
Bit-Level Taint Analysis

Babak Yadegari

University of Arizona

Computer Science Department

babaky@cs.arizona.edu

Saumya Debray

University of Arizona

Computer Science Department

debray@cs.arizona.edu

Abstract— Taint analysis has a wide variety of applications
in software analysis, making the precision of taint analysis
an important consideration. Current taint analysis algorithms,
including previous work on bit-precise taint analyses, suffer
from shortcomings that can lead to significant loss of precision
(under/over tainting) in some situations. This paper discusses
these limitations of existing taint analysis algorithms, shows how
they can lead to imprecise taint propagation, and proposes a
generalization of current bit-level taint analysis techniques to
address these problems and improve their precision. Experiments
using a deobfuscation tool indicate that our enhanced taint
analysis algorithm leads to significant improvements in the
quality of deobfuscation.

I. INTRODUCTION

Dynamic taint analysis tracks the flow of data through a

program’s execution and marks all data derived from certain

sources of interest (e.g., user input). There is a wide body

of literature on taint analysis (e.g., see Schwartz et al. [21]).

The key idea is to maintain and propagate meta-data (the

“taint”) alongside the program’s computation such that values

derived from a source of interest are flagged as tainted. Most

taint analyses maintain one taint bit per byte or word of

program data, though some researchers have discussed finer-

grained analyses [7], [28]. Taint analysis is used in a variety

of applications, including application security [10], [15], [16],

[19], software testing and debugging [12], malware analysis

[13], [31], and deobfuscation of obfuscated code [23], [29].

The extensive use of taint-based security analyses has led

to attacks aimed at defeating such analyses [2]. Broadly

speaking, there are two such kinds of attacks. In the first

kind of attack, the attacker wants to control the contents of

some locations (e.g., a return address or function pointer)

and the defender uses taint analysis to detect whether this

happens. Such attacks typically rely on implicit information

flows to induce under-tainting or false negatives, i.e., cause

taint analyses to infer that certain values are not tainted even

though they are influenced by tainted data [2]. In the second

kind of attack, the attacker wants to conceal the functionality

of some code (e.g., a malware attack payload) by obfuscating

the code, and the defender uses taint analysis to track the flow

of values through the code and infer its functionality. Such

attacks typically rely on over-tainting or false positives, i.e.,

cause taint to flow to so much of of the program that various

unrelated computations cannot be teased apart. This paper is

concerned with the second kind of attack/imprecision, namely,

over-tainting.

This paper makes two main contributions. The first is

to discuss some sources of over-tainting in traditional taint

analyses. The second is to describe an enhanced bit-level taint

analysis that addresses these problems and thereby signifi-

cantly improve the precision of taint analysis. We discuss the

application of our ideas in the context of a tool for automatic

deobfuscation of obfuscated binaries, focusing in particular

on code obfuscations that target the flow of values through a

computation [4] [6]. These obfuscations can intermix bits from

different program values—in essence, shuffling the bits from

the values of a number of unrelated program variables such

that, after the shuffle, each byte contains bits from multiple

variables and each variable’s bits are distributed across multi-

ple different bytes. In such cases, standard taint analyses (even

fine grained bit-precise ones) can suffer a considerable loss of

precision due to over-tainting; this, in turn, can significantly

degrade the quality of the deobfuscated code.

We address these problems via a precise dynamic taint

analysis algorithm that extends the basic taint analysis al-

gorithm in two ways. First, we use a fine-grained bit-level

analysis, with precise mapping functions to model the taint

effects of different operations. For example, the effects of an

add operation are modeled differently than those of an xor

operation. Second, we distinguish between, and keep track of,

different taint sources. This makes possible a more refined

treatment of taint propagation and allows us to avoid certain

kinds of taint explosion. The precision of the taint analysis

depends on these two parameters; we note that different

applications of taint analysis will, in general, require different

levels of precision, and in some cases it may suffice to consider

only a subset of taint sources rather than all of them.

The remainder of this paper is organized as follows. Sec-

tion II gives some background on taint analysis and briefly

discusses some evasion techniques used to make the analysis

imprecise. Section III gives the details of our method for

dynamic taint analysis. Section IV evaluates different taint

analysis algorithms including our method with a few emulated

test programs. Section V discusses related works in the area

followed by conclusions on Section VI.

II. BACKGROUND AND MOTIVATION

Taint analysis was originally designed as a way to track the

flow of data through a computer system, potentially including

both application program state (e.g., program variables and

memory) and system state (e.g. operating system state, files).

1 int a, b, c

2 a = read()
3 b = ∼a

4 c = (a & b)

5 if (c == 0){
6 // True

7 } else {
8 // False

9 }

Fig. 1: An example of taint propagation

This makes it possible to detect runtime violations of security

policies, e.g., where an externally-supplied or user-controlled

value is written to a security-sensitive memory location [10],

[13], [15], [16], [19], [31]. More recently, taint analysis has

been used to reason about and simplify obfuscated code [23],

[29]. The important role played by taint analysis in these

applications means that it is important that the implementation

is precise and resilient against attacks and evasion techniques.

There are two kinds of imprecision in taint analysis: over-

tainting and under-tainting. Over-tainting occurs when code

or data identified by the analysis as tainted is not in fact

influenced by any taint source. Under-tainting occurs when

code or data that is influenced by a taint source is not

identified by the analysis as tainted. Such imprecision can be

problematic, especially in systems where the result of the taint

analysis is critically important. For example, if taint analysis

is used to detect leakage of sensitive information, under-

tainting means that the system has failed to ensure the privacy

of the sensitive data; in a policy enforcement system using

taint analysis, over-tainting can lead to disruptive false alarms.

There have not been enough studies on limitations of the taint

analysis and in particular, how to improve the precision of

the current existing taint analysis techniques. Researchers (e.g.

[2], [20], [22], [30]) have raised concerns about some specific

shortcomings of taint analysis and how these limitations could

be used to attack the analysis. Neither the mentioned studies

nor any previous work, as far as we are aware of, have studied

the effects of code obfuscation on the precision of the taint

and in general data-flow analysis or how to address them.

Standard taint analyses, performed on ordinary compiler-

generated code, usually yield an acceptable level of precision

since the code has normal data and control flow. However, this

may not hold true for all binaries. For example, code obfus-

cation can transform normal code/data flows of a program to

make analysis difficult. The resulting obfuscated control/data

flow can lead to a loss of precision in taint analysis. Figure

1 shows a simple example where the standard taint analysis

over-taints. First, three variables are defined at line 1 and

variable a is assigned a value read from input at line 2. We

start tainting by introducing taint to variable a and propagate it

through the code snippet. Since a is tainted, variables b and c

become tainted at line 3 and 4 respectively, leaving both a and

b tainted. Variable c being tainted, makes the if statement

tainted at line 5 and to any dynamic or static analysis, the

behavior of the program at line 5 is not predictable. Looking

at the example more carefully, variable b contains the negation

of a so the result of AND-ing these two variables will always

be zero regardless of the value of a. Since the value of c

does not depend on data from any taint source, it should not

considered to be tainted. However, standard taint analysis will

identify c as tainted because the operands of the operation

defining c (line 4) are tainted. The problem here is that the

standard algorithm does not propagate enough information to

determine the taint status of c precisely.

Figure 2 shows other examples where conventional assump-

tions about flow of data may not hold. Figure 2(a) shows

an example of split variables obfuscation [4] and illustrates

the over-tainting effects that arise when the taint analysis is

not sufficiently fine-grained. If we start tainting by marking

variable a at line 4 and propagate taint at byte or at higher

levels of granularity, variables w1 and w2 get tainted at lines

6 and 7 respectively, since a is tainted. Variable b also gets

tainted at line i+1 because w1 and w2 were previously tainted.

However, notice that only the even bits of w1 are tainted,

since its odd bits come from b; similarly, only the odd bits

of w2 are tainted. Thus, when b is being retrieved at line

i+1, only even bits of w1 and odd bits of w2 are used, so

b should not be not tainted. Figure 2(b) shows a snippet

of obfuscated code generated by a commercial obfuscation

tool called EXECryptor [24]. This code snippet, rephrased

from assembly language for ease of understanding, shows an

initial segment of a long sequence that involves thousands

of instructions; the full sequence is omitted due to space

constraints. This piece of code actually shows the conditional

control transfer mechanism that can be implemented in a

virtual machine by examining the appropriate bit of the actual

psw flags of the cpu. Line 1 of the code retrieves the

EFLAGS register of the cpu.1 The rest of the code involves a

long sequence of arithmetic operations on the flags and finally

at line i the flag is being tested to whether carry out the

control transfer or not. This kind of obfuscation causes the

taint analysis to over-taint and leads to taint explosion.

III. OUR APPROACH

A. Overview

In general, taint analyses consist of three main components:

taint markings, mapping functions and, granularity. This dis-

cussion focuses on how different choices for these components

affects the precision of taint analysis. We discuss different

factors that impact the precision of analysis as well as some

of the techniques used to defeat taint analysis based on the

characteristics of these components.

a) Taint Markings: Taint markings refer to the informa-

tion needed to be kept for annotating and marking the relevant

code that either affects the data or involves propagating it.

Typically T is used to denote if the data/code is tainted and

F for the data/code that is not tainted. Clearly this binary

representation is only able to determine if something is tainted

1The corresponding instruction sequence in x86 assembly is pushfd

followed by a pop reg; in this case reg is edx.

1 char a, b, w1, w2

2 char odd_bits = 01010101b

3 char even_bits = 10101010b

4 a = read()
5 b = 10

6 w1 = (a ∧ even_bits)

∨ (b ∧ odd_bits)

7 w2 = (a ∧ odd_bits)

∨ (b ∧ even_bits)

...

i a = (w1 ∧ even_bits)

∨ (w2 ∧ odd_bits)

i+1 b = (w1 ∧ odd_bits)

∨ (w2 ∧ even_bits)

i+2 print(b)

1 edx = flags
2 eax = 0x6b30f626

3 edx = edx ∨ 0xfffff73e

4 eax = edx ∧ eax

5 edx = eax

6 eax = rotate_eight(eax, 0x10)

7 dx = rotate_left(dx, 0x3)

8 edx = edx + 0x6c7caf05

9 edx = edx ⊕ 0xe0395c49

10 ax = ax ⊕ dx

11 edx = eax

...

i if((eax ∧ 0xe0000000) == 1){
i+1 True branch

i+2 } else {
i+3 False branch

i+4 }

(a) Variable splitting (b) An example code of EXECryptor

Fig. 2: Code examples where standard taint analysis over-taints

or not and so only one bit is sufficient to keep track of a tainted

entity where the size of this entity can be a bit, byte, word

or a double-word. While simple and efficient, this puts a big

limitation on taint analysis. By the amount of information that

can be inferred from one bit, it is not possible to determine

from which taint source a tainted unit is derived. This limits the

ability of the analysis to reason about the effects of various

kinds of arithmetic and logic operations in the language on

tainted data. For example the result of xor-ing two bits will

be marked as tainted if either input is tainted, however if both

bits are from the same taint source the result will always be

zero regardless of the actual values of the tainted bits, i.e.,

unaffected by the tainted input.

Moreover, we observe that some obfuscations can intermix

bits from different program values—in essence, shuffling the

bits from the values of a number of unrelated program

variables such that, after the shuffle, each byte contains bits

from multiple variables and each variable’s bits are distributed

across multiple different bytes; Collberg and Thomborson refer

to this obfuscating transformation as split variables [4]. In

such cases it is not enough to only mark a bit as tainted

or untainted: we have to also keep track of each source of

the taint individually at the bit-level. In order to maintain

a balance between precision and performance, our current

implementation maintains bit-level taint-source tracking only

on condition code flags as we have found it gives us enough

amount of accuracy to deal with obfuscations but it is relatively

simple to extend the idea to any kind of taint source.

An even more challenging code obfuscation technique for

taint analysis to deal with is opaque predicates or opaque

variables [1], [14]. An opaque variable is a variable which

at some point in the program has some property that is known

to the obfuscator but it is difficult by the analysis to infer this

property. Similarly, an opaque predicate is a predicate in which

the outcome of its evaluation is known to the obfuscator. These

kinds of obfuscations can cause the analysis to lose precision

by faking the data-flow. One can imagine scenarios where an

opaque variable seems to be participating in carrying taint but

in fact they carry a constant value.

As an example, let us go back again to our code snippet in

Figure 1. It can be shown that by using different taint markings

we can prevent the analysis from over-tainting at line 4. We

start tainting by introducing taint to the input at line 2, we

mark the input with taint mark T1. input then is copied

to a, so a gets the taint mark T1 as well. At line 3, b gets

the negation of a and since it is not equivalent to a anymore,

we need to use a different mark to annotate b. To mark b as

tainted, we use the marking T2 which in fact has the value

of T1, resulting from applying the negation operator to the

markings of variable a. The relation between various taint

markings are defined in the Mapping functions of the next

subsection so the details are skipped here. At line 4, c is the

result of logical and of variables a and b, but the markings

tell us that b is the negation of a and hence the result of

the and is always zero, leading us to conclusion that c is

not tainted. Having only a binary representation to track the

taint does not give us enough clues about the outcome of the

operations on tainted sources, so for a precise result we need

to keep distinct markings for different sources.

b) Mapping Functions: Mapping functions or propaga-

tion policies define how the taint markings of the source

operands of a statement s are propagated to its destination.

In standard taint analysis, the destination operand is typically

marked as tainted if any of the source operands is tainted

regardless of how the specific semantics of s affects its desti-

nation operands. This conservative approach can be imprecise

and lead to over-tainting. Note that changing the granularity

of the analysis does not help: even at bit-level granularity,

a conservative mapping mechanism causes the destination to

become tainted if any source operand is tainted, thereby giving

the same result as performing the analysis at coarser levels of

granularity. Moreover, sometimes only a part of the destination

gets tainted. For example, performing logical shift on a tainted

operand will leave a portion of the result untainted while the

simple union based mapping function will mark the whole

destination tainted. It is important to have mapping functions

that are somehow equivalent to the functional semantics of the

corresponding statement in the language, because the way taint

propagates in a statement from its sources to its destinations

correlates with the functional semantics of the statement.

Returning to the example in Figure 1, the mapping func-

tions for assignments at line 1 simply copies the markings

of the source, which is input, to destination variable a, so

if input is marked with T1, T1 is copied to a’s markings.

This is actually consistent with the functional semantics of the

assignment, since it copies the source to destination without

any modifications. For the negation operation at line 3, we

can use any different marking from T1, but it makes sense to

use T1 which is the result of applying the negation operation

on T1. At line 4 we need to compute the taint for c which

is the result of a logical and on a and b variables. It again

makes sense to use logical and as the mapping function for

this operation. Taking logical and of T1 and T2, since T2=T1,

leaves variable c untainted, which is what we expect in this

case. This is actually important to note that to fully benefit

from using different mapping functions, we need to have

distinct markings for different taint sources because using the

functional semantics of statements to map the taints otherwise

will cause other types of imprecision.

c) Granularity: Another important factor that affects the

accuracy of the taint analysis is the granularity that the analysis

is performed on. This could vary anywhere from word-level to

bit-level depending on the application and the domain where

the analysis is used. This simply specifies how much of the

data can be represented by a bit of taint. For example with

word-level granularity, one bit of data is enough to mark any

word in the program to determine whether it is tainted or

not. Clearly the more finer-granular the analysis is, the more

accurate the result will be, i.e., doing the analysis at bit-level

will give the best result. Sometimes it is necessary to perform

the analysis at bit-level where the sources of taint are single

bits, e.g., the eflags register where every single bit carries

important information individually when the flags are affected

by an operation with tainted sources or some of the bits may

not even be tainted depending on the operation causing flags

to be tinted, so marking the whole eflags register with

one marking will introduce unnecessary imprecision to the

analysis.

It turns out that traditional byte- or word-level taint analysis

is too imprecise for our needs and can result in significant

over-tainting. To address this problem, we turn to a finer-

grained bit-level taint analysis: instead of having a taint mark

for each byte b, we associate each bit with a taint mark. The

final algorithm actually might use a mixture of different sized

units for different variables. For example, if a variable is only

accessed via byte-sized reads or writes, it suffices to associate

each byte of the variable with a (possibly distinct) taint mark.

However for single-bit variables like control flags of the CPU,

it is better to work at bit-level granularity and use distinct taint

marks for each control bit.

All the above factors have significant impact on the overall

precision of the analysis and changing one of the factors has

significant effects on the other factors. For example changing

the granularity level from byte to bit will need new mapping

functions that reflect the semantics of the operations at bit-level

instead of byte-level but this does not change the functional

semantics of the mappings. Moreover, taint markings should

change so that one taint mark instead of being able to address

a byte of data, it will be able to cover every single bit of data.

B. Algorithm

Our algorithm is conceptually analogous to the standard

taint analysis algorithm but it tries to address the shortcomings

of the taint analysis discussed in this paper. Algorithm 1 gives

a very high level overview of the proposed taint analysis algo-

rithm which actually implements the mentioned characteristics

of the analysis and the steps to perform these tasks will be

discussed in detail.

Algorithm 1: Taint Analysis Algorithm

Input: an execution trace T

Result: annotated trace T ′

1 T ′ ← IdentifyTaintSources(T)
2 TaintedVars← InitializeTaintedVars(T ′)
3 Markings← CreateMarkings(T ′)
4 s = T (0)
5 while s← T ′.NextInstruction()! = ∅ do

6 T ′ ← Annotate(Markings, s)
7 TaintedVars,Markings← Map(Markings, s)
8 end

1) Identifying Taint Sources: As shown in Algorithm 1,

identifying sources of taints or introducing taint is the first

step of the analysis. Our implementation currently considers

the output of all system calls that a program makes as a source

of taint, but taint can be introduced by any variable or value.

Defining the taint sources to be the output of system calls

gives us the flexibility to filter the inputs to a program that are

interesting to the analyst. For example if the analyst is only

interested in the flow of data that a program sends or receives

over the network, he/she can restrict the input functions to

be of those communicating with the network and skip the

others. Once the sources of taints were identified, we need to

propagate this taint through the program.

2) Taint Markings: The algorithm continues by defining

the markings at the beginning. By our definition, every bit

of a tainted source can be a distinct taint marking. There

might be a situation where it is not feasible to have a distinct

marking for every single bit of tainted sources, for instance

when program processes an infinite incoming stream of data,

so there is a trade off between precision and performance of

the analysis. As mentioned before, to achieve the best result

with acceptable performance, one might choose a mixed model

of taint markings. For those variables of bigger size–like byte-

or word-sized variables–a taint marking is chosen as large as

the size of the variable and for those of finer-grained sizes,

taint markings could be assigned to each bit. For example for

a byte in memory, one taint marking assigned to the whole

byte would be enough but for control flag bits, one taint mark

assigned to each flag bit is needed. The initial set of taint

markings are defined after identifying the sources and as the

algorithm proceeds, it keeps updating this set of markings

by either adding new markings or removing ones that no

longer exist. Moreover, some of the sources can have the same

markings. For instance if a program reads a file and writes it

to another file without doing any interesting computations on

the data, there is no significance in distinguishing between the

markings of the data.
3) Mapping Functions: In algorithm 1, mapping functions

are closely related to functional semantics of the underlying

statements. The Map function in Algorithm 1 takes the current

taint markings and based on the statement s and its operands,

whether they are constants or not, applies the appropriate

mappings from the marked sources (if any) to the affected

data or destination operands. The Map function can be thought

of as a function that emulates the effects of statement s on

the taint marks of the operands. By emulate we mean that

this is not always as simple as executing the statement s

on taint markings of the operands and some operations need

modifications to be precise. To make the behavior of the

mapping functions as general as possible (in which they cover

all the operations), we try to define them in terms of x86

machine language.

Generally x86 instructions can be divided into three major

categories: Data handling and memory operations, Arithmetic

and logic operations and Control flow operations. We define

three major categories of mapping functions, corresponding to

these three categories, as follows:

• Data handling and memory operations: Most of instruc-

tions in this category are involved in copying data be-

tween sources like registers and/or memory. The behavior

of the operations on this category is not complicated

semantically compared to arithmetic and operations pro-

vided by the machine. Similarly it suffices for a map-

ping function of a data movement operation to map the

taint marks of the source operand(s) to the destination

operand(s).

• Arithmetic and logic operations: The operations on this

category are the main source of precision loss in standard

taint analysis. Failing to propagate the taint precisely for

an arithmetic operation will soon cause over-taint if it is

followed by similar operations. A mapping function for

an arithmetic operation can be thought of emulating the

arithmetic operation on the taint marks of the statement

based on the semantic evaluation of the statement and its

operands.

• Control flow operations: These operations are not ex-

plicitly involved in data-flow. Since this study focuses

on explicit data flow, we do not discuss the effects of

control transfers on the taint analysis. The analysis of

implicit information flow through control transfers has

been studied in detail elsewhere (e.g. [3], [9]) and the

solutions proposed there can be adopted in our work.

Algorithm 2: Map function

1 Procedure Map(Markings, s)

33 src← IdentifySources(s)
55 dst← IdentifyDestinations(s)
77 switch s do

8 case s ∈ Data handling and memory operations

9 dst.markings← src.markings

10 end

11 case s ∈ Arithmetic and logic operations

12 dst.markings =
ArithmeticMap(s, src, src.markings)

13 end

14 otherwise

15 Continue

16 end

17 endsw

1919 return

Algorithm 2 describes the mapping functions in pseudo

code. Mapping functions are the main component in prop-

agating the taint through the program. As mentioned earlier,

how the taint markings are defined in the algorithm determines

the behavior of the mapping function. Let’s make it clear

that the significance of defining mapping functions bases on

the functional semantics of the statements is when we keep

taint markings separate for different taint sources, otherwise

applying functional semantics on the same taint markings

introduces even more imprecision to the analysis. So only for

the sake of discussion we assume that the analysis keeps taint

sources distinct. The algorithm starts by identifying sources

and destinations of the statement at lines 2 and 3. Every

instruction or statement is a transformation of the source

operands to its destination operands, hence by identifying

source and destination operands, we want to apply the ap-

propriate transformation from the source to the destination.

The transformation for data handling statements or memory

operations is simply making a copy of the source to the desti-

nation operand, which is what happens at line 9 of Algorithm

2 for data movement and handling operations. An example

of a data handling operation is the pop eax instruction in

x86 assembly language. This instruction copies the memory

location on top of the stack, pointed to by esp register, to

the eax register. For this instruction, the source operand is

the memory location on top of stack and the destination is

eax register so to propagate the taint for this instruction, taint

markings of the source memory location should be copied to

the destination register.

The transformation however is different and more com-

plicated for arithmetic and logic operations and depends

specifically on the functional semantics of the underlying

operation. The functional semantics of each operation is a

function of the operation and the operands. For many of the

arithmetic operations, applying the corresponding arithmetic

or logic operation on the source operand marks and them

as taint marks for destination operands suffices, but there are

exceptions where the transformation should be done carefully.

Figure 3 lists pseudo code of the mapping procedure for two

arithmetic operations: add and xor. Each operation in these

examples takes two source operands, src1 and src2, and

stores the result in dst operand.

foreach(bit i of srcs):

if(src1[i] is constant):

if(src1[i] is 1):

dst[i].t = src2[i].t

else:

dst[i].t = src2[i].t

elif(src2[i] is constant):

if(src2[i] is 1):

dst[i].t = src1[i].t

else:

dst[i].t = src1[i].t

else:

dst[i].t =

scr1[i].t ⊕ src2[i].t

foreach(bit i of srcs):

if(src1[i] is constant):

if(src1[i] is 1):

dst[i].t = src2[i].t

dst[i+1].t = src2[i].t

else:
dst[i].t = src2[i].t

elif(src2[i] is constant):

if(src2[i] is 1):

dst[i].t = src1[i].t

dst[i+1].t = src1[i].t

else:

dst[i].t = src1[i].t

else:

dst[i].t =

scr1[i].t + src2[i].t

(b) xor (a) add

Fig. 3: Mapping functions for add and xor operations, each

storing the result of the operation in dst with sources src1

and src2

As mentioned before, the behavior of the mapping depends

on the operands and based on the inputs to the statement s

there are different cases which should be dealt with differently.

Here we are assuming that at least one of the operands

is tainted, otherwise the instruction is not involved in taint

propagation so we do not discuss them.2 These cases are:

1) If one operand is tainted and the other is constant, the

markings on the result of the operation are obtained by

applying the semantics of the operation to the constant

operand and the markings bits. For example, as shown

in Figure 3(a), for xor binary operation when one

of the inputs is tainted with taint mark T1 and the

corresponding bit of the second operand is constant, the

resulting bit will be marked with T1 if the constant bit is

0 because xor-ing a bit b with 0 produces the same bit

b. Similarly, if the constant bit is 1, then the resulting

bit gets T1 (the complement of T1) since xor-ing a bit

b with 1 flips b.

2) The other case is when both bits are tainted, then

depending on the operation the result is either a new

tainting or not tainted. Again as shown in Figure 3 if

both operands have taint markings T1 this means that

they are from the same taint source and so the result

of xor is 0, or one bit is T1 and the other is T1 where

the xor result is 1 and hence the result is not tainted, or

the markings are T1 and T2 where the result of xor is

2Taint sources, such as the x86 instruction rdtsc, may produce tainted
destination operands even if they have no tainted source operands. Such
instructions are handled in Step 1 of the algorithm.

unknown so the corresponding bit can be marked with

a new taint marking.

Another interesting example of mapping functions is the

add operation which stores the sum of its two operands in the

destination operand. The pseudo-code for this operation is also

given in Figure 3(b). Similar to the xor operation, there are

two cases to consider:

1) First where one of the source operands is tainted and

the other one contains a constant. Intuitively, adding 0

to a bit does not have any effect on the result. Similarly

adding 1, depending on the summand bit, produces a

carry if the other bit is one and not otherwise. In case

of adding a tainted bit with taint mark T1 and a constant

bit, since we do not know what the tainted bit is, there

are different cases. If the constant bit is 0 then the result

is the same as the tainted bit so the resulting bit gets

the taint mark T1. Otherwise if the constant bit is 1,

the addition may produce a carry so the next bit that

receives the carry should also be tainted hence both bits

get markings T1.

2) Second where both operands are tainted, then we can

sum the markings of operands. For example the taint

mark of adding two tainted bits with marks T1 and

T1 would be T1 + T2. The advantage here again is if

T2=T1, then we are adding a bit with its complement

so the result should be 0 and not tainted as is the case

here.

We cannot always infer the taint markings of the result by

simply applying the operation on the sources. For instance if

the arithmetic operation is shift right/left, then the functional

semantics of this operation would be to shift right or left the

operand while the amount of shift is determined by another

operand. If the second operand is constant, we can shift the

taint marks by the amount determined by the constant value,

but if the second operand is also tainted, then the functional

semantics of the operation depends on some tainted value

and can not be determined. In this situation the mapping

function will simply apply the union function on the markings

of the source operands and the destination gets the new taint

marks. There are also single source arithmetic operations like

not operation. For these operations we can simply apply the

semantics of the operation on the taint markings of the source

and store the result in the destination operand.

C. Implementation

The focus of this research study is not to produce a

framework to carry out dynamic taint analysis in general, we

rather tried to provide enough details for a precise algorithm

that can be implemented by researchers based on their specific

needs and their domain of study. In a context like security,

researchers probably need to be able to do taint analysis on

programs in an online manner where they can detect and

respond to any suspicious activity, while for a binary analyst,

an offline system that analyses an execution trace is more

desirable.

We have implemented a prototype tool to evaluate our

proposed method for x86 assembly language. Our implemen-

tation is an offline system: we collect an execution trace of the

program we want to analyze and then perform further analysis

on this trace. As shown in Algorithm 1, we start by identifying

taint sources. This involves finding registers and memory sets

that are passed to the program by system calls of interest. We

used the Udis86 disassembly library [25] for disassembly of

x86 instructions, but all the semantics of the instructions were

handled by our code.

Our implementation uses bit-level granularity to propagate

taint for code/data but it uses two sets of mapping functions

and a mixed set of taint markings. For the computations

involving the control flags register, we use taint markings that

distinguish between taint sources at bit-level, i.e., distinct taint

markings for each control flag bit. In order to propagate these

symbolic taint marks we assigned a unique integer to each

flag bit and so for every variable we keep a vector of integers

to store the taint marks, one integer for each bit. Likewise a

mapping function to handle flags data applies the semantics of

the underlying operation to the integer vector of the variable.

For any other computation in the program our implementation

uses the standard notion of T and F: T to denote tainted data

and F otherwise. One bit of taint for every bit in the system

is needed to do this so we used a bit-vector to propagate the

taint for registers and memory locations.

This approach allows us to track every single control bit

individually. This is particularly effective against emulation-

based obfuscation where the virtual machine that interprets

the protected program, usually use their own implementation

of conditional control transfers. In x86 assembly, conditional

transfers are usually done immediately after an instruction

that affects the PSW flags register like cmp or test. In

a virtual machine however, the machine first saves the CPU

flags register, picks the single bit that is going to be used

for control transfer, e.g. zero flag or overflow flag

and does the control transfer based on the actual value of

that particular flag. Sometimes the bit is even used to index

a jump table. In either case we need to be able to track

every bit to determine whether a control transfer depends on

some tainted input or not. This can be done using two sets

of mapping functions: one to propagate taint among registers

and memory addresses that use binary markings with bit-level

granularity, and the other to propagate the markings used

for control flags with different markings and again at bit-

level granularity. As discussed in section IV, this approach

gives good performance while achieving precise results in the

analysis of heavily obfuscated code.

IV. EVALUATION

One challenge in evaluating a taint analysis algorithm is

showing that the analysis is precise, i.e., that a statement s

is influenced by a taint source if and only if it is marked

tainted by the algorithm. There is not a great deal of work

on semantics-based formalization of taint analysis; Schwartz

et al. define taint analysis in terms of functional semantics

of an intermediate language [21]. One way to address this

issue empirically is to execute the code exhaustively on an

emulator, with different inputs, and monitor the execution.

If a statement is marked tainted by the algorithm, then it

should be input dependent and therefore produce at least two

different behaviors for distinct inputs. However this approach

has its own limitations. For instance we do not know how

many different inputs should be examined for a statement to

be affected in a program, and in general it may not be possible

to execute a program on all possible inputs.

For ordinary compiler generated code (i.e., no obfuscation),

our algorithm gives the same result as the standard dynamic

taint analysis. Using the operational semantics of the language,

which turns to different mapping functions, and distinct taint

markings, we are able to sanitize the taint and avoid unneces-

sary taint spread and so prevent any taint explosion.

In order to show the effectiveness of our analysis against ob-

fuscations, we have presented the results of two experiments.

In the first experiment we measure the amount of code marked

tainted using different taint approaches and the results are

compared. Secondly we show how precise each taint approach

is when it is used to recover the original logic of a virtual-

ized program. Reverse engineering of the programs protected

with emulation-based tools are known to be hard because in

addition of adding heavy obfuscation to the programs, they

emulate the underlying logic to make it more stealthy from

the analyzer, i.e., they run the programs through an arbitrary

virtual machine built specifically for that particular program.

We evaluated our algorithm with obfuscated samples for two

reasons: first, to show that our prototype implementation of

the proposed taint analysis algorithm is able to successfully

handle arbitrarily complex obfuscations, even emulation-based

obfuscations; and second, to compare our approach with other

existing approaches on obfuscated code. Moreover, the output

of our taint analysis algorithm and existing ones should be the

same for non-obfuscated programs (we have verified this with

non-obfuscated versions of our test input programs).

We used six programs for our evaluation: four synthetic

benchmarks, binary-search, bubble-sort, huffman, and matrix-

multiply; and two malicious programs: hunatcha, a file dropper

whose C source code was obtained from the VX Heavens web

site [27], and stuxnet, the encryption routine taken from the

decompiled code for the Stuxnet worm [11]. Each program

was obfuscated using four different commercial obfuscators:

Code Virtualizer [17] , EXECryptor [24], Themida [18] and

VMProtect [26]. These programs read some data from input

and do simple (bin-search) to moderately complex (stuxnet)

computations on the input data. While the original (unobfus-

cated) programs are relatively simple, the obfuscated versions

are significantly larger and have much more complex data and

control flow characteristics (e.g., see Figure 5). We collected

execution traces of the original and obfuscated binaries using

a modified version of Ether [5].

For our experiments we used three different taint analysis

approaches: Byte-level, Bit-level and Enhanced. The first two

are standard taint analyses at byte-level and bit-level granular-

% Tainted Instructions
PROGRAM standard Bit-level Enhanced

E
C

binary-search 30 23 19
bubble-sort 30 26 18
huffman 32 24 21
hunatcha 30 30 27
matrix-multiply 30 26 19
stuxnet 31 28 17

V
M

binary-search 48 48 7
bubble-sort 69 67 7
huffman 58 57 25
hunatcha 45 45 17
matrix-multiply 60 57 6
stuxnet 64 61 7

TABLE I: Quantitative data for various taint analysis ap-

proaches

Code Virtualizer EXECryptor Themida VMProtect
0

20

40

60

80

100

C
F

G
si

m
il

ar
it

y
(%

)

Tradtional Bit-level Enhanced Bit-level

Fig. 4: Comparing different taint analysis algorithms

ity respectively; the third (Enhanced) is the approach discussed

in this paper. Since we are interested in the flow of input values

in each program through the trace, the initial taint markings

are the same for all three algoithms, namely, the outputs of all

system calls made by the program.

Table I shows the percent of the tainted instructions for each

program/method. The rows EC and VM stand for programs

protected using EXECryptor and VMProtect respectively. It

can be seen from the table that in all cases, our algorithm

marks a much smaller portion of the trace as tainted. As

expected, running the standard taint analysis with bit-level

granularity will also mark fewer instructions as tainted so it

will produce a more accurate result than the byte- or word-

level analysis but as the numbers show, it does not significantly

improve the standard byte-level algorithm. This shows that

doing dynamic taint analysis even at bit-level, is not effective

when the code is obfuscated. Intuitively, the percentage of the

trace being tainted largely depends on the program logic but

it also depends on the obfuscation techniques and tools.

Our second experiment studies the effectiveness of different

taint analysis approaches in simplifying the obfuscated ver-

sions of our benchmarks. The idea here is that the semantics of

a program can be understood as a mapping from input values

to output values and so deobfuscation becomes a problem of

identifying and simplifying the code that effects this mapping

[29]. Dynamic taint analysis is used to track the flow of values

from inputs to outputs (we also need to handle implicit flows

due to tainted control transfers; these details are orthogonal

to the topic of this paper and so are omitted). Instructions

involved in this input-to-output flow of data are then simplified

using semantics-preserving transformations, while instructions

not involved in this flow are eliminated. We then construct

the control flow graph (CFG) of the simplified program and

compare it to the CFG of the original (unprotected) program.

The similarity of the original and simplified CFGs is crucially

dependent on the precision of the taint analysis.

To measure CFG simlarity, we used a normalized version

of a graph edit distance algoritm by Hu, Chiueh, and Shin [8].

This algorithm uses maximum bipartite matching to compute

a correspondence between the vertices of the two CFGs G1

and G2 being compared, then uses this correspondence to

determine the edit distance δ(G1, G2), i.e., the number of

vertex and edge insertion/deletion operations necessary to

tranform one graph to the other. To facilitate comprisons

between CFGs of different sizes, we compute their similarity

sim(G1, G2) as the normalized edit distance:

sim(G1, G2) = 1−
δ(G1, G2)

|G1|+ |G2|

where |G| is the size of the graph G and is given by the total

number of vertices and edges in G. The computed similarity

number ranges between 0 and 1 where a similarity of 1 means

the graphs are identical.

Figure 4 shows the CFG similarity numbers of the original

and simplified CFGs for the three different approaches to taint

analysis. It can be seen that simplification using the enhanced

bit-level taint analysis achieves the highest CFG similarity

compared to standard byte- or bit-level taint analysis. While

the results suggest that bit-level taint analysis is slightly better

than byte-level analysis, it is still too imprecise to identify

the data flow of the original program correctly. For programs

protected with Code Virtualizer, there is not much difference

between byte- and bit-level analysis meaning that both of

the analysis produce the same result. This behavior entirely

depends on the internal complexity of the obfuscators.

Figure 5 shows the control flow graphs for the binary-search

program obfuscated using EXECryptor. Figure 5(a) shows the

original CFG while (b) is the obfuscated programs. Figures

5(c), (d) and (e) show the simplified graphs with standard,

bit-level and enhanced taint analysis algorithms respectively.

It can be seen from the simplified CFGs that neither of the

graphs in Figure 5(c) and (d) are similar to the original

CFG. The reason is that both standard byte-level and bit-level

taint analysis algorithms, while the bit-level analysis doing

slightly better than the standard byte-level algorithm, are too

imprecise in propagating the taint and over-taint irrelevant

code making the analysis not not being able to resemble

the original logic. Nevertheless, Figure 5(e) shows that with

enhanced taint analysis we are able to recover the original

logic of the obfuscated program suggesting that the enhanced

algorithm is able to propagate the taint precisely.

(a) Original CFG (b) Obfuscated CFG

(c) Simplified CFG using standard byte-level taint analysis (d) Simplified CFG using standard bit-level taint analysis
(e) Simplified CFG using enhanced

taint analysis

Fig. 5: Deobfuscation result of binary-search program protected by EXECryptor using different taint analysis methods

Time (seconds)
PROGRAM standard Bit-level Enhanced

E
C stuxnet 27.71 53.81 36.87

huffman 21.21 21.24 26.68

V
M stuxnet 28.19 109.33 54.96

huffman 196.03 518.11 449.73

AVERAGE 68.28 175.6 142.6

TABLE II: Quantitative data for various taint analysis ap-

proaches

The analysis was carried out on a machine with 2× quad-

core 2.66 GHz Intel Xeon processors with 96 GB of RAM

running Ubuntu Linux 12.04. The analysis speed for our four

largest traces, stuxnet and huffman programs protected with

EXECryptor and VMProtect is given in Table II. Table II

shows the amount of time needed to run each of the three

taint analysis algorithms on selected traces. The rows EC and

VM stand for EXECryptor and VMProtect. The trace size for

stuxnet and huffman protected by EXECryptor was nearly 5.4

and 6.8 million instructions long and for those protected by

VMProtect was about 12.5 and 32.3 million instructions long.

For our largest trace the speed of the analysis translates to

nearly 164k instructions/second for byte-level, 61k instruc-

tions/seconds for bit-level and 72k instructions/seconds for

enhanced taint analysis.

Increasing the number of distinct taint markings affects

the amount of memory the algorithm needs but does not

significantly affect analysis speed since once a bit gets its taint

marks the propagation part is the same as before.

V. RELATED WORK

Several researchers have discussed dynamic taint analysis

techniques in recent years. Most of these works are appli-

cations of taint analysis; we are not aware of much work

focusing on improving the accuracy of the analysis itself.

The work conceptually closest to ours is that of Clause et

al [3], which proposes a generic framework for dynamic taint

analysis. However, this paper does not discuss the precision of

the algorithm nor its effectiveness against various obfuscation

techniques. Schwartz et al. define dynamic taint analysis based

on the operational semantics of the language [21]. However,

they do not consider notions of distinct taint markings and

different mapping functions. Cavallarro et al. [2] and Sarwar

et al. [20] discuss approaches for defeating taint analyses.

Drewry et al. describe a bit-precise taint analysis system

named flayer [7]. Taintgrind [28] is another taint analysis tool

which is based on flayer. Despite carrying out the analysis at

bit-level, these tools use the same notion of taint propagation

as standard taint analysis, so neither is precise enough to deal

with obfuscations or abnormal data-flow.3

VI. CONCLUSION

This paper describes the limitations of the standard taint

analysis algorithm in dealing with obfuscation and tries to

address these limitations. The enhanced taint analysis approach

discussed in this paper extends the notion of taint annotation

by using distinguished taint mark for each taint source. We also

use functional semantics of the language as a means to pre-

cisely propagate the taint in a statement. We have considered

the granularity in which the analysis is done and studied the

precision and performance of each method. Our experiments

show that the proposed approach is able to propagate the taint

very precisely in codes obfuscated using sophisticated tools

where the standard taint analysis results in over-tainting.

Our approach only considers a single execution of the

program. To generalize the analysis, as a future work, one

approach is to collect multiple traces of the program with

different inputs and then run the taint analysis on the union

of the collected traces.

ACKNOWLEDGMENTS

This research was supported in part by the Air Force Office of

Scientific Research (AFOSR) under grant no. FA9550-11-1-0191

and the National Science Foundation (NSF) under grants CNS-

1115829, III-1318343, and CNS-1318955. The opinions, findings,

and conclusions expressed in this paper are solely those of the authors

and do not necessarily reflect the views of AFOSR or NSF.

REFERENCES

[1] G. Arboit. A method for watermarking java programs via opaque pred-
icates. In The Fifth International Conference on Electronic Commerce

Research (ICECR-5), pages 102–110, 2002.
[2] L. Cavallaro, P. Saxena, and R. Sekar. Anti-taint-analysis: Practical

evasion techniques against information flow based malware defense.
Stony Brook University, Stony Brook, New York, 2007.

[3] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis
framework. In Proceedings of the 2007 international symposium on

Software testing and analysis, pages 196–206. ACM, 2007.
[4] C. Collberg, C. Thomborson, and D. Low. Breaking abstractions

and unstructuring data structures. In Proc. 1998 IEEE International

Conference on Computer Languages, pages 28–38.
[5] A. Dinaburg, P. Royal, M. I. Sharif, and W. Lee. Ether: malware analysis

via hardware virtualization extensions. In Proc. ACM Conference on

Computer and Communications Security (CCS), pages 51–62, Oct. 2008.

3We were not able to compile the code for flayer, but have verified our
hypothesis with taintgrind which is based on flayer and is as precise as flayer

in terms of granularity.

[6] S. Drape et al. Intellectual property protection using obfuscation.
Proceedings of SAS 2009, 4779:133–144, 2009.

[7] W. Drewry and T. Ormandy. Flayer: Exposing application internals.
WOOT, 7:1–9, 2007.

[8] X. Hu, T.-C. Chiueh, and K. G. Shin. Large-scale malware indexing
using function-call graphs. In Proc. ACM Conference on Computer and

Communications Security, pages 611–620, Nov. 2009.
[9] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. Dta++:

Dynamic taint analysis with targeted control-flow propagation. In NDSS,
2011.

[10] J. Kong, C. C. Zou, and H. Zhou. Improving software security via
runtime instruction-level taint checking. In Proceedings of the 1st

workshop on Architectural and system support for improving software

dependability, pages 18–24. ACM, 2006.
[11] Laurelai. Partial stuxnet source decompiled with hexrays.

https://github.com/Laurelai/decompile-dump/blob/

master/output/016169EBEBF1CEC2AAD6C7F0D0EE9026/

016169EBEBF1CEC2AAD6C7F0D0EE9026.c, 2010.
[12] W. Masri, A. Podgurski, and D. Leon. Detecting and debugging insecure

information flows. In Software Reliability Engineering, 2004. ISSRE

2004. 15th International Symposium on, pages 198–209. IEEE, 2004.
[13] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution

paths for malware analysis. In Proc. IEEE Symposium on Security and

Privacy, pages 231–245, 2007.
[14] G. Myles and C. Collberg. Software watermarking via opaque pred-

icates: Implementation, analysis, and attacks. Electronic Commerce

Research, 6(2):155–171, 2006.
[15] J. Newsome and D. Song. Dynamic taint analysis for automatic

detection, analysis, and signature generation of exploits on commodity
software. 2005.

[16] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Au-

tomatically hardening web applications using precise tainting. Springer,
2005.

[17] Oreans Technologies. Code virtualizer: Total obfuscation against reverse
engineering. http://www.oreans.com/codevirtualizer.

php.
[18] Oreans Technologies. Themida: Advanced windows software protection

system. http://www.oreans.com/themida.php.
[19] T. Pietraszek and C. V. Berghe. Defending against injection attacks

through context-sensitive string evaluation. In Recent Advances in

Intrusion Detection, pages 124–145. Springer, 2006.
[20] G. Sarwar, O. Mehani, R. Boreli, and D. Kaafar. On the effectiveness of

dynamic taint analysis for protecting against private information leaks
on android-based devices. In 10th International Conference on Security

and Cryptography (SECRYPT), 2013.
[21] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to

know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask). In Proc. IEEE Symposium on Security

and Privacy, pages 317–331, 2010.
[22] A. Slowinska and H. Bos. Pointless tainting?: evaluating the practicality

of pointer tainting. In Proceedings of the 4th ACM European conference

on Computer systems, pages 61–74. ACM, 2009.
[23] B. Spasojević. Code deobfuscation by optimiza-

tion. http://optimice.googlecode.com/files/

Deobfuscation-27C3.pdf.
[24] StrongBit Technology. EXECryptor – bulletproof software protection.

http://www.strongbit.com/execryptor.asp.
[25] V. Thampi. Udis86: Disassembler Library for x86 and x86-64.

http://udis86.sourceforge.net/.
[26] VMProtect Software. VMProtect – New-generation software protection.

http://www.vmprotect.ru/.
[27] VX Heavens. Vx heavens, 2011. http://vx.netlux.org/.
[28] Wei Ming Khoo. Taintgrind: a Valgrind taint analysis tool. https://

github.com/wmkhoo/taintgrind.
[29] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic

approach to automatic deobfuscation of executable code. Technical
report, Department of Computer Science, The University of Arizona,
May 2014.

[30] H. Yin and D. Song. Automatic Malware Analysis: An Emulator Based

Approach. Springer, 2012.
[31] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:

capturing system-wide information flow for malware detection and
analysis. In Proceedings of the 14th ACM conference on Computer

and communications security, pages 116–127. ACM, 2007.

https://github.com/Laurelai/decompile-dump/blob/master/output/016169EBEBF1CEC2AAD6C7F0D0EE9026/016169EBEBF1CEC2AAD6C7F0D0EE9026.c
https://github.com/Laurelai/decompile-dump/blob/master/output/016169EBEBF1CEC2AAD6C7F0D0EE9026/016169EBEBF1CEC2AAD6C7F0D0EE9026.c
https://github.com/Laurelai/decompile-dump/blob/master/output/016169EBEBF1CEC2AAD6C7F0D0EE9026/016169EBEBF1CEC2AAD6C7F0D0EE9026.c
http://www.oreans.com/codevirtualizer.php
http://www.oreans.com/codevirtualizer.php
http://www.oreans.com/themida.php
http://optimice.googlecode.com/files/Deobfuscation - 27C3.pdf
http://optimice.googlecode.com/files/Deobfuscation - 27C3.pdf
http://www.strongbit.com/execryptor.asp
http://udis86.sourceforge.net/
http://www.vmprotect.ru/
http://vx.netlux.org/
https://github.com/wmkhoo/taintgrind
https://github.com/wmkhoo/taintgrind

	Introduction
	Background and Motivation
	Our Approach
	Overview
	Algorithm
	Identifying Taint Sources
	Taint Markings
	Mapping Functions

	Implementation

	Evaluation
	Related Work
	Conclusion
	References

