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ABSTRACT
Symbolic and concolic execution find important applications
in a number of security-related program analyses, including
analysis of malicious code. However, malicious code tend to
very often be obfuscated, and current concolic analysis tech-
niques have trouble dealing with some of these obfuscations,
leading to imprecision and/or excessive resource usage. This
paper discusses three such obfuscations: two of these are al-
ready found in obfuscation tools used by malware, while the
third is a simple variation on an existing obfuscation tech-
nique. We show empirically that existing symbolic analyses
are not robust against such obfuscations, and propose ways
in which the problems can be mitigated using a combination
of fine-grained bit-level taint analysis and architecture-aware
constraint generations. Experimental results indicate that
our approach is effective in allowing symbolic and concolic
execution to handle such obfuscations.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: [Software/Program Verifi-
cation]

Keywords
Symbolic Execution; Obfuscation; Reverse Engineering; Taint
Analysis

1. INTRODUCTION
Symbolic and concolic execution play important roles in

a variety of security and software testing applications, e.g.,
test case and exploit generation [4,5,9,17,34], vulnerability
detection [5, 6, 10], and code coverage improvement in dy-
namic analysis of malware code [2, 3, 26]. The general idea
behind symbolic/concolic execution is to represent computa-
tions along a particular execution path using logical formu-
las and apply constraint solving techniques to identify inputs
that would cause the program to take alternative execution
paths. Analyses based on symbolic execution are especially
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important for dealing with programs that are difficult to an-
alyze using conventional techniques. This makes the preci-
sion of such analyses an important consideration in security
applications: on the one hand, identifying too many candi-
date execution paths, with corresponding inputs, can over-
whelm the analysis and slow down processing; on the other
hand, missing some execution paths can cause the analysis
to fail to explore important parts of the input program.

Given the importance of symbolic analysis for code cov-
erage improvement in dynamic analysis of potentially mali-
cious code, it is important to identify and understand any
potential weaknesses of this approach. Previous studies have
discussed attacks on symbolic execution systems using cryp-
tographic hash functions [36] or unsolved mathematical con-
jectures [43] to construct computations that are difficult to
invert. These are sophisticated attacks and help define the-
oretical boundaries for symbolic analyses, however they do
not speak to potential problems in symbolic analysis arising
out of code obfuscation techniques used by existing malware.

It turns out that several existing code obfuscation tech-
niques used by malware (or simple variations on them) can
significantly affect the precision of current concolic analyses.
For example, some obfuscations, such as those used in the
software protection tool EXECryptor [38], can cause large
amounts of overtainting and lead to a path explosion in the
symbolic analysis; others, such as those used by the obfus-
cation tool VMProtect [41], transform conditional branch
instructions into indirect jumps that symbolic analyses find
difficult to analyze; and finally, a form of runtime code self-
modification, variations of which we have seen in existing
malware, can conceal conditional jumps on symbolic values
such that they are not detected by concolic analysis. This
situation is problematic because a significant motivation be-
hind using symbolic/concolic execution in malware analysis
is to get around code obfuscations. This makes it especially
important to devise ways to mitigate such loss of precision
when performing symbolic analysis of obfuscated code. This
paper takes a first step in this direction.

This paper makes two contributions. First, it identifies
shortcomings in existing concolic analysis algorithms by de-
scribing three different anti-analysis obfuscations that cause
problems for symbolic execution. These obfuscations were
selected because (1) they, or simple variants of them, are
currently already used in malware, e.g., through tools like
VMProtect and EXECryptor; and (2) the problems they
cause for symbolic execution are not discussed in the re-
search literature. Second, we describe a general approach,
based on a combination of fine-grained taint analysis and



architecture-aware constraint generation, that can be used
to mitigate the effects of these obfuscations. For the sake of
concreteness, the discussion is in many places formulated in
terms of the widely used x86 architecture; however, the con-
cepts are general and apply to other architectures as well.
Our experiments indicate that the approach we describe can
significantly improve the results of symbolic execution on
obfuscated programs.

The rest of the paper is organized as follows: Section 2
discusses background on concolic execution and introduces
problems that arise in concolic analysis of obfuscated code.
Section 3 discusses these challenges in greater detail. Section
4 describes our approach for dealing with these challenges.
Section 5 presents experimental results from evaluation of a
prototype implementation of our approach. Section 6 dis-
cusses related work, and Section 7 concludes.

2. BACKGROUND

2.1 Concolic Execution and Input Generation
Concolic (concrete+symbolic) execution uses a combina-

tion of concrete and symbolic execution to analyze how input
values flow through a program as it executes, and uses this
analysis to identify other inputs that can result in alterna-
tive execution behaviors [17, 34]. The process begins with
certain variables/locations—typically, those associated with
(possibly a subset of) the program’s inputs—being marked
as “symbolic.” The instructions of the program are then
processed as follows: if any of the operands of the instruc-
tion are marked symbolic, then the instruction is “executed”
symbolically: the output operands of the instruction are
marked as symbolic, and the relationship between the in-
put and output operands of the instruction is represented
as a constraint between the corresponding symbolic vari-
ables; otherwise, the instruction is executed normally and
the program’s state is updated. If a location or variable x
becomes marked as symbolic, we say that x “becomes sym-
bolic.” The constraints collected along an execution path
characterize the computation along that path in terms of
the original symbolic variables, and can be used to reason
about what inputs to the program can cause which branches
in the program to be taken or not. Symbolic analysis can
identify input classes to the program if there are control
transfers in the program affected by the input values [22] by
which program takes different execution paths.

2.2 Concolic Execution of Obfuscated Code
Figure 1 shows the problem with concolic analysis of ob-

fuscated code. Our test program, shown in Figure 1(a),
consists essentially of a single symbolic variable and two if

statements, nested one inside the other, that give rise to a to-
tal of three distinct execution paths. Our goal is to use con-
colic execution to identify different inputs that will, between
them, cover all three execution paths. Symbolic execution of
this simple program is almost trivial: the concolic execution
engine S2E [10] finds just two states and makes just seven
queries, and the analysis takes less than 20 seconds over-
all. If we run this simple program through the obfuscation
tool VMProtect [41], however, the results are dramatically
different: a depth-first search strategy times out after more
than 12 hours, having encountered close to 15,000 states and
generated over 14,000 queries, but failing to generate any al-
ternative inputs. A random search strategy does somewhat

int main(int argc, char **argv){
int n = atoi(argv[1]); /* n is symbolic */
int retVal;
int r = n+6;

if(r < 10){
retVal = 10;
if (r == 6){

retVal = 4;
}

} else {
retVal = 12;

}
printf("%d\n", retVal);
return retVal;

}

(a) Program source code (unobfuscated)

Search
strategy

Version No. of
states

No. of
queries

Analysis
time (sec)

DFS
original 2 7 18

obfuscated 14,928 14,015
time out
(> 12 hrs)

Random
original 2 7 17

obfuscated 25,800 25,094 14,160

(b) Analysis statistics (S2E)

Figure 1: Effects of code obfuscation on concolic
analysis performance (Obfuscator: VMProtect [41];
concolic engine: S2E [10])

better in that it does not time out, but it takes nearly 800
times as long to generate alternative inputs compared to
the unobfuscated version. This strategy encounters 25,800
states and generates more than 25,000 queries—an increase
of four orders of magnitude. That such a trivial program
should pose such a formidable challenge to symbolic execu-
tion when it has been obfuscated is sobering in its implica-
tions for more complex code: VMProtect and other similar
obfuscators have been used for protecting malware against
analysis for a decade or more (e.g., the Ilomo/Clampi bot-
net, which used VMProtect to protect its executables, was
encountered in 2005 [14]). The problem is not specific to
S2E: for example, when invoked on the obfuscated version
of the program shown above, Vine [37] exits with an error
message. The remainder of this paper examines the reasons
underlying the problems described above and some possible
ways by which the problems may be mitigated or remedied.

3. ANTI-CONCOLIC OBFUSCATIONS
While there has been a great deal of work on constructing

and defeating different kinds of obfuscations, for the pur-
poses of this paper we are concerned primarily with obfus-
cations that affect concolic analysis, focusing in particular
on concolic analysis to improve code coverage in obfuscated
and malicious code.1 Such analyses use constraints on exe-

1The obfuscation tools we used to evaluate our techniques,
discussed in Section 5, incorporate many additional obfus-
cations, but in our experience these other obfuscations did
not have much of an effect on symbolic execution.



Overflow Sign Zero Parity Carry

Flag NT IOPL OF DF IF TF SF ZF AF PF CF

Bit position 15 14 13-12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 2: x86 FLAGS register [20]

cution paths leading up to conditional jumps to determine
alternative inputs that can cause a different execution path
to be taken. There are basically two broad ways in which
this approach can be attacked:

1. The conditional jump can be manipulated in ways that
make it difficult to identify a relationship with the orig-
inal inputs:

(a) The conditional jump can be transformed into an
indirect jump whose target depends on the pred-
icate of the original conditional jump.

(b) The conditional jump can be transformed into
a different conditional jump whose predicate de-
pends on, but is different from, that of the original
conditional jump.

2. The conditional jump, or its relationship with the in-
put, can be concealed:

(a) The conditional jump can be injected into the in-
struction stream at runtime, in the form of a di-
rect unconditional jump, using conditional code
modification (“symbolic code”).

(b) Implicit information flows can be used to conceal
a conditional jump’s dependence on inputs.

Of the possibilities listed above, this paper focuses on ap-
proaches 1(a), 1(b), and 2(a). The use of implicit flows
(item 2(b) above) has been discussed elsewhere by Caval-
laro et al. [8]. Sharif et al. discuss using cryptographic hash
functions to realize an extreme form of approach 2(b) [36];
the discussion here considers simpler (and stealthier) forms
of this approach that can nevertheless pose problems for
concolic analysis. We have observed these obfuscations, or
simple variants of them, in existing malware.

3.1 Conditional Jump to Indirect Jump
Transformation

In the x86 architecture, conditional logic of the form

if e then S

is usually realized as follows: first, the expression e is eval-
uated and the condition code flags set; then, depending on
the predicate involved in e, the appropriate combination of
flags is used in a conditional branch instruction:

FLAGS := evaluate e
jcc AS

where cc represents the particular combination of flags cor-
responding to the predicate in e, and AS is the address of
the code for S. The architecture of FLAGS register on x86
processors is shown in Figure 2. However, this same effect
can be realized by using the condition code flags resulting
from the evaluation of e to compute the target address:

FLAGS := evaluate e
r := f(FLAGS) /* compute target address */

jmp r

In this case, the function f uses the condition code flag val-
ues to compute the target address; in particular, when the
flag values indicate that the predicate e is true, the address
computed by f(FLAGS) is AS . A key difference between these
two approaches is that in the first case, the use of a con-
ditional branch instruction makes explicit the two possible
control flow targets that are possible. This is not the case,
however, for the indirect jump in the second case. As a
result, the indirect jump is harder to analyze symbolically
than the first: Schwartz et al. refer to this as the symbolic
jump problem [33].

Obfuscators sometimes exploit this situation by trans-
forming conditional branches to indirect jumps. This is il-
lusrated by the following example.

Example 3.1. Consider the following code fragment:

1 r0 := input();
2 FLAGS := test(r0) /* x86: test */

3 push(FLAGS) /* x86: pushf */

4 r1 := pop()

5 r2 := and r1, 0x40

6 r3 := 0x500000

7 r4 := or r3, r2
8 jmp r4

Instructions 2–4 above check the input value and move the
condition code flags into register r1. After some bit manip-
ulation (instruction 5), it is bitwise or’d with the value in
register r3 (instruction 7). The resulting value is then used
as the target of an indirect jump (instruction 8).

What is actually going on here is that instruction 5 ex-
tracts the bit corresponding to the Zero Flag (ZF), in bit
position 6, from r1 into r2. The result of the bitwise or
operation (instruction 7) is therefore either 0x500040 (if ZF
had the value 1 after instruction 2) or 500000 (if ZF was 0).
The indirect jump at instruction 8 is therefore really a con-
ditional jump to one of these two addresses depending on
the value of ZF from instruction 2.

While this example is couched in terms of the widely-used
x86 architecture, the ideas are not x86-specific: e.g., the
ARM architecture allows similar direct manipulation of con-
dition code bits with its MSR/MRS instructions. Such obfusca-
tions are particularly an issue with virtualization-based ob-
fuscation, where the program being obfuscated is translated
into a byte-code like representation of the instruction set of a
custom virtual machine (VM) and interpreted using a cus-
tom interpreter for that VM. Several commercial software
protection tools are based on this approach [30, 31, 38, 41];
these tools are also used sometimes to protect malware code
[16, 39]. While the details of the interpreters differ from
one obfuscation tool to another, their high-level structure is
typically that of a conventional fetch-dispatch-execute loop.
The VM has its own virtual instruction pointer (VIP), which
it uses to access the byte-code instructions it interprets. The
VIP is initialized to the program’s entry point in the byte-
code, and its subsequent values are controlled by the logic
of the byte-code program as it executes.



There are several different ways in which such an inter-
preter can implement conditional statements in the input
program, which all amount to setting the VIP to one of two
alternatives depending on the value of some predicate. VM-
Protect [41] uses arithmetic on the condition code flags to
determine the address of the appropriate VIP value. Since
the flags are in general symbolic, this causes the interpreter’s
VIP to become symbolic as well.

Symbolic execution of virtualized programs becomes chal-
lenging if the interpreter’s VIP becomes symbolic. The prob-
lem is that the constraint solving process used to identify
such inputs has no way of distinguishing between alterna-
tive execution paths arising due to the interpreter running
on a different byte code program, and those arising from a
different input to the original byte code program. In effect,
symbolic execution turns the interpreter into a generator of
inputs it can interpret or accept [5], except that in this case
the byte-code is not dependent on the input and so is not
itself symbolic—it suffices to make the VIP symbolic. If
the VIP becomes symbolic, the number of possible alterna-
tives for the symbolic execution engine to consider at the
VM’s dispatch point is equal to the number of opcodes in
the VM’s instruction set. The resulting search space con-
tains all the programs the interpreter is capable of running
and exploring it exhaustively is impractical even for small
interpreters. Furthermore, even if we hypothesize a success-
ful exploration of the search space, i.e., discovering all of
the interpreted programs executable by the interpreter, it
is only the interpreter whose execution paths are fully ex-
plored, not the interpreted byte-code. Note that this is a
more general situation than handling of symbolic memory
addresses although the issue with symbolic addresses is still
a problem with symbolic execution engines [9, 33].

It is not difficult to cause the VIP to become symbolic: all
that is needed is to make the VIP input dependent at some
point, e.g., by transforming control dependencies into di-
rect data dependencies. Moreover, this attack against sym-
bolic execution can be used with arbitrary predicates, which
makes it more flexible than that of Sharif et al. [36], which
is restricted to equality predicates.

3.2 Conditional Jump to Conditional Jump
Transformation

The previous section discussed how an obfuscator could
use explicit arithmetic on the condition code flags to turn
conditional jumps into indirect jumps that are harder to
analyze symbolically. Here we discuss how similar arithmetic
operations can be used to transform the predicate associated
with a conditional jump to a completely different predicate,
as illustrated by the following example.

Example 3.2. Consider the following code fragment:

1 r0 := input();
2 FLAGS := test(r0) /* x86: test */

3 push(FLAGS) /* x86: pushf */

4 r1 := pop()

5 r2 := r1 >> 4 /* x86: shr */

6 push(r2)
7 FLAGS := pop() /* x86: popf */

8 jpe L /* jpe: jump if parity even */

Instructions 2–4 above check the input value and move the
condition code flags into register r1. This register is then

right-shifted by four bits (instruction 5) and the resulting
value is moved back into the condition code flags (instruc-
tions 6, 7), which is used to perform a conditional jump
(instruction 8). The conditional branch instruction, jpe, is
not a very common one: it stands for“jump if parity is even”
and is taken if the parity flag is set. In reality, however, the
bit that is actually being tested is not the parity flag, but
rather the bit that was shifted into the parity flag’s position
by instruction 5—namely, the zero flag. In other words, the
the condition that is really being tested is whether the input
value read into r0 by instruction 1 is zero or not; however
this is being done using a very different predicate.2

The approach illustrated above can also be used to con-
struct opaque predicates, i.e., conditional jumps that are
either always taken or always not taken.

The issue described here is orthogonal to that of trans-
forming an input value to a different value and applying
a different predicate to the transformed value [36], since it
involves using architecture-specific knowledge to transform
meta-information. The commercial obfuscation tool EXE-
Cryptor [38] uses this approach to produce long sequences
of this kind of bit-shuffling operations to hamper analysis.

Note that while concolic analyses have to map conditional
jump instructions to predicates on values, reasoning about
such bit-level manipulations of condition code flags addition-
ally requires fine-grained taint-tracking. Conventional byte-
or word-level taint tracking can lead to significant overtaint-
ing in the presence of the sorts of bit manipulation illustrated
above. Overtainting occurs when imprecision in taint prop-
agation causes the taint analysis to determine values to be
tainted, and deemed to be symbolic, when that are in fact
independent of the inputs appear to be dependent on them.
Conditional branches on expressions involving such spurious
symbolic variables are then treated as candidates for gener-
ating inputs that can lead to alternative execution paths,
resulting in additional computational load on the constraint
solver and degrading the overall performance of the system.
In the worst case, a very large number of such spurious sym-
bolic variables and associated conditional branches can use
up so much resources that the system crashes or is unable to
make progress on identifying inputs that would in fact cause
the program to take alternative paths.

3.3 Symbolic Code
Symbolic code can be seen as an extension of a code obfus-

cation technique commonly used in malware, where the pro-
gram modifies the code region ahead of the program counter,
such that execution then falls into the modified code. Sym-
bolic code extends this idea to carry out the code modifica-
tion using an input-derived value. The idea is that, if the
input meets some appropriate condition, the modified bytes
encode a jump instruction to some desired address; other-
wise, the modified bytes encode some non-jump instructions.
The effect is that execution branches to the target of the
jump if and only if the input satisfies that condition. The
key characteristic of symbolic code is that this is done with-
out executing an explicit comparison or conditional jump

2We use the relatively uncommon and unstealthy jpe in-
struction in this example to highlight how different the pred-
icate of the jump instruction can be from the actual condi-
tion on the input value. In practice one would expect the
obfuscated code to use more common instructions.



call get_input()
cmp eax, TRIGGER
jz L
call abort()

L: call payload()

call get_input()
sub eax, TRIGGER
add al, 0xEB
lea ebx, L1
lea ecx, L2
sub ecx, ebx
mov ah, cl
mov word [L1], ax
nop
nop

L1: call abort()
L2: call payload()

call get_input()
sub eax, trigger
add al, 0xEB
lea ebx, L1
lea ecx, L2
sub ecx, ebx
mov ah, cl
mov word [L1], ax

pc→ jmp L2
L1: call abort()
L2: call payload()

(a) Original code (b) Obfuscated code executed with
non-trigger input

(c) Obfuscated code executed with
trigger input

Figure 3: An example of symbolic code

on an input-derived symbolic value, which means that if the
input condition is not satisfied, standard concolic analysis
does not see a conditional jump in the instruction stream
and therefore does not consider the possibility of an alter-
nate execution path.

Figure 3 shows an example of this approach. Figure 3(a)
shows the original code where the behavior of the code is
based on an input value. The code in 3(b) shows the ob-
fuscated code statically where the obfuscation tries to hide
the control transfer based on some trigger value. The code
uses the input value to overwrite an instruction in the code
in such a way that the execution results in the control being
transferred to a code when the value of the input is the de-
sired one. For other inputs either the instruction constructed
is an illegal instruction or the control does not reach the hid-
den code. 3(c) shows the code where the input triggers the
execution of the hidden code. With the input value being
the desired value, the computed instruction is a jump which
transfers the control to the label L2.

Symbolic code is a straightforward variation on an ob-
fuscation technique that has long been used in malware:
namely, to modify a few bytes ahead of the execution and
have execution fall into the modified bytes. This is illus-
trated in Figure 4, which shows instructions from the Net-
Sky.aa worm (first encountered in 2004). Figure 4(a) shows
the first few instructions from a static disassembly of the
code. When this code is executed, the add instructions at
addresses 0x403e64 and 0x403e68 modify five bytes at ad-
dress 0x403e6e; execution then falls into the newly created
instructions, thereby installing an exception handler at ad-
dress 0x5cbc32, which is then used to field the exception
raised via a (deliberate) null-pointer dereference by the mov

instruction at address 00403e84. The main difference that
the symbolic code technique brings to bear is that the bytes
used to create the modified code are input-dependent.

Symbolic code can be used to conceal trigger-based behav-
iors, i.e., behaviors that are exhibited only under specific
external or environmental triggers [3]. Existing proposals
for detecting such latent behaviors using symbolic execution
assume that the control transfers associated with these trig-
gers rely on conditional branches [3,13]. Symbolic code can
evade such approaches by conditionally creating an uncondi-
tional jump instruction, e.g., by using input values to create
the modified instruction(s) in such a way that only the de-

sired input (trigger) will result in the desired (malicious)
execution, but for the rest of values the malicious part does
not get exposed to the analysis. Since the resulting con-
trol transfer does not use a conditional branch instruction,
existing approaches will not consider it as a candidate for
symbolic analysis to identify inputs that can trigger alter-
native execution paths.

4. HANDLING OBFUSCATIONS
Since the primary focus of this work is to improve con-

colic analysis of obfuscated code, we do not address other
potential problems with concolic analyses, e.g., path selec-
tion or dealing with system calls. The key idea behind our
approach is to use a combination of bit-level architecture-
aware taint analysis, bit-level constraints on symbolic values
derived from condition-code flags, and architecture-aware
constraint generation, to reason about and identify inputs
that can cause different control flow paths to be taken.

4.1 Bit-Level Dynamic Taint Analysis
This section considers dynamic taint analysis, where taint

is propagated through the instructions in an execution trace.
The same static instruction can give rise to many different
instruction instances at runtime, with different operands, re-
sults, and condition code flags; dynamic taint analysis treats
these different runtime instances differently. To avoid unnec-
essary repetition, we use the term “instruction” to refer to
these dynamic instances of instructions: i.e., different run-
time instances of the same static instruction are referred to
as different instructions.

Taint propagation algorithms generally propagate taint
information at the byte- or word-level, i.e., maintain a taint
bit for each byte or word of data. However, this turns out to
be too imprecise for our needs: our experiences with obfus-
cations, e.g., those that use bit manipulations to obfuscate
conditional jumps, as discussed in Sections 3.1 and 3.2, indi-
cate that the ability to track taint at the level of individual
bits can be crucial for dealing with obfuscated code. We
therefore carry out taint propagation at bit level granular-
ity. Additionally, since concolic analysis involves reasoning
about the conditions under which different execution paths
may be taken, we keep track of taint sources arising from



00403e5f mov eax, 0x403e6e
00403e64 add byte [eax], 0x28
00403e67 inc eax
00403e68 add dword [eax], 0x1234567
00403e6e nop
00403e6f retf
00403e70 jbe 0x4c
00403e72 call dword near [eax+0x64]
00403e74 push dword [0x0]
00403e7b mov [fs:0x0], esp
00403e82 xor eax, eax
00403e84 mov [eax], ecx

00403e5f mov eax, 0x403e6e
00403e64 add byte [eax], 0x28
00403e67 inc eax
00403e68 add dword [eax], 0x1234567
00403e6e mov eax, 0x5cbc32
00403e73 push eax
00403e74 push dword [fs:0x0]
00403e7b mov [fs:0x0], esp
00403e82 xor eax, eax
00403e84 mov [eax], ecx

(a) Static disassembly (b) Runtime code sequence

Figure 4: Self-modifying code in the NetSky.aa worm

condition code flags. This is done using taint tags or mark-
ings. Taint markings can be of two kinds:

1. A ‘generic taint’ marking that indicates that the taint
originated from an input value rather than a condition
code flag.

2. A triple 〈ins,flag , polarity〉 where ins refers to (a par-
ticular dynamic instance of) an instruction in an ex-
ecution trace; flag encodes a condition code flag; and
polarity indicates whether the bit that the taint mark-
ing refers to has the same value as that of the original
flag value it was derived from or whether it has been
inverted.

Taint analysis takes as input an execution trace and pro-
cesses the instructions in order, propagating taint bits and
taint markings. For each instruction I, taint is propagated
from its inputs to its outputs using a taint mapping func-
tion that is based on the semantics of I. Values obtained
as inputs (e.g., set by system calls) are considered to have
all of their bits tainted. For instructions that set condition
code flags (which include most arithmetic and logical opera-
tions as well as the test and cmp instructions), if any input
operands are tainted then taint is propagated to the flags
along with the appropriate taint markings. Let `[i] denote
the ith bit position of an operand (i.e., location or value) `.
Taint propagation for an instruction I in the trace is done
as follows:

• If none of the source operands of I are tainted, or if the
value of a destination bit dst [i] is fixed and indepen-
dent of the values of the source operands, then dst [i]
is marked ‘not tainted’. (In general, it is necessary to
take implicit flows into account in order to avoid un-
dertainting [8]. Existing approaches to incorporating
implicit information flows into taint analyses [11, 21]
can be adapted to our purposes. Since this is not the
focus of our work, we do not discuss it further here.)

• Otherwise, if all of the source operands of I have the
marking ‘generic taint’ then:

– each non-condition-code destination operand of I
gets the taint marking ‘generic taint’;

– each condition code flag f affected by I gets the
taint marking 〈I, f, 1〉.

• Otherwise, for each destination bit dst [j] of I (includ-
ing condition code flags):

– if the value of dst [j] can be determined from some
particular source operand bit src[k], then:

∗ if dst [j] has the same value as src[k] then
dst [j] gets the same taint marking as src[k];

∗ otherwise dst [j] gets the same taint marking
as src[k] but with the polarity reversed.

– Otherwise: dst [j] is marked tainted and its taint
mark is determined as follows:

∗ Each condition code flag f gets a new tag
marking 〈I, f, 1〉.
∗ Each non-condition-code bit gets the mark

‘generic taint’.

We keep track of taint markings in terms of bit values—
namely, a condition code flag along with its polarity—to
simplify reasoning about code obfuscations that manipulate
these bits. However, a taint marking 〈I,flag , polarity〉 also
corresponds to a predicate on one or more values in the com-
putation. Since a particular flag may be set differently by
different instruction operations, the specifics of the predicate
will depend on the instruction I that set the flag. For exam-
ple, the cmp (compare) and sub (subtract) instructions set
CF if there is a borrow in the result; some forms of the integer
multiply instruction imul set CF if the result of multiplica-
tion has been truncated; and some bit-rotate instructions
(e.g., rcl, rcr) include CF in the rotation and so set it de-
pending on the bit that is moved into it due to the rotation.
Given a taint marking t ≡ 〈I, f, p〉, we can use the semantics
of the instruction I, together with the flag f and the polar-
ity p, to determine the predicate associated with the taint
marking t. We refer to this predicate as the flag condition
for t, written FlagCond(t).

Taint markings allow us to improve the precision of the
taint analysis by identifying operations on bits that originate
from the same value. As an example, consider the following
instruction sequence:

1 r0 := input();
2 FLAGS := test(r0) /* x86: test */

3 push(FLAGS) /* x86: pushf */

4 r1 := pop()

5 r2 := !r1 /* x86: neg */

6 r3 := r1 ^ r2 /* x86: xor */



In this example, instructions 2–4 check the input value and
move the condition code flags into register r1 (in a real-life
example the input might be the result of timing the execu-
tion of a fragment of code, and the check might determine
whether the value falls within a range indicating that the
program is not running within an emulator). Instructions
5–7 then carry out a variety of bit manipulations on the flag
bits, e.g., as performed in obfuscation tools such as VMPro-
tect and EXECryptor. In this example, our taint analysis
will determine that the bitwise negation operation in instruc-
tion 5 flips the bits of r1 into r2, which means that, after
instruction 5, the low bit of r2 is different from that of r1,
and therefore that the low bit of r3 after the xor operation
in instruction 6 is necessarily 1. Since the value of the low
bit of r3 is constant and thus independent of the input, it
will be marked as untainted.

4.2 Handling Obfuscated Jumps
Given a conditional or indirect jump instruction I that is

controlled by a tainted (i.e., symbolic) value, we compute
the predicate corresponding to it as follows.

1. Identify the condition code flags that control I:

• For a conditional jump this is obtained from the
jump condition of the instruction.

• For an unconditional jump this is obtained from
the tainted bits in the target address whose taint
marking is not ‘generic taint’.

Denote this set of flags by C(I).

If C(I) = ∅ then I is an input-dependent indirect
jump that is not dependent any conditional jump in
the code. We currently do not handle this case.

2. The predicate corresponding to I is then given by

InstrPred(I) =
∧

t∈C(I)

FlagCond(t)

where FlagCond(t) is the condition associated with the
instruction and condition code flag referred to by t (see
the previous section).

Let the path constraint up to the instruction prior to I be
π, then the path constraint up to and including I is given
by π ∧ InstrPred(I).

Example 4.1. The instruction sequence below is seman-
tically identical to that of Example 3.1. but expressed in
x86 syntax to illustrate how the analysis works. A ‘$’ prefix
on an operand, e.g., in instructions 5 and 6, indicates an
immediate operand.

1 call get input
2 test eax, eax
3 pushfd
4 pop ebx
5 and ebx, $0x40
6 mov ecx, $0x500000
7 or ebx, ecx
8 jmp ebx

Instruction 2 in this sequence assumes the standard calling
convention where return values are passed in register eax.

The taint propagation goes as follows.

After instruction 1, each bit in eax has the taint marking
generic taint.

After instruction 2, the condition code flags in the EFLAGS

register are tainted as follows. Bit positions 0, 2, 6, 7, and
11, corresponding to the flags Carry (CF), Parity (PF), Zero
(ZF), Sign (SF), and Overflow (OF), gets the taint markings
〈2, CF, 1〉, 〈2, PF, 1〉, 〈2, ZF, 1〉, 〈2, SF, 1〉, and 〈2, OF, 1〉 respec-
tively (here, the instruction value ‘2’ refers to the position
of the instruction that set the flag, and the polarity value 1
indicates that the bit has not been inverted).

The data movement instructions 3 and 4 simply copy the
taint marks of their source to their destination. Thus, after
instruction 3, the corresponding bits of the top word on
the stack get these taint markings, and similarly for the
register ebx after instruction 4. The resulting taint markings
of ebx are: ebx[0] 7→ 〈2, CF, 1〉; ebx[2] 7→ 〈2, PF, 1〉; ebx[6] 7→
〈2, ZF, 1〉; ebx[7] 7→ 〈2, SF, 1〉; and ebx[11] 7→ 〈2, OF, 1〉.

After instruction 5, the only bit of ebx that is tainted
is ebx[6], which has the marking ebx[6] 7→ 〈2, ZF, 1〉. Af-
ter instruction 7, this bit position remains the only tainted
bit in ebx, with the same taint marking, 〈2, ZF, 1〉. From
the semantics of instruction 2, namely, test eax, eax, the
flag condition for this taint marking is that register eax is
0. Thus, the instruction predicate for the indirect jump at
instruction 8 is that eax has the value 0 at instruction 2.

In this case, it is possible to reason about the possible
values of the tainted bits flowing into the indirect jump, and
thereby identify the set of possible targets of the jump. From
the perspective of concolic analysis to generate alternative
inputs and improve code coverage, this is not really neces-
sary since it is enough to identify the instruction predicate
InstrPred() for the indirect jump. The ability to explicitly
identify the other possible targets of such obfuscated jumps
can be useful, however, for other related analyses of obfus-
cated code, such as incremental disassembly [28] and deob-
fuscation [46].

The following example shows how this approach can deal
with obfuscated conditional jumps.

Example 4.2. The code fragment below rephrases Ex-
ample 3.2 in x86 syntax. A ‘$’ prefix on an operand, e.g., in
instruction 5, indicates an immediate operand.

1 call get input
2 test eax, eax
3 pushfd
4 pop ebx
5 shr ebx, $4
6 push ebx
7 popfd
8 jpe L

Instructions 1–4 of this example are the same as in Example
4.1 and their analysis is similar to that shown above. Af-
ter instruction 4, the taint markings of ebx are: ebx[0] 7→
〈2, CF, 1〉; ebx[2] 7→ 〈2, PF, 1〉; ebx[6] 7→ 〈2, ZF, 1〉; ebx[7] 7→
〈2, SF, 1〉; and ebx[11] 7→ 〈2, OF, 1〉.

After instruction 5 (shr, shift right), the taint markings
for register ebx are updated to account for the shift. Thus,
ebx[2] (i.e., bit position 2) gets the taint marking 〈2, ZF, 1〉;
ebx[3] gets 〈2, SF, 1〉; and ebx[7] gets 〈2, OF, 1〉.

The data movement instructions 6 and 7 then copy the
resulting bits from ebx to EFLAGS, and their taint is propa-
gated correspondingly. In particular, after instruction 7 the



condition code flag at EFLAGS[2], namely, PF, gets the taint
marking for the corresponding position of ebx, i.e., 〈2, ZF, 1〉.

When the conditional jump in instruction 8 is encoun-
tered, the semantics of the jpe instruction specify that it
is taken if the PF flag is 1. The taint mark for this flag is
〈2, ZF, 1〉, i.e., (since the polarity on the taint mark is 1) that
ZF = 1 from instruction 2. From the semantics of instruction
2, namely, test eax, eax, the flag condition for this taint
marking is that register eax is 0.

Thus, the instruction predicate for the conditional jump
at instruction 8 is that eax has the value 0 at instruction 2.

4.3 Handling Symbolic Code
We detect symbolic code when an instruction writes a

tainted value to a memory location that forms part of a sub-
sequently executed instruction I. The way in which such a
write is handled depends on which portions of the instruc-
tion I become tainted as a result:

• If the opcode byte is tainted, then a different input
can cause a different instruction to be written into I’s
location and subsequently executed. While the total
number of other possible opcodes is quite large, for the
purposes of reasoning about input-dependent condi-
tional jumps we focus on control transfer instructions.
To this end, we construct an instruction predicate that
gives, as alternatives for the opcode byte(s) of I, all
of the binary opcodes for control transfer instructions
(direct and indirect unconditional jumps, conditional
jumps, and procedure calls and returns).

In this case it is also possible for part of all of the
operand bytes of I (and possibly the instruction fol-
lowing I) to be overwritten. However, our current im-
lementation focuses on identifying alternative inputs
that can cause a control transfer instruction to be cre-
ated in place of I since this is fundamental to identi-
fying and exploring alternative execution paths.

• If the opcode byte is not tainted but one or more other
bytes of the instruction are overwritten with tainted
bits, then the corresponding operands are flagged as
tainted as the taint analysis proceeds from that point.

For example, suppose that an operand is overwritten
to become the immediate value 1. If any of the bits
involved in this are tainted, then in effect the compu-
tation uses the instruction overwriting to conditionally
incorporate an input-dependent value into the compu-
tation, so the input-dependent value should be cons-
dered tainted.

5. EVALUATIONS
We evaluated the ideas presented in this paper using a

prototype system we have implemented. Our system (called
ConcoLynx) uses Pin [25] to collect execution traces;3 these
traces are then post-processed to propagate taint from sym-
bolic inputs. We ran our experiments on a Linux machine
running Ubuntu operating system with an Intel Core i7 (2.6
GHz) CPU with 8 cores and 6 gigabytes of memory.

We used two sets of programs for our evaluations:

3This choice of tracing tool is not fundamental to our ap-
proach so any other tracing tool can be adapted by our tech-
nique.

• The first set consists of three small programs: simple-
if (shown in Figure 1(a)); bin-search, a binary search
program; and bubble-sort. The simple-if program takes
a single input which is marked symbolic in our analy-
sis. We ran bin-search on an array of size eight; and
only the number to be searched for within this array is
marked as symbolic. The bubble-sort program was run
on an array of size three where all the elements were
marked symbolic.

• The second set consists of four malicious programs
whose source code we obtained from VX Heavens [42].
Each of these programs demonstrates trigger-based be-
haviors based on some system calls: mydoom and net-
sky ae both check system time to execute their pay-
load if the current time meets the trigger condition;
assiral checks whether it is being debugged by call-
ing the API function IsDebuggerPresent() and then
takes different execution paths based on the result; and
clibo checks Windows registry keys to check whether it
is running for the first time in the system.

The toy programs in the first set were deliberately chosen to
have a small amount of simple but nontrivial control flow, so
as to make it easier to separate out the performance and pre-
cision effects of code obfuscation on concolic analysis. The
small size and simple logical structure of these programs
were intended to provide a sort of lower bound on expec-
tations for concolic analyses. The programs in the second
set were chosen as representative samples of trigger-based
behavior in malware. We used source code because of the
requirements of the obfuscation tools listed below. For S2E,
the inputs to the programs were annotated with S2E’s APIs
to introduce symbolic inputs to the programs. For Vine,
the desired function calls were hooked to introduce taint to
programs. The goal was not so much to examine the latest
in trigger-based evasion behaviors in malware, but rather to
study the impact of code obfuscation on symbolic execution
under carefully controlled experimental conditions.

For each of the programs listed above, we examined the
behavior of five executables: the original program together
with four obfuscated versions obtained using four commer-
cial obfuscation tools: Code Virtualizer [30], EXECryptor
[38], VMProtect [41], and Themida [31]. These obfusca-
tion tools create obfuscated binaries for Windows operat-
ing system, so for collecting an execution trace, we ran the
obfuscated binaries along with Pin tool on a Windows XP
service pack 3 operating system running on VMware work-
station. Additionally, we built versions of the first set of test
programs to incorporate symbolic code into the program’s
execution.

We compared ConcoLynx with two symbolic execution
systems, S2E [10] and Vine [37]. S2E is based on KLEE
and is built on top of the LLVM compiler and can discover
program states using symbolic execution and virtualization.
Vine is a static analysis tool based on Bitblaze and can an-
alyze traces collected with TEMU [37] where the traces are
taint annotated.

We performed two types of analysis. The first experiment
looked at the effect of obfuscation on the accuracy and the
efficacy of the tools while the second examined the practi-
cality of the tools by looking at the cost that obfuscation
imposes on the symbolic analysis in terms of the time of
analysis and the number of queries which were submitted



to the constraint solver. In our experiments with S2E, we
used the concolic execution configuration with two path se-
lection strategies available in S2E: depth-first and random
state search.

5.1 Efficacy

System Program
Obfuscation Tool

CV EC VM TH

ConcoLynx

simple-if X X X X
bin-search X X X X
bubble-sort X X X X
assiral X X X −
clibo X X X X
mydoom X X X X
netsky ae X X X X

Vine

simple-if Err StpErr Err Err

bin-search Err StpErr Err Err

bubble-sort Err StpErr Err Err

assiral Err StpErr Err Err

clibo Err StpErr Err Err

mydoom Err StpErr Err Err

netsky ae Err StpErr Err Err

S2E
(DFS)

simple-if X X 7 X
bin-search X X 7 7
bubble-sort 7 X 7 7
assiral X X 7 7
clibo X X 7 7
mydoom X X 7 7
netsky ae X X 7 X

S2E
(random)

simple-if X X 7 7
bin-search 7 X 7 7
bubble-sort 7 X 7 7
assiral X X 7 7
clibo X X 7 7
mydoom X X 7 7
netsky ae X X 7 X

Key: CV: Code Virtualizer; EC: EXECryptor; VM: VMProtect;

TH: Themida

X: tool produced at least one input

7: timeout or fail to produce any results

StpErr: produced constraints crashed STP

Err: runtime error

Table 1: Efficacy of analysis: Code coverage

5.1.1 Code Coverage
These experiments evaluate the extent to which symbolic

execution makes it possible to identify and explore different
execution paths in obfuscated programs. Table 1 shows,
for each program, whether the symbolic analysis was able to
generate any alternative input that would cause the program
to take a different execution path than it did in the analysis.

For the programs analyzed with our tool we have manually
verified that for each branch point in the program the alter-
native counter example would lead us to another execution
path in the program.

In our experiments, Vine generally failed to produce path
constraints on programs obfuscated using Code Virtualizer,
VMProtect and Themida: for these programs, it gave error
messages and exited and the Errin Table 1 corresponds to

this behavior. Vine was able to produce path constraints
for programs obfuscated using EXECryptor but even then
the constraints created by Vine, crashed the STP that is
shipped with the Vine tool.

As can be seen from the table, S2E was not able to pro-
duce any test case for programs obfuscated with VMPro-
tect and for most of the programs obfuscated with Themida.
Moreover, while S2E was able to generate some test cases
for many of the programs protected with Code Virtualizer
and EXECryptor, the test cases generated for programs ob-
fuscated using EXECryptor cases were redundant, meaning
that S2E generated multiple test cases that all resulted in
the same execution path being taken. The generation of such
redundant inputs can be a problem because it can use up
time and computational resources and thereby slow down
the overall progress of analysis of a potentially malicious
code sample.

Overall, the results indicate that anti-symbolic obfusca-
tions can significantly hinder multi-path exploration using
symbolic analysis.

5.1.2 Symbolic Code
We built versions of our synthetic programs to incorpo-

rate symbolic code into their logic. S2E did not detect the
symbolic code and so did not generate any inputs that would
cause different symbolic code to be generated while our tool
was able to detect the symbolic codes and generate appro-
priate constraints thus generated inputs that would trigger
other execution paths in the synthetic programs.

5.2 Cost
Table 2 presents normalized data of the analysis time and

the number of path constraint queries submitted to the un-
derlying SMT solver by S2E and ConcoLynx (our tool).
Since we were not able to get any useful results out of Vine,
it is omitted from the costs table and only the performance
data for S2E is given. Our system post-processes an exe-
cution trace of the program to generate path constraints,
while S2E saves program states whenever it reaches a pos-
sible branch point in the program’s execution. In order to
be able to provide a fair comparison of the systems, the
numbers presented here are normalized with respect to un-
obfuscated programs for each tool. For the assiral program
obfuscated with Themida, we were not able to execute the
binary on our tracing facility: the program crashed while
generating the trace so we were unable to apply our tool
to this program. We chose 12 hours timeout for our toy
programs and 6 hours timeout for malicious codes.

The data in Table 2 lead to the following conclusions:

1. ConcoLynx is able to identify the branch points of the
obfuscated programs.

The total number of queries submitted to the con-
straint solver by our system is seen to go up for pro-
grams obfuscated using EXECryptor: for these pro-
grams, we have manually verified that the obfusca-
tion tool inserts additional conditional code that uses
tainted values, for example the obfuscation tool inserts
additional code that checks the sign of the result of an
arithmetic operation where is not checked in the origi-
nal program, making the symbolic engine produce and
send more queries to SMT solver.



Orig.
No. queries (normalized) Analysis time (normalized)

Program CV EC VM TH CV EC VM TH

ConcoLynx

simple-if 1.0 1.0 35 1.0 1.0 5.6 1.9 14.6 112.7
bin-search 1.0 1.0 13 1.0 1.0 9.7 6.6 19.1 339.3
bubble-sort 1.0 1.0 14.5 1.0 1.0 3.9 12.9 38.5 152.7
assiral 1.0 1.0 11 1.0 − 8.8 3.5 63.7 −
clibo 1.0 1.0 17.6 1.0 1.0 24.8 3.3 123.9 10.8
mydoom 1.0 1.0 8.6 1.0 1.0 5.7 24.6 63.9 55.9
netsky ae 1.0 1.0 8.6 1.0 1.0 7.7 3.6 20.3 27.5

S2E
(DFS)

simple-if 1.0 19 52.8 2002.1 24.4 4.7 8.5 Timeout Timeout
bin-search 1.0 7.9 26.7 1.2 0 Timeout 12.6 2 Timeout
bubble-sort 1.0 0.1 155.6 0 0 154.6 30.7 Timeout Timeout
assiral 1.0 15.1 12.2 123 0 2.1 2.3 8.2 Timeout
clibo 1.0 10.8 14.7 7 0 2.7 3.5 Timeout Timeout
mydoom 1.0 17.2 23.2 0 0 4.1 5 Timeout Timeout
netsky ae 1.0 24.5 22.1 181.5 31 3.6 4.2 Timeout 41.7

S2E
(random)

simple-if 1.0 19 53.2 3584 49.2 4.2 8.5 847 Timeout
bin-search 1.0 24.3 26.6 17 40.4 Timeout 14.8 16.5 Timeout
bubble-sort 1.0 57.7 155.5 62.5 14.8 67.5 74.4 Timeout Timeout
assiral 1.0 15.5 12.25 52 239 1.3 1.3 Timeout Timeout
clibo 1.0 12.1 14.7 37.2 96.5 3.2 3.9 Timeout Timeout
mydoom 1.0 17.2 23.7 35.6 3.9 2.7 3.1 Timeout Timeout
netsky ae 1.0 24.5 22.2 31 74.6 2.5 2.5 Timeout 40.6

Key: CV: Code Virtualizer; EC: EXECryptor; VM: VMProtect; TH: Themida

Table 2: Cost analysis of ConcoLynx compared to S2E for obfuscated programs, numbers are normalized to
the cost of unobfuscated programs

The increase in analysis time for the obfuscated code
ranges from a low of about 2× for Code Virtualizer to a
maximum of about 340× for one Themida-obfuscated
program. This increase is due primarily to the larger
number of instructions executed by the obfuscated pro-
grams.

2. S2E is able to successfully analyze most of the pro-
grams obfuscated using Code Virtualizer (except for
a timeout on bin-search) and EXECryptor (except for
a failure on bin-search with the Random search strat-
egy). This result is encouraging. For VMProtect and
Themida, however, S2E failed or timed out on most of
the test programs.

Table 3 gives the actual amount of time of the analysis. In
Table 3, T0 is the time for each program to execute with-
out tracing, T1 shows the time that is needed to collect an
execution trace for each program and T2 and T3 show the
analysis time of conducting standard byte-level taint analy-
sis and bit-level taint analysis (see Section 4.1) respectively
on each execution trace. The last four columns in the ta-
ble show the overhead ratio for each of the above analyses:
T1/T0 is the overhead of recording the execution trace of a
program compared to the native execution time. This over-
head ranges from 1499× to 18203× with a geometric mean
of 5540× slowdown. T2/T0 and T3/T0 show how much over-
head different taint analyses algorithms impose compared to
the run-time of the program. This overhead for byte-level
taint analysis ranges between 0.2× and 21× with geomet-
ric mean of 3.2× slowdown and for bit-level taint analysis
ranges from 2.6× to 191× with geometric mean of 26.1×
slowdown. Finally, T3/T2 refers to the overhead of bit-level

taint over byte-level taint analysis which ranges between 3×
to 15.7× with geometric mean of 8.06× slowdown.

The numbers shown in Table 3 suggest that although the
taint approach used in ConcoLynx is more expensive than
the standard byte-level taint approach, the overhead of trac-
ing a program is significantly higher than the rest of the
analyses and so the increased overhead imposed by our taint
analysis is dominated by that of trace recording. Moreover,
the run-time of our approach, including the overhead of bit-
level taint analysis, is much better than the running-time of
other tools (S2E and Vine) when dealing with obfuscated
code which makes our approach more practical.

6. RELATED WORK
There is a considerable body of research on symbolic and

concolic execution: Schwartz et al. [33] give a survey. The
analysis of malicious and/or obfuscated code forms a signifi-
cant application of this technology [1–3,13,27,35,47]. While
such techniques can be effective when obfuscation is not an
issue (e.g., in environmentally triggered programs where the
trigger code uses unobfuscated conditional branches), they
fail in the face of obfuscations such as those discussed in this
paper. The general problems associated with such analy-
ses, e.g., path explosion or symbolic jumps, are known [33],
however most of the research literature do not address them
explicitly. This is especially problematic for applications of
symbolic and concolic analysis to malware code since these
programs are often heavily obfuscated to avoid detection
and/or hamper analysis. Furthermore, code obfuscation can
raise its own challenges for symbolic and concolic analysis,
e.g., the symbolic code problem, discussed earlier, which we
have not seen discussed elsewhere in the research literature.



Time (milliseconds) Overhead Ratio
Program Native Exec. Tracing Tainting

T1/T0 T2/T0 T3/T0 T3/T2Time (T0) (T1) Byte-level (T2) Bit-level (T3)
C

V

simple-if 16 66,764 12.15 180.88 4172.50 0.75 11.30 14.88
binary-search 16 71,573 72.03 465.50 4473.12 4.50 29.09 6.46
bubble-sort 16 70,686 64.53 996.72 4417.50 4.03 62.29 15.44
assiral 15 55,764 52.16 466.34 3717.33 3.47 31.08 8.94
clibo 15 35,804 83.98 855.32 2386.67 5.59 57.02 10.18
mydoom 16 93,472 23.43 160.42 5841.88 1.46 10.02 6.84
netsky ae 15 24,288 41.77 411.36 1618.67 2.78 27.42 9.84

E
C

simple-if 15 116,187 03.74 35.48 7745.33 0.24 2.36 9.48
bin-search 16 120,967 76.36 635.38 7560.00 4.77 39.71 8.32
bubble-sort 16 122,284 202.04 1584.00 7642.50 12.62 99.00 7.84
assiral 16 104,752 50.31 789.77 6546.88 3.14 49.36 15.69
clibo 16 88,723 53.78 405.24 5545.00 3.36 25.32 7.53
mydoom 16 136,400 39.09 451.01 8525.00 2.44 28.18 11.57
netsky ae 16 124,735 38.06 306.04 7795.93 2.37 19.12 8.04

T
H

simple-if 453 679,110 920.47 9632.42 1499.14 2.03 21.26 10.46
bin-search 469 904,851 956.01 6576.10 1929.32 2.03 14.02 6.87
bubble-sort 406 728,041 1381.13 11957.30 1793.20 3.40 29.45 8.65
clibo 125 957,996 187.09 1478.65 7663.92 1.49 11.82 7.90
mydoom 422 1,000,077 307.47 1820.35 2369.67 0.72 4.31 5.92
netsky ae 423 768,828 176.60 1847.81 1817.54 0.41 4.36 10.46

V
M

simple-if 15 229,510 88.24 728.36 15300.70 5.88 48.55 8.25
binary-search 16 236,892 207.97 1587.92 14805.60 12.99 99.24 7.63
bubble-sort 16 236,729 329.33 3056.27 14795.00 20.58 191.01 9.28
assiral 32 430,615 610.79 1484.02 13456.60 19.08 46.37 2.42
clibo 47 492,316 587.11 1830.58 10474.70 12.49 38.94 3.11
mydoom 32 582,506 173.09 935.98 18203.10 5.40 29.24 5.40
netsky ae 31 334,940 146.03 975.00 10804.50 4.71 31.45 6.67

Geometric Mean 5540.01 3.22 26.14 8.06

Key: CV: Code Virtualizer; EC: EXECryptor; TH: Themida; VM: VMProtect;

Table 3: Cost of analysis with comparison of byte-level and bit-level taint analysis overheads.

Sharif et al. [36] and Wang et al. [43] discuss ways to ham-
per symbolic execution via computations that are difficult
to invert.

Concolic analyses typically use taint analysis to distin-
guish between concrete and symbolic values. More gener-
ally, taint analysis finds a variety of uses in security appli-
cations [18, 19, 21, 29, 45]. General frameworks for dynamic
taint analysis include those by Clause et al [11] and Schwartz
et al. [33], but these works do not discuss the specifics of fine-
grained bit-level taint analysis. Drewry et al. describe a
bit-precise taint analysis system named flayer [15], but this
tool—and taintgrind [44], which is based on it—does not
consider using separate taint markings to improve resilience
against obfuscations. Cavallarro et al. [7] and Sarwar et
al. [32] discuss techniques to defeat taint analyses.

There is a large body of literature on detection and analy-
sis of obfuscated and malicious code (see, e.g., [12,23,24,40]).
None of these works consider ways in which code obfusca-
tions can hamper symbolic analysis.

7. CONCLUSIONS
Although analysis of potentially malicious code is an im-

portant application of symbolic and concolic analysis, and
malware codes are usually obfuscated to avoid detection and
hamper analysis, most of the research on symbolic analy-

sis of malicious code does not consider the impact of code
obfuscation on the cost and precision of symbolic and con-
colic program analysis. This paper investigates the effect of
code obfuscation on the efficacy of concolic analysis, focus-
ing on three such obfuscations: two that are known to be
used in obfuscation tools that are used by malware, and a
third that is a straightforward variation of a transformation
used in existing malware. Our experiments suggest that
existing concolic analysis techniques are of limited utility
against code obfuscations commonly used in malware. We
propose a way to mitigate the problem using a combination
of fine-grained bit-level taint analysis and architecture-aware
constraint generation. Experiments using a prototype imple-
mentation indicate that this approach significantly improves
the efficacy of symbolic execution on obfuscated code.
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