, with any condensed interpretation I[, there are many (possibly)di�erent interpretations J such that J [= I[. While the non-condensed semanticsassociates with each predicate the collection of all possible constraints that onemay obtain for it, the condensed one associates a single constraint with each pred-icate de�ned in the program. The latter case is particularly useful for specifyingtermination conditions in terms of ascending chains, ordered by entailment (�), ofconstraints (see Section 5).Observation 4.2. Note that from Theorem 4.1, the semantics F(P) correspondsprecisely to the s-semantics, which is well known to be fully abstract with re-spect to computed answer substitutions in (pure) logic programming ([10, 31]).This because O characterizes precisely the set of computed answer constraintsfor arbitrary atomic goals. In this case, when an atomic goal p(x) has the twoanswer constraints x = a and true in the Herbrand constraint system, we ob-tain the denotation f[p(x) :� x = a]�; [p(x) :� true]�g. A similar approachto characterize computed answer constraints in constraint logic programming is

19also considered in [33]. The condensed semantics instead, corresponds to the socalled Clark's semantics [14] (c-semantics in [31]), which characterizes correctanswer substitutions in logic programming. In this case, for the atomic goal p(x)above, we obtain the denotation f[p(x) :� true]�g. This semantics is proved tobe optimal for ground dependency and covering analysis in [35]. The relationbetween collecting semantics for logic programs and abstract interpretation hasbeen recently studied in [35] for a number of di�erent observable properties.The semantics given thus far in this section generalize the corresponding resultsfor traditional logic programs to arbitrary constraint systems. We conclude thissection with an example that shows that they can be used for other, very di�erent,purposes as well.4.3. Machine-level TracesThis example illustrates a non-standard semantics for constraint logic programs,that of machine-level traces, as an instance of the framework of this paper (Stoydiscusses similar non-standard semantics in a denotational context [67]). Such asemantics is essential, for example, if we wish to reason formally about the correct-ness of a compiler (e.g., see [39]), low-level compiler optimizations, or about thebehavior of debuggers or pro�lers. Instead of constrained atoms where each atomis associated with a constraint, this semantics will associate with each atom a setof instruction sequences that may be generated on an execution of that atom.Suppose we are given some low-level WAM-like abstract machine for the execu-tion of CLP programs. Let Instr denote the (possibly in�nite) set of all possiblemachine instructions (by \instruction" we mean an instruction name|the opcode|together with the values of the operands). A computation is de�ned by a sequenceof states obtained as instructions are executed. If each instruction is a function overstates, and we assume that all programs start execution in some given (�xed) initialstate, then the results of a computation can be speci�ed simply by the sequenceof instructions executed. We refer to such a sequence as a trace. The set of alltraces is denoted by Trace = Instr�. The meaning of a program is given by the setof all of its possible executions, i.e., by a set of traces. In the case of a low-leveltrace semantics for constraint logic programs, therefore, the universe is given byC = }(Trace).In general, certain minimal capabilities are necessary in any low-level instructionset in order to execute a constraint logic program. To this end, we assume thefollowing:1. Corresponding to each primitive constraint c of the language there is a se-quence of machine instructions impl(c) that realizes c at the machine level.2. There is an instruction hide(x) with the following behavior: for any variablex, hide(x) removes any constraint on the variable x in the data structuresrepresenting the computed constraint at that point.The basic operations on sets of traces are de�ned as follows: given S; S1; S2 2 C:1. S1 � S2 = S1 [S2.2.
 is pointwise concatenation: let `::' denote the concatenation operation onsequences, then S1
 S2 = fs1 :: s2 j s1 2 S1; s2 2 S2g.

20 3. 0 = ;.4. 1 = f"g.5. LetX = fx1; : : : ; xng, then 9XS = fs :: hhide(x1); hide(x2); � � � ; hide(xn)i js 2 Sg.6. dt;t0 = impl(t = t0).In a low level machine, the constraints manipulated and accumulated during theexecution of a program are necessarily represented in terms of machine-level en-tities, e.g., by means of data structures constructed in memory. It follows thatreferences to constraints c in the derivation relation ;P or the immediate con-sequence operator TP will, in the low-level semantics, be replaced by referencesto impl(c). The corresponding high-level constraints can be reconstructed wherenecessary, e.g., for displaying a computed answer constraint to the user, or for de-bugging purposes. Given our assumption that there is a single initial state thatevery program begins execution in, given a trace s it is possible to reconstruct theconstraint obtained in the state resulting from the execution of s: this is denoted byconstraint(s). This extends in the obvious way to sets of traces: given any S 2 C,constraint(S) = fconstraint(s) j s 2 Sg. De�ne the relation ' � C � C as follows:for any S1; S2 2 C: S1 ' S2 if and only if constraint(S1) = constraint(S2). ' is anequivalence relation.It is easy to see that the structure (C;
;�;1;0) satis�es the axioms of a closedsemiring, so Axiom R in the de�nition of constraint systems is satis�ed. Theremaining axioms, namelyC1�C5 andD1�D4, are satis�ed modulo the equivalencerelation '. Thus, the machine level semantics presented forms a constraint systemmodulo '.As a simple example of an application of such a semantics, consider the followingprogram over the Herbrand constraint domain:p(X) :- X = a, q(Z).q(Y) :- Y = a.q(Y) :- Y = b.The only primitive constraint over this domain is `='/2: suppose that the low-level instruction set under consideration contains an instruction unify such thatimpl(t1 = t2) = unify(t1; t2). In addition, assume the instructions call, return,and fail for managing procedure calls. The (operational) semantics of the proce-dure q is then given byq(Yi) :� fhunify(Yi; a); returni; hunify(Yi; b); returnig j i � 0g.Here, the subscripts on the variables denote alphabetic variants of the programclauses that may be used at runtime: the idea is that there is a trace describing theexecution of every possible variant of the clause appearing in the source program.Thus, the meaning of a predicate is an in�nite set of traces representing instructionsequences that may be obtained at runtime, rather than �nite sets of instructionsequences that may be generated by a compiler. The semantics for the procedurep can similarly be obtained as:

21p(Xi) :� fhunify(Xi; a); unify(Zi; Yi); call q=1; unify(Yi; a); return;hide(Zi); returni;hunify(Xi; a); unify(Zi; Yi); call q=1; unify(Yi; b); fail; faili j i � 0gWe have deliberately kept the instruction set under consideration here small, inorder to simplify the presentation. It is not di�cult to see how such an instructionset could be embellished to be more realistic. For example, argument passingthrough a �xed set of registers, as in the WAM, can be modelled by requiring thatthe arguments in the head of each clause of an n-ary predicate be distinct variablesA1; : : : ; An; if a is a constant and a variable x occurs for the �rst time in a trace fora procedure in an instruction `unify(x; a)', we could replace this instruction by amore specialized one of the form `get constant(x; a)' (and similarly for functionsymbols of nonzero arity); and so on.5. ABSTRACT CONSTRAINT SYSTEMSThe de�nition of an abstract constraint system, which speci�es a non-standardsemantics for a constraint programming language, is performed in two steps: termabstraction and constraint abstraction. In the �rst step new syntactic objects areintroduced to represent concrete terms. In the second one, constraints on theabstracted term system are de�ned.In general, a constraint system is an interpretation (in a closed semiring) for con-straint formulae. To relate constraint systems, we follow the approach to \staticsemantic correctness" in [7]. Correctness of non-standard semantic speci�cationscan be handled in an algebraic way through the notion of morphism (see [70]). Thealgebraic notion of morphism can be made less restrictive by assuming that the car-riers of the algebras involved are partially ordered sets. We use this weaker notionof morphism between algebraic structures, capturing the approximation possiblyinduced by abstract interpretations or by any approximate semantics de�ned in theframework. This provides, at the same time, a characterization for domain correct-ness conditions (traditionally speci�ed by Galois connections) and the correctnessof abstract operations.De�nition 5.1. [morphism, semimorphism]Let � and � 0 be term systems over sets of variables V and V 0, and with substi-tution operators s and s0 respectively. A morphism � : � m�! � 0, is a functionmapping terms of � to terms of � 0 such that for any t1; t2 2 � and x 2 V :�(sx(t1; t2)) = s0�(x)(�(t1); �(t2)). Consider constraint systems A and A0, whereA = (C;
;�;1;0; 9X; dt1;t2)X�V ;t1;t22�and A0 = (C0;
0;�0;10;00; 90X ; d0t1;t2)X�V 0;t1;t22� 0 :A mapping �� : A s�! A0 is a semimorphism i� there is a morphism of termsystems � : � m�! � 0 such that for each c; c1; c2 2 C, C � C, X � V and t1; t2 2 � ,the following hold:1. ��(0) = 00;

22 2. ��(1) �0 10;3. ��(PC) �0 P0��(C);4. ��(9Xc) �0 90�(X)��(c);5. ��(c1
 c2) �0 ��(c1)
0 ��(c2);6. ��(dt1;t2) �0 d0�(t1);�(t2).The intuition behind this de�nition may be understood as follows. Recall thatthe natural order �0 over C0 is de�ned as x �0 y i� x �0 y = y, where �0 in-tuitively denotes some kind of \merge" operation. For the purposes of abstractinterpretation, the objects that are merged in this manner represent possible pro-gram behaviors, and the smaller the set of behaviors denoted by an object the moreinformation it conveys. Thus, x �0 y denotes that x provides more information thany, i.e., is a more precise description of program behavior. The requirements for asemimorphism given above, therefore, state simply that for each of the operationsin the (concrete) constraint system A, operating on objects in C and then applyingthe semimorphism (i.e., abstracting) is no worse than applying the semimorphism�rst and then applying the corresponding operation in the (abstract) constraintsystem A0. The following proposition states that semimorphisms correctly abstractthe (derived) notion of substitution into constraints:Proposition 5.1 (substitution correctness).Let A and A0 be constraint systems as above. Let also c 2 C, x 2 V and t 2 � suchthat x ind t. If �� : A s�! A0 is a semimorphism then ��(@txc) �0 @0�(t)�(x) ��(c).For notational simplicity in the discussion that follows, we will sometimes omitthe subscript from a semimorphism when the morphism � on the underlying termsystem need not be considered explicitly.We are now able to provide a notion of correctness for constraint systems. Itcorresponds precisely to the Galois insertion-based notion of domain and operatorcorrectness belonging to the classical framework of abstract interpretation [22], asspeci�ed by Proposition 5.3 below. Here, the unifying framework of constraintsystems provides a uniform treatment for domain and operator correctness, bothspeci�ed by the simple notion of semimorphism.De�nition 5.2.Let A and A0 be constraint systems as above. A0 is correct with respect to A i�there exists a semimorphism �� (i.e., � : � m�! � 0 and � : A s�! A0) that is asurjective and additive mapping of hC;�i into hC0;�0i.The following proposition provides the basis for designing abstract constraintsystems by consecutive approximations.Proposition 5.2.For any constraint system A, A0 and A00: if A00 is correct with respect to A0 andA0 is correct with respect to A, then A00 is correct with respect to A.

23Additivity and surjectivity allow the semimorphism to associate the \best" ap-proximating constraint in A0 with any concrete constraint in A. This is captured bythe notion of Galois insertion, where a pair of functions (�;)|denoting abstrac-tion and concretization respectively|is a Galois insertion of hC0;�0i into hC;�i i�� and are monotonic, �((c0)) = c0 and c � (�(c)) for each c 2 C and c0 2 C0([22, 24, 60]). The following proposition relates the notion of semimorphism withthe notion of Galois insertion:Proposition 5.3.Let A and A0 be constraint systems with universes C and C0 respectively. If A0 iscorrect with respect to A by means of a semimorphism �, there exists a mapping : C0 �! C such that (�;) is a Galois insertion of hC0;�0i into hC;�i.Notice that, as observed in [24], by additivity and surjectivity,Pfc j �(c) �0 c0g =Pfc j �(c) = c0g.In the framework of abstract interpretation, correctness of �xed-point approx-imations requires some additional conditions on correctness of the non-standard(abstract) semantic operators [22]. With the assumption of additivity, semimor-phisms are adequate for specifying both Galois insertions, as seen in Proposition5.3, and operator-correctness. Let A0 be a constraint system that is correct withrespect to A, by means of a semimorphism��. Let P = fC1; :::; Cmg be a programin CLP (A). The corresponding program on A0, denoted T��(P) is a set of clausesfC 01; :::; C 0mg such that for each i = 1; :::;m if Ci = `p(�t) :� c [] p1(�t1); : : : ; pn(�tn)'then C 0i = `p(�(�t)) :� �(c) [] p1(�(�t1)); : : : ; pn(�(�tn))' where � extends element-wise on tuples of terms. Therefore, if P speci�es a set of relations on A, thenT��(P) speci�es a corresponding set of relations on A0. Correctness of A0 withrespect to A provides the correctness of the relations de�ned in T��(P) (the se-mantics of T��(P)) with respect to those de�ned in P (the semantics of P). Thefollowing theorem relates the semantics of a program with that of a correspondingone de�ned on a correct constraint system.Theorem 5.1.Let P 2 CLP (A) and P 0 2 CLP (A0) be the corresponding program on A0. IfA0 is correct with respect to A, there exists � : }(BA) ! }(BA0) such that�(F(P)) v0 F(P 0) and �(F [(P)) v0 F [(P 0).It is worth noting that the relation between the semantics of a program and thatof the corresponding one on a correct constraint system corresponds precisely to thecorrectness condition in abstract interpretation. Therefore, dataow analysis for aprogram can be obtained by transforming it (by T�) into a corresponding programde�ned on an abstract (approximated) constraint system (see later Section 5.2for a formal treatment of constraint approximation). The key point here is thatboth the concrete program P and the corresponding abstract one T��(P) are CLPprograms (i.e, T�� is a program transformation), and the corresponding semanticinterpretations are instances, over two di�erent constraint systems, of the samegeneralized semantics for CLP , as shown in Figure 1 (see [42] for a discussion ofimplemented systems that use this transformational approach for the analysis ofProlog programs).Given a (�xed-point) concrete semantics, dataow analysis usually requires com-puting the limit of Kleene chains. Convergence to the least �xed-point in �nitely

24
T�(P) F ([)(T�(P))P F ([)(P)-F ([)

-F ([) ?�?T�Figure 1. Abstract interpretation by program transformation.many steps can be obtained either by requiring the abstract domain to satisfy theascending chain condition, or by using widening operators to force convergence [22].In the followingwe consider the conditions on the constraint system that ensure thatthe resulting abstract domain satis�es the ascending chain condition. We will focusprimarily on abstract interpretation by condensing interpretations. This is becausecondensing provides a description of the multiplicity of answer constraints in termsof (possibly in�nite) joins in the constraint system. This is essential in abstractinterpretation by program transformation, where the termination of the analysishas to follow from the structure of the constraint system (this condition is satis�edby several well known constraint systems useful for analysis, e.g., see Section 6.1below). We introduce the ascending chain condition on constraint systems and weshow how this condition ensures �niteness in �xed-point computations. This ap-proach is more closely related to the constraint system structure than the wideningone, which is in turn more related with the (semantic) �xed-point computation.A set of constraints fc1; :::; cn; ::g is said to be free-variable bounded if there is a�nite set of variables V such that FV (ci) � V for each i � 1. The followingde�nition is important for abstract interpretation purposes:De�nition 5.3.A constraint system A is Noetherian i� its universe C does not contain anyin�nite ascending chain of free-variable bounded constraints.The free-variable-boundedness condition here is important, for otherwise anyconstraint system with a denumerable set of variables is not Noetherian. To seethis, consider the constraints ci � X1 _ � � � _Xi: the set of constraints fci j i � 1g,ordered by entailment, forms an in�nite ascending chain even on a two-valuedboolean interpretation. However, it is easy to see that this set is not free-variable-bounded.

25Given a Noetherian constraint system A, it is easy to prove that the set ofA-interpretations }[(BA) is Noetherian. An abstract constraint system is then aNoetherian constraint system. Let A be a constraint system, then a correct abstractinterpretation for constraints in A is a tuple (A; ��;Aa) where Aa is an abstractconstraint system and �� is a semimorphism which speci�es the correctness of theabstraction process.Di�erent semantic characterizations lead to di�erent abstract evaluation strate-gies. Top-down abstract interpretation corresponds to the abstraction of the stan-dard operational semantics discussed in Section 4.1. Our approach to top-downabstract interpretation encompasses various abstract interpretation frameworks de-�ned in the literature. For example, Bruynooghe's top-down abstract interpretationscheme for positive logic programs [11], based on an AND/OR-tree construction,encodes our interpretation structure in a corresponding tree-structure where AND-nodes interpret the
 operator and OR-nodes implement the � operation on con-straints. As usual, abstract uni�cation is encoded by appropriately de�ning the
 operator. The search strategy is the same as the one given in [11]. Bottom-upabstract interpretation, on the other hand, allows the computation of �nite ap-proximations to the �xed-point semantics associated with a given constraint logicprogram (this approach has been applied to static analysis of pure logic programsin [5]). Given an abstract constraint system, the corresponding abstract transfor-mation map is de�ned as in the concrete case, by considering the correspondingabstract operators instead of the concrete ones. As in the pure logic programmingcase, the correctness of a suitable set of operators implies the correctness of theentire framework (both top-down and bottom-up). In the constraint logic pro-gramming case, the correctness of the analysis corresponds then to the correctnessof the constraint system, as shown in Theorem 5.1. In the following we will con-centrate on bottom-up (�xed-point-based) abstract interpretations only. For anyNoetherian lattice }[(BA), we have:Proposition 5.4.Let A be an abstract constraint system. If P 2 CLP (A), there is a �nite k � 0such that F [(P) = T [P "k(;).Proposition 5.4 does not hold in general for non-condensed interpretations, unlessthe constraint system is �nite.Observation 5.1. It is worth noting that our constraint system construction imposessome restrictions on the traditional lattice-based theory of abstract interpretation[24]. However, most of these restrictions come from the standard interpretationof the fundamental (domain-dependent) operators involved in logic programming.Indeed, from the domain viewpoint, the basic restriction is only the distributivitylaw of closed semirings. The impact of this law in the semantics of CLP pro-grams and the application of a weaker structure in dataow analysis is discussedlater in Section 6. The remaining laws are associated with domain-dependentoperators and formalize their expected behaviour. These operators are quite com-mon in most of the frameworks for abstract interpretation of logic programs (e.g.,see [5, 11]). Our approach has the advantage of axiomatically unifying all theseoperators into a single general structure: the constraint system. The de�nitionof a common structure underlying the construction of abstract domains and op-erators has many important bene�ts, in particular: (1) it summarizes the general

26 properties of domain dependent operators, which should be invariant with respectto abstraction, in order to preserve the standard properties of the semantics; and(2) it provides an immediate correspondence between well known structures ofconstraints and the intended dataow analysis (e.g., see the constraint system ofpropositional formulae in the next section or the system of linear equalities inSection 6.1). Of course, abstract domains which are not complete lattices, andoperators that do not satisfy the axioms, cannot be modeled as constraint systemsin our framework. The rigid structure of constraint systems can be weakened toinclude more analyses, as discussed in Section 6.5.1. An Example: Rigidity AnalysisA number of researchers have considered abstract interpretation techniques forthe analysis of ground dependences for pure logic programs (see, for examples,[5, 21, 40, 58, 59]); this notion can be generalized to that of rigidity with respectto size measures, or \norms", for terms. Intuitively, a norm is a function from theset of terms to the set of natural numbers such that the norm of a term dependsonly on the its principal functor and (some of) its subterms. In the following weconsider the length and size norms on the Herbrand term system:jtjlength = 0 if t is a variable or t = [],jtjlength = 1 + jtailjlength if t = [hjtail],jtjsize = 1 if t is a variable or a constant,jtjsize = 1 + jt1jsize; :::; jtnjsize if t = f(t1; :::; tn).Given a norm j � j, a variable x is said to be relevant to a term t with respect toj � j if there is some term t0 such that j t j 6= j sx(t0; t) j.De�nition 5.4. [rigidity [9]]Given a term system � = (T; Sub ; V), a term t 2 � is rigid with respect to anorm j � jS on � i� j�(t)jS = jtjS for every substitution � 2 Sub.Consider the term system �(�;V) being de�ned over a �nite set of variables V .Let us consider the term system �� as de�ned in Example 2, where � = V : termsare �nite sets of (relevant) variables with respect to a given norm. Rigid terms aredenoted by the empty set of variables. Given a norm j � jS , consider the mappingVrelS : � ! �V :VrelS(t) = � v 2 V �� v is relevant to t with respect to j � jS 	 :It is easy to see that the traditional notion of groundness is a special case of rigidityunder the selection of the norm size, since Vrelsize(t) = ; i� t is ground.Proposition 5.5.VrelS is a morphism of term systems.Marriott and S�ndergaard have proposed an elegant domain, named Prop, torepresent ground dependences among arguments in atoms ([21, 56, 58, 59]). This

27domain can be expressed as an instance of our framework using the algebra of propo-sitional formulae with disjunction. Let Prop = (PropV ;^;_; true; false; 9X ;^(t)$^(t0))X�V ;t;t02�V [f;g be the algebra of possibly existentially quanti�ed disjunctionsof formulae, de�ned on the term system �V , by the connectives ^ and $; where,for each �nite set of variables fx1; :::; xmg 2 �V : ^(fx1; :::; xmg) = x1 ^ ::: ^ xm,and ^(;) = true. Intuitively, the formula x ^ y ^ z $ w ^ v represents an equa-tion t = t0 where VrelS(t) = fx; y; zg and VrelS(t0) = fw; vg; x ^ y represents aterm whose rigidity depends upon variables x and y; while x_ y represents a set ofterms whose rigidity depends upon variables x or y. Local variables are hidden byexistential quanti�cation, projecting away non-global variables in the computation.Since x$ true is equivalent to x, a variable x that is guaranteed to be bound to aground term is denoted x (i.e., the expression x denotes that x is rigid). It is easyto prove that, because of the �niteness of V , Prop=$ is a �nite constraint system.In this section we outline the proof of correctness for the constraint systemProp=$ with respect to H. Recall that an equation set is in solved form if it hasthe form fv1 = t1; :::; vn = tng where the vi's are distinct variables that do notoccur in the right hand side of any equation [53]. Any simple equational constraintcan be transformed into an equivalent constraint of the form 9Xc where c is insolved form. In particular we say that a quanti�ed set of equations is in solvedform if it has the form 9Xfv1 = t1; :::; vn = tng where fv1 = t1; :::; vn = tng is insolved form and X � [fvar(ti) j 1 � i � ng. Given a norm j � jS , each set ofequational constraints c = fx1 = t1; :::; xn = tng in H is associated with a booleanexpression specifying rigidity relationships among (relevant) variables by means ofa mapping �S that is de�ned as follows:�S(c) = nVi=1 (xi $ ^(VrelS(ti))):Let E, E0 be two equivalent (�nite) sets of equations and let sol(E) and sol(E0)denote the corresponding (quanti�er-free) sets of equations in solved form. In thiscase, correctness follows from the observation that any two sets of equations insolved form are equivalent i� they are isomorphic, where a solved form equation setE is isomorphic to E0 i� there is a subset fx1 = y1; :::; xk = ykg of E where yi's aredistinct variables such that E0 = E [y1=x1; :::; yk=xk; x1=y1; :::; xk=yk] (see Theorem3.13, page 81 in [53]). It is straightforward to prove that if E and E0 are equivalentsets of equations then �S(sol(E)) $ �S(sol(E0)). Since PropV is �nite, we canextend �S to be an additive semimorphism from the constraint system H to Prop:if c = [f9Xici j i 2 Ig is an arbitraryH-constraint (where ci are simple constraints),for a possibly in�nite set of indices I, we de�ne �(c) = _f9Xi�S(sol(ci)) j i 2 Ig.Theorem 5.2.� is an additive semimorphism from the constraint system H to Prop.Example 5.1. Notice that, because of the use of solved form equation sets, �behaves as a semimorphism. Consider the equation e = f[xjy] = [zj[wjh]]g withthe norm \length" (l). While �(e) = �l(fx = z; y = [wjh]g) = fx $ z; y $ hg,the diagonal element is fVrel l([xjy])$ Vrel l([zj[wjh]])g= fy $ hg. It is easy tosee that the diagonal element is weaker than the abstraction of the correspondingconcrete constraint.

28 Example 5.2. Consider the norm \length" and the following constraint logic pro-gram on the Herbrand constraint system P specifying the append procedure:append([]; L;L):append([HjY];X2; [HjZ]) : �append(Y; X2; Z):The abstract semantics for length-rigidity analysis isT [P "0(;) = ;T [P "1(;) = append(x1; x2; x3) :� x1 ^ (x2 $ x3)T [P "2(;) = append(x1; x2; x3) :� (x1 ^ x2 $ x3)_9fx01;x02;x03g(x1 $ x01 ^ x2 $ x02 $ x03 $ x3)= append(x1; x2; x3) :� x1 ^ (x2 $ x3) (�xed-point)The abstract semantics obtained above generalizes the standard ground behaviorto length-rigidity behavior: \the second argument list-length can change i� thethird argument does". In ground dependence analysis Vrelsize(t) = var(t) andthe abstract meaning of append is described by the relationappend(x1; x2; x3) :� x3 $ (x1 ^ x2):This result can be obtained by size-rigidity analysis. It is worth noting that allthe standard semantic properties are still valid in Prop, since Prop is a constraintsystem. Therefore, given the abstract goal G = append(fH;Xg; fY g; fH;Zg)(which abstracts append([HjX]; Y; [HjZ])), by Lemma 4.2 and Theorem 4.1 weobtain from the size-rigidity analysis: _J�(P)(G) = f(X ^ Y)$ Zg.5.2. The Approximation Operator on Constraint SystemsA space of approximate constraints can be speci�ed using upper closure operatorson a domain of constraints [24]. This is justi�ed by observing that (by extensiv-ity) they map any constraint into a weaker one. In this section we discuss basicproperties of upper closure operators on constraint systems such that the imageof a constraint system under such an operator is also a constraint system. Thisprovides a systematic way to construct the abstract operators of an abstract con-straint system, given any such closure operator on the universe of the concreteconstraint system. This class of closure operators includes those associated withany abstraction � that behaves as a morphism of constraint systems. As shownlater in this section, this way of de�ning abstract constraint systems is applicableto many, but not all, abstractions. This limitation drives our interest in weakerconstraint structures, discussed in Section 6.We �rst observe that any upper closure approximation of a constraint systemde�nes a partition of the universe of constraints into convex sets, i.e., if � is an upperclosure on the universe of constraints C, the set fc0 2 C j �(c) = �(c0)g is convex. Asa consequence, the image of a universe of constraints C under a given upper closureoperator � is a set of \abstract" constraints each representing a convex space of\concrete" solutions. However, in general, the abstract constraints so obtained

29may not satisfy the axioms for constraint systems: additional conditions have tobe applied to ensure that they still provide a constraint system structure.De�nition 5.5.Let A be a constraint system with universe C, term system � and set of variablesV . An upper closure operator � on hC;�i is 9-consistent if for each c 2 Cand X � V : �(9Xc) = 9X�(9Xc). An upper closure operator � on hC;�i is @-consistent if for each c 2 C, x 2 V and t 2 � such that x ind t: �(@txc) = @tx�(@txc).9-consistency for a closure operator ensures that the approximation of a con-straint where the variables in X are hidden, have the same set X hidden.Fromthis condition we prove that � satis�es the similar condition of @-consistency, the9-quasi-morphism condition (see Lemma 5.2) and that � � 9X is an upper closureoperator.Lemma 5.1.� � 9X is an upper closure operator.Notice that 9X � � is not idempotent, unless 9X and � commute. This is in ac-cordance with a classical result of the theory of closure operators saying that anycomposition of two upper closure operators is an upper closure operator i� theycommute [62].Lemma 5.2 (@-consistency, 9-quasi-morphism).Let � be an 9-consistent upper closure operator on the constraint system A withuniverse C, term system � and set of variables V . Then:for each c 2 C, x 2 V and t 2 � such that x ind t: �(@txc) = @tx�(@txc); and1.2. for each c 2 C, X � V : �(9Xc) = �(9X�(c)).In the remainder of this section we discuss some conditions to systematicallyspecify abstract constraint systems. This characterizes the class of abstract con-straint systems (analyses) which can be systematically obtained as images of closureoperators. As we will see, this program is not applicable to a number of abstractinterpretations. This problem is addressed in Section 6.De�nition 5.6.Let A be a constraint system with universe C. A 9/
-consistent upper closureoperator (consistent for short) � on A is an 9-consistent upper closure operatoron hC;�i that is a
-quasi morphism, namely for each c; c0 2 C: �(c
 c0) =�(�(c)
 �(c0)).In addition to 9-consistency,
-quasi morphism relates meets of abstract con-straints with meets of concrete constraints (recall that an upper closure operator isalso a quasi-complete join-morphism, namely for each C � C, �(PC) = �(P �(C))[74]).Lemma 5.3.Let � be a consistent upper closure operator on the constraint system A, with

30 universe C, term system � and set of variables V . Then for each c 2 C, x 2 Vand t 2 � such that x ind t: �(@txc) = �(@tx�(c)).As observed in [24], any Galois insertion (�;) de�nes an upper closure operator� = � � on the corresponding (concrete) complete lattice. The following propo-sitions provide some su�cient conditions for consistency of upper closures inducedby a Galois insertion.Proposition 5.6.Let A and A] be constraint systems with universes C and C] respectively, suchthat A] is correct with respect to A by means of a surjective and additive semi-morphism �. Let : C] �! C be de�ned as (c]) = Pfc j �(c) �] c]g and� = � �. Then:�(C) is isomorphic to C];1.2. if �(9Xc) = 9]�(X)�(9Xc) for every X � V and c 2 C, then � � is 9-consistent.For example note that condition (2) is satis�ed by the additive semimorphismassociated with the abstract constraint system Prop.The consistency of � � can be proved when � is actually a morphism of con-straint systems.Proposition 5.7.Let A and A] be constraint systems with universes C and C] respectively, suchthat A] is correct with respect to A by means of a surjective and additive semi-morphism �. Let : C] �! C be de�ned as (c]) = Pfc j �(c) �] c]g and� = � �. Let X � V and c; c1; c2 2 C. If �� is a morphism on constraintsystems then:9X�(c) = �(9Xc); and1.2. �(�(c1)
 �(c2)) = �(c1
 c2).This result gives also a su�cient condition on A] such that the composition of9 and � is a closure, i.e., that 9 and � commute.Let A = (C;
;�;1;0; 9X; dt1;t2)X�V ;t1;t22� be a constraint system and � be anupper closure operator on A. We de�ne:�(A) = (�(C); ~
; ~�;1; �(0); � � 9X ; �(dt1;t2))X�V ;t1 ;t22�where �(C) = fc 2 C j c = �(c)g; c1 ~
c2 = �(c1
 c2) for each c1; c2 2 �(C); andand ~� is de�ned, for possibly in�nite families C � C, as: ~PC = �(PC). In thefollowing we denote by ~@ the induced substitution operator in �(A).Observation 5.2. It is worth noting that �(A) corresponds (i.e., is isomorphic) toany structure of abstract constraints such that (�;) is a Galois insertion be-tween the concrete and the abstract universe of constraints, � = � � andwhere the abstract operators of meet, join and cylindri�cation are de�ned as thecorresponding best correct approximations with respect to � and (see [24]),namely: �c1; c2:�((c1)
 (c2)), �c1; c2:�((c1) � (c2)) and for any X � V

31�c:�(9X(c)), respectively. However, ~@ may not correspond to the best approx-imation for substitution (i.e., � � @) unless � is consistent (see Lemma 5.4 be-low) or satis�es other properties (see Secion 6). However, for any closure �,c 2 �(C), x 2 V and t 2 � such that x ind t, it is easy to prove by extensivitythat �(@txc) � ~@txc.Lemma 5.4. Let � be a consistent upper closure operator on the constraint systemA, with universe C, term system � and set of variables V . Then for each c 2 �(C),x 2 V and t 2 � such that x ind t: ~@txc = �(@txc).Theorem 5.3.If � is a consistent upper closure operator on A, then �(A) is a constraint system.By
=�-quasi-morphismand Lemmata5.2, 5.3 and 5.4: �(A) is correct with respectto A by means of the morphism �id.Example 5.3. Cylindri�cations are monotonic operators, while idempotence andextensivity are speci�ed by axioms C4 and C2 respectively. Moreover, cylin-dri�cations commute, so if X and Y are sets of variables and c is a constraint:9X9Y 9Xc = 9X9Y c. However, for each set of variablesX: 9X is not a consistentupper closure operator on the constraint system because it does not satisfy the
-quasi morphism condition (see Axiom C3).Example 5.4. Another example of non-consistent closure is given by the wellknown interval approximation. Consider the concrete constraint system LRnin Example 4. An extensive operator on LRn can be obtained by approximatingany convex polyhedron with a hypercube, which is a polyhedron whose facets areparallel to the axes (similar techniques have been used for static array boundchecking by interval approximation in [22]). For any set of polyhedra c 2 P,de�ne box (c) as the least hypercube containing c. box is clearly an upper closureoperator on the domain of convex polyhedras ordered by set inclusion. It is worthnoting that box (;) = ; and for each X � Vn: box (9̂Xc) = 9̂Xbox (c), but box isnot a
-quasi morphism. A similar behaviour is shared by the convex hull oper-ator in [27] combining convex polyhedra for linear restraint analysis. Both theinterval and the convex polyhedron abstractions can be used to statically detectfuture redundant constraints in CLP (R) computations (this problem has beenstudied in the context of compiler optimization in [48]). Intuitively, a constraintc in a clause is future redundant if, once c has been tested for satis�ability, it doesnot matter whether c is added to the constraint store, because the computationwill inevitably add constraints stronger than c to the store. Here we sketch a for-malization of this analysis as a non-standard CLP computation using a slightlydi�erent notion of redundancy. Consider the constraint system LRn of Example4. Let P 2 CLP (LRn) and � be any extensive operator on LRn. Assume pbe a predicate symbol de�ned in P and let C = `p(�t) :� bc \ c0 [] B' 2 P be aclause de�ning p. Let P 0 = (P n fCg) [fp(�t) :� c0 [] Bg. If p(�x) :� cp is inF [(P 0), i.e., cp is the answer constraint for p in the modi�ed program, cp\bc 6= ;(i.e., cp ^ bc is solvable) and for each convex polyhedron c 2 cp: �(c) � bc (i.e., bc is

32 weaker than �(c)), then bc is future redundant in C. To prove this claim we justnote that by �-extensivity, for each constraint c: c � �(c).It is worth noting that the hypothesis that � is a morphism of constraint systemsin Proposition 5.7, is often too strong for reasonable analyses (e.g., it is easy tosee that the abstraction in Prop is not a morphism). More generally, when theconcrete semantics is de�ned on constraint systems where
 is idempotent and 1is the annihilator for �, any consistent abstraction becomes a
-morphism. Forthis family of constraint systems, any meet of closed constraints is still closed: i.e.,�(c1)
 �(c2) = �(�(c1)
 �(c2)). Therefore ~
 is equivalent to
 in �(A).Theorem 5.4.Let � be a consistent upper closure operator for a constraint system A with uni-verse of constraints C and let c1; c2 2 C. Suppose that �(c1)
�(c2) � �(c1
c2). IfA is
-idempotent and 1 is the annihilator for �, then �(c1
c2) = �(c1)
�(c2).The behavior of consistent closures is too restrictive for most of the abstract in-terpretations, where the intended meet approximation does not support the
-quasimorphism condition. However weakening consistency may result in a structure ofconstraints �(A) that is not, in general, a constraint system. Therefore, more gen-eral abstractions require a weaker notion of constraint system. In the followingsection we consider
-idempotent constraint systems where 1 is annihilator for�, as these conditions are satis�ed in most \concrete" constraint systems, e.g.,CLP (H). These structures turn out to be distributive lattices [38].36. NON-DISTRIBUTIVE CONSTRAINT SYSTEMSIn this section we discuss the impact of di�erent closure operators (abstractions) onthe general properties of constraint systems. Let A be a constraint system. By aquick inspection of Theorem 5.3 we can observe that, for any upper closure operator�, axiomsR1, R2, R4 of De�nition 3 and C2, D1 and D2 of De�nition 5 are satis�edin �(A). Therefore, we identify the remaining axioms: R3, R5 (of De�nition 3),C1, C3, C4, C5, D3 and D4 (of De�nition 5) as those possibly a�ected by a genericabstraction (later we abuse terminology by referring to these as the distributivitylaws). A non-distributive constraint system with universe C, term system � andset of variables V is then a structure similar to a constraint system, as de�nedin De�nition 5, except that the distributivity laws are replaced by the followingrespectively, where c; c0 2 C, C � C, t; t0; t00 2 � and fxg; X � V such that x ind t:3Commutativity of
 is not needed to show that hC;�;0;1;�;
i is a lattice, this being aconsequence of R1, R2, R3, R5,
-idempotence and annihilation for 1. In particular it is possibleto prove from these hypotheses that a
 b and b
 a are both the greatest lower bounds of a andb, whence, by uniqueness,
 is commutative [52]. This extends the result in [38] which requirescommutativity of
.

33R3: 0 � 0
 cR5: c
 (PC) �Pfc
 c0 j c0 2 CgC1: 0 � 9X0C3: 9X(c
 9Xc0) � 9Xc
 9Xc0 C4: 9X[Y c � 9X9Y cC5: Pf9Xc0 j c0 2 Cg � 9X (PC)D3: d[t=x]t0;[t=x]t00 � @tx(dt0;t00);D4: @tx(c
 c0) � @txc
 @txc0.In the following we identify a set of reasonable restrictions for a generic upperclosure operator � on a constraint system A. They provide a characterization forthe analyses that can be captured in some non-distributive constraint system. Welist them below, each one provided with the set of non-distributive laws satis�edin �(A). In the following, t; t0 2 � , x 2 V and x ind t. The proofs of the followingclaims can be easily derived by inspection of the proof of Theorem 6.1 below.P1: �(0) = 0. The abstraction of inconsistent constraints is still inconsistent.This extends the consistency check from concrete to abstract computations.It is applied in common analysis such as: Prop, linear equalities (see Section6.1 and [49]), inequalities (see [27]), 9-approximation and interval approxi-mations in Example 4, etc. The constraint system �(A) is R5, C4, C5, D3and D4 non-distributive, but C3 does not hold.P2: �(dt;t0) = dt;t0. Diagonal elements are invariant under abstraction. Thisis a typical assumption in static analysis by approximating numerical rela-tions between variables of a program, such as: interval approximation, linearequalities and inequalities. The constraint system �(A) is R3, R5, C1, C4,C5 and D4 non-distributive, but C3 does not hold.P3: � is additive. The universe of abstract constraints is isomorphic to a sub-lattice of the concrete one. An additive closure can be obtained by liftingthe abstraction on the powerset (see [26]). This provides a more precise in-terpretation for disjunction. The 9-approximation in Example 4 is additive.The constraint system �(A) is R3, C1, C4, D3 and D4 non-distributive, butC3 does not hold.Axiom C3 can be satis�ed, in its distributive or non-distributive form, providedthat one of the following existential conditions is veri�ed:E1: � � 9 = 9 � � � 9. This is the 9-consistency condition in De�nition 5. Theconstraint system �(A) is R3, R5, C3, D3 and D4 non-distributive.E2: 9 � � = � � 9 � �. 9 preserves the closure, i.e., existentially quanti�ed closedconstraints are still closed. In particular, 9 � � is a closure operator. Thiscondition is satis�ed in numerical abstract domains of constraints such aslinear equalities and interval analysis. The constraint system �(A) is R3,R5, C1, C5, D3 and D4 non-distributive.E3: 9 � � = � � 9. This condition is true i� both E1 and E2 are true. In thiscase, both � � 9 and 9 � � are closure operators [62]. This property is sharedby most of the well known abstractions such as: Prop, linear equalities andinequalities, 9 and interval abstractions, etc. The constraint system �(A) isR3, R5, D3 and D4 non-distributive.

34 Properties P1{P3 can be combined with the existential conditions E1{E3 in order tosatisfy more distributivity laws. For example, we notice that for any upper closureoperator � satisfying P2 and E1, �(A) is only R3, R5 and C3 non-distributive, whileif it satis�es P2 and E3 then it is only R3 and R5 non-distributive. The followingsection shows an application of such closure operators to dataow analysis of CLPprograms.Theorem 6.1.Let A be a constraint system with universe C, variables V and term system � . If� is an upper closure operator satisfying any of the existential conditions E1{E3and a (possibly empty) combination of properties P1{P3, then �(A) is a non-distributive constraint system.It is worth noting that, under the hypothesis of the previous theorem, �(A) isalways distributive in C4. The following example shows that we can prove the D3distributivity, by combining P1 and E3 with a particular de�nition for diagonalelements (namely the best corresponding approximation).Example 6.1. In this example we sketch the systematic derivation of abstract con-straint systems from a given data-abstraction. This corresponds to generate thebest approximating operator (see [24]) for each basic operator in the constraintsystem, including diagonal elements. As we will see, this abstraction reducesthe loss of distributivity in the abstract constraint system. In the following weassume that A is a
 idempotent (distributive) constraint system on the termsystem � with dimension �: A = (C;
;�;1;0; 9X; dt1;t2)X�V ;t1;t22� where 1 isan annihilator for �.Term systems:let �a be a set of objects including a set V such that jVj = jV j = �. Let � : � �! �abe a surjective function such that, by de�ning � : �a �! }(�) as �(a) = ft 2� j �(t) = ag for a 2 �a, then: � � �(a) = a and ftg � � � �(ftg) for a 2 �a andt 2 � . Assume also that � satis�es the following conditions on the structure of theconstraint system � : �(V) = V (therefore V and V are isomorphic by �), and foreach t; t1; t2; t3 2 � , x; y 2 V : �(sx(t; t1)) = �(sy(t2; t3)) when �(x) = �(y), �(t) =�(t2) and �(t1) = �(t3), namely substitution is compatible with the equivalencerelation induced by �.For any y 2 V, a; b 2 �a, de�ne say(a; b) = �(sx(t; t1)) where �(x) = y, t 2 �(a)and t1 2 �(b). From the previous hypothesis it is easy to see that sa is well de�nedon �a, andProposition 6.1.(�a; Sa;V) is a term system of dimension �, and � is a morphism from � into�a.Constraint systems:let hX ;�;>;?;_;^i be a complete lattice containing a set of objects da;b fora; b 2 �a. Assume (�;) be a Galois insertion of hX ;�i into hC;�i such that(?) = 0. We also assume that: �(dt;t0) = d�(t);�(t0) and (da;b) = �fdt;t0 j �(t) =a and �(t0) = bg. This corresponds to require that (�;) is also a Galois insertion

35between the corresponding sublattices generated by the diagonal elements. Finally,we assume E3 as existential condition for � �.It is straightforward, from the previous hypothesis, that � � is an upper closureon C satisfying condition P1. However, the abstract constraint system �(A) is onlyR5 and D4 non-distributive, namely we can prove D3 distributivity, which cannotbe derived from P1 and E3 only.Proposition 6.2.�(A) is a correct R5 and D4 non-distributive constraint system.We conclude, from the previous proposition, that the behaviour of abstract di-agonal elements with respect to substitution is preserved when they are derivedsystematically from the abstract term system. Here, the construction of abstractdiagonal elements helps in proving an important distributive property.6.1. Non-distributive Analysis: Linear RelationshipsThis section considers a quite common form of non-distributivity for constraintsystems and applies it to the problem of inferring linear size relationships betweenthe arguments of procedures. We consider a constraint system A with universe C,where only axiomR5 of De�nition 3 is replaced by the weaker relation: c
(PC) �Pfc
 c0 j c0 2 Cg for c 2 C and C � C. We abuse terminology by referring tothese systems as non-distributive. Axiom R5 is needed to prove the continuity ofT [P , with the eventual objective of showing the equivalence of the �xed-point andoperational semantics. However the weaker property of monotonicity can be provedfor any non-distributive constraint system. The following proposition follows fromthe monotonicity of 9 and
.Proposition 6.3.T [P is monotonic in any non-distributive constraint system A.It follows that for Noetherian non-distributive constraint systems, T [P is also con-tinuous. Moreover, as far as equivalence of semantics is concerned, the operationalsemantics is, in some sense, an \all solutions" semantics where the join is taken atthe end of all the possible computations; in the �xed-point case, by contrast, thejoin operator is applied at each partial computation step (an equivalent operationalsemantics can be easily de�ned: this would correspond to the bottom-up executionstrategy of deductive databases rather than the standard operational interpretationof logic programs [54]). In this case, as the constraint system is not distributiveany more, we can only have a further approximation level by applying bottom-upinstead of top-down, i.e., (O(P))[v F [(P). This behavior was already observedby Jacobs and Langen [44] in the analysis of pure logic programs with condensing.In the following we study this class of constraint systems by means of an example:the linear relationship analysis.The linear relationship analysis is useful for a variety of applications such ascompile-time overow detection, integer subrange checking, array bound checking,termination analysis, etc., has been considered by a number of researchers (e.g.,[27, 49, 72, 73]). The approach of Verschaetse and De Schreye [73] for automatic

36 inference of linear size relations among variables in logic programs can be speci�edas a constraint computation in our framework.Let �(�;V) be de�ned as in Example 1, over a �nite set of variables V . Letj � jS be a norm on the term system �(�;V). We de�ne a term system �Exp of linearexpressions where terms are �rst order terms in the language f+; 0; 1; V g (i.e., termsin �(f+;0;1g;V)). Since we are interested only in relations having �nite arity, we canalways represent any answer constraint as a constraint on the �nite dimensionalspace of its free variables. Moreover, the use of a bottom-up semantics constructiondoes not require any in�nite set of variables for renamings. Therefore, the set ofvariables V can be assumed to be a �nite set Vn = fx1; :::; xng. Substitutions areperformed as standard substitutions. In the following, if f(t1; :::; tn) is a term, thent1; :::; tn are its 1-subterms.Proposition 6.4.�Exp is a term system.The mapping ExpS : �(�;V) ! �Exp associates a linear expression with each termin �(�;V), as follows: let t be a term and St be the set of selectors for the \relevant"subterms of t, i.e., s 2 St i� s(t) is a 1-subterm of t and s(t) is not rigid.ExpS(t) =8<: t if t is a variablec0+ Ps2St ExpS(s(t)) otherwiseIt is straightforward to prove that ExpS is a morphism.Example 6.2. With length and size norms we have: Explength([X[ajZ]]) = 1 +1 + Z and Expsize([X[ajZ]]) = 1 +X + 1 + Z respectively.Karr [49] shows that size relations among variables in a program can be ob-tained by manipulating a�ne relationships i.e., linear equalities of the form c0 =c1X1 + :::+ cnXn. In our framework, this corresponds to a constraint system asfollows: let L be the set of a�ne subspaces corresponding to linear equalities on a�xed n-dimensional space (e.g., <n); the universe of constraints is }(L); the meetoperation
 is simply intersection of a�ne subspaces; the join operation is setunion; cylindri�cation, which corresponds to the variable restriction of Verschaetseand De Schreye, corresponds to \projection" parallel to an axis, which maps a setof a�ne subspaces into a set of a�ne subspaces; let S be a set of a�ne subspacesand x 2 V , t 2 �Exp, then the substitution of x with t in S is the a�ne subspace9̂fxg([x = t] \ S). The elements 0 and 1 are de�ned as ; and the entire space <nrespectively. Diagonal elements are (single) equations on the term system �Exp. Asusual, for each equation t1 = t2, we denote by [t1 = t2] � <n the correspondinga�ne subspace.Proposition 6.5.Rel = (}(L);\;[;<n; ;; 9X; [t = t0])X�Vn;t;t02�Exp is a constraint system.Given a norm S, the abstraction function �S can be de�ned by extending ExpS ,similarly to that of Section 5.1, therefore Rel is correct with respect to H. Note

37however that Rel is not Noetherian, therefore it is not directly applicable for staticanalysis of CLP (H) programs.The approximation introduced in Karr [49] corresponds precisely to the abstrac-tion of Rel given by an upper closure operator �a� , mapping any set of pointsinto the smallest a�ne subspace containing them. It is immediate to observe that:�a� (;) = ;, 9 � �a� = �a� � 9 (in particular: cylindri�cation maps a�ne subspacesinto a�ne subspaces) and �a� (fcg) = c for c 2 L (i.e., diagonal elements are nota�ected by abstraction). Therefore, �a� satis�es P1, P2 and E3, and �a� (Rel) is aR5 non-distributive constraint system, which is correct with respect to H. The joinof two a�ne subspaces A1 and A2, given by �a� (A1[A2), is here the smallest a�nesubspace containing A1 and A2 (since the union of two a�ne subspaces is not, ingeneral, an a�ne subspace). To prove that �a� (Rel) is a non-distributive closedsemiring we observe that (x1 = 0:5; x3 = 0:5+ x2) \ �a� ((x1 = 0; x2 = x3)[(x1 =1; x3 = 1 + x2)) = (x1 = 0:5; x3 = 0:5+ x2) while (x1 = 0:5; x3 = 0:5 + x2) \ (x1 =0; x2 = x3) = ; and (x1 = 0:5; x3 = 0:5 + x2) \ (x1 = 1; x3 = 1 + x2) = ;. Aspointed out in [49], there are no in�nitely ascending chains of free-variable boundedconstraints in �a� (Rel) (i.e., bounded dimension a�ne spaces), otherwise in anyproperly ascending chain of subspaces U1 � U2 � : : :, the subspaces Ui must havea dimension of at least one greater than Ui�1. �a� (Rel) is therefore Noetherian.Example 6.3. Consider the logic program de�ning the predicate append in Exam-ple 2, together with the norm length. The corresponding abstract program andsemantics are:append(x1; x2; x3) :� x1 = 0; x2 = x3:append(x1; x2; x3) :� x1 = 1 + y; x3 = 1 + z [] append(y; x2; z):T [P "0(;) = ;T [P "1(;) = fappend(x1; x2; x3) :� x1 = 0; x2 = x3gT [P "2(;) = fappend(x1; x2; x3) :� �a� ((x1 = 0; x2 = x3)[(x1 = 1; x3 = 1 + x2))g= fappend(x1; x2; x3) :� x1 + x2 = x3gThe a�ne subspace x1+ x2 = x3 speci�es the relationship among the lengths ofthe arguments of the predicate append in the expected way. For example, a so-lution for the length of the tail X in the goal append([HjX]; [djejf]; [ajbjcjdjejf])can be found by solving the corresponding abstract goal append(1 + X; 3; 6),resulting in X = 2. A possible implementation can be obtained by slightlymodifying the CLP (R) interpreter in [47] to cope with a�ne relations. Thiscorresponds to implement (at the meta level) the join operator for a�ne sub-spaces so as to combine the computed answer constraints generated by the inter-preter. Thus, abstract interpretation for linear size relationships can be joinedto a concrete interpretation on CLP (R) of a modi�ed program.7. DISCUSSION AND RELATED WORKSOur de�nition of constraint systems was motivated by earlier work of Debray andRamakrishnan [29], which gives an algebraic formulation for standard and non-

38 standard semantics of logic programs, but over a very di�erent algebraic struc-ture. In particular, we modify closed semirings (already used in [29]) to cope withconstraint-like objects including cylindri�cation of constraints, and diagonal ele-ments as atomic constraints. This provides a direct de�nition, at the constraintsystem level, for standard semantic notions like variable projection and uni�cation.Our de�nition of constraint logic programs is close to the original one of Ja�arand Lassez [45]. We generalize the notion of constraint system so as to apply itto possibly non-standard (e.g. abstract) interpretations. We follow [45] by de�n-ing parameter passing as generic term equations, and we generalize this notion toany possibly non-standard term system. This corresponds precisely to generalizeCLP including non-standard objects (trace sequences, abstract constraints etc.) asconstraints. With respect to [45], we also give an algebraic presentation for con-straint systems, involving variable projection. This approach is more suitable toreason about abstract interpretation, in particular when studying closure operatorson constraint systems (e.g. see Section 5.2 and Section 6).Saraswat et al. de�ne the semantics of concurrent constraint languages in termsof cylindric algebras [64], specifying constraint systems in the style of Scott's infor-mation systems [65] via a set of \primitive" constraints C and an entailment relation` � }(C) � C. Composition of constraints is de�ned in terms of set union, hidingin terms of cylindri�cation, and parameter passing using diagonal elements. Thereis a fundamental di�erence between our work and that of Saraswat et al. in theunderlying algebraic structure. Information systems are general structures wherethe primary role of entailment provides a very convenient mechanism for modellingblocking-ask synchronization in concurrent constraint programming languages [64].By contrast, we are interested less with entailment as a primitive notion, than withidentifying algebraic structures that make it easier to generalize the standard se-mantic results for constraint logic programming. In our case, the constraint systemis based on closed semirings and is parametric with respect to a given term system(it is easy to associate an information system with a closed semiring4 (C;
;�;1;0)if
 is commutative and idempotent, but of course this may not hold in general).This makes it possible to de�ne non-standard constraint systems, e.g., for abstractinterpretation, in a simpler and more structured way. In our opinion, it is easier tospecify standard logical and arithmetic operators as an instance of a closed semir-ing than as an instance of an information system, making closed semirings a morenatural basis for generalizing constraint systems to deal with standard and non-standard semantics. This is because the lattice-structure of usual abstract domainsprovides a suitable abstract interpretation for
, �, etc. (see Prop or the a�nerelationship analysis). Moreover, the join operator can often be interpreted as awidening of constraints, and this can be easily characterized in a closed semiringstructure. More recently, the framework of concurrent constraint programming hasbeen extended to cope with function symbols (terms). Technically this is handledby a hyperdoctrinal account of existential and diagonal notions in [63]. However,the use of hyperdoctrines in the context of the present work does not add signi�-cant results, if compared with the classic, and somehow more standard, treatmentof cylindric algebras by Cirulis [13].The idea of generalized semantics has been recently applied to the family of cc4An interesting work on the relation between the Scott's topology and a topology for closedsemirings is in [51].

39languages by Za�anella et al. in [75]. The extension of our framework to cc is notstraightforward, as we cannot (in general) provide a correct approximation of pro-gram's behaviour by abstractly evaluating abstract versions of cc programs. Thisis a consequence of synchronization based on blocking ask. Intuitively a correctapproximation of the program meaning generates weaker answers for any possibleprogram behaviour. Therefore, in order to correctly characterize answers associ-ated with suspended computations, we must guarantee that whenever a concretecomputation suspends the corresponding abstract computation suspends too. Thiscan only be obtained by replacing ask constraints with stronger constraints, whichis usually not the case in abstract interpretation. Some solutions to this problemare addressed in [75].Abstract interpretation of (sequential) constraint logic programs was considered�rstly by Marriott and S�ndergaard [57]. Their treatment is based on abstracting adenotational semantics for constraint logic programs. A meta-language based on thetyped �-calculus is used to specify the semantics of logic languages in a denotationalstyle, and both the standard and non-standard semantics are viewed as instancesof the meta-language speci�cation. In our case, instead of de�ning a meta-languagefor dataow analysis, we consider the constraint speci�cation on which the CLPparadigm is de�ned. Non-standard semantics for a given constraint-based programcan thus be obtained simply by appropriately modifying the underlying constraintsystem. This gives a formal account for abstract compilation, which is a quitestandard technique in dataow analysis implementation [68], as constraint-basedcomputation.A related approach is also considered by Codognet and Fil�e, who �rstly givean algebraic de�nition of constraint systems and consider abstract interpretationof constraint logic programs as constraint abstraction [19]. However, the algebraicstructure considered by these authors is very di�erent: only
-composition is con-sidered, and while a notion of \computation system" is introduced, the underlyingstructure is not provided with a join operator. Because of this construction, mainlybased on a generalization of the top-down SLD semantics, they cannot character-ize, at the constraint level, the \condensing" of multiple solutions, which is veryuseful in abstract interpretation (e.g., see Prop and the linear relationships anal-ysis). Thus, by applying a loop-checker consisting in a \tabled" interpreter, only�nite abstract domains can be handled. In our framework, by contrast, extraneousdevices such as loop checking and tabulation are not considered. Instead, �nitenessis treated simply as a property of the constraint system, expressed in terms of �-chains. This allows non-standard computations to be speci�ed as standard CLPcomputations over an appropriate (possibly Noetherian) constraint system (e.g.,a�ne subspaces represent a suitable abstraction for linear relationships, providingan approximation that is inherently Noetherian but is not �nite). Moreover, boththe traditional top-down and bottom-up semantics can be speci�ed in the standardway thus providing goal-independent static analysis of CLP programs.Recently, constraint programming techniques have been applied to the abstractinterpretation of Prolog programs. In [20] a new language: Toupie is introduced tocompile the abstract semantics of Prolog into a constraint based language, whereconstraints over �nite domains are implemented as decision diagrams. In [17],an e�cient implementation of ground dependency analysis is obtained by imple-menting the constraint solver for propositional formulae as a Datalog program, assuggested earlier by Dart [28]. While the approach does not encode disjunction of

40 propositional formulae, it provides a simple and powerful tool for static analysis ofgroundness in Prolog. Magic-like transformations are applied to get call patterns.It should be noted here that while the framework described can describe a widevariety of program analyses, there are some kinds of analyses that it cannot express.Speci�cally, it cannot capture analyses where the join operator � is not commuta-tive, since this would violate the axioms of closed semirings. Non-commutative joinoperators may be found in analyses that model the depth-�rst execution strategyof Prolog (e.g. see [6]). It is also interesting to observe that � idempotence is incontrast with the typical multiplicity of solutions for a Prolog-like system. Weakerstructures can be studied for these cases.At the constraint system level, we abstract a system of constraints which actu-ally contains the standard (logical) interpretation of constraints: i.e., constraintsas lower-closed sets of formulae, and where the approximation order is the sameas entailment. This is of course a restriction, and weaker constraint systems andabstractions can be studied. In particular, by dropping axiom C2, we can ob-tain a weaker structure which can be instantiated with (possibly non lower-closed)powerset constructions. This may be useful to associate (at the constraint systemlevel) the set of possible computed answer constraints with each predicate5. In thiscase, it is easy to see that the computed answer constraint semantics and and thecondensed one coincide. However, we believe that axiom C2 is essential for a \log-ical" interpretation of constraints and hiding. This is a key-point in our approachto abstract interpretation of constraint logic programs, where data-ow analysis iscomputed in a CLP -like way. This task is obtained by requiring that both concreteand abstract constraints share a similar \logical" interpretation. This restrictionallows us to join some abstract domain with suitable constraint systems. As shownin Section 4, more concrete observable behaviours (e.g., the set of computed answerconstraints) can be obtained at the semantic level, by applying di�erent semanticconstructions (e.g., see the semantics in Section 4 modeling sets of computed answerconstraints, without condensing). However, notice that some observable propertieswhich are di�erent from success patterns, such as: failure, call patterns and par-tial answers cannot be modeled by applying directly the semantic construction inSection 4. As for call patterns, both the magic-like transformation in [15] and thesemantic-based approximation in [32] can be easily extended to CLP languages inview of the present paper. The machinery of partial answers instead may requirean additional layer of abstraction, like the one applied in [16] for the compositionalanalysis of modular logic programs. We believe that our constraint system no-tion and abstraction can be easily applied to semantic constructions characterizingdi�erent observable behaviours, like those described in [10].8. CONCLUSIONSWe have de�ned an algebraic framework for a generalized semantics for constraintlogic programs. Such an approach to program semantics allows a formal treatmentfor correctness conditions in any non-standard interpretation, e.g., for abstractinterpretation, or reasoning about compiler correctness, and provides a basis forthe study of the general algebraic properties of the semantics construction. The5We thank an anonymous referee for this comment.

41ability to represent the condensing process as an operator in the constraint sys-tem simpli�es the abstract semantic construction, and provides a formal axiomatictreatment of abstraction. Moreover, the use of variable hiding operators (such ascylindri�cations) in the TP de�nition allows the use of �nite dimension constraintsystems and provides a formal treatment of renaming in abstract interpretation.Finite dimension constraint systems are particularly useful to provide �nite upperapproximations to the semantics, such as in the case of linear relationships analysis,where the �niteness is strongly related with the (�nite) dimension of the space ofsolutions.Further generalizations are possible in view of abstract interpretation. Weakerconstraint systems can be considered, where for example distributivity does nothold. The distributivity restriction is not applicable to a wide class of static anal-ysis problems including linear relationships, as shown in Section 6.1, and rangevariable analysis, based on an abstract lattice of intervals specifying the range ofprogram variables [3]. Non-distributive constraint systems can be studied as amore general framework for constraint-based program analysis. A classi�cation ofthe di�erent constraint systems which are useful in dataow analysis can be basedon the set of properties they hold. A comparison with our framework can be helpfulto systematically derive those properties of the semantics construction that may bea�ected by a di�erent constraint system de�nition. Moreover, the notion of ab-straction can be re�ned even more by considering semimorphisms of term systems,where terms are ordered by instantiation. This can be suitable to characterize termabstraction in abstract interpretation.ACKNOWLEDGMENTSThe stimulating discussions with Roberto Bagnara, Roberto Barbuti, Veroniek Du-mortier, Maurizio Gabbrielli, Georg Karner, Michael Maher, Nino Salibra, and GertSmolka are gratefully acknowledged. We thank the anonymous referees for manyhelpful comments.REFERENCES1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of ComputerAlgorithms. Addison Wesley Publishing Company, 1974.2. K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Hand-book of Theoretical Computer Science, volume B: Formal Models and Semantics,pages 495{574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.3. R. Bagnara, R. Giacobazzi, and G. Levi. Static Analysis of CLP Programs overNumeric Domains. In Actes Workshop on Static Analysis, WSA'92, number 81-82in Bigre, pages 43{50, 1992.4. R. Bagnara, R. Giacobazzi, and G. Levi. An Application of Constraint Propagationto Data-ow Analysis. In Proc of Ninth IEEE Conference on AI Applications, pages270{276. IEEE Computer Society Press, 1993.5. R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-based Bottom-up Abstract Interpretation of Logic Programs. ACM Transactionson Programming Languages and Systems, 15(1):133{181, 1993.

42 6. R. Barbuti, M. Codish, R. Giacobazzi, and G. Levi. Modeling Prolog Control. Proc.Nineteenth ACM Symposium on Principles of Programming Languages, Jan. 1992,pages 95{104. ACM Press.7. R. Barbuti and A. Martelli. A Structured Approach to Semantics Correctness.Science of Computer Programming, 3:279{311, 1983.8. G. Birkho�. Lattice Theory. In AMS Colloquium Publication, third ed., 1967.9. A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs byExploiting Term Properties. In S. Abramsky and T.S.E. Maibaum, editors, Proc.TAPSOFT'91, volume 494 of Lecture Notes in Computer Science, pages 153{180.Springer-Verlag, Berlin, 1991.10. A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:theory and applications. Journal of Logic Programming, 19 & 20:149{197, 1994.11. M. Bruynooghe. A Practical Framework for the Abstract Interpretations of LogicPrograms. Journal of Logic Programming, 10:91{124, 1991.12. M. Bruynooghe, G. Janssens, B. Demoen, and A. Callebaut. Abstract Interpre-tation: Towards the Global Optimization of Prolog Programs. In Proc. FourthIEEE International Symp. on Logic Programming, pages 192{204. IEEE Comp.Soc. Press, 1987.13. J. Cirulis. An Algebraization of First Order Logic with Terms. Colloquia Mathe-matica Societatis J�anos Bolyai, 54:125{146, 1991.14. K. L. Clark. Predicate logic as a computational formalism. Technical Report Dept.of Computing, Imperial College, 1979.15. M. Codish, D. Dams, and E. Yardeni. Bottom-up Abstract Interpretation of LogicPrograms. Theoretical Computer Science, 124(1):93{126, 1994.16. M. Codish, S. K. Debray, and R. Giacobazzi. Compositional Analysis of Mod-ular Logic Programs. In Proc. Twentieth Annual ACM Symp. on Principles ofProgramming Languages, pages 451{464. ACM Press, 1993.17. M. Codish and B. Demoen. Analysing logic programs using \prop"-ositional logicprograms and a magic wand. In D. Miller editor, Proc. of the 1993 InternationalLogic Programming Symposium, pages 114{129, MIT Press 1993.18. M. Codish, M. Falaschi, and K. Marriott. Suspension Analyses for ConcurrentLogic Programs. Technical Report TR 12/92, Dipartimento di Informatica, Uni-versit�a di Pisa, 1992. To appear in ACM Transactions on Programming Languagesand Systems.19. P. Codognet and G. Fil�e. Computations, Abstractions and Constraints. In Proc.IEEE International Conference on Computer Languages, ICCL'92, IEEE Press,1992.20. M.-M. Corsini, K. Musumbu, A. Rauzy, and B. Le Charlier. E�cient bottom-up abstract interpretation of Prolog by means of constraint solving over symbolic�nite domains. In M. Bruynooghe and J. Penjam, editors, Programming LanguageImplementation and Logic Programming - Proceedings PLILP'93, volume 714 ofLecture Notes in Computer Science, pages 75{91. Springer-Verlag, Berlin, 1991.

4321. A. Cortesi, G. Fil�e, and W. Winsborough. Prop revisited: Propositional Formulaas Abstract Domain for Groundness Analysis. In Proc. Sixth IEEE Symp. on LogicIn Computer Science, pages 322{327. IEEE Computer Society Press, 1991.22. P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model forStatic Analysis of Programs by Construction or Approximation of Fixpoints. InProc. Fourth ACM Symp. Principles of Programming Languages, pages 238{252,1977.23. P. Cousot and R. Cousot. A constructive characterization of the lattices of allretracts, pre-closure, quasi-closure and closure operators on a complete lattice.Portugali� Mathematica, 38(2):185{198, 1979.24. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.In Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269{282,1979.25. P. Cousot and R. Cousot. Comparing the Galois Connection and Widen-ing/Narrowing Approaches to Abstract Interpretation. In M. Bruynooghe andM. Wirsing, editors, Proc. of PLILP'92, volume 631 of Lecture Notes in Com-puter Science, pages 269{295. Springer-Verlag, Berlin, 1992 (To appear in ActaInformatica).26. P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-grams. Journal of Logic Programming, 13(2 & 3):103{179, 1992.27. P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints AmongVariables of a Program. In Proc. Fifth ACM Symp. Principles of ProgrammingLanguages, pages 84{96, 1978.28. P. Dart. On Derived Dependencies and Connected Databases. Journal of LogicProgramming, 11(2):163{188, 1991.29. S. K. Debray and R. Ramakrishnan. Generalized Horn Clause Programs. Technicalreport, Dept. of Computer Science, The University of Arizona, 1991.30. S. Eilenberg. Automata, Languages, and Machines. Academic Press, volume A,1974.31. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modelingof the Operational Behavior of Logic Languages. Theoretical Computer Science,69(3):289{318, 1989.32. M. Gabbrielli and R. Giacobazzi. Goal Independency and Call Patterns in theAnalysis of Logic Programs. In E. Deaton, D. Oppenheim, J. Urban and H. Bergheleditors, Proc. of the Ninth ACM Symposium on Applied Computing, pages 394{399,ACM Press, Phoenix AZ 1994.33. M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint LogicPrograms. In K. Furukawa, editor, Proc. Eighth International Conference on LogicProgramming, pages 238{ 252. The MIT Press, Cambridge, Mass., 1991.34. R. Giacobazzi. Semantic Aspects of Logic Program Analysis. Ph.D. Dissertation,Universit�a di Pisa, March 1993. Also available as Technical Report TD-18/93, Dip.di Informatica, Universit�a di Pisa, Pisa, Italy.35. R. Giacobazzi. \Optimal" collecting semantics for analysis in a hierarchy of logicprogram semantics. Technical Report LIX, Ecole Polytechnique, LIX/RR/94, 1994.

44 36. R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Con-straint Logic Programs. In Proceedings of the International Conference on FifthGeneration Computer Systems 1992, pages 581{591, 1992.37. R. Giacobazzi, S. Debray, and G. Levi. Joining Abstract and Concrete Computa-tions in Constraint Logic Programmimg. In M. Nivat, C. Rattray, T. Rus and G.Scollo, editors, Proc. Third International Conference on Algebraic Methodology andSoftware Technology, AMAST'93, Workshops in Computing Series, pages 109{126.Springer-Verlag, London 1993.38. J.S. Golan. The theory of semirings with applications in mathematics and theo-retical computer science. Longman, Harlow, 1992.39. M. Hanus. Formal Speci�cation of a Prolog Compiler. In P. Deransart, B. Lorho,and J. Maluszy�nski, editors, Proc. International Workshop on Programming Lan-guages Implementation and Logic Programming, volume 348 of Lecture Notes inComputer Science, pages 273{282. Springer-Verlag, Berlin, 1988.40. M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Proc. Tenth Interna-tional Conference on Logic Programming, pages 83{99. MIT Press.41. L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Part I and II. North-Holland, Amsterdam, 1971.42. M. Hermenegildo, R. Warren, and S.K. Debray. Global ow analysis as a practicalcompilation tool. Journal of Logic Programming, 13(4):349{366, 1992.43. Y.E. Ioannidis and E. Wong. An Algebraic Approach to Recursive Inference. InL. Kerschberg, editor, Proc. First International Conference on Expert DatabaseSystems - Charleston SC, pages 295{309, 1987.44. D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent ANDParallelism. Journal of Logic Programming, 13(2 & 3):291{314, 1992.45. J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth An-nual ACM Symp. on Principles of Programming Languages, pages 111{119. ACM,1987.46. J. Ja�ar and M.J. Maher. Constraint Logic Programming: A Survey. Journal ofLogic Programming, 19 & 20:503{581, 1994.47. J. Ja�ar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language andSystem. ACM Transactions on Programming Languages and Systems, 14(3):339{395, 1992.48. N. J�rgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time Optimiza-tions for CLP(R). In Proc. 1991 International Symposium on Logic Programming,pages 420{434, 1991.49. M. Karr. A�ne Relationships Among Variables of a Program. Acta Informatica,6:133{151, 1976.50. G. Karner. On limits in complete semirings. Semigroup Forum 45:148{165, 1992.51. G. Karner. A topology for complete semirings. In P. Enjalbert, E.W. Mayr andK.W. Wagner, editors, 11th Annual Symposium on Theoretical Aspects of Com-puter Science - Proceedings STACS'94, Lecture Notes in Computer Science, pages389{400. Springer-Verlag, Berlin, 1994.

4552. G. Karner. Personal communication. 1994.53. J.-L. Lassez, M. J. Maher, and K. Marriott. Uni�cation Revisited. In J. Minker,editor, Foundations of Deductive Databases and Logic Programming, pages 587{625. Morgan Kaufmann, Los Altos, Ca., 1988.54. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.Second edition.55. K. Marriott and H. S�ndergaard. Notes for a tutorial on Abstract Interpretationof Logic Programs. Informal Proc. of the North American Conference on LogicProgramming'89, 1989.56. K. Marriott and H. S�ndergaard. Abstract Interpretation of Logic Programs: theDenotational Approach. In A. Bossi, editor, Proc. Fifth Italian Conference onLogic Programming, pages 399{425, 1990.57. K. Marriott and H. S�ndergaard. Analysis of Constraint Logic Programs. In S. K.Debray and M. Hermenegildo, editors, Proc. North American Conference on LogicProgramming'90, pages 531{547. The MIT Press, Cambridge, Mass., 1990.58. K. Marriott and H. S�ndergaard. Precise and E�cient Groundness Analysis forLogic Programs. ACM Letters on Programming Languages and Systems 2(1{4):181{196, 1993.59. K. Marriott, H. S�ndergaard, and N. D. Jones. Denotational Abstract Interpreta-tion of Logic Programs. ACM Transactions on Programming Languages and Sys-tems 16(3):607{648.60. A. Melton, D.A. Schmidt, and G.E. Strecker. Galois Connections and ComputerScience Applications. In D. Pitt et al., editor, Category Theory and ComputerProgramming, volume 240 of Lecture Notes in Computer Science, pages 299{312.Springer-Verlag, Berlin, 1986.61. J. Morgado. A Characterization of the Closure Operators by means of one Axiom.Portugali�Mathematica, 21(3):155{156, 1962.62. Oystein Ore. Combinations of Closure Relations. Annals of Mathematics,44(3):514{533, 1943.63. P. Panangaden, V. A. Saraswat, P. Scott, and R. Seely. A Hyperdoctrinal viewof Concurrent Constraint Programming. In J. deBakker and G. Roszenberg andW. deRoever eds. Proc. of the REX Workshop, volume 666 of Lecture Notes inComputer Science, pages 457{476. Springer-Verlag, Berlin, 1992.64. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Con-current Constraint Programming. In Proc. Eighteenth Annual ACM Symp. onPrinciples of Programming Languages, pages 333{353. ACM, 1991.65. D. Scott. Domains for Denotational Semantics. In M. Nielsen and E. M. Schmidt,editors, Proc. Ninth International Colloquium on Automata, Languages and Pro-gramming, volume 140 of Lecture Notes in Computer Science, pages 577{613.Springer-Verlag, Berlin, 1982.66. M.B. Smyth. Topology. In S. Abramsky, Dov M. Gabbay and T.S.E. Maibaum, edi-tors, Handbook of Logic in Computer Science, volume 1, Background MathematicalStructures, pages 641{761. Oxford Science Publications, 1992.

46 67. J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to ProgrammingLanguage Theory, MIT Press, 1977.68. Jichang Tan and I-Peng Lin. Compiling Dataow Analysis of Logic Programs. InACM Programming Language Design and Implementation, volume 27 of SIGPLANNotices, pages 106{115. ACM Press, 1992.69. A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c J.Math., 5:285{309, 1955.70. J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on structuringcompilers and proving them correct. Theoretical Computer Science, 15:223{249,1981.71. M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as aprogramming language. Journal of the ACM, 23(4):733{742, 1976.72. A. van Gelder. Deriving Constraints Among Argument Sizes in Logic Programs.In Proc. of the eleventh ACM Conference on Principles of Database Systems, pages47{60. ACM, 1990.73. K. Verschaetse and D. De Schreye. Derivation of Linear Size Relations by abstractinterpretation. In M. Bruynooghe and M. Wirsing, editors, Fourth InternationalSymposium on Programming Language Implementation and Logic Programming,Proc. of PLILP'92, volume 631 of Lecture Notes in Computer Science, pages 296{310. Springer-Verlag, Berlin, 1992.74. M. Ward. The Closure Operators of a Lattice. Annals of Mathematics, 43(2):191{196, 1942.75. E. Za�anella, R. Giacobazzi, and G. Levi. Abstracting Synchronization in Concur-rent Constraint Programming. In M. Hermenegildo and J. Penjam, editors, Proc.Sixth Int'l Symp. on Programming Language Implementation and Logic Program-ming, PLILP'94, volume 844 of Lecture Notes in Computer Science, pages 57{72.Springer-Verlag, Berlin, 1994.

47A. APPENDIX: PROOFS OF SELECTED RESULTSProposition 3.1.Closed semirings are continuous.Proof. [sketch] It is easy to prove, from R4, that if faigi2I is a possibly in�nitefamily of objects in C, and a 2 C then, if a�ai = a for all i 2 I, then a�(Pi2I ai) =a. Therefore, by idempotence, a closed semiring is always continuous or �nitary(this claim has been recently proved in [51], Proposition 13).Proposition 3.2.C is partially ordered by �, and forms a complete lattice.Proof. [sketch] Since (C;
;�;1;0) is a closed semiring, � is associative, commu-tative and idempotent, whence it is easy to show that C is partially ordered by�. For every c 2 C; c � 0 = 0 � c = c, so 0 � c, i.e., 0 is the least element ofthe partially ordered set hC;�i. Consider any family X = fcigi2I � C. By De�-nition 3, C is closed under �nite and in�nite applications of �, whence PX 2 C.From associativity, commutativity, and idempotence of � we have, for any i 2 I,ci� (PX) = c0� : : :� ci� ci� : : : =PX, whence ci � (PX) for all ci 2 X, i.e.,PX is an upper bound of X. From continuity,PX is also the least upper boundof X. It follows that C is a �-semilattice with a minimal element 0. Thus hC;�i isa complete lattice.Theorem 3.1.Let A be an arbitrary constraint system. For any c; c0 2 C, x 2 V , X � V andt; t0; t00 2 � such that x ind t, the following properties hold:P1: 9X9Xc = 9Xc;P2: c � c0) 9Xc � 9Xc0;P3: 8c; c0 2 C : c0 � 9Xc , 9Xc0 � 9Xc;P4: 8c; c0 2 C : c � c0 ^ c0 � 9Xc) 9Xc = 9Xc0;P5: 9fxgc = c i� 9fxg~c = c for some ~c 2 C;P6: 9fxgc = c if x ind c;P7: dt;t0 = 9fxg(dt;x
 dx;t0) where x ind t; t0,P8: c � c0) @txc � @txc0;P9: @tx9fxgc = 9fxgc;P10: @tx c = c i� @tx~c = c for some ~c 2 C;P11: 9X1 = 1; 9Xc = 0 i� c = 0;P12: 9fxgdx;t = 1;P13: (dt;t0
 dt0;t00) � dt;t00 = dt;t00 (transitivity).Proof. Let c; c0 2 C, x 2 V , X � V and t; t0; t00 2 � . It is straightforward toprove the componentwise monotonicity of
 by the axioms.P1, P2: Straightforward by de�nition.P3: By distributivity of 9 on � and idempotence: c0 � 9Xc = 9Xc) 9Xc0 �9Xc = 9Xc. The other implication follows by C2.P4: By monotonicity of 9 and from the previous property we obtain: 9Xc � 9Xc0and 9Xc0 � 9Xc respectively.

48 P5: By idempotence if x is bound in c then 9fxgc = c. Notice that the set of�xed-points of 9X is the range of 9X itself. The converse is straightforward.P6: Assume x ind t for some t 2 � . This implies 9fxgc = 9fxg@txc. From thede�nition of @tx and AxiomC4, this is equal to 9fxg(dx;t
c), which is nothingbut @txc. Since x ind t, we have @txc = c, which proves the result.P7: Assume t; t0 2 � and x ind t; t0. By AxiomD3: 9fxg(dt;x
dx;t0) = d[t=x]x;t0 =dt;t0.P8: From the monotonicity of 9 and
.P9: Assume x ind t, then by de�nition @tx9fxgc = 9fxg(dx;t
9fxgc). FromAxiomC3 this is equal to 9fxgdx;t
9fxgc. From Property P12 (proved below), thisin turn is equal to 9fxgc.P10: By P9, @tx @txc = @tx(9fxg(dx;t
 c)) = 9fxg(dx;t
 c) = @txc.P11: Both follow from Axioms C1 and C2.P12: By Axiom D1, for any t0 2 � : 9fxgdx;t = 9fxg(dx;t
 dt0;t0) = d[t=x]t0;[t=x]t0 =1;P13: Assume x ind t; t0; t00.dt;t00 = 9fxg(dt;x
 dx;t00) [P7]= @t0x 9fxg(dt;x
 dx;t00) [x =2 FV (9fxg(dt;x
 dx;t00)) and P9]� @t0x (dt;x
 dx;t00) = dt;t0
 dt0;t00 [@-monotonicity (P8) and Axiom D4]Lemma 3.1.For any constraint system A, if c and c0 are A-constraints and X is a set ofvariables such that X ind c, then 9X (c
 c0) = c
 9X (c0).Proof. By Theorem 3.1, 9Xc = c, whence 9X(c
 c0) = 9X(9Xc
 c0). FromAxiom C3, this is equal to 9Xc
9Xc0, which is equal to c
9Xc0 since 9Xc = c byTheorem 3.1.Lemma 3.2.For any constraints c and c0 in a constraint system A, c
 9fxgc0 = 9fyg(c
 ~c0),where y ind c; c0; y 6= x and ~c0 = @yxc0.Proof. Suppose that y ind c, y ind c0, y 6= x, and ~c0 = @yxc0. Since y ind c,we have 9fyg(c
 ~c0) = c
 9fyg@yxc0. Since y 6= x, Axiom C4 implies 9fyg@yxc0 =9fxg9fyg(dx;y
c0). Since y ind c0, this is equal to 9fxg(9fygdx;y
c0). From PropertyP12, this in turn is equal to 9fxgc0. It follows that c
 9fxgc0 = c
 9fyg@yxc0 =9fyg(c
 ~c0).Lemma 4.1.1 [] p(�t);�P c [] " i� d�x;�t [] p(�x) ;�P c0 [] " and 9f�xgc0 = c; for �x not used in thederivation for c.

49Proof. 1 [] p(�t);�P c [] " if and only if for some clause C � p(�t0) :� c0 [] B1; :::; Bnin P , 1 [] p(�t);P d�t;�t0
 c0 [] B1; :::; Bn;�P c [] ":This is true if and only if �x ind C and1 [] p(�t);P 9f�xg(d�t;�x
 d�x;�t0)
 c0 [] B1; :::; Bn;�P c [] ";i.e., if and only if �x ind C and1 [] p(�t);P 9f�xg(d�t;�x
 d�x;�t0
 c0) [] B1; :::; Bn;�P c [] ":Since �x is not used in the derivation of c: �x ind c, this is true if and only ifd�t;�x [] p(�x);�P c0 [] " and 9fxgc0 = c. The result follows.Lemma 4.2.Let G = c0 [] p1(�t1); :::; pn(�tn) be an A-goal and P 2 CLP (A). JP (G) = ci� there exist pi(�xi) :� ci 2 O(P), such that �xi ind G and �xi \ �xj = ; for1 � i; j � n, i 6= j; and c = 9(c0
 d�x1;�t1
 c1:::
 d�xn;�tn
 cn)var(G).Proof.Let P 2 CLP (A). Let G be a goal. We prove that:� 9(c)var(G) �� G;�P c [] " 	 =8>><>>: 9(c)var(G) �������� G = c0 [] p1(t1); :::; pm(tm)8i = 1::m : 1 [] pi(�xi);�P ci [] "�xi ind G and �xi \ �xj = ; for j = 1:::n i 6= jc = c0
 d�x1;�t1
 9(c1)x1 :::
 d�xm;�tm
 9(cm)xm 9>>=>>; :(�) The proof is by induction on the length n of the derivation. In the base case,assume G = 1 [] p(t) and G;P c [] ". By de�nition, this holds i� p(x) :� c0 2 Pand c = dt;x
 c0. By Lemma 3.1 and because x [var(c0) ind t we have9(dt;x
 c0)var(t) = 9(dt;x
 9(c0)x)var(t). Let _V = var(dt;x
 c0), then9 _V nvar(t)(dt;x
 c0) = 9 _V n(var(t)[x)9x(dt;x
 c0) [Axiom C4]= 9x(dt;x
 9 _V n(var(t)[x)c0) [Lemma 3.1]= 9x(dt;x
 9(c0)x) [FV (dt;x
 9(c0)x) = var(t) [x]= 9(dt;x
 9(c0)x)var(t): [x � _V n var(t)]In the inductive case, let G = c0 [] p1(t1); :::; pm(tm) such that G ;nP c [] ". Con-sider a clause p1(x1) :� c1 [] b1(r1); :::; bk(rk) in P and assume:G;P c0
 dt1;x1
 9(c1)vc [] b1(r1); :::; bk(rk); p2(t2); :::; pm(tm);n�1P c [] "where vc = x1 k[i=1 var(ri). By the inductive hypothesis, for i; l = 1::k and j; w =2::m, we can de�ne bi(yi) :� c0i and pj(xj) :� cj such that xj; yi ind G; yi 6= xj;for i 6= l, j 6= w: yi 6= yl and xj 6= xw; 1 [] bi(yi) ;�P ~c0i [] ", 1 [] pj(xj) ;�P ~cj [] ",c0i = 9(~c0i)yi , cj = 9(~cj)xj (i.e., FV (c0i) � yi and FV (cj) � xj); and, by Lemma 3.1:9(c)var(G0) = c0
dt1;x1
9(c1)vc
9� dr1;y1
 c01
 :::
 drk;yk
 c0k
dt2;x2
 c1
 :::
 dtm;xm
 cm �var(G0)

50 where G0 = c0
dt1;x1
9(c1)vc [] b1(r1); :::; bk(rk); p2(t2); :::; pm(tm). By de�nition:1 [] p1(x1);�P c1
 dr1;y1
 ~c01
 :::
 drk;yk
 ~c0k [] ":Let c00 = c1
 dr1;y1
 ~c01
 :::
 drk;yk
 ~c0k. Consider now the constraint:c0
 9(dt1;x1
 9(c00)x1
 dt2;x2
 c1
 :::
 dtm;xm
 cm)var(G):Because for j = 2::m: FV (cj) � xj; xj ind tj ; x1 ind t1 and FV (9(c00)x1) � x1,the constraint above is equivalent toc0
 9fx1:::xmg(dt1;x1
 9(c00)x1
 dt2;x2
 c1
 :::
 dtm;xm
 cm): (�)Let _V = var(c). Since _V n var(G) = (_V n var(G0)) [vc where, with an abuse ofnotation, we denote by var(G0) the set of variables vc[var(c0)[var(t1) m[i=2 var(ti),and for i; l = 1::k and j; w = 2::m: FV (c0i) � yi and FV (cj) � xj ; xj; yi ind G;yi 6= xj; for i 6= l, j 6= w: yi 6= yl and xj 6= xw. From Lemma 3.1 we have:9(c)var(G) = 9vc(9(c)var(G0))= 9vc�c0
 dt1;x1
 9(c1)vc
 9y1:::yk;x2:::xm � dr1;y1
 c01
 � � �
 drk;yk
 c0kdt2;x2
 c1
 � � �
 dtm;xm
 cm ��= c0
 9x1::xm 0@ dt1;x1
 9y1:::yk;vcnx1 � 9(c1)vc
 dr1;y1
 c01
:::
 drk;yk
 c0k �
dt2;x2
 c1
 :::
 dtm;xm
 cm 1A= c0
 9x1:::xm (dt1;x1
 9(c00)x1
 dt2;x2
 c1
 � � �
 dtm;xm
 cm)which is equivalent to (�).(�) The proof follows by observing that, because of Lemma 3.2, we can alwaysreplace hidden variables with fresh variables in arbitrary, but �nite, conjunctionsof (complete) constraints (such as those computed for each atomic goal 1 [] pi(�xi)).Assume G = c0 [] p1(�t1); :::; pm(�tm) and for each i = 1; :::;m: 1 [] pi(�xi) ;�P ci [] ",where �xi ind G; �xi \ �xj = ; for j = 1; :::; n such that i 6= j. Letc = c0
 d�x1;�t1
 9(c1)�x1 :::
 d�xm;�tm
 9(cm)�xm :Notice that the computed answer constraints ci for i = 1; :::;m are �nite constraints.Moreover, since we assume V to be in�nite, for each i = 1; :::;m, there are (fresh)variables nvi � V such that nvi \ var(G) = ;, nvi ind c1; :::; cm and nvi \ nvj = ;for j = 1; :::;m. Thus, by Lemma 3.2 if vi = var(ci) n �xi and ~ci = @nvivi ci:c = 9nv1::nvm(c0
 d�x1;�t1
 ~c1:::
 d�xm;�tm
 ~cm):It is straightforward to associate a successful derivation for G with renaming vari-ables nv1; :::; nvm such that 9(c)var(G) = 9�x1::�xm9nv1::nvmc.Lemma A.1. Let A be a constraint system, C = p(�x) :� c [] p1(�t1); :::; pn(�tn) bean A-clause and I be an A-interpretation. For i = 1; :::; n let pi(�x0i) :� c0iand pi(�x00i) :� c00i be variants of constrained atoms in I that have been renamedapart from C and from each other. Then: 9(c
 d�t1;�x01
 c01
 :::
 d�tn;�x01
 c0n)�x =9(c
 d�t1;�x001
 c001
 :::
 d�tn;�x001
 c00n)�x.

51Proof. Assume, for i = 1; :::; n: pi(�x0i) :� c0i and pi(�x00i) :� c00i be renamingsof some pi(�xi) :� ci, such that �x0i, �x00i , and �x00i do not share any variables witheach other or with C. By de�nition, for i = 1; :::; n: c00i = 9�xi(d�x0i;�xi
 ci) andc0i = 9�xi (d�x00i ;�xi
 ci). Let ~c0 = 9(c
 d�t1;�x01
 c01
 � � �
 d�tn;�x0n
 c0n)�x and _V =var(c
 d�t1;�x01
 c01
 � � �
 d�tn;�x0n
 c0n). By applying Theorem 3.1 we can hidevariables �x01::�x0n in ~c0, namely:~c0 = 9 _V nf�x;�x01::�x0ng9�x01::�x0n � c
 d�t1;�x01
 9�x1(d�x01;�x1
 c1)
:::
 d�tn;�x0n
 9�xn(d�x0n;�xn
 cn) �[Axiom C4 and de�nition]= 9 _V nf�x;�x01::�x0ng� c
 9�x01;�x1(d�t1;�x01
 d�x01;�x1
 c1)
:::
 9�x0n;�xn(d�tn;�x01
 d�x0n;�xn
 cn) �[independence]= 9 _V nf�x;�x01::�x0ng(c
 9�x1(d�t1;�x1
 c1)
 :::
 9�xn(d�tn;�xn
 cn))[Theorem 3.1]= 9(_V nf�x;�x01::�x0ng)[f�x1::�xng(c
 d�t1;�x1
 c1
 :::
 d�tn;�xn
 cn)[independence]Since �x01::�x0n are independent for (c
 d�t1;�x1
 c1
 :::
 d�tn;�xn
 cn), we have~c0 = 9(c
 d�t1;�x1
 c1
 :::
 d�tn;�xn
 cn)�x:The same argument can be applied to prove that ~c00 = 9(c
 d�t1;�x1
 c1
 :::
d�tn;�xn
 cn)�x.Lemma 4.3.Let A be a constraint system and P 2 CLP (A). For any I 2 }(BA): (TP (I[))[=(TP (I))[.Proof. The lemma follows by 9/meet-distributivity. Because P is a �nite set,it is equivalent to prove that for any C 2 P : (TfCg(I[))[= (TfCg(I))[. Let C =p(�t) :� c [] p1(�t1); :::; pn(�tn) and I be an interpretation. Assume p(�x) :� 9(~c)�x 2(TfCg(I[))[. By de�nition, pi(�xi) :� ci <<C;�x1 ;:::;�xi�1 I[; ~c = d�x;�t
c
c01
� � �
c0n,where c0i = d�xi;�ti
 ci; and �x ind C; c1; :::; cn. By de�nition, for each i = 1; :::; nthere exists a set of indices Wi such that pi(�yk) :� �ck <<xi I for any k 2Wi, andci = Pk2Wi @xiyk�ck. Therefore, for each i = 1; :::; n we can choose ki 2Wi such thatpi(�yki) :� �cki <<�x;�xi;C;�yk1 ;:::;�yki�1 I:Thus, by TP de�nition, for each k1 2W1, ..., kn 2 Wn:p(�x) :� 9(d�x;�t
 c
 c01
 � � �
 c0n)�x 2 TfCg(I);where c0i = d�yki ;�ti
 �cki , for i = 1; :::; n.The thesis follows by 9 and
 distributivity: 9(~c)�x is equal to9(d�x;�t
 c
 Pk12W1 (d�x1;�t1
 9fyk1g(d�yk1 ;�x1
 �ck1))
 � � �
Pkn2Wn (d�xn;�tn
 9�ykn (d�ykn ;�xn
 �ckn)))�x

52 = 9(d�x;�t
 c
 Pk12W1 (d�yk1 ;�t1
 �ck1)
 � � �
 Pkn2Wn (d�ykn ;�tn
 �ckn))�x= Pk12W1 ::: Pkn2Wn 9�d�x;�t
 c
 (d�yk1 ;�t1
 �ck1)
 :::
 (d�ykn ;�tn
 �ckn)��x :Proposition 4.2.Let A be a constraint system and P 2 CLP (A). TP is a continuous functionon the complete lattice h}(BA);�i and T [P is continuous on the complete latticeh}[(BA);vi.Proof. The proof of continuity of TP follows the standard lines (e.g. see [2]).The continuity of T [P is then a straightforward consequence of the continuity of TPand Lemma 4.3.Theorem 4.1.Let A be a constraint system with dimension !, and P 2 CLP (A), then F(P) =O(P)=� and F [(P) = (O(P)=�)[.Proof. We consider the condensed case only, the other case is similar. The proofis by induction: for each n 2 N , we show that if p(�x) :� c is any element of T [P "n(;) then c = Pf9(c0)f�xg j 1 [] p(�x) ;�P c0 [] "g. The base case is straightforwardby the de�nition of ;. For the inductive case, consider a predicate p in P de�nedby clauses C1; : : : ; Ck, with Cj = `p(�tj) :� c0j [] p1j (�t1j); :::; pmj(�tmj),' 1 � j � k.Let p(�x) :� c 2 T [P " n(;), then by de�nition: c = kPj=1 9(cj)�x where �x ind Cj foreach j = 1; :::; k:cj = d�x;�tj
 c0j
 d�x1j ;�t1j
 c1j
 :::
 d�xmj ;�tmj
 cmjand where pij (�xij) :� cij 2 T [P " (n � 1)(;) (FV (cij) � �xij); �xij ind Cj; �x, �xijand�xlh are mutually variable-disjoint for each i; l = 1; ::;m, j; h = 1; ::; k such thati 6= l and j 6= h.By the inductive hypothesis: for each i = 1; ::;m and j = 1; ::; k:cij =Xf9(_c)�xij j 1 [] pij (�xij);�P _c [] "g:Thus, by distributivity of
 over �: cj =PDj whereDj = � cj ���� cj = d�x;�tj
 c0j
 d�x1j ;�t1j
 9(_c1j)�x1j
 :::
 d�xmj ;�tmj
 9(_cmj)�xmj1 [] p1j (�x1j);�P _c1j [] "; : : : ;1 [] pmj (�xmj);�P _cmj [] " � :Let Gj = d�x;�tj
 c0j [] p1j (�t1j); :::; pmj(�tmj). Because for j; h = 1; ::; k, i; l = 1; ::;m:x ind Cj and xij 6= xlh for each i 6= l and j 6= h; we havekPj=1 9(PDj)�x = kPj=1 (Pf9(9(cj)var(Gj))�x j Gj ;�P cj [] "g) [by Lemma 4.2]= Pf9(c)�x j 1 [] p(�x);�P c [] "g. [�x � var(Gj)]It is su�cient now to prove that 1 [] p(�x) ;nP c [] " implies that there exists ~c 2C and p(�x) :� 9(_c)�x 2 F [(P) such that 9(_c)�x = 9(c)�x � ~c. We prove this by

53induction: the base case is straightforward by the de�nition of T [P . For the inductivecase, assume that if 1 [] p(�x);nP c [] " then there exists ~c 2 C and p(�x) :� 9(_c)�x 2F [(P) such that 9(_c)�x = 9(c)�x � ~c. Consider:1 [] p(�x) ;P c0 [] p1(�t1); :::; pm(�tm) ;nP c [] "where p(�t) :� c0 [] p1(�t1); :::; pm(�tm) is some renamed apart clause in P and c0 =1
 d�x;�t
 c0 = d�x;�t
 c0. Consider the atomic goals: 1 [] pi(�xi) for i = 1; :::;m. ByLemma 4.2: 1 [] pi(�xi);kP �ci [] "where k � n and c = d�x;�t
 c0
 d�x1;�t1
 9(�c1)�x1
 :::
 d�xm;�tm
 9(�cm)�xm . By theinductive hypothesis, for each i = 1; :::;m there exists pi(�xi) :� 9(_ci)�xi 2 F [(P)and ~ci 2 C such that 9(_ci)�xi = 9(�ci)�xi � ~ci.The de�nition of T [P implies thatp(�x) :� 9(d�x;�t
 c0
 d�x1;�t1
 9(_c1)�x1
 :::
 d�xm;�tm
 9(_cm)�xm)�xis in F [(P). Thereforep(�x) :� 9(d�x;�t
 c0
 d�x1;�t1
 (9(�c1)�x1 � ~c1)
 : : :
 d�xm;�tm
 (9(�cm)�xm � ~c1))is in F [(P). The theorem is proved because
 is associative, distributes on �, and� is associative and commutative.Proposition 5.1.Let A and A0 be constraint systems as speci�ed above. Let also c 2 C, x 2 V andt 2 � such that x ind t. If �� : A s�! A0 then �(@txc) �0 @0�(t)�(x) �(c).Proof. Assume the hypothesis.�(@txc) = �(9x(dx;t
 c))�0 90�(x)�(dx;t
 c)�0 90�(x)(�(dx;t)
0 �(c))�0 90�(x)(d0�(x);�(t)
0 �(c)) = @0�(t)�(x) �(c):Proposition 5.3.Let A and A0 be constraint systems with universes C and C0 respectively. If A0 iscorrect with respect to A by means of a semimorphism �, there exists a mapping : C0 ! C such that (�;) is a Galois insertion of hC0;�0i into hC;�i.Proof. Assume the hypothesis. De�ne (c0) = Pfc j �(c) �0 c0g. Let c01 �0 c02.Then, from the de�nition of and the monotonicity of �,Pfc j �(c) �0 c01g�Pfc j�(c) �0 c02g = (c02), i.e., is monotonic. Let c0 2 C0 and c 2 C. From the de�nitionof , we have �((c0)) = �(Pfc j �(c) �0 c0g). From the additivity of � this isequal to Pf�(c) j �(c) �0 c0g, and this in turn is equal to c0 from the surjectivityof �. Thus, �((c0)) = c0.From the monotonicity of � we have c �Pf~c j �(~c) �0 �(c)g. It follows, from thede�nition of , that c � (�(c)).Theorem 5.1.

54 Let P 2 CLP (A) and P 0 2 CLP (A0) be the corresponding program on A0. IfA0 is correct with respect to A, there exists � : }[(BA) ! }[(BA0) such that�(F(P)) v0 F(P 0) and �(F [(P)) v0 F [(P 0).Proof. As before we prove the condensed case as the other is similar. Let A0be a correct constraint system with respect to A, and �� be the correspondingsemimorphism. Let a << I denote a variant of an object a 2 I that has beenrenamed apart from all elements of I. The mapping � : }[(BA)! }[(BA0) de�nedas �(I) = � [p(�(�x)) :� �(c)]� �� p(�x) :� c << I 	is continuous by de�nition. As observed in [5], by � continuity, the proof canbe reduced to show that �(T [P (I)) v0 T [P (�(I)) for all I 2 }[(BA). Let I 2}[(BA), and fCp1 ; :::; Cpmg be the set of clauses in P de�ning p, where Cpj =`p(�tj) :� cj [] q1j (�t1j); : : : qnj(�tnj)', 1 � j � m. Let fCp01 ; :::; Cp0mg be the corre-sponding set of clauses on A0 in the program P 0, andhq1j(�x1j) :� ~c1j ; : : : ; qnj (�xnj) :� ~cnj i <<Cpj Iand cij = d�xij ;�tij
 ~cij , 1 � i � n. Then, [p(�(�x)) :� c]� 2 �(T [P (I)) wherec = �0@ mXj=1 9(d�x;�tj
 cj
 c1j
 � � �
 cnj)�x1AFrom the de�nition of semimorphism, we havec � 0@ mXj=1 090(�(d�x;�tj)
0 �(cj)
0 �(c1j)
0 � � �
0 �(cnj))�(�x)1ALet hq1j (�(�x1j)) :� ~c01j ; : : : ; qnj(�(�xnj)) :� ~c0nj i <<Cp0j �(I), and for 1 � i � nc0ij = �(d�xij ;�tij)
0 ~c0ij . It follows thatc � 0@ mXj=1 090(�(d�x;�tj)
0 �(cj)
0 c01j
0 � � �
0 c0nj)�(�x)1A :By the de�nition of a semimorphism, for any two terms t1; t2: �(dt1;t2) � d0�(t1);�(t2).Then, by de�nition, �(T [P (I)) v0 T [P (�(I)).

55Proposition 5.5.VrelS is a morphism of term systems.Proof. Rigid terms are mapped to ;. Denote by s0 the substitution operationon �V . Let t1; t2 2 � and x 2 V . If x is not a relevant variable in t2 thenVrelS (sx(t1; t2)) = VrelS(t2) and s0x(VrelS(t1);VrelS (t2)) = VrelS(t2) because x 62VrelS (t2). Assume x to be a relevant variable in t2. By de�nitionVrelS(sx(t1; t2)) =VrelS (t1) [(VrelS(t2) n fxg). The thesis follows from the de�nition of s0, namely:s0x(VrelS(t1);VrelS(t2)) = (VrelS(t2) n fxg) [VrelS(t1):Theorem 5.2.� is an additive semimorphism from the constraint system H to Prop.Proof. (outline)We prove that � is well de�ned for the simpler case of the \size" norm (for moredetails see [34]; a similar condition is also proved in [18]). Let c = [fci j i 2 Igand c0 = [fc0i j i 2 I 0g be equivalent satis�able constraints. Suppose that _i2I �(ci)is not equivalent to _i2I0 �(c0i). Then there must be a truth assignment r for whichthere exists i 2 I such that for each j 2 I 0: �(ci)(r) = true but �(c0j)(r) = false.Now �(ci) and �(c0j) are both conjunctions of formulae of the form X $ Y forX;Y � V , since the existentially quanti�ed variables can be eliminated by replacingthe constraint with the disjunction of all the constraints obtained by replacing thevariables with the combinations of all the possible values true and false [21, 55].Let Xr ; Yr be a partition of V such that r(Xr) = true and r(Yr) = false (obviously,r cannot bind all the variables to true|otherwise both the constraints should betrue). For each j 2 I 0, each of the conjunctive subformula of �(c0j) containsXj $ Yjfor some Xj and Yj such that Xj � Xr and Yj \ Yr 6= ;. This is a contradictionbecause there exists j0 2 I 0 such that if �Xj is a (grounding) solution for c0j0 on thevariables Xj : y 2 Yj is ground in (c0j0)�Xj i� y is ground in (ci)�Xj . The propertiesof semimorphism are straightforward by the de�nition.Lemma 5.2.Let � be an 9-consistent upper closure operator on the constraint system A withuniverse C, term system � and set of variables V . Then:1. for each c 2 C, x 2 V and t 2 � such that x ind t: �(@txc) = @tx�(@txc);2. for each c 2 C, X � V : �(9Xc) = �(9X�(c)).Proof. For (1), we have from the de�nition of @tx and the 9-consistency of � that@tx�(@txc) = 9fxg(dx;t
 9fxg�(9fxg(dx;t
 c))). From Axiom C3 and Property P12,this is equal to 9fxg�(9fxg(dx;t
 c)) = 9fxg�(@txc). Since � is 9-consistent, this isequal to �(@txc). The result follows.The proof of (2) proceeds as follows: Let c 2 C and X � V . From the mono-tonicity of � and 9, we have: �(9Xc) � �(9X�(c)). By 9-consistency: 9X�(c) �9X�(9Xc) = �(9Xc). The result then follows from the idempotence and monotonic-ity of �.Lemma 5.3.Let � be a consistent upper closure operator on the constraint system A, withuniverse C, term system � and set of variables V . Then for each c 2 C, x 2 Vand t 2 � such that x ind t: �(@txc) = �(@tx�(c)).

56 Proof. Let c 2 C, x 2 V and t 2 � :�(@tx�(c)) = �(9fxg(dx;t
 �(c))) [de�nition]= �(9fxg�(dx;t
 �(c))) [�(9Xc) = �(9X�(c))]= �(9fxg�(�(dx;t)
 �(c))) [by idempotence and
-quasi morphism]= �(9fxg�(dx;t
 c)) [by
-quasi morphism]= �(@txc): [�(9Xc) = �(9X�(c)) and de�nition]Proposition 5.6.Let A and A] be constraint systems with universes C and C] respectively, suchthat A] is correct with respect to A by means of a surjective and additive semi-morphism �. Let = �c]:Pfc j �(c) �] c]g and � = � �. Then:1. �(C) is isomorphic to C];2. if �(9Xc) = 9]�(X)�(9Xc) for every X � V and c 2 C, then � � is 9-consistent.Proof. Assume the hypothesis. Let { : �(C) ! C] such that 8c 2 C : {(�(c)) =�(�(c)). By the hypothesis of Galois insertion: �(�(c)) = �(c). {-surjectivityis straightforward by �-surjectivity. {-injectivity follows because �(c) = �(c0))�(c) = �(c0). This establishes that �(C) is isomorphic to C].For the second part, let c 2 C and X be a set of variables. We prove that9X�(9Xc) = �(9Xc). By 9-distributivity: 9X�(9Xc) = Pf9Xc0 2 C j �(c0) �]�(9Xc)g and �(9Xc) = Pfc0 2 C j �(c0) �] �(9Xc)g. We show that �(9Xc0) �]�(9Xc) for each constraint c0 such that �(c0) �] �(9Xc), i.e., if c0 2 �(9Xc) then9Xc0 2 �(9X c). By the hypothesis we have:�(9Xc0) �] 9]�(X)�(c)�] 9]�(X)�(9Xc)= �(9Xc)Thus, by 9-extensivity (i.e., c � 9Xc for each constraint c and set of variables X)we have: �(9Xc) =X� 9Xc0 �� �(c0) �] �(9Xc) 	 = 9X�(9X c):Proposition 5.7.Let A and A] be constraint systems with universes C and C] respectively, suchthat A] is correct with respect to A by means of a surjective and additive semi-morphism �. Let : C] �! C be de�ned as (c]) = Pfc j �(c) �] c]g and� = � �. Let X � V and c; c1; c2 2 C. If �� is a morphism on constraintsystems then:1. 9X�(c) = �(9Xc)2. �(�(c1)
 �(c2)) = �(c1
 c2).Proof. (1) Let c 2 C and X be a set of variables. By 9-extensivity: �(9Xc) �9X�(c). By Proposition 5.6 and by the hypothesis, �(9X c) =Pf9Xc0 j 9�(X)�(c0) =

579�(X)�(c)g. However, 9X�(c) = Pf9Xc0 j �(c0) = �(c)g � �(9Xc), which provesthe thesis.(2) From the monotonicity of � and
, we have �(c1
 c2) � �(�(c1)
 �(c2)).The converse is satis�ed by de�nition:�(c1
 c2) =Pfc j �(c) �] �(c1
 c2)g�(�(c1)
 �(c2)) =Pfc j �(c) �] �(c0
 c00); �(c0) �] �(c1); �(c00) �] �(c2)g:By hypothesis, � is a morphism. Thus, by transitivity, and
] monotonicity ifc 2 �(�(c1)
 �(c2)) then c 2 � c �� �(c) �] �(c1
 c2) 	.Lemma 5.4.Let � be a consistent upper closure operator on the constraint system A, withuniverse C, term system � and set of variables V . Then for each c 2 �(C), x 2 Vand t 2 � such that x ind t: ~@txc = �(@txc).Proof. By Lemma 5.2, �(@txc) = �(9fxg�(dx;t
 c)). From
-quasi morphism,this is equal to ~9fxg(�(�(dx;t)
 �(c))), where by de�nition ~9X = � � 9X . Sincec 2 �(C) and � is a closure operator and therefore idempotent, this is equal to~9fxg(�(dx;t) ~
c). The lemma follows.Theorem 5.3.Let � be a consistent upper closure operator on the constraint system A. �(A) isa constraint system.Proof. Let c; c1; c2 2 �(C), C � �(C), X;Y � V , x 2 V t; t1; t2 2 � and x ind t.In the following we denote ~9X = � � 9X and ~@txc = �(9fxg(�(�(dx;t)
 c))).R1: We prove that (�(C); ~
; ~�;1; �(0)) is a closed semiring. By � idempotenceand
=�-quasi morphism: �(0) ~�c = �(�(0) � c) = �(0 � c) = c; 1~
c =�(1
 c) = c; �(0) ~
c = �(�(0)
 c) = �(0
 c) = �(0). Distributivity followsby
-quasi morphism:c~
(~PC) = �(c
 �(PC))= �(�(c)
 �(PC))= �(Pf�(c
 c0) j c0 2 Cg)= ~Pf�(c
 c0) j c0 2 Cg= ~Pfc~
c0 j c0 2 CgC1: By Lemma 5.2 �(9X (�(0))) = �(9X (0)) = �(0);C2: c~�~9Xc = �(c � �(9X c)) = �(c � 9Xc) = ~9X�(c) = ~9Xc;C3: By de�nition, ~9X (c1 ~
~9Xc2) = �(9X�(c1
�(9Xc2))). Since � is a consistentupper closure operator, it is a
-quasi morphism, and further, c1 = �(c1)since c1 2 �(C); thus, �(c1
 �(9Xc2)) = �(�(c1)
 �(9Xc2)) = �(c1
 9Xc2).Thus, we have ~9X (c1 ~
~9Xc2) = �(9X�(c1
 9Xc2)). From Lemma 5.2, thisis equal to �(9Xc1
 9Xc2) = ~9Xc1 ~
~9Xc2:C4: By Lemma 5.2: ~9X~9Y c = �(9X�(9Y c)) = �(9X[Y c) = ~9X[Y c:

58 C5: By de�nition, ~9X(~PC) = �(9X�(PC)). From Lemma 5.2 and Axiom C5this is equal to �(P(f9Xc j c 2 Cg)). Since � is an upper closure operator itis also a quasi-complete join-morphism,whence this is equal to �(P(�(f9Xc jc 2 Cg))) = �(Pf�(9Xc) j c 2 Cg). This is nothing but ~Pf~9Xc j c 2 Cg.D1: is straightforward.D2: is straightforward.D3: By Lemmata 5.3 and 5.4:~@tx�(dt1;t2) = �(@tx�(dt1;t2)) = �(@txdt1;t2) = �(d[t=x]t1;[t=x]t2):D4: By Lemmata 5.3 and 5.4, and by
-quasi morphism:~@tx(c1 ~
c2) = �(@tx(�(c1
 c2)))= �(@tx(c1
 c2))= �(@txc1
 @txc2)= �(�(@txc1)
 �(@txc2))= ~@txc1 ~
~@txc2:Theorem 5.4.Let � be a consistent upper closure operator for a constraint system A with uni-verse of constraints C and let c1; c2 2 C. �(c1)
 �(c2) � �(c1
 c2). If A is
-idempotent and 1 is the annihilator for �, then �(c1
 c2) = �(c1)
 �(c2).Proof. Let c1; c2 2 C. �(c1)
 �(c2) � �(c1
 c2) follows by �-extensivity.Assume the hypothesis on A. We prove that: �(c1)
 �(c2) = �(c1
 c2). Bythe hypothesis, for each constraint c; c0: c � (c
 c0) = c
 (1 � c0) = c (i.e.,c
 c0 � c). Let c � �(c1
 c2). By monotonicity: c � �(c1) and c � �(c2). Thus:c
 c � �(c1)
 �(c2). The thesis follows by
-idempotence.Theorem 6.1.Let A be a constraint system with universe C, variables V and term system � .If � is an upper closure operator satisfying any existential property and a (pos-sibly empty) combination of properties P1|P3, then �(A) is a non-distributiveconstraint system.Proof. We prove the non-distributive laws for a generic upper closure operator� satisfying either E1 or E2. The other claims for any combination of propertiesP1|P3 can be easily derived from them. Let c; c0 2 �(C), C � �(C), X;Y fxg � Vand t; t1; t2 2 � such that x ind t:R3: �(0)
 c � �(0
 c) = �(0).R5: c
 (~PC) = c
 �(PC)= �(c
 �(PC))� �(c
 (PC))= �(P� (c
 c0) �� c0 2 C)= ~P� (c
 c0) �� c0 2 C 	 :

59C1: The case where � satis�es E1 is proved in Theorem 5.3. Otherwise, it isstraightforward to prove the non-distributive version of C1 by extensivityfor any closure operator.C3: Assume � satis�es E1:�(9X (c
 �(9Xc0))) = �(9X (c
 9X�(9Xc0)))= �(9Xc
 9X�(9Xc0))� �(9Xc)
 �(9X�(9Xc0))= �(9Xc)
 �(9Xc0):The case where � satis�es E2 is straightforward.C4: The case where � satis�es E1 is proved in Theorem 5.3. Assume � satis�esE2: �(9X (�(9Y c))) = �(9X[Y (�(c))) = �(9X[Y c)therefore C4 is always distributive.C5: For a generic upper closure operator �:�(9X (�(PC))) � �(P� 9Xc0 �� c0 2 C)= �(P� �(9Xc0) �� c0 2 C):The case where � satis�es E1 is proved in Theorem 5.3.D3: Straightforward by � extensivity.D4: It follows by
 idempotence and commutativity:�(9fxg(�(dx;t)
 �(c)))
 �(9fxg(�(dx;t)
 �(c0))) ��(9fxg(�(dx;t)
 �(c))
 9fxg(�(dx;t)
 �(c0))) ��(9fxg(�(dx;t)
 �(c)
 �(dx;t)
 �(c0))) =�(9fxg(�(dx;t)
 �(c)
 �(c0)))Proposition 6.1.(�a; Sa;V) is a term system of dimension �, and � is a morphism from � into�a.Proof. We simplify the notation by assuming w.l.o.g. that V = V . Let t; t0 2 � ,a; b 2 �a such that �(t) = a and �(t0) = b, then we have:T1: sax(a; x) = �(sx(t; x)) = �(t) = a.T2: sax(a; y) = �(sx(t; y)) = y.T3: sax(a; sax(y; b)) = �(sx(t; t2)) where �(t2) = �(sx(y; t0)).Then: sax(a; sax(y; b)) = �(sx(t; sx(y; t0))) = �(sx(y; t0)).T4: The proof is analogous to that for T3.

60 Proposition 6.2.�(A) is a correct R5 and D4 non-distributive constraint system.Proof. From Theorem 6.1, it is enough to prove the D3 distributivity. Let� = � �, t; t1; t2 2 � and x 2 V . The proof follows by 9=� additivity and fromthe basic properties of �: �(9fxg(�(dx;t)
 �(dt1;t2))) =�(9fxg � fdx;t1
 dt2;t3 j �(t) = �(t1); �(t1) = �(t2); �(t2) = �(t3)g) =(�f�(9fxgdx;t1
 dt2;t3) j �(t) = �(t1); �(t1) = �(t2); �(t2) = �(t3)g) =(�f�(d[t1=x]t2;[t1=x]t3) j �(t) = �(t1); �(t1) = �(t2); �(t2) = �(t3)g) =(d�([t=x]t1);�([t=x]t2)) =�(d[t=x]t1;[t=x]t2)Correctness is straightforward since � is an upper closure operator.Proposition 6.5.Rel = (}(L);\;[;<n; ;; 9X; [t = t0])X�Vn;t;t02�Exp is a constraint system.Proof. [sketch] Most of this proof follows from the fact that the structure LRndiscussed in Example 4 is a constraint system (see [34] for details) and from anequivalent result in [41]. It is also straightforward to prove that (}(L);\;[;<n; ;)satis�es the axioms of closed semiring.

