
Call Forwarding:A Simple Interprocedural Optimization Techniquefor Dynamically Typed Languages �Koen De Bosschere;y Saumya Debray;z David Gudeman;z Sampath Kannanzy Department of ElectronicsUniversiteit GentB-9000 Gent, Belgium z Department of Computer ScienceThe University of ArizonaTucson, AZ 85721, USAAbstractThis paper discusses call forwarding, a simple interpro-cedural optimization technique for dynamically typedlanguages. The basic idea behind the optimization isstraightforward: �nd an ordering for the \entry actions"of a procedure, and generate multiple entry points forthe procedure, so as to maximize the savings realizedfrom di�erent call sites bypassing di�erent sets of en-try actions. We show that the problem of computingoptimal solutions to arbitrary call forwarding problemsis NP-complete, and describe an e�cient greedy algo-rithm for the problem. Experimental results indicatethat (i) this algorithm is e�ective, in that the solutionsproduced are generally close to optimal; and (ii) theresulting optimization leads to signi�cant performanceimprovements for a number of benchmarks tested.1 IntroductionThe code generated for a function or procedure in adynamically typed language typically has to carry outvarious type and range checks on its arguments beforeit can operate on them. These runtime tests can incura signi�cant performance overhead. As a very simpleexample, consider the following function to compute theaverage of a list of numbers:�K. De Bosschere was supported by the National Fund for Sci-enti�c Research of Belgium and by the Belgian National IncentiveProgram for fundamental research in Arti�cial Intelligence. S.Debray and D. Gudeman were supported in part by the NationalScience Foundation under grant number CCR-9123520. S. Kan-nan was supported in part by the National Science Foundationunder grant number CCR-9108969.0Copyright 1994 ACM. Appeared in the Proceed-ings of the 21st Annual ACM SIGPLAN-SIGACTSymposium on Principles of Programming Lan-guages, January 1994, pp. 409{420.

ave(L, Sum, Count) =if null(L) then Sum/Countelse ave(tail(L),Sum+head(L),Count+1)In a straightforward implementation of this function,the code generated checks the type of each of its argu-ments each time around the loop: the �rst argumentmust be a (empty or non-empty) list, while the secondand third arguments must be numbers.1 Notice, how-ever, that some of this type checking is unnecessary: theexpression Sum+head(L) evaluates correctly only if Sumis a number, in which case its value is also a number;similarly, Count+1 evaluates correctly only if Count isa number, and in that case it also evaluates to a num-ber. Thus, once the types of Sum and Count have beenchecked at the entry to the loop, further type checks onthe second and third arguments are not necessary.The function in this example is tail recursive, makingit easy to recognize the iterative nature of its compu-tation and use some form of invariant code motion tomove the type check out of the loop. In general, how-ever, such redundant actions may be encountered wherethe de�nitions are not tail recursive and where the loopstructure is not as easy to recognize. An alternative ap-proach, which works in general, is to generate multipleentry points for the function ave, so that a particularcall site can enter at the \appropriate" entry point, by-passing any code it does not need to execute. In theexample above, this would give exactly the desired re-sult: tail call optimization would compile the recursivecall to ave into a jump instruction, and noticing thatthe recursive call does not need to test the types of itssecond and third arguments, the target of this jump1In reality, the generated code would distinguish between thenumeric types int and float, e.g., using \message splitting" tech-niques as in [5, 6]|the distinction is not important here, and weassume a single numeric type for simplicity of exposition.1

would be chosen to bypass these tests.However, notice that in the example above, even ifwe generate multiple entry points for ave, the optimiza-tion works only if the tests are generated in the rightorder : since it is necessary to test the type of the �rstargument each time around the loop, the tests on thesecond and third arguments cannot be bypassed if thetype test on the �rst argument precedes those on theother two arguments. As this example illustrates, theorder in which the tests are generated inuences theamount of unnecessary code that can be bypassed atruntime, and therefore the performance of the program.In general, functions and procedures in dynamicallytyped languages contain a set of (idempotent) \entryactions," such as type tests, initialization actions (espe-cially for variadic procedures), etc., that are executedat entry to the procedure. Moreover, these actions cantypically be carried out in any of a number of di�er-ent \legal" orders (in general, not all orderings of entryactions may be legal, since some actions may dependon the outcomes of others|for example, the type of anexpression head(x) cannot be checked until x has beenveri�ed to be of type list). The code generated for aprocedure therefore consists of a set of entry actions insome order, followed by code for its body. There are anumber of di�erent call sites for each procedure, and ateach call site we have some information about the actualparameters at that call site, allowing that call to skipsome of these entry actions. Moreover, each call site hasa di�erent execution frequency (estimated, for example,from pro�le information or from the structure of thecall graph). In general, di�erent call sites have di�erentinformation available about their actual parameters, sothat an order for the entry actions of a procedure thatis good for one call site, in terms of the number of un-necessary entry actions that can be skipped, may not beas good for another call site. A good compiler shouldtherefore attempt to �nd an ordering on the entry ac-tions that maximizes the bene�ts, over all call sites, dueto bypassing unnecessary code. We refer to determiningsuch an order for the entry actions and then \forward-ing" the branch instructions at di�erent call sites so asto bypass unnecessary code as \call forwarding."While many systems compile functions with multi-ple entry points, we do not know of any that attemptto order the entry actions carefully in order to exploitthis to the fullest. In this paper, we address the prob-lem of determining a \good" order for the set of tests afunction or procedure has to carry out. We show thatgenerating an optimal order is NP-complete in general,and give an e�cient algorithm for selecting an orderingusing a greedy heuristic. The result generalizes a num-ber of optimizations for traditional compilers, such asjump chain collapsing and invariant code motion out of

loops. Experimental results indicate that (i) the heuris-tic is good, in that the orderings it generates are usuallynot far from the optimal; and (ii) the resulting optimiza-tion is e�ective, in the sense that it typically leads tosigni�cant speed improvements.The issues and optimizations discussed in this pa-per are primarily at the intermediate code level: forthis reason, we do not make many assumptions aboutthe source language, except that a call to a proceduretypically involves executing a set of idempotent \en-try actions." This covers a wide variety of dynami-cally typed languages, e.g., functional programming lan-guages such as Lisp and Scheme (e.g., see [15]), logicprogramming languages such as Prolog [4], GHC [17]and Janus [11, 13], imperative languages such as SETL[14], and object-oriented languages such as Smalltalk[10] and SELF [6]. The optimization we discuss islikely to be most bene�cial for languages and pro-grams where procedure calls are common, and whichare therefore liable to bene�t signi�cantly from reduc-ing the cost of procedure calls. However|the title ofthe paper notwithstanding|the optimization is not lim-ited, a priori, to dynamically typed languages: it isalso applicable, in principle, to idempotent entry ac-tions, such as initialization and array bound checks,in statically typed languages, and some optimizationsused in statically typed languages, such as inverse eta-reduction/uncurrying/argument attening in StandardML of New Jersey [1], can also be thought of as instancesof call forwarding (see Section 6).2 The Call Forwarding ProblemAs discussed in the previous section, the code gener-ated for a procedure consists of a set of entry actions,which can be carried out in a number of di�erent legalorders, followed by the code for its body. Each proce-dure has a number of call sites, and at each call sitethere is some information about the actual parametersfor calls issued from that site, specifying which entryactions must be executed and which may be skipped.2This is modelled by associating, with each call site, aset of entry actions that must be executed by that callsite. Moreover, each call site has associated with it anestimate of its execution frequency: such estimates canbe obtained from pro�le information, or from the struc-ture of the call graph of the program (see, for example,[3, 19]). Finally, di�erent entry actions may require adi�erent number of machine instructions to execute, andtherefore have di�erent \sizes."Our objective is to order the entry actions of theprocedures in a program, and redirect calls so as to by-2The precise mechanismby which this information is obtained,e.g., dataow analysis, user declarations, etc., is orthogonal to theissues discussed in this paper, and so is not addressed here.

pass unnecessary actions where possible, in such a waythat the total number of instructions that are skipped,over the entire execution of the program, is as large aspossible. However, it is not di�cult to see that for anyprocedure p in a program, the code to set up and exe-cute procedure calls in the body of p is separate fromthe entry actions of p. Because of this, the order ofp's entry actions|and therefore, the number of instruc-tions that are skipped by calls to p in an execution of theprogram|neither inuence nor are inuenced by the or-der of the entry actions for any other procedure in theprogram. The problem of maximizing the total numberof instructions skipped by call forwarding for the entireprogram, then, reduces to the problem of maximizing,for each procedure, the number of instructions skippedby calls to that procedure. For our purposes, therefore,the call forwarding problem is the problem of determin-ing a \good" order for the entry actions of a procedureso that the savings accruing from bypassing unneces-sary entry actions over all call sites for that procedure,weighted by execution frequency, is as large as possible.The problem can be generalized by allowing code tobe copied from a procedure to the call sites for that pro-cedure. As an example, suppose we have a procedurewith entry actions a and b, and two call sites: A, whichcan skip a but must execute b; and B, which can skipb but must execute a. Suppose the entry actions aregenerated in the order ha; bi, then call site A can skip a,but B cannot skip b and therefore executes unnecessarycode (a symmetric problem arises if the other possibleorder is chosen). A solution is to copy the entry ac-tion a at the call site B, i.e., execute the entry actionat B before jumping to the callee. If we allow arbi-trarily many entry actions to be copied to call sites inthis manner, it is trivial to generate an optimal solutionto any call forwarding problem: simply copy to eachcall site the entry actions that call site must execute,then branch into the callee bypassing all entry actionsat the callee. This obviously produces an optimal so-lution, since each call site executes exactly those entryactions that it must execute, and can be done e�cientlyin polynomial time. However, it has the problem thatsuch unrestricted copying can lead to signi�cant codebloat, since there may be many call sites for a proce-dure, each of them getting a copy of most of the entryactions for that procedure (we have observed this phe-nomenon in a number of application programs).The best solution to this problem is to impose aglobal bound on the total number of entry actions thatmay be copied, across all the call sites occurring in a pro-gram, but this turns out to be complicated to implementbecause when performing call forwarding on any partic-ular procedure, we have to keep track of the number ofentry actions copied for all the procedures in the pro-

gram, including those that have not yet been processedby the optimizer! A simple and e�ective approxima-tion to this approach is to assign, for each procedure,a bound on the number of entry actions that can becopied to each call site for that procedure. If we startwith a global bound on the total number of entry ac-tions that can be copied, such per-procedure bounds canbe obtained by \dividing up" the global bound amongthe procedures (possibly taking into account, for eachprocedure, the number of call sites for it and their execu-tion frequencies, so that procedures with deeply nestedcall sites can copy more entry actions and thereby ef-fect greater optimization). A discussion of heuristicsfor establishing such per-procedure bounds is beyondthe scope of this abstract: we simply assume, in thediscussion that follows, that for each procedure there isa bound on the number of its entry actions that can becopied to any call site.The call forwarding problem can therefore be formu-lated in the abstract as follows:De�nition 2.1 A call forwarding problem is a 5-tuplehE;C;w; s; ki, where:{ E is a �nite set (representing the entry actions ofthe procedure concerned);{ C is a multiset of subsets of E (representing theentry actions that each call site must execute);{ w : C �! N , where N is the set of natural num-bers, is a function that maps each call site to its\weight", i.e., execution frequency;{ s : E �! N represents the \size" of each ele-ment of E (representing the number of machineinstructions needed to realize the correspondingentry action); and{ k � 0 represents a bound on the number of entryactions that can be copied to call sites.A solution to a call forwarding problem hE;C;w; s; kiis a permutation � of E, i.e., a 1-1 function � : E �!f1; : : : ; jEjg. The cost of a solution � is, intuitively,the total number of machine instructions executed, overall call sites, given that the entry actions are gener-ated in the order �. Given a call forwarding problemhE;C;w; s; ki, the cost of a solution � for it is de�nedas follows. First, let copied(c; �; i) denote (the indicesof) those entry actions in � that have to be copied to acall site c if the entry point for c is to bypass the �rst ielements of �:copied (c; �; i) = fj j j � i ^ ��1(j) 2 cg:

Here, ��1(j) denotes the element of E that is the jthelement of the permutation �. For any call site c 2 C,given the bound k on the number of actions that can becopied to c, the maximumnumber of entry actions thatcan be skipped by c|either because c does not have toexecute that action, or because it has been copied fromthe callee to the call site|is given bySkip(c; �) = maxfi : jcopied (c; �; i)j � kg:The cost of a solution � can then be expressed as theweighted sum, over all call sites, of (the sizes of) theinstructions that cannot be skipped by the call sites:cost(�) =Pc2Cfw(c) � s(I) j I 2 E ^ �(I) >Skip(c; �)g:3 Algorithmic IssuesWe �rst consider the complexity of determining optimalsolutions to call forwarding problems. The followingresult shows that the existence of e�cient algorithmsfor this is unlikely:Theorem 3.1 The determination of an optimal solu-tion to a call forwarding problem is NP-complete. It re-mains NP-complete even if all entry actions have equalsize.Proof By reduction from the Optimal Linear Arrange-ment problem, which is known to be NP-complete [8, 9].See the Appendix for details.This result might very well be of only academic in-terest if the number of entry actions encountered in typ-ical programs could be guaranteed to be small. How-ever, our experience has been that this is not the casein many actual applications. The reason for this is that,even if the number of arguments to procedures is smallfor most programs encountered in practice, it is notunusual to have a number of entry actions associatedwith a single argument (e.g., see Section 4), involvingtype and range checks, pattern matching and indexingcode, pointer chain dereferencing (a common operationin logic programming languages), and so on. Becauseof this, the total number of entry actions in a proce-dure can be quite large, making exhaustive search foran optimal solution impractical. We therefore seek e�-cient polynomial time heuristics for call forwarding thatproduce good solutions for common cases.3.1 A Greedy AlgorithmWhile the problem of computing optimal solutions forarbitrary call forwarding problems is NP-complete ingeneral, a greedy algorithm appears to work quite well

in practice (see Table 1). Given a call forwarding prob-lem for a procedure with a bound of k on the numberof actions that can be copied from the callee to the callsites, the general idea is to pick actions one at a time, ateach step choosing an action that minimizes the cost tobe paid at that step. The algorithm maintains a list ofcall sites that do not need to execute more than k of theactions chosen upto that point, and therefore can stillhave some actions copied to them|such call sites aresaid to be active. Each active call site c has associatedwith it a counter, denoted by count [c] in Figure 1, thatkeeps track of how many more actions can be copied tothat call site. The weight of an action, at any point inthe algorithm, is computed as the sum of the weights ofthe active call sites that need to execute that action, di-vided by the \size" of that action (recall that the size ofan action represents the number of machine instructionsneeded to implement it)|thus, everything else beingequal, an action that is more expensive in terms of thenumber of machine instructions it requires will have asmaller weight than one with smaller size, and hence bepicked earlier, thereby allowing more call sites to bypassit. Since in general there may be dependencies betweeninstructions that restrict the set of legal orderings (e.g.,see the example in Section 4), the algorithm �rst con-structs a dependency graph whose nodes are the entryactions under consideration, and where there is an edgefrom a node e1 to a node e2 if e1 must precede e2 inany legal execution; the set of predecessors of a node xin this graph is denoted by preds(x). The algorithm issimple: it repeatedly picks an \available" action (i.e.,an action whose predecessors in the dependency graphG have already been picked) of least weight, then up-dates the counters of the appropriate call sites as wellas the list of active call sites, deleting from this list anycall site that has reached its limit of the number of ac-tions that can be copied from the callee. This processcontinues until all actions have been enumerated. Thealgorithm is described in Figure 1.4 An ExampleIn this section we consider in more detail the ave func-tion from Section 1 to see the e�ect of call forwardingon the code generated. To illustrate the fact that thisoptimization is not limited to code for type checking,we consider here a realization of this function in Prolog.As in other logic programming languages, uni�cationbetween variables in Prolog can set up chains of point-ers, and loading the value of a variable requires deref-erencing such chains. A number of authors have shownthat signi�cant performance improvements are possibleif the lengths of these pointer chains can be predicted viacompile-time analysis, so that unnecessary dereferenc-ing code can be deleted [7, 12, 16]; however, the analysesinvolved are fairly complex. Here we show how, in many

cases, unnecessary dereference operations can be elim-inated using call forwarding. The procedure is de�nedas follows:ave([], Sum, Count, Avg) :-Avg is Sum/Count.ave([H|L], Sum, Count, Avg) :-Sum1 is Sum+H, Count1 is Count+1,ave(L, Sum1, Count1, Avg).Assume that, as in manymodern Lisp and Prolog imple-mentations, parameters are passed in (virtual machine)registers, so that the �rst parameter is in register Arg1,the second parameter in register Arg2, and so on. Figure2(a) gives the intermediate code that might be gener-ated in a straightforward way. (In reality, the generatedcode would distinguish between the numeric types intand float, e.g., using \message splitting" techniques asin [5, 6]|the distinction is not important here, and weassume a single numeric type for simplicity of exposi-tion.) The �rst six instructions of ave are entry actionsthat can be executed in any order where the derefer-encing of a register precedes its use. Moreover, at the(recursive) call site for ave, we know from the seman-tics of the add instruction that Arg1 and Arg2 are bothnumbers, and that there is no need for either derefer-encing or type checking of these registers. The entryactions corresponding to dereferencing and type check-ing of these registers can therefore be bypassed by therecursive call site. Assume that apart from the recursivecall, there is another call site (the \initial" call) for theprocedure ave. For notational brevity in the discussionthat follows, denote the instructions above as follows:Arg1 := deref(Arg1) 7! aArg2 := deref(Arg2) 7! bArg3 := deref(Arg3) 7! cif :List(Arg1) goto Err 7! dif :Number(Arg2) goto Err 7! eif :Number(Arg3) goto Err 7! fFinally, assume that no copying of code to call sitesis allowed. Then, we can formulate this as a call for-warding problem hE;C;w; s; ki as follows:� E = fa; b; c; d; e; fg;� C = fc1; c2g, where c1 = fa; b; c; d; e; fg is theinitial call site, and c2 = fa; dg is the recursivecall site;� w = fc1 7! 1; c2 7! 10g, i.e., we assume that loopsiterate about 10 times on the average;� the \size function" s maps each entry action in Eto 1 (for simplicity); and

� k = 0, i.e., no copying of code to call sites is al-lowed.Initially, the set of available actions is fa; b; cg, and bothcall sites are active, so the weights computed for theseactions are: a : 11; b : 1; c : 1. There are two actions,b and c, that have lowest weight, and one of them|say, b|is picked by the algorithm. As a result, thecall site c1 becomes inactive. The set of available ac-tions at this point is fa; c; eg, with weights 10, 0, 0 re-spectively. There are two actions, c and e, with lowestweight, and one of them|say, c|is picked. The algo-rithm proceeds in this manner, eventually producing thesequence hb; c; e; f; a; di as a solution to this call forward-ing problem. In other words, call forwarding orders theentry actions so that the dereferencing and type testson Arg2 and Arg3 come �rst, and can be skipped bythe recursive call to ave. The resulting code is shown inFigure 2(b). Notice that the code for dereferencing andtype checking the second and third arguments have ef-fectively been \hoisted" out of the loop. Moreover, thishas been accomplished, not by recognizing and dealingwith loops in some special way, but simply by usingthe information available at call sites. It is applicable,therefore, even to computations that are not iterative(i.e., tail recursive), including procedures that involvearbitrary linear, nonlinear, and mutual recursion.5 Experimental ResultsWe ran experiments on a number of small benchmarksto gauge (i) the e�cacy of greedy algorithm, i.e., thequality of its solutions compared to the optimal; and (ii)the e�cacy of the optimization, i.e., the performanceimprovements resulting from it. The numbers presentedreect the performance of jc [11], an implementation ofa logic programming language called Janus [13] on aSparcstation-1.3 This system is currently available byanonymous FTP from cs.arizona.edu.Table 1 gives, for each benchmark, the number ofmachine instructions that would be executed over allcall sites for the entry actions in the procedures only,using (i) no call forwarding; (ii) call forwarding usingthe greedy algorithm; and (iii) optimal call forwarding.The weights for the call sites were estimated using thestructure of the call graph: we assumed that on the aver-age, each loop iterates about 10 times, and the branchesof a conditional are taken with equal frequency. Whilethe optimizations were carried out at the intermediatecode level, we used counts of the number of Sparc assem-bly instructions for each intermediate code instruction,together with the execution frequencies estimated fromthe call graph structure, to estimate the runtime cost3Our implementation uses a variant of call forwarding whereentry actions are copied from the callee to the call sites as longas this will allow a later action to be skipped.

of the di�erent solutions. The results indicate that thegreedy heuristic has uniformly good performance: onthe benchmarks, it attains the optimal solution in eachcase.Table 2 gives the improvements in speed resultingfrom our optimizations, and serves to evaluate the ef-�cacy of call forwarding. The time reported for eachbenchmark, in milliseconds, is the time taken to ex-ecute the program once. This time was obtained byiterating the program long enough to eliminate most ef-fects due to multiprogramming and clock granularity,then dividing the total time taken by the number of it-erations. The experiments were repeated 20 times foreach benchmark, and the average time taken in eachcase. Call forwarding accounts for improvements rang-ing from about 12% to over 45%. Most of this improve-ment comes from code motion out of inner loops: thevast majority of type tests etc. in a procedure appear asentry actions that are bypassed in recursive calls due tocall forwarding, e�ectively \hoisting" such tests out ofinner loops. As a result, much of the runtime overheadfrom dynamic type checking is optimized away.Table 3 puts these numbers in perspective by com-paring the performance of jc to Quintus and SicstusPrologs, two widely used commercial Prolog systems.On comparing the performance numbers from Table 2for jc before and after optimization, it can be seen thatthe performance of jc is competitive with these sys-tems even before the application of the optimizationsdiscussed in this paper. It is easy to take a poorly en-gineered system with a lot of ine�ciencies and get hugeperformance improvements by eliminating some of theseine�ciencies. The point of this table is that when eval-uating the e�cacy of our optimizations, we were carefulto begin with a system with good performance, so as toavoid drawing overly optimistic conclusions.Finally, Table 4 compares the performance of ourJanus system with C code for some small benchmarks.4Again, these were run on a Sparcstation 1, with cc asthe C compiler. The programs were written in the styleone would expect of a competent C programmer: norecursion (except in tak and nrev|an O(n2) \naivereverse" program for reversing a linked list of integers|where it is hard to avoid), destructive updates, and theuse of arrays rather than linked lists (except in nrev,which by de�nition traverses a list). The source codefor these benchmarks is given in Appendix B. It can beseen that the performance of jc is not very far from that4The Janus version of qsort used in this table is slightly dif-ferent from that of Table 3: in this case there are explicit integertype tests in the program source, to be consistent with int dec-larations in the C program and allow a fair comparison betweenthe two programs. The presence of these tests provides addi-tional information to the jc compiler and allows some additionaloptimizations.

of C, attaining approximately the same performance asunoptimized C code, and being only about a factor of2, on the average, slower than C code optimized at level-O4. On some benchmarks, such as nrev, jc outper-forms unoptimized C and is not much slower than op-timized C, even though the C program uses destruc-tive assignment and does not allocate new cons cells,while Janus is a single assignment language where theprogram allocates new cons cells at each iteration|itsperformance can be attributed at least in part to thebene�ts of call forwarding.6 Related WorkThe optimizations described here can be seen as gen-eralizing some optimizations for traditional imperativelanguages [2]. In the special case of a (conditional orunconditional) jump whose target is a (conditional orunconditional) jump instruction, call forwarding gen-eralizes the ow-of-control optimization that collapseschains of jump instructions. Call forwarding is able todeal with conditional jumps to conditional jumps (thisturns out to be an important source of performance im-provement in practice), while traditional compilers forimperative languages such as C and Fortran typicallydeal only with jump chains where there is at most oneconditional jump (see, for example, [2], p. 556).When we consider call forwarding for the last callin a recursive procedure, what we get is essentially ageneralization of code motion out of loops, in the sensethat the code that is bypassed due to call forwarding ata particular call site need not be invariant with respectto the entire loop. The point is best illustrated by anexample: consider a functionf(x) = if x = 0 then 1else if p(x) then f(g(x-1)) /* 1 */else f(h(x-1)) /* 2 */Assume that the entry actions for this function includea test that its argument is an integer, and suppose thatwe know, from dataow analysis, that g() returns an in-teger, but do not know anything about the return typeof h(). From the conventional de�nition of a \loop" ina ow graph (see, for example, [2]), there is one loopin the ow graph of this function that includes boththe tail recursive call sites for f(). Because of our lackof knowledge about the return type of h(), we cannotclaim that \the argument to f() is an integer" is an in-variant for the entire loop. However, using call forward-ing, the integer test in the portion of the loop arisingfrom call site 1 can be bypassed. E�ectively, this movessome code out of \part of" a loop. Moreover, our algo-rithm implements interprocedural optimization and candeal with both direct and mutual recursion, as well asnon-tail-recursive code, without having to do anything

special, while traditional code motion algorithms handleonly the intra-procedural case.The idea of compiling functions with multiple entrypoints is not new: many Lisp systems do this, Stan-dard ML of New Jersey and Yale Haskell generate dualentry points for functions, and Aquarius Prolog gener-ates multiple entry points for primitive operations [18].However, we do not know of any system that attemptsto order the entry actions carefully in order to maximizethe savings from bypassing entry actions.Some optimizations used in statically typed lan-guages can also be thought of in terms of call forwarding.For example, Standard ML of New Jersey uses a combi-nation of three transformations|inverse eta-reduction,uncurrying, and argument attening|to optimize func-tions where all of the known call sites pass tuples of thesame size as arguments, but where the function may\escape," i.e., not all of call sites are known at com-pile time [1]. The idea is to have the known call sitespass arguments in registers instead of constructing anddeconstructing tuples on the heap, while call sites thatare unknown at compile time execute additional codeto correctly deconstruct the tuples they pass. This op-timization can be thought of in terms of call forwardingas follows: suppose that each known call site for a func-tion constructs and passes an n-tuple as the argument,which is then deconstructed with n select operationsat the callee. We can copy the n select operationsfrom the callee to each known call site, and forward thecalls to enter the callee bypassing these operations. Ateach of these call sites, the construction of the argu-ment n-tuple followed by n selects on it can easily berecognized as inverse operations that can be optimizedto avoid having to actually build tuples on the heap.Thus, known call sites can be executed e�ciently, whilecall sites that are not known at compile time enter atthe original entry point and execute the select opera-tions in the expected way. Indeed, the whole point ofinverse eta-reduction is to generate two entry points fora function so that known call sites can bypass unnec-essary code: call forwarding can be seen as a way ofextending this idea to get more than two entry pointswhere necessary.Chambers and Ungar consider compile-time opti-mization techniques to reduce runtime type checkingin dynamically typed object-oriented languages [5, 6].Their approach uses type analysis to generate multiplecopies of program fragments, in particular loop bod-ies, where each copy is specialized to a particular typeand therefore can omit some type tests. Some of thee�ects of the optimization we discuss, e.g., \hoisting"type tests out of loops (see Section 4), are similar toe�ects achieved by the optimization of Chambers andUngar. In general, however, it is essentially orthogo-

nal to the work described here, in that it is concernedprimarily with type inference and code specializationrather than with code ordering. Because of this, thetwo optimizations are complementary: even if the bodyof a procedure has been optimized using the techniquesof Chambers and Ungar, it may contain type tests etc.at the entry, which are candidates for the optimizationwe discuss; conversely, the \message splitting" optimiza-tion of Chambers and Ungar can enhance the e�ects ofcall forwarding considerably.7 ConclusionsThis paper discusses call forwarding, a simple interpro-cedural optimization technique for dynamically typedlanguages. The basic idea behind the optimization is ex-tremely straightforward: �nd an ordering for the \entryactions" of a procedure such that the savings realizedfrom di�erent call sites bypassing di�erent sets of entryactions, weighted by their estimated execution frequen-cies, is as large as possible. It turns out, however, to bequite e�ective for improving program performance. Weshow that the problem of computing optimal solutionsto arbitrary call forwarding problems is NP-complete,and describe an e�cient heuristic for the problems. Ex-perimental results indicate that the solutions producedare generally optimal or close to optimal, and lead tosigni�cant performance improvements for a number ofbenchmarks tested. A variant of these ideas has beenimplemented in jc, a logic programming system that isavailable by anonymous FTP from cs.arizona.edu.References[1] A. Appel, Compiling with Continuations, Cam-bridge University Press, 1992.[2] A. V. Aho, R. Sethi and J. D. Ullman,Compilers {Principles, Techniques and Tools, Addison-Wesley,1986.[3] T. Ball and J. Larus, \Optimally Pro�ling andTracing Programs", Proc. 19th. ACM Symp.on Principles of Programming Languages, Albu-querque, NM, Jan. 1992, pp. 59{70.[4] M. Carlsson and J. Widen, SICStus Prolog User'sManual, Swedish Institute of Computer Science,Oct. 1988.[5] C. Chambers and D. Ungar, \Iterative TypeAnalysis and Extended Message Splitting: Opti-mizing Dynamically Typed Object-Oriented Pro-grams", Proc. SIGPLAN '90 Conference on Pro-gramming Language Design and Implementation,White Plains, NY, June 1990, pp. 150{164. SIG-PLAN Notices vol. 25 no. 6.[6] C. Chambers, D. Ungar and E. Lee, \An E�cientImplementation of SELF, A Dynamically Typed

Object-Oriented Language Based on Prototypes",Proc. OOPSLA '89, New Orleans, LA, 1989, pp.49{70.[7] S. K. Debray, \A Simple Code ImprovementScheme for Prolog", J. Logic Programming, vol. 13no. 1, May 1992, pp. 57-88.[8] M. R. Garey and D. S. Johnson, Computers andIntractability: A Guide to the Theory of NP-Completeness, Freeman, New York, 1979.[9] M. R. Garey, D. S. Johnson, and L. Stockmeyer,\Some Simpli�ed NP-complete Graph Problems",Theoretical Computer Science vol. 1, pp. 237{267,1976.[10] A. Goldberg and D. Robson, Smalltalk-80: TheLanguage and its Implementation, Addison-Wesley,1983.[11] D. Gudeman, K. De Bosschere, and S. K. Debray,\jc : An E�cient and Portable Implementationof Janus", Proc. Joint International Conferenceand Symposium on Logic Programming, Washing-ton DC, Nov. 1992. MIT Press.[12] A. Mari�en, G. Janssens, A. Mulkers, and M.Bruynooghe, \The Impact of Abstract Interpreta-tion: An Experiment in Code Generation", Proc.Sixth International Conference on Logic Program-ming, Lisbon, June 1989, pp. 33{47. MIT Press.[13] V. Saraswat, K. Kahn, and J. Levy, \Janus: Astep towards distributed constraint programming",in Proc. 1990 North American Conference on LogicProgramming, Austin, TX, Oct. 1990, pp. 431-446.MIT Press.[14] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, andE. Schonberg, Programming with Sets: An Intro-duction to SETL, Springer-Verlag, 1986.[15] G. L. Steele Jr., Common Lisp: The Language,Digital Press, 1984.[16] A. Taylor, \Removal of Dereferencing and Trailingin Prolog Compilation", Proc. Sixth InternationalConference on Logic Programming, Lisbon, June1989, pp. 48{60. MIT Press.[17] K. Ueda, \Guarded Horn Clauses", in ConcurrentProlog: Collected Papers, vol. 1, ed. E. Shapiro, pp.140-156, 1987. MIT Press.[18] P. Van Roy, Can Logic Programming Execute asFast as Imperative Programming?, PhD Disserta-tion, University of California, Berkeley, Nov. 1990.

[19] D. W. Wall, \Predicting Program Behavior UsingReal or Estimated Pro�les", Proc. SIGPLAN-91Conf. on Programming Language Design and Im-plementation, June 1991, pp. 59{70.A Appendix: Proof of NP Complete-nessThe following problem is useful in discussing the com-plexity of optimal call forwarding:De�nition A.1 The Optimal Linear Arrangementproblem (OLA) is de�ned as follows: Given a graphG = (V;E) and an integer k, �nd a permutation, f ,from the vertices in V to 1; : : : ; n such that de�ning thelength of edge (i; j) to be jf(i)� f(j)j, the total lengthof all edges is less than or equal to k.The following result is due to Garey, Johnson, andStockmeyer [8, 9]:Theorem A.1 The Optimal Linear Arrangement prob-lem is NP-complete.The following result gives the complexity of optimal callforwarding:Theorem 3.1 The determination of an optimal solutionto a call forwarding problem is NP-complete. It remainsNP-complete even if every entry action has equal size.Proof: We �rst formulate optimal call forwarding as adecision problem, as follows: \Given a call forwardingproblem I and an integer K � 0, is there a solution to Iwith cost no greater than K?" We refer to this problemas CF. The proof is by reduction from Optimal Lin-ear Arrangement problem, which, from Theorem A.1,is NP-complete. Let G = (V;E); k be a particular in-stance of OLA. We make the following transformationto an instance hA;C;w; s; ki of CF, where:{ A is the set of vertices 1; : : : ; n in V along withtwo dummy vertices s and t;{ The elements of C are all doubleton sets:{ corresponding to each edge (u; v) 2 E, thereis an element fu; vg in C with weight 1:for terminological simplicity in the discussionthat follows, we refer to these elements asnormal sets;{ let � be the maximum degree of any vertexinG, then corresponding to each vertex i 2 Gof degree di, there is an element fi; sg in Cwith weight 12(� � di) (some of these sets

could have zero weight, in which case theycan e�ectively be removed): we refer to theseelements as special sets;{ �nally, there is an element fs; tg in C ofweightM , where M is large enough to ensurethat s and t have to be the last two elementsin any optimal ordering of the vertices (Mcan be chosen to be n3 or greater): we referto this element as a heavy set.{ s(I) = 1 for every I 2 A.{ k = 0.We also have to de�ne the number K that is to boundthe cost of the call forwarding problem so constructed.Let K = 14n(n + 5)� + 3M + k=2. We claim that theinstance of CF so de�ned has a solution with cost nogreater than K if and only if the given instance of OLAhas a solution.Consider any proposed order of elements in a solu-tion to the instance of CF de�ned above. The cost ofthis solution can be decomposed as follows:As we march along the list of elements, at each pointwe charge �=2 to each of the elements we have seen sofar but not to either of the special elements. If vertexi 2 G is encountered, the charge of �=2 on vertex i fromthen on can be thought of as paying 1/2 towards eachof the normal sets that contain i and paying the entirecost of the special set that contains i. Now if both ele-ments of a normal set have been encountered, the totalcost of the set will from then on be picked up by thesecharges to the vertices. For a normal set fi; jg, after ihas been encountered and before j has been encounteredthe extra charge of 1/2 at each stage will be charged tothe edge (i; j). Breaking up the charges as above, one�nds that for any order in which s and t �nish last, thecharge to the vertices is a constant independent of theorder and is equal to 14 (n(n + 5)�) and the charge forthe heavy set is �xed at 3M . The only variable is thecharge to the edges and this charge will be exactly halfthe total length of the edges, since an edge gets chargedonly after one of its endpoints has been encountered andbefore the other endpoint has been encountered, i.e. forthe \duration" of its length.Thus there is a YES answer to the instance of CFcreated if and only if the total length of all \normal"edges is kept to k or less, or, in other words, if and onlyif the instance of OLA is a YES-instance. (Note thatsince the cost of the special sets is entirely picked upby the vertices, the lengths of the special edges do notmatter.)

B Source Code for Some BenchmarksThe source code for the benchmarks used in the com-parison between jc and C is given below. For spacereasons, only the code for the main functions is given.nrev : C :typedef struct s {int head;struct s *tail;} cons_node;cons_node *append(l1, l2)cons_node *l1, *l2;{cons_node *l3;if (l1 == NULL) return l2;else {for (l3=l1; l3->tail != NULL; l3=l3->tail);l3->tail = l2;return l1;}}cons_node *nrev(l)cons_node *l;{cons_node *l1;if (l==NULL) return NULL;else {l1 = l->tail;l->tail = NULL; /* reclaim head node */return append(nrev(l1), l);}}Janus:nrev([], ^[]).nrev([H|L1],^R) :-nrev(L1,^R1), app(R1,[H],^R).app([],L,^L).app([H|L1],L2,^[H|L3]) :- app(L1,L2,^L3).binomial : C :/* fact() as in the factorial benchmark */int pow(x,i)int x,i;{ int prod;for (prod=1; i>0; i--) prod *= x;return prod;}int choose(n,k)int n, k;{ return fact(n) / (fact(k) * fact(n-k));}int binomial(x,y,n)

int x,y;{int i, prod=0;for (i = 0; i <= n; i++)prod += choose(n,i)*pow(x,i)*pow(y,n-i);return prod;}Janus :/* fact() as in the factorial benchmark */pow(X,N,^P) :- int(X) | pow(X,N,^P,1).pow(X,0,^P,A) :- int(X), int(A) | P = A.pow(X,N,^P,A) :-int(X), int(N), int(A), N > 0 |pow(X,N-1,^P,X*A).choose(N,K,^C) :- int(N), int(K) |fact(N,^F1), fact(K,^F2), fact(N-K,^F3),C = F1 // (F2 * F3).binomial(X,Y,N,^Z) :-int(X),int(Y),int(N),N >= 0 |binomial(X,Y,N,^Z,N).binomial(_,_,_,^0,0).binomial(X,Y,N,^Z,K) :-int(X),int(Y),int(N),int(K),K > 0 |binomial(X,Y,N,^Z1,K-1),choose(N,K,^C),pow(X,K,^Xp),pow(Y,N-K,^Yp),Z = Z1 + C*Xp*Yp.dnf : C :dnf(In, R, W, B)int In[], R, W, B;{ int temp;while (R <= W) {if (In[W] == 0) {temp=In[W]; In[W]=In[R]; In[R]=temp;R += 1;}else if (In[W] == 1)W -= 1;else if (In[W] == 2) {temp=In[W]; In[W]=In[B]; In[B]=temp;B -= 1; W -= 1;}}}Janus :dnf(In,R,W,B,^Out) :-int(R),int(W),R > W | Out = In.dnf(In,R,W,B,^Out) :-int(R),int(W),R =< W,In.W = red |dnf(In[R->In.W,W->In.R],R+1,W,B,^Out).dnf(In,R,W,B,^Out) :-int(R),int(W),R =< W,In.W = white |dnf(In,R,W-1,B,^Out).dnf(In,R,W,B,^Out) :-int(R),int(W),R =< W,In.W = blue |

dnf(In[B->In.W,W->In.B],R,W-1,B-1,^Out).tak : C :int tak(x,y,z)int x,y,z;{ if (x <= y) return z;return tak(tak(x-1,y,z),tak(y-1,z,x),tak(z-1,x,y));}Janus :tak(X, Y, Z, ^A) :-int(X), int(Y), int(Z), X > Y |tak(X-1, Y, Z, ^A1),tak(Y-1, Z, X, ^A2),tak(Z-1, X, Y, ^A3),tak(A1, A2, A3, ^A).tak(X, Y, Z, ^A) :-int(X), int(Y), int(Z), X =< Y |A = Z.factorial : C :int fact(n)int n;{int prod;for (prod = 1; n > 0; n--)prod *= n;return prod;}Janus :fact(N,^X) :-int(N), N >= 0 | fact(N,^X,1).fact(N,^F,A) :-int(A), int(N), N > 0 |fact(N-1,^F,A*N).fact(0,^F,A) :- int(A) | F = A.

Input: A call forwarding problem I = hE;C;w; s; ki.Output: A solution to I, i.e., a permutation � of E.Method:beginActive Sites := C;construct the dependency graph G for legal execution orders;Avail Instrs := the root nodes of G;Processed := ;;� := h i;for each c 2 C do count [c] := k odwhile Avail Instrs 6= ; dofor each I 2 Avail Instrs docompute the weight of I as (Pfw(c) j c 2 Active Sites and I 2 cg)=s(I);od;I := an element of Avail Instrs with the least weight so computed;� := append I to the end of �; /* extend solution */Processed := Processed [fIg; /* update list of available instructions */Avail Instrs := (Avail Instrs n fIg) [fJ 2 E j preds(J) � Processedg;for each c 2 Active Sites s.t. I 2 c do /* update list of active sites */if count [c] = 0 thendelete c from Active Sites;else count [c] := count [c]� 1;�odod;return �;end Figure 1: A Greedy Algorithm for Call Forwarding

ave: Arg1 := deref(Arg1) ave: Arg2 := deref(Arg2)Arg2 := deref(Arg2) Arg3 := deref(Arg3)Arg3 := deref(Arg3) if :Number(Arg2) goto Errif :List(Arg1) goto Err if :Number(Arg3) goto Errif :Number(Arg2) goto Err L0 : Arg1 := deref(Arg1)if :Number(Arg3) goto Err if :List(Arg1) goto Errif Arg1 == NIL goto L1 if Arg1 == NIL goto L1t1 := head(Arg1) t1 := head(Arg1)Arg1 := tail(Arg1) Arg1 := tail(Arg1)t1 := deref(t1) t1 := deref(t1)if :Number(t1) goto Err if :Number(t1) goto ErrArg2 := add(Arg2, t1) Arg2 := add(Arg2, t1)Arg3 := add(Arg3, 1) Arg3 := add(Arg3, 1)goto ave goto L0L1 : t1 := div(Arg2, Arg3) L1 : t1 := div(Arg2, Arg3)Arg4 := deref(Arg4) Arg4 := deref(Arg4)assign(Arg4, t1) assign(Arg4, t1)(a) Before Call Forwarding (b) After Call ForwardingFigure 2: The E�ect of Call Forwarding on Intermediate Code for the ave procedure

Program no optimization greedy optimalhanoi 492 225 225tak 574 172 172nrev 726 360 360qsort 1776 450 450factorial 129 24 24merge 720 330 330dnf 124 25 25pi 306 30 30binomial 5963 1304 1304Table 1: E�cacy of the greedy Call Forwarding heuristic (in Sparc assembly instructions)Program w/o forwarding (ms) with forwarding (ms) % improvementbinomial 5.95 5.14 13.6hanoi 186 163 12.4tak 299 207 30.8nrev 1.17 0.716 38.8qsort 2.31 1.87 19.0merge 0.745 0.613 17.7dnf 0.356 0.191 46.3Table 2: Performance Improvement due to Call ForwardingProgram jc (J) (ms) Sicstus (S) (ms) Quintus (Q) (ms) S/J Q/Jhanoi 163 300 690 1.84 4.23tak 207 730 2200 3.53 10.63nrev 0.716 1.8 7.9 2.51 11.03qsort 1.87 5.1 9.4 2.73 5.03factorial 0.049 0.44 0.27 8.98 5.51Geometric Mean : 3.31 6.72Table 3: The Performance of jc, compared with Sicstus and Quintus PrologProgram jc (J) (ms) C (unopt) (ms) C (opt: -O4) J/C-unopt J/C-optnrev 0.716 0.89 0.52 0.80 1.38binomial 5.14 4.76 3.17 1.08 1.62dnf 0.191 0.191 0.061 1.00 3.13qsort 1.33 1.25 0.34 1.06 3.91tak 207 208 72 1.00 2.88factorial 0.049 0.049 0.036 1.00 1.36Geometric Mean : 0.98 2.18Table 4: The performance of jc compared to C

