
alto : A Link-Time Optimizer for the Compaq Alpha�
Robert Muth Saumya Debray Scott Watterson

Department of Computer Science
University of Arizona

Tucson, AZ 85721, USAfmuth, debray, sawg�s.arizona.edu
Koen De Bosschere

Vakgroep Elektronica en Informatiesystemen
Universiteit Gent

B-9000 Gent, Belgiumkdb�elis.rug.a.be
Keywords : compilers, code optimization, executable editing

November 2, 1999

Abstract

Traditional optimizing compilers are limited in the scope of their optimizations by the fact that only a single
function, or possibly a single module, is available for analysis and optimization. In particular, this means that
library routines cannot be optimized to specific calling contexts. Other optimization opportunities, exploiting
information not available before linktime such as addresses of variables and the final code layout, are often
ignored because linkers are traditionally unsophisticated. A possible solution is to carry out whole-program
optimization at link time. This paper describesalto, a link-time optimizer for the Compaq Alpha architecture.
It is able to realize significant performance improvements even for programs compiled with a good optimizing
compiler with a high level of optimization. The resulting code is considerably faster that that obtained using the
OM link-time optimizer, even when the latter is used in conjunction with profile-guided and inter-file compile-
time optimizations.

� The work of Robert Muth, Saumya Debray and Scott Watterson was supported in part by the National Science Foundation undergrant
numbers CCR-9502826, CCR-9711166, and CDA-9500991. Koen De Bosschere is a research associate with the Fund for Scientific Research
– Flanders.

1 Introduction
Optimizing compilers for traditional imperative languages often limit their program analyses and optimizations to
individual procedures [1]. This has the disadvantage that some possible optimizations may be missed because they
depend on propagating information across procedure boundaries. However, even if a compiler implements inter-
procedural analyses (see, for example, [16, 17, 26, 32, 39]), the analyses and optimizations possible are limited to
code that is available for examination at compile time. Thismeans that code involving calls to library routines, to
procedures defined in separately compiled modules, and to dynamically dispatched “virtual functions” in object-
oriented languages (in the case where the virtual function is never overridden), cannot be effectively optimized.
Other optimizations, e.g., to reduce the cost of address computations [37] require information not available at
compile time.

A possible solution is to carry out program optimization when theentire program—library calls and all—is
available for inspection: that is, at link time. While this makes it possible to address the shortcomings of the
traditional compilation model, it gives rise to its own problems, for example:

– Machine code usually has much less semantic information than source code, which makes it much more
difficult to discover control flow or data flow information. Asa simple example, even for simple first-order
programs (i.e., where functions are not treated as data and passed around, e.g., in the form of closures in
languages such as Scheme or ML, procedure parameters in languages such as Pascal, or using function
pointers as in C), control flow analysis of executable files can be difficult because determining the extent
of jump tables, and hence the possible targets of the code derived fromase or swith statements, can be
difficult; at the source level, by contrast, the corresponding problem is straightforward.

– Compiler analyses are typically carried out on representations of source programs in terms of high-
level source language constructs. Here, “nasty” features are either infrequent, or result in non-standard-
conforming programs whose observable behavior are not guaranteed to be preserved under optimizations.
For example, explicit nontrivial pointer arithmetic—i.e., beyond simple increment or decrement operations
on pointers—are usually not frequently encountered, whileout-of-bounds array accesses typically result
in non-standard-conforming programs. Because of this, compiler analyses can either handle them very
conservatively—essentially, giving up when such featuresare encountered—or adhere strictly to the lan-
guage semantics, e.g., by assuming that an array accessa[i℄ addresses only elements of the arraya, thereby
simply ignoring potentially non-standard-conformant constructs such as out-of-bounds accesses. Neither al-
ternative is difficult to implement or has a significant adverse impact on the extent of optimization achieved
for most programs.

At the level of executable code, by contrast, all we have are the nasty features. Nontrivial pointer arithmetic
is ubiquitous, both for ordinary address computations and for manipulating tagged pointers. If the number
of arguments to a function is large enough, some of the arguments may have to be passed on the stack. In
such a case, the arguments passed on the stack will typicallyreside at the top of the caller’s stack frame,
and the callee will “reach into” the caller’s frame to accessthem: since the stack frame is typically accessed
as an array of words indexed by the stack (or frame) pointer, this is nothing but an out-of-bounds array
reference. Unfortunately, source-level approaches to handling such features are no longer adequate at the
level of executable code: treating nontrivial pointer arithmetic conservatively by giving up on them has a
significant adverse impact on optimization, while ignoringthe effects of out-of-bounds array accesses can
cause incorrect optimization to be carried out.

– Executable programs tend to be significantly larger than the source programs they were derived from. Cou-
pled with the lack of semantic information present in these programs, this means that sophisticated analyses
that are practical at the source level may be overly expensive at the level of executable code because of their
time or space requirements.

This paper describes a link-time optimizer that we have built for the Alpha architecture. Our system, which
we callalto (“a link-time optimizer”), reads in an executable file produced by the linker (we currently support

1

Digital UNIX ECOFF binaries; a version for Elf binaries under Linux has been developed and is currently being
tested), as well as execution profile information (optional),1 carries out various analyses and optimizations, and
produces another executable file. Experiments indicate that even though it currently implements only relatively
simple analyses—for example, checks for pointer aliasing are only implemented in the most rudimentary and
conservative way—the performance of the code generated by the system is considerably better than that generated
by theom link-time optimizer [36] supplied by the vendor.

The remainder of the paper is organized as follows: Section 2gives a brief overview of the Alpha processor.
Section 3 describes the overall organization ofalto. Section 4 discusses how control flow analysis is carried out.
Section 5 describes the analyses carried out byalto, Section 6 describes the optimizations that are performed,and
Section 7 gives performance results. Section 9 summarizes work related to ours. Finally, Section 10 concludes.Alto can be downloaded free of charge fromhttp://www.s.arizona.edu/alto.

2 The Alpha Architecture: an Overview
The Alpha is a conventional superscalar RISC processor with64-bit words and 32-bit instructions. It has thirty-
two 64-bit integer registers (registers$0 : : : $31) and thirty-two floating-point registers (registers$32 : : : $63).
Of these, register$31 is hard-wired to the integer value 0, while$63 is hard-wired to the floating-point value 0.0.
Additionally, “standard usage” of these registers is as follows:

Integer Registers Floating-Point Registers Usage$0 $32, $33 return values of functions$1–$8, $22–$25, $27–$28 $42–$47, $54–$62 scratch registers$9–$15 $34–41 callee-saved registers$16–21 $48–$53 argument registers for function calls$26 (ra) return address register for function calls$29 (gp) “global pointer” register$30 (sp) stack pointer

Of these, the use of the global pointer registergp ($29) deserves some explanation. On a typical 32-bit architecture,
with 32-bit instruction words and 32-bit registers, a (32-bit) constant is loaded into a register via two instructions,
one to load the high 16 bits of the register and one for the low 16 bits; in each of these instructions, the 16 bits
to be loaded are encoded as part of the instruction word. However, since the Alpha has 32-bit instructions but
64-bit registers, this mechanism is not adequate for loading a 64-bit constant (e.g., the address of a procedure or a
global variable) into a register. Instead, such constants are collected into one or moreglobal address tables, one
for each separately compiled module. The generated code accesses this table via thegp register, together with a
16-bit displacement. Accessing a global object involves two steps: first, the address of the object is loaded from
the global address table; this is then used to access the object referred to, e.g., to load from or store to a global
variable, or jump to a procedure.

3 System Organization
The execution ofalto can be divided into five phases. In the first phase, an executable file (containing relocation
information for its objects) is read in, and an initial, somewhat conservative, inter-procedural control flow graph is
constructed. In the second phase, a suite of analyses and optimizations is then applied iteratively to the program.
The activities during this phase can be broadly divided intothree categories:

Simplification : Program code is simplified in three ways: dead and unreachable code is eliminated; operations are
normalized, so that different ways of expressing the same operation (e.g., clearing a register) are rewritten,
where possible, to use the same operation; and no-ops, typically inserted for scheduling and alignment
purposes, are eliminated to reduce clutter.

1Alto can use either basic block profiles, generated using the vendor-suppliedpixie tool, or basic block and edge profiles that it can itself
generate; we are currently extending the system to also generate value profiles [9] at specific points of interest.

2

Analysis : A number of analyses are carried out during this phase, including register liveness analysis, constant
propagation, stack usage patterns, and jump table analysis.

Optimization : Optimizations carried out during this phase include standard compiler optimizations such as peep-
hole optimization, branch forwarding, copy propagation, and invariant code motion out of loops; machine-
level optimizations such as elimination of unnecessary register saves and restores at function call boundaries;
architecture-specific optimizations such as the use of conditional move instructions to simplify control flow;
as well as improvements to the control flow graph based on the results of jump table analysis.

This is followed by a function inlining phase. The fourth phase repeats the optimizations carried out in the second
phase to the code resulting from inlining. The final phase carries out profile-directed code layout [30], instruction
scheduling, and insertion of no-ops for alignment purposes, after which the code is written out.Alto carries out inlining because there may be opportunities forinlining at link time, e.g., across module and
library boundaries, that may not have been present at compile time. The reason the simplification and optimization
phases are performed twice, before and after inlining, is that they influence inlining and are influenced by it.
For example, whether or not a function call will be inlined depends, in part, on the size of the callee, which is
affected by dead and unreachable code elimination prior to inlining. These, in turn, are affected by optimizations
such as copy propagation and constant folding. For example,inter-procedural constant propagation and constant
folding prior to inlining can propagate the value of a constant argument into a library routine; this can then allow
the outcome of a conditional branch in that routine to be statically determined, and the subsequent removal of
unreachable code can reduce the size of that routine to the point where it gets inlined into one or more call sites.
The inlining phase, in turn, can give rise to further opportunities for optimizations. For example, most of the
optimizations withinalto are conservative in their treatment of function calls in that they assume that the callee
may read or write to any memory location; inlining exposes the memory access behavior of the inlined routine and
can thereby enhance the effects of many of these optimizations.

4 Control Flow Analysis
Traditional compilers generally construct control flow graphs for individual functions, based on some intermediate
representation of the program. The determination of intra-procedural control flow is not too difficult; and since an
intermediate representation is used, there is no need to deal with machine-level idioms for control transfer. As a
result, the construction of a control flow graph is a fairly straightforward process [1].

Things are somewhat more complex at link time because machine code is harder to decompile. The algorithm
used byalto to construct a control flow graph for an input program is as follows:

1. The start address of the program appears at a fixed locationwithin the header of the file (this location may
be different for different file formats). Using this as a starting point, the “standard” algorithm [1] is used
to identify leaders and basic blocks, as well as function entry blocks. The relocation information of the
executable is used to identify additional leaders which would otherwise not be detected (eg. jump table
targets) and those basic blocks are marked relocatable. At this stagealto makes two assumptions:(i)
that each function has a single entry block; and(ii) that all of the basic blocks of a function are laid out
contiguously. If the first assumption turns out to be incorrect, the flow graph is “repaired” at a later stage;
if the second assumption does not hold, the control flow graphconstructed byalto may contain (safe)
imprecisions, and as a result its optimizations may not be aseffective as they could have been.

2. Edges are added to the flow graph. Whenever an exact determination of the target of a control transfer is
not possible,alto estimates the set of possible targets conservatively, using a special nodeBunknownand
a special functionFunknown that are associated with the worst case data flow assumptions(i.e., that they
use all registers, define all registers, etc.). Any basic block whose start address is marked as relocatable is
considered to be a potential target for a jump instruction with unresolved target, and has an edge to it fromBunknown; any function whose entry point is marked as relocatable is considered to be potentially a target of

3

an indirect function call, and has a call edge to it fromFunknown. Any indirect function call (i.e., using thejsr instruction) is considered to callFunknownwhile other indirect jumps are considered to jump toBunknown.

3. Inter-procedural constant propagation is carried out onthe resulting control flow graph, and the results used
to determine addresses being loaded into registers. This information, in turn, is used to resolve the targets of
indirect jumps and function calls: where such targets can beresolved unambiguously, the edge toFunknown

orBunknownis replaced by an edge to the appropriate target.

4. The assumption thus far has been that a function call returns to its caller, at the instruction immediately after
the call instruction. At the level of executable code, this assumption can be violated in two ways.2 The first
involvesescaping branches, i.e., ordinary (i.e., non-function-call) jumps from one function into another: this
can happen either because of tail call optimization, or because of code sharing in hand-written assembly code
that is found in, for example, some numerical libraries. Thesecond involves nonlocal control transfers via
functions such assetjmp andlongjmp. Each of these cases is handled by the insertion of additional control
flow edges, which we callcompensation edges, into the control flow graph: in the former case, escaping
edges from a functionf to a functiong result in a single compensation edge from the exit node ofg to the
exit node off ; in the latter case, a function containing asetjmp has an edge fromFunknownto its exit node,
while a function containing alongjmp has a compensation edge from its exit node toFunknown. The effect
of these compensation edges is to force the various dataflow analyses to safely approximate the control flow
effects of these constructs.

5. Finally, alto attempts to resolve indirect jumps through jump tables, which arise fromase or swith
statements. This is done as part of the optimizations mentioned at the beginning of this section. These
optimizations can simplify the control and/or data flow enough to allow the extent of the jump table to be
determined. The essential idea is to use constant propagation (Section 5.1) to identify the start address of
the jump table, and the bounds check instruction(s) to determine the extent of the jump table. The edge from
the indirect jump toBunknownis then replaced by a set of edges, one for each entry in the jump table. If all of
the indirect jumps within a function can be resolved in this way, any remaining edges fromBunknownto basic
blocks within that function are deleted.

5 Program Analysis
Once the flow graph has been constructed for a program, it is subjected to various dataflow analyses, the most
important of which are described here.

5.1 Interprocedural Constant Propagation

There are generally more opportunities for interprocedural constant propagation at link time than at compile time.
There are two reasons for this: first, the entire program, including all the library routines, is available for inspection;
and second, at link time it is possible to detect and deal witharchitecture-specific computations that are not visible
at the intermediate code representation level typically used by compilers for most optimizations. An example of
the latter case is the computation of thegp register on the Alpha processor: the value of this register is generally
recomputed at the entry to each function as well as on return from every function call, but in many cases the
recomputation is unnecessary and can be eliminated by propagating the value of the register through a program. It
should be noted that this optimization cannot be carried outat compile time since the value ofgp is only determined
at link time.

The analysis used inalto is essentially a standard iterative constant propagation,limited to registers but carried
out across the control flow graph of the entire program. This has the effect of communicating information about

2In some architectures, the callee may explicitly manipulate the return address under some circumstances, e.g., part ofthe SPARC calling
convention is that in some cases there is an extra word immediately following the call instruction, and in these cases, the callee increments the
return address to skip over this word (we are grateful to an anonymous referee for pointing this out to us). Such situations do not arise in the
Alpha architecture, and are not handled byalto.

4

Program No. of instructions Evaluated/Total
Total Evaluated

compress 20707 3140 0.152
gcc 353002 67352 0.191
go 83929 14661 0.175
ijpeg 62639 7470 0.119
li 40832 7464 0.183
m88ksim 53498 10576 0.198
perl 107229 20920 0.195
vortex 155030 39204 0.253

Geometric Mean: 0.180

Table 1: Efficacy of Interprocedural Constant Propagation

constant arguments from a calling procedure to the callee. To improve precision,alto attempts to determine the
registers saved on entry to a function and restored at the exit from it: if a registerr that is saved and restored by
a function in this manner contains a constantc just before the function is called, thenr is inferred to contain the
valuec on return from the call.3

The results of constant propagation, after all optimizations have been carried out, are shown in Table 1. The
column labelled “Total” gives the (static counts for) the total number of instructions in each program (after unreach-
able code elimination—see Section 6.1), while the column labelled “Evaluated” gives the number of instructions
whose operands and result could be determined at link time. It can be seen that, on the average, it is possible to
evaluate about 18% of the instructions of a program at link time. However, this does not mean that these 18% of
the instructions in a program can be removed byalto, since very often the instructions whose outcome can be
evaluated ahead of time represent address computations foraccessing arrays or records, or for function calls. This
information can, nevertheless, be used to advantage in manycases, e.g., by replacing indirect function calls with
direct calls, or register operands by immediate operands.

As shown in Figure 1, this analysis has a profound impact on the performance of the generated code. Turning
off this analysis results in an overall slowdown of over 10% on the SPEC-95 benchmarks, with some programs,
such asm88ksim, perl, andvortexsuffering slowdowns of 15–20%. The reason for this impact, in great part, is
that many control and data flow analyses rely on the knowledgeof constant addresses computed in the program.
For example, the code generated by the compiler for a function call typically first loads the address of the called
function into a register, then uses ajsr instruction to jump indirectly through that register. If constant propagation
can be used to determine that the address being loaded is a fixed value, and the callee is not too far away, the
indirect function call can be replaced by a direct call usingabsr instruction: this is not only cheaper, but also vital
for the construction of the inter-procedural control flow graph of the program and for other optimizations such as
inlining. Another example of the use of constant address information involves the identification of possible targets
of indirect jumps through jump tables: unless this can be done, an indirect jump must be assumed as being capable
of jumping to any basic block of a function,4 which can significantly hamper optimizations. Finally, knowledge of
constant addresses is useful for optimizations such as the removal of unnecessary memory references (Section 6.3)
and strength reduction in constant computations (Section 6.2).

3Unfortunately, we cannot rely on the calling conventions being observed: hand-written assembly code in libraries doesnot always obey
such conventions, and compilers may ignore them when doing interprocedural register allocation.

4More precisely, any basic block that is marked as “relocatable.”

5

compress

gcc go ijpeg
li m88ksim

perl
vortex

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

without constant propagation

with constant propagation

average

Figure 1: Performance impact of interprocedural constant propagation

5.2 Interprocedural Liveness Analysis

Interprocedural dataflow analyses can be eithercontext-insensitiveor context-sensitive. Context-insensitive anal-
yses simply combine the control flow graphs for individual procedures into a single large graph and analyze this
using standard intra-procedural techniques, without keeping track of which return edges correspond to which call
edges. This has the advantages of simplicity and efficiency:nothing special needs to be done to handle inter-
procedural control flow, and a procedure does not have to be re-analyzed for its various call-sites [6, 7, 16, 32].
The problem is that such analyses can suffer from a loss of precision because they can explore execution paths
containing call/return pairs that do not correspond to eachother and therefore cannot occur in any execution of
the program. Context-sensitive analyses, by contrast, avoid this problem by maintaining information about which
return edges correspond to which call sites, and propagating information only along realizable call/return paths
[17, 26, 39]. The price paid for this improvement in precision is an increase in the cost of analysis.Alto implements a relatively straightforward interproceduralliveness analyses [1], restricted to registers, and
extended to deal with idiosyncracies of the Alpha instruction set. For example, theall pal instruction, which
acts as the interface with the host operating system, has to be handled specially since the registers that may be
used as through this instruction are not visible as explicitoperands of the instruction: our implementation currently
implements this using the nodeBunknownmentioned in Section 4. The conditional move instruction also requires
special attention as the destination register has to be considered as a source register as well. The remainder of this
section gives a high-level overview of our liveness analysis.

In order to propagate dataflow information along realizablecall/return paths only,alto computes summary
information for each function, and models the effect of function calls using these summaries. Given a call site,
consisting of a call nodenc and a return nodenr , for a call to a functionf , the effects of the function call on liveness
information are summarized via two pieces of information:

1. mayUse[f ℄, which gives the registers that may be used byf . A registerr may be used byf if there is a
realizable path from the entry node off to a use ofr without an intervening definition ofr. mayUse[f ℄ hence
describes the set of registers that are always live at the entry to f independent of the calling context, and
which are therefore necessarily live at the call nodenc.

2. byPass[f ℄. The set of registers which, if live atnr , will also be live atnc.

There is some flexibility in the choice forbyPass[f ℄. Srivastava and Wall choosebyPass[f ℄ to be the complement
of the set of registers that are guaranteed to be dead at entryto f [36]. The problem with this is that it introduces a
mutual dependency between thebyPassandmayUsesets, which complicates the flow equations. Goodwin chooses
byPass[f ℄ to bemustDef[f ℄, the complement of the set of registers that will necessarily be defined byf : this avoids
the mutual dependency problem mentioned [21]. In general, however, it is not hard to see that any set which lies
betweenmustDef[f ℄ andmustDef[f ℄[mayUse[f ℄ is a valid candidate forbyPass[f ℄. Our choice forbyPass[f ℄ is

6

Load Instructions Executed(�106)
Program Trivial Context-insensitive Context-sensitive Triv/C-Ins Triv/C-Sens

(Triv) (C-Ins) (C-Sens)

compress 12.069 12.069 11.706 1.000 0.970
gcc 11.750 11.464 11.160 0.976 0.950
go 19.706 18.850 17.897 0.957 0.908
ijpeg 20.116 20.000 19.955 0.994 0.991
li 18.102 17.948 17.628 0.991 0.974
m88ksim 15.506 15.028 14.469 0.967 0.933
perl 12.616 12.267 11.930 0.972 0.946
vortex 24.504 24.048 23.326 0.981 0.952

Geometric Mean 0.980 0.953

Table 2: Effect of Liveness Analysis on Load Instructions Executed

a superset of Goodwin’s, and results in more uniform dataflowequations that are somewhat simpler to implement
[29].

Our analysis proceeds in three phases. The first two phases compute summary information for functions, i.e.,
their mayUseandbyPasssets; the third phase then uses this information to do the actual liveness computation.
While the first two phases can be carried out in parallel, doing them sequentially reduces the amount of space used,
though possibly at the cost of increased execution time. Ourimplementation carries out the phases sequentially in
order to conserve space.

It turns out that even context-sensitive liveness analysesmay nevertheless be overly conservative if they are
not careful in handling register saves and restores at function call boundaries. Consider a function that saves the
contents of a register, then restores the register before returning. A registerr that is saved in this manner will appear
as an operand of astore instruction, and therefore appear to be used by the function; in the subsequent restore
operation, registerr will appear as the destination of aload instruction, and therefore appear to be defined by the
function. A straightforward analysis will therefore inferthatr is used by the function before it is defined, and this
will causer to be inferred as live at every call site forf . To handle this problem,alto attempts to determine, for
each function, the set of registers it saves and restores.5 If the set of callee save registers of functionf , save[f ℄, can
be determined we can use it to make the analysis somewhat lessconservative by removing this set frommayUse[f ℄
and adding it tobyPass[f ℄ whenever those values are updated during the fixpoint computation.

Ultimately, the utility of various analyses should be measured by the extent to which they enable optimizations
to be carried out. In particular, analyses that attain improved precision at the cost of increased complexity should
be justified by the additional code optimizations that become possible as a result of the improvement in preci-
sion. Table 2 compares context-insensitive and context-sensitive versions of our interprocedural register liveness
analyses with respect to the reduction in the number of load and store instructions executed; the column marked
Trivial corresponds to the base case, i.e., where no liveness information is available. It can be seen that our liveness
analysis leads to a reduction in the number of loads from memory by about 2.5–5%, with thegoprogram achieving
a reduction of over 9%. Compared to a simple context-insensitive analysis, the context-sensitive liveness analysis
yields an additional improvement of about 2.5–3%.

5We do not makea priori assumptions that a program will necessarily respect the calling conventions with regard to callee-saved registers:
this is safe, though possibly conservative.

7

Program Original Unreachable Unreachable/Original
(no. of instrs) (no. of instrs)

compress 25097 4391 0.175
gcc 367760 14759 0.040
go 89346 5418 0.061
ijpeg 74307 11669 0.157
li 46117 5286 0.115
m88ksim 59656 6159 0.103
perl 114782 7554 0.066
vortex 186655 31626 0.169

Geometric Mean: 0.098

Table 3: Experimental Results: Unreachable Code Elimination

6 Optimizations
This section describes some of the more important optimizations implemented withinalto. To maintain continu-
ity, with each such optimization we discuss its performanceimpact; our experimental methodology is described in
Section 7, while the raw data regarding execution times are presented in Table 8 in Appendix A. The performance
impact of a particular optimization is measured by comparing the execution speeds attained when all optimizations
are turned on against that attained when only that optimization is turned off. The details of the methodology used
for these experiments, including the benchmarks, compileroptions, and hardware processor used, are given in
Section 7. It should be noted that because of interactions between different optimizations, the overall performance
improvement for a program is not usually the same as the sum ofthe improvements for individual optimizations.

6.1 Unreachable Code Elimination

In compilers, unreachable code—i.e., code that will never be executed—typically arises due to user constructs
(such as debugging statements that are turned off by settinga flag) or as a result of other optimizations, and is
usually detected and eliminated using intra-procedural analysis. By contrast, unreachable code that is detected at
link time usually has very different origins: most of it is due to the inclusion of irrelevant library routines, together
with some code that can be identified as unreachable due to thepropagation of actual parameter values into a
function. In either case, link-time identification of unreachable code is fundamentally interprocedural in nature.

Even though unreachable code can never be executed, its elimination is desirable for a number of reasons:

1. It reduces the amount of code that the link-time optimizerneeds to process, and can lead to significant
improvements in the amount of time and memory used.

2. It can enable optimizations that otherwise might not havebeen enabled, such as bringing two basic blocks
closer together, allowing for more efficient control transfer instructions to be used, or allowing for a more
precise liveness analysis which might trigger several other optimizations.

3. The elimination of unreachable code can reduce the amountof “cache pollution” by unreachable code that is
loaded into the cache when nearby reachable code is executed. This, in turn, can improve the overall cache
behavior of the program.

4. The elimination of unreachable code simplifies the processing of extended basic blocks (i.e., a sequence of
instructions where incoming control flow edges are allowed only at the top, but where there may be outgoing
control flow edges at intermediate points in the sequence), since it makes it unnecessary to check for certain
situations, such as an unreachable cycle of basic blocks, that could otherwise prove to be problematic.

8

compress

gcc go ijpeg
li m88ksim

perl
vortex

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
without optimization

with optimization

average

Figure 2: Performance impact of constant computation optimization

Unreachable code analysis involves a straightforward depth-first traversal of the control flow graph, and is per-
formed as soon as the control flow graph of the program has beencomputed. Initially, all basic blocks are marked
as unreachable, except for the entry block for the whole program, andBunknown, which has an edge to each basic
block that has unknown predecessors (see Section 4). The analysis then traverses the inter-procedural control flow
graph and identifies reachable blocks: a basic block is marked reachable if it can be reached from another block
that is reachable. Function calls and the corresponding return blocks are handled in a context-sensitive manner:
the basic block that follows a function call is marked reachable only if the corresponding call site is reachable.

The amount of unreachable code detected in our benchmarks isshown in Table 3. These numbers do not
include no-ops inserted into reachable basic blocks for alignment and instruction scheduling purposes. It can be
seen that the amount of unreachable code is quite significant: in many programs, it exceeds 10%, and in one case,
the vortexprogram, it is almost 17%. On the average, about 10% of the instructions in our benchmarks were
found to be unreachable. This is somewhat higher than the results of Srivastava, whose estimate of the amount of
unreachable code in C and Fortran programs was about 4%–6% [35].

For our benchmarks, the primary impact of unreachable code elimination is on code size: the measured impact
of this optimization on execution speed is small.

6.2 Optimization of Constant Value Computations

If it is possible to determine, from constant propagation/folding, that a value being computed or loaded into a
register is a constant,alto attempts to find a cheaper instruction to compute the constant into that register. (This
optimization could be generalized to cheap instruction sequences to replace high latency operations, such as mul-
tiplication.) The simplest case of this optimization involves computing the values of constants using specific
registers whose values are known at each program point, namely, register$31, whose value is always 0, and the
global pointer registergp, whose value at any program point is known at link time. If the(signed) constantk can
be represented with 16 bits, the instruction to compute thatconstant into a registerr is replaced by the instruction
‘lda r, k($31)’ (an instructionlda ra, m(rb) computes into registerra the result of addingm to the contents
of rb, wherem is a signed 16-bit value). Similarly, if the difference between the constantk and the value of thegp
register is representable as a signed 16 bit integer, we can do the same thing usinggp as the base register. The basic
optimization is described by Srivastava and Wall [37]; inalto it is generalized so that a constant can be computed
from a known value in any register, not just$31 or gp.

Care must be taken to ensure that the constants involved are not addresses within the code sections of the
executable. Sincealto changes the code section, addresses therein are almost certain to change: such constants are
therefore excluded from this optimization. Data addressesare not a problem, by contrast, since the transformations
implemented withinalto do not cause data addresses to change.

As an example of this optimization, consider the following Cstatement, wherea, b and are global variables
of typelong, with addresses 0x1400021558, 0x1400021560, and 0x1400021568 respectively:

9

a = b + ;
The code generated for this would typically be as follows:

(a) original code (b) initial optimized code (c) final optimized code
(1) ldq $r1, 16(gp) (1) ldq $r1, 16(gp) (1) ldq $r1, 16(gp)
(2) ldq $r2, 96(gp) (20) lda $r2, 8(r1)
(3) ldq $r3, 32(gp) (30) lda $r3, 16(r1)
(4) ldq $r4, 0($r1) (4) ldq $r4, 0($r1) (4) ldq $r4, 0($r1)
(5) ldq $r5, 0($r2) (50) ldq $r5, 8($r1) (50) ldq $r5, 8($r1)
(6) addq $r4, $r5, $r6 (6) addq $r4, $r5, $r6 (6) addq $r4, $r5, $r6
(7) stq $r6, 0($r3) (70) stq $r6, 16($r1) (70) stq $r6, 16($r1)

Here, anldq ra, k(rb) loads into registerra the contents of the quadword (i.e., 8 bytes) at the address computed
by addingk to the contents of registerrb; thestq instruction stores a quadword analogously. In the originalcode,
instructions(1)� (3) load the addresses of the variables from the global address table, using the global pointer
registergp to index into this table. Instructions(4)� (7) implement the actual addition.Alto is able to determine
the addresses loaded into registersr1, r2 andr3, since it it is able to determine the contents ofgp, and the global
address table is a read only area of memory. This allows constant value optimization of instructions (2) and (3),
which replaces the address loads with cheaperlda instructions. Instructions (5) and 7) are also modified, to user1 as the base register. The resulting code is shown in the column labelled “initial optimized code.” Note that
registersr2 andr3 are no longer used in this code: assuming that they are now dead at the end of this code
fragment, instructions(20) and(30) will subsequently be deleted, resulting in the final optimized code sequence
shown.Alto also tries to optimize the use of constants. Some Alpha instructions allow the use of a small immediate
value in place of the second operand register.Alto attempts to exploit this feature whenever possible. If onlythe
first operand register is determined to be constant,alto will try to swap the operands of the instruction. This is
trivial if the instruction is commutative in its operands, but requires more serious analysis and modifications if it is
not.

The performance impact of this optimization is illustratedin Figure 2. The programs that benefit the most from
this optimization arem88ksim, perl, andvortex, with improvements of around 10% to 13%; overall, the SPEC-95
benchmarks experience a performance improvement of about 6.4% due to this optimization.

6.3 Elimination of Unnecessary Memory Operations

It is sometimes possible to identifyload (and, less frequently,store) operations as unnecessary at link time, and
eliminate such operations. Unnecessaryloads andstores can arise for a variety of reasons: a variable may not
have been kept in a register by the compiler because it is a global, or because the compiler was unable to resolve
aliasing adequately, or because there were not enough free registers available to the compiler. At link time, accesses
to globals from different modules become evident, making itpossible to keep them in registers [38]; inlining across
module boundaries, and of library routines, may make it possible to resolve aliasing beyond what can be done at
compile time; and a link time optimizer may be able to scavenge registers that can be used to hold values that were
spilled to memory by the compiler. Inalto, two distinct optimizations are used to eliminate unnecessary memory
operations:

1. Suppose that an instructionI1 stores a registerr1 to memory locationl (or loadsr1 from memory locationl),
and is followed soon after by an instructionI2 that loads from locationl into registerr2. If it can be shown
that that locationl is not modified between these two instructions, thenload forwardingattempts to delete
instructionI2 and replace it with a register move fromr1 to r2. It may happen that registerr1 is overwritten
between instructionsI1 andI2: in this case,alto tries to find a free registerr3 (which may or may not be the
same asr2) that can be used to hold the value inr1.

10

compress

gcc go ijpeg
li m88ksim

perl
vortex

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
without optimization

with optimization

average

Figure 3: Performance impact of memory operation elimination

If the instructionI1 can now be shown to be dead, it can be deleted. In our current implementation, this
happens less frequently forstore than forload operations because liveness analysis for memory locations
is very limited.

2. Memory accesses can result from the saving and restoring of callee-save registers at function boundaries.
Some of these accesses may be unnecessary, either because the registers saved and restored in this manner are
not touched along all execution paths through a function, orbecause the code that used those registers became
unreachable, e.g., because the outcome of a conditional branch could be predicted as a result of inlining or
interprocedural constant propagation, and therefore was deleted. To reduce the number of such unnecessary
memory accesses,alto uses a variation onshrink-wrapping[8] to move register save/restore actions away
from execution paths that don’t need them. The difference between our implementation of shrink-wrapping,
and that originally proposed by Chow [8], is that we don’t allow any execution path through a function to
contain more than one each of save and restore actions. Apartfrom this, if a function saves and subsequently
restores a callee-save registerr but does not changer, the instructions to save and restorer are eliminated.

The performance impact of this optimization is illustratedin Figure 3. The programs that benefit the most from
this optimization arego and perl, with improvements in the neighborhood of 12–15%; overall,the SPEC-95
benchmarks experience an improvement of around 5.7% due to this optimization.

6.4 Inlining

The motivations for carrying out inlining withinalto are three-fold. The first is to eliminate the function call/return
overhead. Usually, inlining a function call gets rid of 2–6 instructions (the call and return instructions, load and
store instructions for saving and restoring the return address at the callee, and allocating and deallocating the
callee’s stack frame; a leaf function, i.e., one that does not call any other functions, will not need to save and
restore its return address, and may not have to allocate a stack frame). Additionally, register reassignment can
be used to reduce the overhead of saving and restoring registers across call boundaries. The second is to exploit
callsite-specific information in the callee: for example, aliasing relationships between the caller’s code and the
callee’s code may become easier to determine after inlining, when they would refer to the same stack frame rather
than two different frames (see Section 6.3). The final reasonis to improve branch prediction and instruction cache
behavior using profile-directed code layout (cf. Section 6.5). Code growth due to inlining is controlled inalto as
follows: a function is inlined into a call site only if at least one of the following hold:(i) the callee is “small enough” that the calling and return sequences are together longer than its body;(ii) the call site under consideration is the only call site for that function; or

11

Program Number of Instructions
no inlining (Nno inl) with inlining (Ninl) Nno inl=Ninl

compress 21408 21632 1.010
gcc 317648 318784 1.004
go 78112 77760 0.995
ijpeg 60016 59936 0.999
li 37856 37952 1.003
m88ksim 50720 50912 1.004
perl 98864 100560 1.017
vortex 130032 129840 0.999

Table 4: Code growth due to inlining

compress

gcc go ijpeg
li m88ksim

perl
vortex

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

without inlining

with inlining

average

Figure 4: Performance impact of inlining(iii) the call site is “hot,” i.e., has a sufficiently high execution count, and (alto’s estimate of) the cache footprint
of the resulting code does not exceed the size of the instruction cache.

The reason for the last condition is that inlining without attention to cache behavior can have a significant negative
effect on program performance. To address this problem, a hot call siteC to a functionf is considered for inlining
by alto if it satisfies the following criteria (here, acritical subgraphof a control flow graph refers to a subgraph
consisting of the hot basic blocks, together with enough other blocks and edges to permit a path, within this
subgraph, from the entry node to each hot block and thence to the exit node):

1. for each loopL enclosing the call siteC, the number of instructions in the critical basic blocks ofL, together
with the instructions in the critical subgraph of the calleef , should not exceed the capacity of the level-1
instruction cache (in our case, using the Alpha 21164 processor, this is 8 Kbytes, i.e., 2048 instructions); and

2. if C is not within any loop, then the total number of instructionsin the critical subgraphs of the caller and
the callee should not exceed the capacity of the level-1 instruction cache.

More sophisticated strategies are possible [28], but thesehave not been implemented withinalto at this time.
The extent of code growth due to inlining is shown in Table 4. Inlining causes only a modest increase in code

size, in most cases in the neighborhood of 1%, and in a few cases leads to small decreases in code size.
The performance improvements resulting from inlining are shown in Figure 4. The greatest benefits are ob-

served form88ksim, with an improvement of a little over 5%. In general, however, the effect of inlining is small:
for the SPEC-95 benchmarks overall, the performance improvement due to inlining is less than 2%. We believe

12

compress

gcc go ijpeg
li m88ksim

perl
vortex

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

without profile information

with profile information

average

Figure 5: Performance impact of profile-directed code layout

there are three reasons for this: first, the input executables have already been subjected to inlining by the compiler;
second, our inter-procedural constant propagation and register liveness analyses are precise enough that they do not
benefit significantly from inlining; and third, profile-directed code layout is able to mitigate much of the locality
effects of inlining.

6.5 Code Layout

Whenalto creates the interprocedural control flow graph for a program, all unconditional branches are eliminated.
The responsibity of the code layout phase is to arrange the basic blocks in the program into a linear sequence,
reintroducing unconditional branches where necessary. There are three important issues that should be considered
when determining the linear arrangement of basic blocks:

1. Branch mispredict penalties: During the execution of a conditional branch, instructions are fetched from
memory before the branch target has been determined in orderto keep the instruction pipeline full and
hide memory latencies. In order to do this, the CPU “predicts”—i.e., guesses—the target of the branch. If
the guess is wrong, the instructions in the pipeline fetchedfrom the incorrectly predicted target have to be
discarded, and instructions from the actual target have to be fetched. The execution cost associated with an
incorrect prediction is referred to as a branch mispredict penalty.

Older processors often use static branch prediction schemes, e.g., where backward branches are predicted as
taken and forward branches as not taken. For such processorsthe benefit of a careful basic block layout is
obvious. More modern CPUs, such as the Alpha 21164 used in ourexperiments, use history-based dynamic
branch prediction schemes in the hardware, and result in code where branch misprediction penalties are
much less sensitive to code layout. For this reason,alto does not consider this issue in determining code
layout.

2. Control flow change penalty: Since instruction fetching precedes instruction decoding in the instruction
pipeline, a change in control flow causes the fetch performedwhile decoding the instruction causing the
control flow change to be wasted, thereby incurring a small performance penalty. Note that this is different
from the branch mispredict penalty discussed above, since this penalty is incurred even for an unconditional
branch, which can always be correctly predicted. A change incontrol flow also increases the possibility of a
miss in the instruction cache.

This suggests the following guidelines for code layout: unconditional branches should be avoided where
possible, and conditional branches should be oriented so that the fall-through path is more likely than the
branch-taken path.

3. Instruction cache conflicts: Because modern CPUs are significantly faster than memory, delivering instruc-
tions to them is a major bottle neck. A high hit-rate of the instruction cache is therefore essential. Primary

13

instruction caches typically are relatively small in size and have low associativity, in order to improve speed.
This makes it advantageous to lay out the basic blocks in a program in such a way that frequently executed
blocks are positioned close to each other, since this is lesslikely to lead to cache conflicts [30].

Alto implements two code layout schemes, one that exploits profiling information while the other does not. If
profiling information is available, our primary goal is to reduce cache conflicts as far as possible. This is done
using a variant of the (bottom-up positioning) approach of Pettis and Hansen [30], with minor modifications to
address the problems identified by Calder and Grunwald [10].This attempts to lay out the basic blocks in a
way that minimizes the number of branches that will be taken at runtime; this has the effect that blocks that are
executed close to each other temporally tend to be placed close to each other spatially. Currently,alto does not
carry out procedure placement, i.e., the positioning of thecode for different procedures in a program guided by
call frequency information; this is mitigated, to some extent, by the fact that the profile-guided placement of basic
blocks is carried out in an inter-procedural manner, so that, for example, the block containing a frequently executed
function call can be placed close to the entry block of the callee. If no execution profile is available,alto attempts
to minimize the number of uncoditional branches while maintaining the original code layout in the input program
as closely as possible. Here we describe the layout algorithm used when profile information is available.

When profile information is available, the code layout algorithm proceeds by grouping the basic blocks in
a program into three sets: Thehot setconsists of the “frequently executed” (according to some threshold, as
discussed below) blocks in the program; thezero setcontains all the basic blocks that were never executed; and
The cold setcontains the remaining basic blocks. The basic block layoutfor each of these sets is determined
separately, and the resulting code sequences concatenatedto obtain the overall program layout.

Central to this discussion is the determination of the hot set, i.e., of blocks that are executed “sufficiently
frequently.” Given a valueφ in the interval (0,1], we determine the largest execution frequency thresholdN such
that the set of basic blocks that have execution frequenciesexceedingN together account for at least the fraction
φ of the total number of instructions executed by the program (as indicated by its basic block execution profile).
The hot basic blocks in a program are defined to be the smallest set of blocks that(i) contain all blocks with
execution frequencies exceedingN; and (ii) together contain at least as many instructions as will fit into the
primary instruction cache. For example, givenφ = 0:95, the hot basic blocks of a program consist of those that
allow us to account for at least 95% of the instructions executed at runtime. If those basic blocks fill up the
instruction cache we have foundN otherwise we will go beyond the 95% until we are able to fill theinstruction
cache. The value ofN, and therefore the hot set, obviously depends on the threshold φ: we determine the value ofφ
via empirical tuning, though in principle it could also be specified by the user. Our layout algorithm currently uses
φ = 0:66; however, our experiments with a range of values forφ indicates that, as long as thezero setis separated
from the frequently executed code, performance is not very sensitive to the actual value ofφ.

The performance impact of profile-directed code layout, compared to code layout without the use of profile
data (which adheres closely to the layout of the original code), is shown in Figure 5. Many programs can be seen
to benefit significantly from profile-directed code layout: the greatest benefits are obtained form88ksim, perl, and
vortex, with improvements of 11–13%. On average, the performance of the SPEC-95 benchmarks improves by
about 6.5% due to this optimization.

6.6 Instruction Scheduling

Since the various optimizations effected byalto can significantly alter the instruction sequence executed by the
processor, an instruction rescheduling phase before regenerating the executable is desirable. This is especially true
since the Alpha 21164 processor can issue up to four instructions per cycle, provided that appropriate constraints
are met (e.g., not more than one instruction in such a group should try to access memory, access the same functional
unit, etc.). Because of this, it is possible that a plausiblelink-time code transformation, such as the deletion of ano-op instruction, can alter the instruction sequence in such a way that opportunities for multiple instruction
issues are reduced dramatically, with a corresponding lossin performance. For these reasons,alto carries out
instruction scheduling after its optimizations have been carried out and the layout of code determined based on
execution profiles.

14

compress

gcc go ijpeg
li m88ksim

perl
vortex

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e
without scheduling

with scheduling

average

Figure 6: Performance impact of instruction scheduling

The instruction scheduler works on extended basic blocks—that is, a sequence of basic blocks that can be
entered only at the beginning, but where control may leave atintermediate points in the sequence—subject to
the restriction that the basic blocks constituting the extended basic block must be consecutive in the code layout.
Increasing the scope of the scheduler to handle extended basic blocks has two benefits:

1. The scheduler might choose to move instructions over basic blocks boundaries if this improves the schedule.
This is especially useful for no-ops which have been introduced for basic block alignment purposes.

2. Basic blocks are not scheduled in isolation: inter-blockdependencies are taken into account.

Since profile-directed code layout is carried out prior to scheduling, our use of extended basic blocks achieves an
effect very similar to trace scheduling [20].

The performance impact of instruction scheduling is shown in Figure 6. Most programs show performance
improvements in the neighborhood of 2%, withvortexshowing the largest gain of about 9.5%.

7 Performance Results
7.1 Background

Previous sections have discussed the effects of specific analyses and optimizations implemented inalto. This sec-
tion presents the overall performance improvements attained usingalto, and compares this with the performance
obtained using inter-file and profile-directed optimizations within the compiler together with link-time optimiza-
tion using theom link-time optimizer [36]. The benchmarks we used to test theeffect ofalto on C programs
were the eight programs in the SPEC-95 integer benchmark suite: compressis a file compression program;gcc is
a commonly used C compiler;go is a game-playing program;ijpeg is an image compression program;li is a Lisp
interpreter;m88ksimis a simulator for the Motorola 88100 microprocessor;perl is a Perl language interpreter;
andvortexis a single-user object-oriented database transaction benchmark. The size of each program, at both the
source and object code levels, is shown in Table 5: the numberof source lines reported were measured using the
commandw -l *..

For processing byalto, the programs were compiled with the vendor-supplied C compiler V5.2-036 invoked
as -O4, with linker options to retain relocation information and to produce statically linked executables. These
executables were instrumented using the vendor-suppliedpixie and executed on the SPEC training inputs to ob-
tain an execution profile that was provided toalto, which was invoked with default switches. We also compared
the performance improvements obtained usingalto with those obtained using the OM link-time optimizer sup-
plied by the vendor [36]. For this, we obtained an execution profile for the base program usingpixie, as described
above, and then used the resulting profile to recompile each program, this time specifying that the compiler should
invoke OM, using the command

15

Program Source lines functions blocks instructions

compress 1420 316 5092 20707
gcc 193752 2465 77839 353002
go 28457 945 16035 83929
ijpeg 17848 788 11682 62639
li 6916 722 9213 40832
m88ksim 17251 638 11582 53498
perl 23678 722 22765 97079
vortex 52624 1446 28884 155030

Table 5: Static characteristics of our benchmark programs

compress gcc go ijpeg li m88ksim perl vortex
0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

original program

with OM

with ifo and OM

with alto

OM average
ifo+OM average
Alto average

Figure 7: Performance Results: C Programs -O4 -om -WL,-om ompress lita -WL,-om ireorg feedbak,profile-input-WL,-om dead ode $(CFILES) -non shared -o om.out -lm
whereCFILES is a list of all the C source files for the program. Finally, we measured the performance achievable
using all of the existing capabilities for static optimization available under Digital Unix. For this, we compiled the
programs at the same optimization level as before, but additionally with profile-directed inter-file optimization and
link-time optimization using OM [36], as described in Appendix B.

7.2 Performance of Optimized Code

The relative execution times of the different executables obtained as discussed in the previous section, based on
the SPEC reference inputs, are shown in Figure 7. The timingswere obtained on a Compaq Alpha workstation
with a 300 MHz Alpha 21164 processor with a split primary direct mapped cache (8 Kbytes each of instruction
and data cache), 96 Kbytes of on-chip secondary cache, 2 Mbytes of off-chip backup cache, and 512 Mbytes of
main memory, running Digital Unix 4.0. In each case, the execution time reported was obtained as follows: the
run times for each of 7 runs of the executable, run in single-user mode, were recorded; the smallest and largest of
these execution times were discarded; and the average of theremaining 5 times reported. The raw data regarding
execution times are presented in Table 8 in Appendix A

It can be seen, from Figure 7, that for most of the programs tested, the executable obtained usingalto is
considerably faster than those obtained using OM, both by itself as well as in conjunction with profile-guided

16

compress gcc go ijpeg li m88ksim perl vortex
0.50

0.60

0.70

0.80

0.90

1.00
R

el
at

iv
e

E
xe

cu
tio

n
T

im
e

original program
with profile info
without profile info

average: with profile info

average: without profile info

Figure 8: Performance impact of profile information

inter-file optimization. In several cases, the difference in the improvements is quite significant: for example,li
gets an 8% improvement with OM (9% when profile-guided inter-file optimization is also carried out), compared
to a 20% improvement withalto. Interestingly, we find that—with the exception ofgoandm88ksim—the use of
profile-guided inter-file optimization within the compilerdoes not have significant additional effect on performance
beyond what is achieved using just OM; indeed, for two programs, namely,ijpeg and vortex, the executables
obtained with Ifo+FB+Om are slightly slower than those obtained using just OM. Overall, link-time optimization
using OM produces an average improvement of around 11%, and the use of profile-guided inter-file optimizations
within the compiler in addition to link-time optimization using OM yields an average improvement of about 12.5%;
by contrast, link-time optimization usingalto produces an average improvement of 18.7%.

7.3 Effect of Profile Information

Several of the optimizations performed byalto, such as profile-guided code layout, inlining, instructionschedul-
ing, etc., rely on the availability of profile information. In general, it may happen, however, that profile information
is unavailable for a program, or is inapplicable because theprogram’s execution is highly input dependent, making
it difficult to find “representative” profiling inputs. It is therefore interesting to examine the performance achieved
by the code optimized byalto when no profile information is available.

The relative execution times when execution profiles are unavailable, compared to the original execution times
as well as those when profiles are available, are shown in Figure 8. Two things are evident from this. First,
it can be seen that execution profiles have a significant performance impact: on the average, the availability of
profiles yields an additional reduction in execution time ofabout 10%. The second is that, even if execution
profiles are not available, however,alto is still able to achieve a reduction in execution time of around 9% on the
average. Interestingly, when we compare the performance ofalto without profile information (Figure 8) with that
of OM using profile feedback as well as that of OM with profile feedback that is combined with profile-guided
inter-file optimization within the compiler (Figure 7), we find that the average performance improvement of 9%
achieved usingalto without profiles is not significantly worse than the 11% improvement for OM and the 12.5%
improvement for OM together with profile-guided inter-file optimization, even though the latter two use profile
information for their optimizations.

7.4 Static Linking: Impact of Libraries

As mentioned in Section 7.1, our experimental results were obtained using statically linked executables, i.e., where
the code for the library routines is linked into the executable statically by the linker. This is due partly to the fact
that, as mentioned in Section 1, one of our research objectives in buildingalto was to investigate the effect
of analyses and optimizations that had access to the entire program, including library routines. However, the
primary reason for the requirement for statically linked executables is thatalto relies on the presence of relocation

17

compress gcc go ijpeg li m88ksim perl
0.50

0.60

0.70

0.80

0.90

1.00

R
el

at
iv

e
E

xe
cu

tio
n

T
im

e

original program
libraries included
libraries excluded

average: libraries included
average: libraries excluded

Figure 9: Performance impact of library code

information for its control flow analysis (see Section 4); the Digital Unix linker ld refuses to retain relocation
information for non-statically-linked executables. (It should be noted that, likealto, both the OM link-time
optimizer and the related ATOM low-level instrumentation tool require statically linked executables.)

This immediately raises the question of the extent to which our results would hold if the static linking require-
ment were absent. As indicated above, the static linking requirement is fairly fundamental toalto’s operation,
making it impractical to actually try to runalto on non-statically-linked executables. Instead, we modified alto
to ignore all library code when carrying out its analyses andoptimizations. Thus, inter-procedural liveness analysis
and constant propagation, confronted by a call to a library routine, conclude only that the calling conventions will
be respected, i.e., that the contents of callee-save registers will be preserved. Inlining of library routines into user
code is disallowed, as are all optimizations of library code. Profile-guided code layout, as discussed in Section 6.5,
places all library code in thezero set, away from user code. We believe this provides a reasonable approximation
to the performance that could be attained using link-time optimization on programs that do not have library code
linked in statically.

The performance effects of ignoring library routines is shown in Figure 9. It can be seen that while there
is some performance benefit to statically linking in libraryroutines, the effect is small: the overall performance
improvement drops from 18.7% for “standard”alto to 17.4% when analysis and optimization of library routines
is disabled, a change of only 1.3%. For two of the benchmarks,li andm88ksim, the version obtained by ignoring
libraries is actually slightly faster than that obtained using “standard”alto: we believe this is due to instruction
cache effects arising from differences in profile-directedcode layout.

These results came as something of a surprise to us, since we had expected that analysis and optimization of
library code would have a larger effect on the overall performance of a program. A detailed examination of the
benchmarks indicates that the reason for this is that the most frequently executed code fragments typically do not
contain calls to library routines. We conjecture that this may be due at least partly to the fact that users believe
function calls to be expensive and therefore tend to avoid calls to library routines in hot spots in their programs.

7.5 Alto Resource Usage

Sincealto is a research prototype whose primary design goal was the evaluation of a variety of link-time op-
timizations, speed was not a primary design concern and leaves a lot of room for improvement. For example,
liveness information is always recomputed before any optimization that uses this information, even though this is
unnecessary if no “liveness-altering” transformations have occured since the last liveness computation.

Table 6 lists the optimization times foralto and compares it to the compilation time for those programs using -O4, as well as the time taken to compile them using profile-guided inter-file optimization as well as link-time
optimization using OM (+Ifo+OM). It can be seen that in general,alto is slower than+Ifo+OM by a factor
ranging from 2.7 to 5.9; the exception iscompress, for whichalto is slower by a factor of 13.6. On average,alto
is slower by a factor of about 5.

18

Program Processing time (secs) Ratio (-O4) +Ifo+OM alto alto/+Ifo+OM

compress 1.61 1.76 23.95 13.61
gcc 162.67 226.01 1265.87 5.60
go 22.75 30.66 130.24 4.24
ijpeg 28.55 32.74 88.58 2.70
li 9.55 11.87 69.71 5.87
m88ksim 26.04 29.10 83.73 2.88
perl 38.44 45.68 225.08 4.93
vortex 67.24 85.02 394.31 4.64

Geometric Mean: 4.91

Table 6: Processing times for compile-time and link-time optimization

 20 50 100 200 500

Size (x 1000)

1

10

100

1000

R
un

ni
ng

 T
im

e
(s

ec
s)

cc (-O4)
cc+Ifo+OM
alto

cc
cc+Ifo+OM

alto

Figure 10: Processing Times:, cc+Ifo+OM, andalto
19

 20 50 100 200 500

Size (x 1000)

1000

10000

100000

M
em

or
y

us
ed

 (
K

by
te

s)

Figure 11:alto memory usage

Apart from the absolute execution times, another interesting and important issue is that of the rate at which
this grows as the input size increases. To discuss this meaningfully, we have to specify what is meant by the
“size” of a program. For some of the analyses and optimizations withinalto, such as constant propagation, the
time taken depends on the number of instructions; for others, such as liveness analysis, it depends on the number
of basic blocks; yet other inter-procedural analyses may depend on the number of functions in the program. To
accommodate these, we chose the “size” of a program to be the sum of the total number of functions, basic blocks,
and instructions in the program. Figure 10 plots the runningtime ofalto against the input size, according to this
measure, for each of our benchmarks. The line shown foralto, obtained using a least square fit, indicates that the
running time ofalto is O(n1:411). We also plotted the running times for(i) compilation using -O4 and(ii)
using inter-file optimization and the OM link-time optimizer (it is not clear that our notion of size, or any similar
notion defined entirely in terms of low-level aspects such asthe number of instructions, appropriately measures
input sizes in this case, but it nevertheless gives us some indication of how processing time increases as the input
programs get larger). Least squares curve fitting indicatesthat the growth rate of execution time with program size
is O(n1:513) in the first case andO(n1:591) in the second case.

Perhaps more important than execution time is the amount of memory used: profligate memory usage can have
an adverse impact on execution time due to excessive paging,and in extreme cases can cause the program to crash.
Figure 11 shows how the memory actually used byalto for its data structures varies with the size of the input
program (where the “size” of a program is as described above). Least squares curve fitting indicates that the growth
rate ofalto’s memory usage with input size isO(n0:952).6
8 Discussion
8.1 Correctness

Since there is generally less high-level semantic information available at link time,alto is at a disadvantage
compared to a traditional compiler. For example, input programs can contain arbitrary machine code that need
not necessarily correspond to source language programs or conform to assumptions satisfied by code generated
by the compiler. Examples of this include numerical libraryroutines where control jumps from the middle of

6For simplicity of implementation, the current implementation of alto uses statically allocated arrays for the data structures that hold
instructions, basic blocks, control flow edges, etc.: Figure 11 shows how much of these arrays is actually used, overall,for a given input size.
If dynamically allocated memory were used instead, memory usage would increase by a small constant factor if we used 64-bit pointers, and
not at all if we required the use of 32-bit pointers via the-taso compiler flag; in either case, the sublinear asymptotic growth rate would be
unaffected.

20

one function into the middle of another without going through the usual function call/return interface, and where
standard calling conventions about argument register usage may be violated.Altomakes a number of assumptions
about the behavior of the input programs: if these assumptions are violated, the output generated byalto may not
be correct.

There are three fundamental assumptions thatalto makes about the input program:

1. It assumes that the input programs they do not carry out address arithmetic with text segment addresses
(address arithmetic involving data addresses is not a problem). The reason for this is that the optimizing
transformations carried out byalto almost inevitably result in changes to code addresses, and this can cause
the program to behave incorrectly if it carries out nontrivial arithmetic involving such addresses. Given this
assumption, simple relocation information indicating which words in the executable denote text segment
addresses is sufficient to solve the address translation problem statically. Relocation information also allows
us to determine which functions are potential candidates for indirect calls through function pointers and
callbacks, namely, any function whose address is taken. It should be noted that this assumption is not
particular toalto, but is fundamental to most tools that rewrite executable files, e.g., instrumentation tools
such aspixieandatom. Because of this assumption, it turns out that the current version ofalto is unable to
handle executables generated by some functional language implementations, such as Objective Caml [27].

2. It assumes that the top-of-stack pointer resides in a particular register and behaves as expected, i.e., always
points to the current top of stack.

3. It assumes that the text segment is not modified in the course of execution (see below).

Sincealto does not currently support dynamically linked libaries, there are no unanalyzed modules in the program.
As mentioned in Section 7.4, the static linking requirementis not really fundamental to the wayalto works,
but rather is a byproduct of the requirement for relocation information in the input programs. As discussed in
Section 4, function calls whose targets cannot be resolved are handled using an artificial functionFunknownwith
worst-case dataflow assumptions; similarly, any function whose entry point is marked as relocatable, and which
is therefore potentially a target of an unresolved indirectcall, is considered to be called fromFunknown. Because
of the worst-case assumptions made aboutFunknown, this is conservative and therefore sufficient for correctness.
This also suffices for correctly (but conservatively) handling other situations involving statically unpredictable
runtime control flow, e.g., where the address of an exceptionhandler is passed by the program to the operating
system. If the issue of relocation information were to be resolved, calls to dynamically linked libraries could be
handled correctly using a similar approach (actually we could do slightly better, since it can be assumed that such
calls conform to calling conventions, e.g., in their treatment of argument registers and callee-saved registers). The
problem of operating system calls is solved similarly, withthe difference that it is not necessary to make worst case
assumptions about the call, since the interface and behavior of system calls is well documented.

Another problem that can arise is that of dynamic code generation, where code is generated and executed at
runtime and is therefore not available for inspection priorto execution. There are two possibilities here:

1. If the dynamically generated code is written into the datasegment, as in most systems for dynamic code
generation (e.g., Tempo [14], DCG [18] and DyC [22]),alto’s treatment of the program is conservative
and safe, since in this case code thatalto believes to be static is in fact static and cannot be altered at
runtime, while control transfers to or from dynamically generated code are handled conservatively. Calls
from static code to the dynamically generated code are represented withinalto as calls toFunknown, while
branches from static code to dynamic code are modelled as branches toBunknown(see Section 4); sincealto
makes worst-case assumptions aboutFunknownandBunknown, such code is therefore treated conservatively.
Calls or branches from the dynamically generated code to static code require that the addresses of the static
code targets be taken and passed to the dynamic code. This, inturn, leads to these addresses being marked
as relocatable, soalto inserts, in the control flow graph for the static code, edges from Funknownand/orBunknown, as appropriate. The result is that the control transfers from the dynamically to the static code are
also treated conservatively.

21

2. If the dynamically generated code is written to the text segment, and can actually modify code thatalto
believes to be static,alto may fail (in the sense that thealto-optimized code may not be semantically
equivalent to the original program). One way around this problem would be to bail out if the program
contains any instructions to flush the i-cache. This has not been implemented yet.

Finally, signal handling and volatile variables may pose correctness problems. This was brought home to us while
experimenting with Scheme programs compiled with the Bigloo v1.8 Scheme compiler [34], whose runtime system
used version 4.7 of the Boehm-Demers-Weiser conservative garbage collector [4]. The garbage collector contained
code of the following form:[file: os_dep.℄GC_find_limit(){ stati volatile har *result;...GC_setup_temporary_fault_handler();...for(;;) {if (...) result += MIN_PAGE_SIZE;else result -= MIN_PAGE_SIZE;GC_noop(*result);}...}

[file: mark.℄void GC_noop(){ /* do nothing */}
In this code, an apparently nonterminatingfor loop repeatedly changes the value of the pointer variableresult until it becomes an illegal address, so that dereferencing it prior to the call toGC noop() gen-
erates an exception. This exception is fielded by a handler set up prior to thefor loop by the call toGC setup temporary fault handler(): this allows control to leave thefor loop. When processing (the ma-
chine code resulting from) this code,alto inlined the call toGC noop(), then eliminated the dereference operation*result after inferring that it was unnecessary since it was not used. This, of course, got rid of the exception
raised by dereferencing an illegal address, and produced a nonterminating program. We got around the problem
by rewriting the code slightly to forceGC noop() to use its argument; the problem was noticed independently,
and fixed (in a somewhat different way) in subsequent releases of the garbage collector [5]. The problem in this
case arises from dead code elimination; one can imagine analogous problems with memory operation elimination
(Section 6.3) applied to variables declared to bevolatile. It is possible to disable these particular optimizations,
via command-line switches, when invokingalto: a straightforward solution to these problems, albeit one that is
not entirely satisfactory esthetically, would be to have the user disable these or other optimizations manually on
programs that contain such constructs. A functionally equivalent solution that may be preferable for users would
be to provide a command-line option specifying a “conservative” mode of operation where the only optimizations
performed are the conversion of indirect function calls to direct function calls using the results of constant prop-
agation (Section 5.1) and profile-directed code layout (Section 6.5): this would in many cases still give nontrivial
performance improvements.

8.2 Efficacy of Optimizations

As Figure 7 shows, the link-time optimizations performed byalto can lead to significant improvements in program
execution speeds, even on programs that have been subjectedto a high degree of compile-time optimization. Whilealto implements a large suite of classical intra- and inter-procedural compiler optimizations, it turns out that a
relatively small number of these account for most of the performance benefits due to link-time optimization:

– Conversion of indirect function calls (viajsr instructions) to direct calls (viabsr instructions) produces a
speedup of about 10% on average. This optimization relies onconstant propagation to determine call targets.

22

– Constant computation optimization, whose primarily beneficiaries are instructions loading constant ad-
dresses, i.e., addresses of global variables and functions, from the read-only data segment into registers.
This allows the elimination of associatedload instructions and gives an average speedup of 6.4%.

– Memory operation elimination, which uses the results of liveness analysis (to identify free registers) and
alias analysis (to disambiguate memory references) to eliminate unnecessaryload instructions. This yields
a speedup of 5.7% on the average.

– Profile-directed code layout, which uses execution profileinformation to lay out the code in such a way as
to improve instruction cache utilization. This produces anaverage speed improvement of about 6.5%.

Of course, the optimizations are not all independent, so thespeedup figures are not additive. There were several
aspects of these results that we found interesting:

1. Much of the performance benefits result from information that is unavailable at compile time, namely, ad-
dresses of globals and functions. This information plays a crucial role in the first two optimizations men-
tioned above, i.e., optimization of indirect function calls and constant computations, and is also helpful in
the alias analysis that supports memory operation optimization. While this may not be entirely unexpected,
in retrospect, it suggests that link-time optimization is likely to be useful for improving the performance of
programs regardless of the extent of compile-time optimization carried out.

2. Having the entire program available for examination and optimization is useful, but not as much as we had
expected:

(a) Given that the input programs were compiled with a high degree of optimization (-O4), the compiler
had already done a good job of register allocation. There were, nevertheless, more opportunities for
elimination of memory operations than we had expected. Mostof these came about from interproce-
dural propagation of constant addresses and inter-procedural liveness analysis.

(b) Profile-directed code layout, applied to the entire program without regard to procedure boundaries, was
also very useful for performance improvement. Of course, the observation that profile-directed code
layout can yield significant performance benefits has been made by numerous authors, and is hardly
new: the point here is that having the entire program available for manipulation allows us to optimize
code layout for inter-procedural execution paths as well.

(c) The availability of library routines for analysis and optimization had a surprisingly small effect on
performance (about 1.3% on average).

(d) The ability to carry out procedure inlining across module/file boundaries had less of a performance
impact than we had anticipated (under 2%). This may be due partly to the fact that some inlining had
already been carried out by the compiler.

9 Related Work
Link-time code optimization has been considered by a numberof other researchers. Link-time register allocation,
aimed at allowing global variables to be kept in registers and reducing register saves and restores at inter-module
calls, is discussed by Santhanam and Odnert [33] and Wall [38]. The Zuse Translation System [13] and themld link-time optimizer [19] are aimed at reducing the cost of abstraction in object-oriented languages. Ayers
et al. describe a production-quality link-time optimizer for Hewlett-Packard systems running HP-UX [2], which
is distinguished by its ability to perform whole-program optimizations on very large programs, by virtue of the
careful attention paid to memory management issues. These works rely on specially engineered compilers that
produce either object files containing special annotationsto assist the link-time optimizer [38], or an intermediate
representation of the program (together with semantic information about it) that is subsequently optimized and
translated to executable code by the linker [2, 13, 19, 33]. One implication of this is that performance-critical
modules written in hand-coded assembly language, third-party software such as libraries for which source code is

23

not available, or code that is not in the source language supported by the compiler, is not amenable to optimization
by these tools. Machine-level global optimization is discussed also by Johnson and Miller [25], but unlikealto,
this system does not carry out interprocedural analysis andoptimizations.

Several authors have investigated whole program optimization at compile time: examples include the Fortran-
D compiler and its successors, developed at Rice University[23], which targets parallel and distributed scientific
programs; and the Vortex compiler for object-oriented languages [15], which targets a number of object-oriented
languages. There are three primary differences between this work and ours. The first is that, as compilers, they
target a particular language or family of languages; by contrast,alto is able to process code generated from a
variety of languages, regardless of the source language thecode was generated from, as long as the code respects the
assumptions discussed in Section 8.1. The second is that thespecific set of analyses and optimizations implemented
is different for each of the systems, since these depend on characteristics of the specific classes of applications the
language being compiled tends to be used for, e.g., dependence analysis in the Fortran-D compiler, receiver class
prediction in Vortex. The third difference arises from the fact that, as discussed in Section 8.2, the entities visible
at compile time tend to be different from those visible at link time, and as a result the sources of performance
improvement in a compiler that carries out whole-program optimization will be different from those for a link-
time optimizer; our experiences indicate that, precisely for this reason, link-time optimization can be useful for
improving program performance even if the compiler carriesout whole-program optimization.

The systems that are the closest to ours are the OM [36, 37], Spike [12], and Etch [31] link-time optimizers.
The actions carried out by these systems are conceptually very similar to ours (as they must be), though they differ
in details. Spike and Etch are intended for executables running under Windows, on Compaq Alpha and Intel x86
processors respectively. Spike carries out three different optimizations [12]: hot-cold optimization [11], register
allocation, and profile-directed code layout; of these,alto does not currently implement hot-cold optimization, but
implements the other two optimizations, as well as others described earlier. Because they are targeted to different
operating systems, a direct comparison ofalto against these systems was not feasible. Our comparisons with OM
(see Section 7) indicate that the code produced byalto is considerably faster than that produced by OM. This is
due at least partly to the fact that OM implements relativelyfew optimizations, which are primarily intra-procedural
in nature and do not have the benefit of alias analysis or register liveness analysis; in particular, optimizations that
need scratch registers are not carried out.

The Dynamo system takes a very different approach to global optimization: it optimizes native executables
dynamically, as they execute [3]. This system is able to carry out optimizations across procedure and module
boundaries, and has the advantage of being able to handle either statically or dynamically linked libraries. The
main disadvantage is that dynamic optimization necessarily incurs some runtime overhead, and in some cases this
overhead can overwhelm the optimization benefits and yield anet loss in performance. A related problem is that
the desire to keep the overhead of dynamic optimization low,so as to avoid such problems, makes it difficult to
implement sophisticated but potentially expensive analyses or optimizations.

10 Conclusions
Traditional compile-time analyses and optimizations are limited by the scope of the compilation unit: analyses and
optimizations are usually limited to individual procedures (even interprocedural optimizations are generally limited
to individual modules, and library routines are not available for either analysis or optimization). Since the entire
program is available for inspection after linking, link-time optimization can overcome some of these deficiencies.
This paper describesalto, a link-time optimizer that we have implemented for the Compaq Alpha. Experiments
indicate that even though it currently implements only relatively simple analyses—for example, checks for pointer
aliasing are only implemented in the most rudimentary and conservative way—the performance of the code gen-
erated by the system is, on the average, significantly betterthan that generated by the OM link-time optimizer [36]
supplied by the vendor.

24

Acknowledgements
We are grateful to Robert Cohn of Compaq Computer Corp. for information about the OM link-time optimizer,
and to Craig Neth of Compaq Computer Corp. for his help with the use of OM and feedback-directed optimiza-
tion. Comments by the anonymous referees helped improve both the content and the presentation of the paper
significantly.

References
[1] A. V. Aho, R. Sethi and J. D. Ullman,Compilers – Principles, Techniques and Tools, Addison-Wesley, 1986.

[2] A. Ayers, S. de Jong, J. Peyton, and R. Schooler, “Scalable Cross-Module Optimization”,Proc. SIGPLAN
’98 Conference on Programming Language Design and Implementation, June 1998, pp. 301–312.

[3] V. Bala, E. Duesterwald, and S. Banerjia, “Transparent Dynamic Optimization: The Design and Implemen-
tation of Dynamo”, Technical ReportHPL-1999-78, Hewlett-Packard Laboratories, Cambridge, Mass., June
1999.

[4] H.-J. Boehm, “Space-efficient Conservative Garbage Collection”, Proc. SIGPLAN ’93 Conference on Pro-
gramming Language Design and Implementation, 1993, pp. 197–206.

[5] H.-J. Boehm, personal communication, March 1998.

[6] A. L. Chow and A. Rudnick, “The Design of a Data Flow Analyzer”, Proc. SIGPLAN ’82 Conference on
Compiler Construction, June 1982, pp. 106-119.

[7] D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of Pointers and Structures”,Proc. SIGPLAN ’90
Conference on Programming Language Design and Implementation, June 1990, pp. 296–310.

[8] F. C. Chow, “Minimizing Register Usage Penalty at Procedure Calls”,Proc. SIGPLAN ’88 Conference on
Programming Language Design and Implementation, June 1988, pp. 85–94.

[9] B. Calder, P. Feller, and A. Eustace, “Value Profiling”,Proc. MICRO-30, Dec. 1997.

[10] B. Calder and D. Grunwald, “Reducing Branch Costs via Branch Alignment”,6th International Conference
on Architectural Support for Programming Languages and Operating Systems, October 1994, pp. 242–251.

[11] R. Cohn and P. G. Lowney, “Hot Cold Optimization of LargeWindows/NT Applications”,Proc. MICRO29,
Dec. 1996.

[12] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Optimizing Alpha Executables on Windows NT with
Spike”,Digital Technical Journalvol. 9 no. 4, 1997, pp. 3–20.

[13] C. S. Collberg,Flexible Encapsulation, Ph.D. Thesis, Lund University, 1992.

[14] C. Consel and F. Noël, “A General Approach for Run-timeSpecialization and its Application to C”,Proc.
23rd Annual ACM Symposium on Principles of Programming Languages, Jan. 1996, pp. 145–156.

[15] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers, “Vortex: An Optimizing Compiler for Object-
Oriented Languages”,Proc. OOPSLA’96: Eleventh Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, Oct. 1996, pp. 83–100.

[16] A. Deutsch, “Interprocedural May-Alias Analysis for Pointers: Beyondk-Limiting”, Proc. SIGPLAN ’94
Conference on Programming Language Design and Implementation, June 1994, pp. 230–241.

25

[17] M. Emami, R. Ghiya, and L. J. Hendren, “Context-Sensitive Interprocedural Analysis in the Presence of
Function Pointers”,Proc. SIGPLAN ’94 Conference on Programming Language Design and Implementation,
June 1994, pp. 242–256.

[18] D. R. Engler and T. A. Proebsting, “DCG: An Efficient, Retargetable Dynamic Code Generation System”,
Proc. International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VI), 1994, pp. 263-271.

[19] M. F. Fernández, “Simple and Effective Link-Time Optimization of Modula-3 Programs”,Proc. SIGPLAN
’95 Conference on Programming Language Design and Implementation, June 1995, pp. 103–115.

[20] J. A. Fisher, “Trace Scheduling: A Technique for GlobalMicrocode Compaction”,IEEE Transactions on
Computers, C-30(7):478–490, July 1981.

[21] D. W. Goodwin, “Interprocedural dataflow analysis in anexecutable optimizer”, InProc. ACM SIGPLAN ’97
Conference on Programming Language Design and Implementation, pp. 122–133, June 1997.

[22] B. Grant, M. Philipose, M. Mock, C. Chambers, S.J. Eggers, “An Evaluation of Staged Run-time Optimiza-
tions in DyC”,Proc. SIGPLAN ’99 Conference on Programming Language Design and Implementation, May
1999, pp. 293–304.

[23] M.W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng, “Interprocedural Compilation of FORTRAN D for
MIMD Distributed Memory Machines”,Proc. Supercomputing ’92, November 1992.

[24] S. Jagannathan and A. Wright, “Flow-directed Inlining”, Proc. SIGPLAN ’96 Conference on Programming
Language Design and Implementation, May 1996, pp. 193–205.

[25] M. S. Johnson and T. C. Miller, “Effectiveness of a Machine-Level Global Optimizer”,Proc. SIGPLAN ’86
Symposium on Compiler Construction, June 1986, pp. 99–108.

[26] W. Landi and B. G. Ryder, “A Safe Approximate Algorithm for Interprocedural Pointer Aliasing”,Proc.
SIGPLAN ’92 Conference on Programming Language Design and Implementation, June 1992, pp. 235–248.

[27] X. Leroy, “The Effectiveness of Type-Based Unboxing”,Workshop on Types in Compilation ’97, Amsterdam,
1997.

[28] S. McFarling, “Procedure Merging with Instruction Caches”,Proc. SIGPLAN ’91 Conference on Program-
ming Language Design and Implementation, June 1991, pp. 71–79.

[29] R. Muth, “Register Liveness Analysis of Executable Code”, Manuscript, Dept.
of Computer Science, The University of Arizona, Dec. 1998. Available ashttp://www.s.arizona.edu/alto/papers/liveness.ps.

[30] K. Pettis and R. C. Hansen, “Profile-Guided Code Positioning”, Proc. SIGPLAN ’90 Conference on Program-
ming Language Design and Implementation, June 1990, pp. 16–27.

[31] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy,B. N. Bershad, and J. B. Chen, “Instrumenta-
tion and Optimization of Win32/Intel Executables”, 1997 USENIX Windows NT Workshop (to appear).

[32] E. Ruf, “Context-Insensitive Alias Analysis Revisited”, Proc. SIGPLAN ’95 Conference on Programming
Language Design and Implementation, June 1995, pp. 13–22.

[33] V. Santhanam and D. Odnert, “Register Allocation across Procedure and Module Boundaries”,Proc. SIG-
PLAN ’90 Conference on Programming Language Design and Implementation, June 1990, pp. 28–39

26

[34] M. Serrano and P. Weis, “Bigloo: a portable and optimizing compiler for strict functional languages”Proc.
Static Analysis Symposium (SAS ’95), 1995, pp. 366–381.

[35] A. Srivastava, “Unreachable Procedures in Object-Oriented Programming”,ACM Letters on Programming
Languages and Systemsvol. 1 no. 4, Dec. 1992, pp. 355–364.

[36] A. Srivastava and D. W. Wall, “A Practical System for Intermodule Code Optimization at Link-Time”,Journal
of Programming Languages, pp. 1–18, March 1993.

[37] A. Srivastava and D. W. Wall, Link-time Optimization ofAddress Calculation on a 64-bit Architecture”,
Proc. SIGPLAN ’94 Conference Programming Language Design and Implementation, June 1994, pp. 49–60.

[38] D. W. Wall, “Global Register Allocation at Link Time”,Proc. SIGPLAN ’86 Symposium on Compiler Con-
struction, July 1986, pp. 264–275.

[39] R. P. Wilson and M. S. Lam, “Efficient Context-SensitivePointer Analysis for C Programs”,Proc. SIGPLAN
’95 Conference on Programming Language Design and Implementation, June 1995, pp. 1–12.

27

Execution Time(sec)
Program Base Om Ifo+FB+Om alto Tom=Tbase Tifo=Tbase Talto=Tbase(Tbase) (Tom) (Tifo) (Talto)
compress 283:33 s 275:54 s 273:92 s 259:73 s 0:973 0:967 0:917�0:67% �0:21% �0:49% �0:30%
gcc 291:01 s 233:11 s 226:40 s 230:56 s 0:801 0:778 0:792�0:23% �0:46% �0:39% �0:50%
go 340:49 s 324:73 s 299:05 s 300:69 s 0:954 0:878 0:883�0:05% �6:91% �0:23% �0:03%
ijpeg 337:84 s 329:55 s 332:65 s 326:93 s 0:975 0:985 0:968�0:23% �0:11% �0:15% �0:02%
li 318:81 s 293:01 s 289:49 s 254:36 s 0:919 0:908 0:798�1:08% �0:61% �0:21% �0:88%
m88ksim 333:22 s 254:88 s 230:71 s 226:21 s 0:765 0:692 0:679�0:04% �0:04% �0:16% �0:06%
perl 246:91 s 210:41 s 203:93 s 182:59 s 0:852 0:826 0:740�0:18% �1:06% �0:26% �0:16%
vortex 497:68 s 388:29 s 395:92 s 317:62 s 0:780 0:796 0:638�0:23% �0:27% �2:01% �0:80%

Geometric Mean: 0:890 0:874 0:813

Table 7: Performance results:alto compared to OM and OM+Ifo+Feedback

A Performance Impact of Alto Optimizations: Raw Data
This section gives the raw performance data for our experiments. The timings were obtained on a Compaq Alpha
workstation with a 300 MHz Alpha 21164 processor with a splitprimary direct mapped cache (8 Kbytes each of
instruction and data cache), 96 Kbytes of on-chip secondarycache, 2 Mbytes of off-chip backup cache, and 512
Mbytes of main memory, running Digital Unix 4.0. In each case, the execution time reported was obtained as
follows: the run times for each of 7 runs of the executable, run in single-user mode, were recorded; the smallest
and largest of these execution times were discarded; and theaverage of the remaining 5 times reported. In addition,
the variation among the different timings is shown as�x%, wherex is the magnitude of the maximum deviation
of any of the 5 timings considered from the mean, expressed asa percentage of the mean. Thus, given the set of
timings 91, 95, 98, 100, 101, 102, 110, we would discard the lowest (91) and highest (110), and use the remaining
5 numbers to obtain the timing 99:2�4:23%, where 99.2 is the mean of the remaining 5 times, and the maximum
deviation from the mean (99:2� 95= 4:2) is 4.23% of the mean. It can be seen, from Tables 7 and 8, thatthe
timings obtained for any particular executable do not show much variation: in most cases, the maximum deviation
from the mean is less than 1%.

Table 7 compares the performance improvements obtained with alto, compared to those obtained using OM
as well as those resulting from OM coupled with profile-guided inter-file optimization. Table 8 shows performance
data comparing the effects of different optimizations. Foreach benchmark, this table shows the performance
obtained when various different optimizations are turned off. Each such performance number is presented in three
rows: the top row shows the (mean) execution time; the middlerow shows the maximum deviation from the mean;
and the third row expresses the mean execution time as a fraction of the execution time of the original, i.e., input,
program.

28

Program Original noCProp noCOpt noMOpt noInline noLayout noShed noPro�le AllOpts
283:33 s 278:17 s 278:21 s 259:61 s 268:82 s 269:29 s 264:35 s 263:97 s 259:73 s

compress �0:67% �0:27% �0:01% �0:02% �0:06% �0:10% �0:11% �0:03% �0:30%
(1.000) (0:982) (0:982) (0:916) (0:949) (0:950) (0:933) (0:932) (0:917)
291:01 s 256:18 s 241:92 s 230:58 s 235:45 s 253:84 s 226:66 s 263:34 s 230:56 s

gcc �0:23% �1:56% �0:04% �0:02% �0:56% �0:10% �0:04% �0:02% �0:50%
(1.000) (0:880) (0:831) (0:792) (0:809) (0:872) (0:779) (0:905) (0:792)
340:49 s 323:48 s 308:97 s 355:39 s 308:16 s 318:71 s 308:73 s 315:25 s 300:69 s

go �0:05% �0:03% �0:01% �0:00% �1:70% �4:88% �0:00% �0:00% �0:03%
(1.000) (0:950) (0:907) (1:044) (0:905) (0:936) (0:907) (0:926) (0:883)
337:84 s 328:83 s 326:74 s 325:90 s 328:54 s 325:19 s 332:29 s 323:21 s 326:93 s

ijpeg �0:23% �0:07% �0:03% �0:01% �0:62% �0:22% �0:02% �0:01% �0:02%
(1.000) (0:973) (0:967) (0:965) (0:972) (0:963) (0:984) (0:957) (0:968)
318:81 s 293:20 s 273:87 s 266:59 s 258:94 s 259:68 s 262:82 s 262:58 s 254:36 s

li �1:08% �0:24% �0:00% �0:21% �0:03% �0:44% �0:02% �0:01% �0:88%
(1.000) (0:920) (0:859) (0:836) (0:812) (0:815) (0:824) (0:824) (0:798)
333:22 s 275:66 s 250:86 s 224:86 s 238:50 s 261:27 s 230:33 s 253:55 s 226:21 s

m88ksim �0:04% �0:13% �0:04% �0:08% �0:08% �0:13% �0:06% �0:04% �0:06%
(1.000) (0:827) (0:753) (0:675) (0:716) (0:784) (0:691) (0:761) (0:679)
246:91 s 212:99 s 204:91 s 209:32 s 182:51 s 205:13 s 183:37 s 237:13 s 182:59 s

perl �0:18% �0:12% �0:08% �0:07% �0:11% �0:81% �0:04% �0:03% �0:16%
(1.000) (0:863) (0:830) (0:848) (0:739) (0:831) (0:743) (0:960) (0:740)
497:68 s 389:57 s 367:43 s 337:22 s 322:77 s 366:87 s 347:13 s 380:38 s 317:62 s

vortex �0:23% �0:46% �0:42% �0:96% �0:22% �2:28% �0:68% �0:44% �0:80%
(1.000) (0:783) (0:738) (0:678) (0:649) (0:737) (0:697) (0:764) (0:638)Geom.mean 1.000 0:905 0:870 0:861 0:826 0:868 0:832 0:893 0:813

Key: Original : Input programnoCProp : No constant propagation (Section 5.1)noCOpt : No optimization of constant value computations (Section 6.2)noMOpt : No memory access optimizations (Section 6.3)noInline : No inlining (Section 6.4)noLayout : No profile-guided code layout (Section 6.5)noShed : No instruction scheduling (Section 6.6)noPro�le : No profile information (Section 7.3)AllOpts : alto with all optimizations

Table 8: Performance impact of various optimizations

29

B Compiling Programs using Inter-File Optimization and OM
To use both the inter-file optimization capability of the vendor’s C compiler as well as the OM link-time optimizer,
we compiled the programs at the same optimization level as before, but additionally with profile-directed inter-file
optimization and link-time optimization using OM [36]. Forthis, the programs were compiled as follows:

1. First, the programs were compiled as -O4 $(CFILES) -non shared -o orig.out -lm
whereCFILES is a list of all the C source files for the program.

2. The resulting executableorig.out was instrumented withpixie and run on the SPEC training input for
the benchmark to produce an execution profile. A feedback filewas then generated from this profile using
the commandprof -pixie -feedbak opt.out.fbo orig.out

3. The source files were recompiled with profile-guided and inter-file optimization turned on, using the feed-
back file generated in the previous step: -O4 -ifo -inline speed -feedbak opt.out.fbo $(CFILES)-non shared -o ifo fb.out -lm
The switch-ifo turns on inter-file optimization (this is the reason all the Cfiles are specified together usingCFILES), and-inline speed instructs the compiler to inline routines to enhance execution speed.

4. The resulting executableifo fb.out was again instrumented withpixie, using the SPEC training inputs.

5. The resulting execution profile was used to recompile the program a final time, this time with the OM link-
time optimizer turned on as well: -O4 -ifo -inline speed -feedbak opt.out.fbo-om -WL,-om ompress lita -WL,-om ireorg feedbak,ifo fb.out-WL,-om dead ode $(CFILES) -non shared -o ifo fb om.out -lm
The reason it is necessary to regenerate the profile information for OM is that the feedback-directed op-
timizations can change code addresses, rendering the original profile useless from the perspective of OM.
Notice that in this step, two distinct sets of profiles are being used: the feedback fileopt.out.fbo, gener-
ated from the original profile obtained in step 2; and the profile for ifo fb.out, obtained for the executable
resulting from feedback-directed inter-file optimizationin step 4.

30

