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ABSTRACT
Software self-checksumming is widely used as an anti-tam-
pering mechanism for protecting intellectual property and
deterring piracy. This makes it important to understand
the strengths and weaknesses of various approaches to self-
checksumming. This paper describes a dynamic information-
flow-based attack that aims to identify and understand self-
checksumming behavior in software. Our approach is appli-
cable to a wide class of self-chesumming defenses and the in-
formation obtained can be used to determine how the check-
summing defenses may be bypassed. Experiments using a
prototype implementation of our ideas indicate that our ap-
proach can successfully identify self-checksumming behavior
in (our implementations of) proposals from the research lit-
erature.

1. INTRODUCTION
Self-checksumming is widely used in software anti-tam-

pering defenses [3,5,6,8,9,14,18]. The idea is to compute a
hash value from the instructions of the program (or some-
thing closely related to those instructions) and ensure that
the program continues to function correctly if and only if
the computed hash has the expected value. This can be
used to protect software against piracy, since any attempt
to tamper with the code, e.g., to disable or remove a license
check, will be detected during checksumming. This makes
it important to understand the strengths and weaknesses of
different approaches to self-checksumming.

This paper describes a dynamic information-flow-based
attack that aims to identify and understand a large class
of self-checksumming behavior in software. Our analysis
provides a wide range of information about the checksum-
ming code, such as: whether self-checksumming is being car-
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ried out and, if so, the location(s) of the code performing
the checksumming; the origin of the checksum code (if it
is created or modified dynamically); the checksum values
computed; the locations of the code checking these check-
sum values; the mechanism by which the tamper-response
is triggered (e.g., via a conditional jump, indirect jump, or
through an unpacking key computed from the checksum);
whether or not the instruction(s) triggering the tamper re-
sponse are shared with any non-checksumming code; and so
on. From an attacker’s perspective, such information can
provide a great deal of insight into the checksumming code
and indicate how the self-checksumming can be bypassed
or defeated. From the defender’s perspective, such infor-
mation can illuminate weaknesses in the self-checksumming
code and possibly suggest remedies.

Our approach makes the following assumptions:

1. Self-containedness. The software performs its own
integrity checking. This excludes systems, like Con-
queror [14], that involve an external entity for verifi-
cation.

2. Observability. The attacker has complete access to
the host and is able to observe the program as it exe-
cutes, including the instructions executed and the val-
ues of registers and memory.

Unlike the earlier work of Wurster et al. [22, 24], the work
described here is a pure-software approach that does not
rely on hardware assistance. To the best of our knowledge,
this is the first such pure-software attack against self-check-
summing systems. In terms of relative power, our approach
does not seem directly comparable with that of Wurster et
al.: on the one hand, our approach is unaffected by tech-
niques, such as self-modifying code, that can defeat Wurster
et al.’s attack [8]; on the other hand, programs that do not
satisfy the assumptions listed above cannot be handled us-
ing our approach but may be susceptible to Wurster et al.’s
attack.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on self-checksumming; Section
3 describes our approach to detection of self-checksumming;
Section 4 gives evaluation results for a prototype implemen-
tation of our ideas; Section 5 discusses limitations and future
work; Section 6 discusses related work; and Section 7 con-
cludes.



2. BACKGROUND
Self-checksumming is widely used in anti-tampering mech-

anisms that aim to ensure that software that is going to be
executed on an untrustworthy host has not been modified
in unauthorized ways [3, 5, 6, 8, 9]. The idea is to compute
a checksum or a hash value over appropriate portions of
the program’s code and use this value in the subsequent
computation in such a way that the program executes as
expected if and only if the hash value computed is the ex-
pected one. Compared to other proposals for software in-
tegrity protection, which require additional special-purpose
hardware [21] or continuous connection with a remote “au-
thentication server” [14], self-checksumming has the advan-
tage of being implementable using commodity hardware and
software. In particular, since self-checksumming does not re-
quire access to an authentication server, it is readily usable
on mobile devices, such as smartphones and laptops, that
may not always have network connectivity.

Horne et al. [9] divide this approach into two categories:
static checksumming, which checks the static code of the
program prior to execution; and dynamic checksumming,
which checks the software as it executes.

2.1 Static Self-Checksumming
Static self-checksumming verifies the integrity of the soft-

ware once, generally at the beginning of execution, to ensure
that the disk image of the software has not been tampered
with. This is typically done by accessing the bytes of the
program file (whose name is usually passed to the executing
process as an argument by the operating system), either by
reading the file into memory or by mapping the file into the
process’s address space. Once the contents of the executable
file are available for access, some or all of the code can be
checksummed in a straightforward way.

2.2 Dynamic Self-Checksumming
While static self-checksumming can detect changes made

to the program executable, it cannot detect changes made
to the memory image of the program’s code during the
course of its execution. Dynamic self-checksumming ad-
dresses this problem by periodically checking the memory
image of the program as it executes. The process of dy-
namic self-checksumming can be thought of, conceptually,
as consisting of three components: (1) checksum code inser-
tion, which inserts the code for computing the checksum into
the program (if necessary); (2) checksum computation; and
(3) verification and tamper response, which checks whether
the checksum value computed matches the expected value
and responds appropriately if it does not.

In many cases, no separate insertion component is neces-
sary because the code that performs the checksum compu-
tation is compiled as part of the program’s code and does
not have to be inserted separately. An alternative approach,
which aims to make the checksum code harder to identify,
is to unpack or import the checksum code into the program
at unpredictable intervals and/or locations in memory.

The checksum may be computed either on the code that
is actually executed, or on non-executable memory loca-
tions containing a packed version the code (see Figure 1).
The checksum computation may, but need not, encompass
all of a program’s code. First, the checksum computation
may be limited in scope to some specific sensitive code mod-
ules whose integrity has to be enforced. Second, the overall
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Figure 3: Tamper response: design choices

checksum computation may, in general, be carried out by a
collection of distinct code snippets working together, with
each snippet computing a checksum on some limited range
of code. This makes possible a powerful self-checksumming
model that uses a network of different checksumming rou-
tines that protect each other [6,9]. Figure 2 shows an exam-
ple of such approach. In this example the program has three
checksumming routines each of which compute a checksum
over the area of the code marked as grey and compares it
with the pre-computed checksummed accordingly. As shown
in Figure 2, checksum routines can have overlaps, meaning
that they verify each others’ integrity as well as the integrity
of the code. To attack such a protection mechanism, the at-
tacker has to detect all of the checksumming routines and
disable them all at once; this is likely to be significantly more
challenging than identifying and disabling a single guard.

The final step in self-checksumming is to check that the
computed checksum matches the expected value and to ac-
tivate a tamper response, where the program’s execution
behavior deviates from the normal, if it does not. Figure
3 illustrates the design choices for this step: in order for
program behavior to deviate from normal, either the code
or the data have to be different than for normal execution;
and the execution of different code can be done either by
branching to existing code, or by creating (unpacking) code
that is different than what would normally have been cre-
ated. Accordingly, the tamper response can be activated in
one of three ways (the numbers in the list below correspond
to those in Figure 3):

1. The program can branch to code that activates the
tamper response. This can be done using either (i)
straightforward compare-and-conditional-branch logic;
or (ii) using the checksum value to compute the tar-
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Figure 1: Checksumming combined with multiple layers of unpacking.

get of an indirect jump such that the correct target
address is computed if and only if the checksum value
computed is the expected one. For example, Tan et
al. describe a scheme where a checksum mismatch
causes control to be transferred to code that corrupts
the program state by setting some pointers to NULL;
the program then eventually crashes when this cor-
rupted pointer is dereferenced [19].

2. The checksum value can be used to change the re-
sult of code unpacking: e.g., by using the checksum
value to affect either (i) the value of the decryption
key for some dynamically unpacked code [5,23]; and/or
(ii) the value of one or more bytes that subsequently
get unpacked and executed. In this case, an incorrect
checksum value silently produces and executes incor-
rect/garbage code.

3. The checksum value can be incorporated into the logic
of the computation in such a way that an incorrect
checksum value causes the program to silently produce
incorrect output. The following simple example illus-
trates this approach: the variable p is initialized to the
correct value, 1, if and only if the computed checksum
is equal to the expected value of 0x1234.

int factorial(int n) {
int cksum = compute_checksum ();
// expected checksum = 0x1234

int p = 1 + (cksum ^ 0x1234);
while (n > 0) {

p *= n--;
}
return p;

}

Since programs interact with their execution environ-
ments through system calls, this approach requires that
an incorrect checksum should affect the argument(s) to
some output system call.

The discussion in this paper focuses primarily on dynamic
checksumming.

3. SELF-CHECKSUMMING DETECTION

3.1 An Overview of Our Approach
Intuitively, checksumming involves two kinds of computa-

tion:

1. computing a value from the contents of locations that
either contain code (i.e., are executed) or are used to
create code (e.g., through unpacking); and

2. using the value so computed (or a value derived from
it) to affect the code the program executes and/or the
output(s) it produces.

The key insight behind our approach is that both these com-
putations can be identified using (different kinds of) taint
propagation. Since many software protection tools use run-
time code unpacking (e.g., Obsidium [1], Themida [16], VM-
Protect [2]), we do not rely on static analysis, which is un-
able to examine dynamically created code; instead, we use
dynamic analysis.

Fig. 4 gives an overview of our approach. It consists of
the following steps:

1. Execution tracing. The only input of our approach
is an instruction trace of the target program. This
can be done by using tools such as Intel Pin [13] or
Ether [7].

2. Backward taint analysis. This step identifies mem-
ory locations that are either code (i.e., instructions or
parts of instructions) or which are used to create code.
We first walk through the trace and collect the ad-
dresses of executed memory locations. We then prop-
agate taint in a backward direction, i.e., from uses to
definitions, to identify locations that may have been
used to create the executed code.

3. Forward taint analysis. This step identifies the flow
of values computed from code locations to instructions
that affect the code executed by the program. This is
done by starting from the locations tainted in the back-
ward taint analysis step and then propagating taint
forwards (i.e., from definitions to uses).

4. Checksumming detection. This step identifies the
checksum verification instructions. It looks for instruc-
tions I in the execution trace satisfying any of the fol-
lowing:

(a) I is a control transfer instruction with one or more
tainted operands; or
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(b) I writes a tainted value to a location that is sub-
sequently executed; or

(c) I passes a tainted value to an output system call.

Once the checksum verification instructions have been iden-
tified, further analysis can be performed, starting from these
verification instructions, to obtain additional details about
the checksumming code for the program.

The combination of backward and forward taint computa-
tion is necessary because it is possible to set up the checksum
computation so that it considers, not the locations that are
actually executed, but locations from which the instructions
at those executed locations were created. For example, a
piece of sensitive code—say, a license check or anti-analysis
defense—may be stored in encrypted form in a memory re-
gion R, and decrypted as needed into some other memory
region S from which it is executed; meanwhile the check-
sum computation can be applied to the memory region R,
which is not itself executed. The backward taint analysis
starts with the executed code in S, goes backward to taint
R, then propagate this taint forward to the instruction(s)
that perform checksum verification.

We use the following notation and terminology in the dis-
cussion that follows. Given an instruction I, addr(I) de-
notes the memory address of I; length(I) denotes its length
in bytes; and Read(I) and Write(I) denote, respectively, the
sets of locations read and written by I. An instruction I is
tainted if Read(I) and/or Write(I) is tainted.

3.2 Taint Analysis
We perform byte-level taint analysis on instruction traces.

Taint can be propagated in either a forward direction (i.e.,
the same direction as control flow) or backward (i.e., op-
posite to control flow). In forward taint propagation, the
destination bytes of an instruction are tainted if and only if
they are affected by the tainted bytes of the source; in back-
ward taint propagation, source operand bytes are tainted if
they affected the tainted bytes of the destination. Our cur-
rent prototype handles taint propagation for the following
instructions: data movement instructions, including string
operations, push and pop instructions, and the lea instruc-
tion; arithmetic and logical instructions; shift and rotate
instructions; and instructions that access the EFLAGS reg-
ister. For instructions whose result does not depend on the
source operands, e.g., “xor eax, eax” or “sub eax, eax”,
the result of the operation—in these examples, the contents
of register eax—is marked as untainted.

Backward taint analysis is used to identify locations that
are either executed or used to create/modify locations that
are executed. Since this phase is used to identify locations
that are used to create or modify code at runtime, it only
propagates taint through data locations but not through the

condition codes (the EFLAGS register) of the underlying
x86 platform. Taint is propagated backward from a loca-
tion ` at some point in the execution trace if and only if
` is live at that point. This means that when propagating
taint across a data movement instruction I whose destina-
tion operand is tainted, at the point immediately before I
the source operand of I will be tainted and the destination
will be marked as untainted (since the destination is not live
at the point right before I).

In forward taint analysis, taint is propagated through both
data locations and condition code flags. For the instructions
that use flags of EFLAGS, such as ADC (Add with Carry),
the flag(s) read by the instruction are considered as source
operands: if a flag read by the instruction is tainted, the
destination will be tainted.

3.3 Identifying Self-Checksumming
Algorithm 1 gives a high level overview of the self-check-

summing detection algorithm. The algorithm consists of
three steps:

1. The first step is locating the source of the executed
code using backward taint analysis on the program’s
execution trace (Algorithm 2). However, the locations
in the source of the executed code will be excluded if
they are not read or written by any other instruction
(Algorithm 1 lines 4− 6).

2. Next we perform forward tainting on the execution
trace, starting using the tainted locations from the
backward taint phase as the taint source, to identify
instructions with tainted operands that can affect the
program’s observable behavior (Algorithm 3). As part
of this computation, as a “pre-forward-taint” step to
accelerate the forward tainting step, we check whether
any instruction reads or writes any tainted locations
(Algorithm 3 lines 3− 11): if there are none, then the
program does not do any self-checksumming and the
algorithm exits. Otherwise, for each such instruction,
we collect together the range of memory locations it
checksums (Algorithm 3 lines 12− 22).

3. Finally, those instructions in this set for which the
range of locations exceeds a (user-definable) threshold
θmin are identified as the checksum verification instruc-
tions (Algorithm 1 lines 9− 13).

In x86, a functions call is translated to a combination of
push instructions and a call instruction. Such call instruc-
tions often do not read or write tainted memory locations.
Thus, a call instruction that invokes an output system call
with a tainted parameter will be regarded as a tainted in-
struction as well (Algorithm 3, lines 7−9). So we can detect



Algorithm 1: Algorithm for detecting code check-
summings. θmin and θmax are (user-definable) thresh-
olds used to control the granularity of checksum report-
ing.

Input: T: Instruction trace (I0, I1, . . . , IN )
Output: R: Code self-checksum information

1 R←− ∅;
// Step 1: Backward taint analysis

2 M,AccessedM = BackwardTaintAnalysis(T);
3 ExecutedMem←−M ;
4 M ←−M ∩AccessedM ;
5 if M == ∅ then
6 return R;

// Step 2: Forward taint analysis

7 RS = ForwardTaintAnalysis(T, M, ExecutedMem)

// Step 3: Summarize the result

8 Ignored ←− 0;
9 foreach <I, Locations> in RS do

10 if Locations.size()> θmin then
11 R←− R ∪ {< I,Locations >};
12 else
13 Ignored += Locations.size()

14 if Ignored > θmax then
15 WARNING(“no. of ignored locations exceeds θmax”);

16 return R;

the checksumming that its checksum flows to an output sys-
tem call.

We use the threshold θmin (step 3) to filter out false posi-
tives that occasionally arise in executables that use file com-
pression to reduce their size. The issue is that if a file
compressor finds the same byte sequence in multiple places
within a file (some of which may be code while the other
occurrences are unrelated data), this byte sequence is ex-
tracted out for compression purposes; during decompression
(i.e., unpacking), this can cause bytes to be copied from an
executed location to a non-executed location, in order to
restore the multiple occurrences of that sequence. Our al-
gorithm then marks the non-executed destination location
as tainted during forward taint propagation, and any sub-
sequent use of those locations, e.g., in a conditional branch,
is flagged as being potentially a checksum verification. Our
experience has been that the number of bytes involved in
such coincidental matches is usually quite small. We there-
fore use the threshold θmin to filter out matches involving
only small regions of memory: in our prototype implemen-
tation, we set θmin = 16 bytes. We note that an attacker
can try to defeat our algorithm using a collection of different
checks, each of which covers fewer than θ bytes of memory
but which collectively cover a significant amount of mem-
ory. To handle this, we add a global threshold θmax on the
number of memory bytes that can be ignored in this way.
If the total memory size of the ignored regions exceeds θmax

the algorithm produces a warning to this effect (Algorithm
1 lines 14− 15).

As described in Figure 1, a program can have many layers
of unpacking,1 and self-checksumming can be performed at

1Some software protection tools produce executables with
dozens or hundreds of layers of runtime code unpacking [10].

Algorithm 2: Backward taint analysis procedure

1 Function BackwardTaint(T)

2 M ←− ∅, AccessedM ←− ∅;
3 foreach Instruction I in T do
4 for i←− 0 to length(I) do
5 M ←−M ∪ {addr(I) + i};
6 AccessedM ←− AccessedM ∪Read(I)∪Write(I);

// Backward taint

7 for i = N to 0 Step -1 do
8 Backward taint T [i] and update M accordingly;

9 return M,AccessedM

any point(s) in the unpacking sequence. Algorithm 1 can de-
tect self-checksumming performed at any layer of unpacking.
To see this, suppose at the ith level, function φi transforms
data Ci−1 to Ci, i.e. Ci = φi(Ci−1). Suppose that there are
n levels of unpacking and the resulting executable code is
Cn. CHECK (Ci) denotes a checksumming that verifies the
integrity of Ci. The execution trace has the structure

C1 = φ1(C0)
. . .
C2 = φ2(C1)
. . .
Cn = φn(Cn−1)
. . .
Cn

In the first step of the algorithm, all executed locations are
collected and used as the taint source; this includes the in-
struction addresses in Cn as well as the code for all of the
φi. Since φn reads Cn−1, the locations for Cn−1 will become
tainted. It is a straightforward induction to show that, pro-
ceeding in this way, all of the Ci as well as φi will be back-
ward tainted; these locations will then be the taint source of
the forward taint analysis. Now suppose that checksumming
occurs before the kth unpacking step (1 ≤ k ≤ n), and the
set of locations checksummed is C′k−1 ⊆ Ck−1.

Suppose that the checksummed locations C′k−1 originated
in some set of locations C′0 in the original packed representa-
tion. The backward taint analysis will mark C′0 as tainted,
and therefore the locations C′k−1 read by the checksumming
code CHECK (Ck−1), as well as the values involved in the
checksum computation itself, will be marked as tainted dur-
ing the forward taint propagation from C′0. As a result the
values flowing into the checksum verification will be tainted
and so the self-checksumming will be detected.

3.4 Understanding Self-Checksumming
Once the checksum verification instruction(s) have been

identified, the taint information gathered from the forward
taint propagation step can be used, possibly in conjunction
with some additional analysis of the execution trace, to ex-
tract a variety of information about the self-checksumming
protections deployed by the program under study. This in-
formation can be useful in guiding efforts to defeat or by-
pass the program’s self-checksumming anti-tamper defenses.
This section briefly describes some of the information that
can be obtained in this way.



Algorithm 3: Forward taint analysis procedure

1 Function ForwardTaintAnalysis(T, TaintedMem,
ExecMem)

2 map<Instruction, set<Location> > RS;
3 M ←− TaintedMem, T ′ ←− ∅, Calls←− ∅;
4 foreach Instruction I in T do
5 if (Write(I) ∪ Read(I)) ∩M 6= ∅ then
6 T ′.push back(I);

7 else if I invokes an output system call C
8 ∧ A parameter of C is tainted then
9 T ′.push back(I), Calls←− Calls ∪ {I};

10 Forward taint I and update M accordingly;

11 if T ′ == ∅ then return RS ;
12 foreach Location L in TaintedMem do

// Forward taint L
13 M ←− {L};
14 foreach Instruction I in T ′ do
15 if I /∈ Calls then
16 Forward taint I and update M

accordingly;
17 if (Write(I) ∪ Read(I)) ∩M 6= ∅ then
18 if I is a control transfer instruction
19 ∨ Write(I) ∩ ExecMem 6= ∅ then
20 RS[I].insert(L);

21 else if A parameter of the call I invokes is
tainted then

22 RS[I].insert(L);

23 return RS

I. Checksum Computation.
To obtain the pieces of code that compute checksums,

we can compute a backward dynamic slice [12] from the
operands of each occurrence of a set of checksum verifi-
cation instructions in the execution trace. There are two
points to note here. First, the slicing algorithm has to take
into account the unstructured nature of executable code [11].
Second, the control flow graph of the program may not be
readily available: in this case, we use the execution trace to
construct a control flow graph for the portions of the code
that were executed. Since the program under consideration
may use dynamically unpacked code (possibly with many
layers of unpacking), the same memory address can contain
different instructions at different points in the program, so
an instruction cannot be identified by its memory address
alone, but requires an additional parameter indicating how
many times it has been modified. The reason we compute
these slices at each dynamic occurrence of a checksum verifi-
cation instruction is that it is possible for different checksum
computation codes to share the same verification code. Note
that sharing verification code in this way may not be a good
idea since it can reduce the overall security of the system;
our point here is simply that, even if the verification code is
shared between many different checksum computations, our
analysis can tease them apart. This approach can also tease
apart different checksum computations even if their execu-
tions overlap (e.g., due to being run in different threads) and

so are interleaved in the trace.2

The dynamic slice computation also provides information
about the origin of the checksum computation code (see Sec-
tion 2). Specifically, if any of the locations that are executed
during the checksum computation are modified prior to exe-
cution (via memory writes), then the checksum code is creat-
ed/unpacked dynamically. In this case, attempts to disable
the checksum computation (e.g., by having it returns a pre-
computed checksum value, which is in fact available in the
execution trace) may prefer to focus on the source of the
unpacked code (which is also available in the dynamic slice)
rather than the unpacked code itself.

Finally, the dynamic slice can be used to identify viola-
tions of the self-containedness assumption of Section 1. If
any component of the checksum computation—either the
checksum computation code or a seed for the checksum value
—is obtained from an external source (e.g., a remote server),
some components of the slice will be seen as originating from
network reads; if the checksum computed by the program is
communicated to an external entity for verification, then a
tainted value will be seen as an argument to a network write.
This can be used to understand the behavior of anti-tamper
systems such as Conqueror [14].

II. Checksum Verification.
An attacker may try to bypass the self-checksumming de-

fenses by altering the checksum verification code, e.g., by
inserting an unconditional jump to the “normal execution”
code. Knowing the conditions under which such an attack
will or will not work can be helpful for guiding the attacker
in selecting an attack. This can be done using information
from the taint analysis. This simple attack may not work
under the following conditions:

1. the tamper response is invoked using a control transfer
instruction I, where some executions of I in the trace
have a tainted operand (indicating a checksum com-
putation) and other executions of I have no tainted
operands (indicating a non-checksum computation); or

2. a forward-tainted value is written to a backward-tainted
location (indicating that the value of the computed
checksum is used to create or modify code that is sub-
sequently executed), or loaded as an argument to an
output operation in the program (e.g., a write opera-
tion).

The situation described in the first of these conditions can
arise in virtualization-obfuscated code (e.g., we observed it
in code protected using Themida [16]). This kind of ob-
fuscation embeds the program logic in the byte-code of a
custom virtual machine; the executable code for the pro-
gram consists of the emulator for this virual machine. The
emulator uses a handler for each different operation of the
virtual machine, e.g.:

handle_if_EQ: /* if_EQ op1 , op2 , target */
op1 = fetch_op1 ();
op2 = fetch_op2 ();
target = fetch_op3 ();
ip = (op1 == op2)? target : (ip + 1);
goto emulator_dispatch;

2In order to distinguish between instructions from different
threads, the execution trace has to record a thread-id for
each instruction.



Thus, the code fragment shown above will be executed when-
ever an “if_EQ” operation is encountered in the byte code,
including for example the checksum verification (if the ver-
ification is done using an “if_EQ” operation). Thus, the
conditional branch that performs the checksum verification
(in which case the operands are tainted) is shared with other
non-checksum-computations (in which case the operands are
not tainted). Naively altering the operation of this code will
therefore alter the behavior of all such conditional branches
in the byte code, not just the checksum verification code.

3.5 Examples
This section illustrates our approach using three simple

examples.

Example 3.1. This example illustrates“standard self check-
summing”, which refers to programs that do not have any
code unpacking or runtime code generation and which use
explicit control transfers to branch to the tamper response.3

/∗ compute checksum ∗/
checksum = 0 ;
for ( i = 0 ; i < N; i++){

checksum += buf [ i ] ;
}

/∗ v e r i f y checksum ∗/
i f ( checksum != V) {

// tamper response
}

(a) Self-checksumming code

checksum = 0
checksum += buf [ 0 ]
checksum += buf [ 1 ]
. . .
checksum += buf [N−1]
cmp checksum , V
jnz tamper response

(b) Trace (fragment)

Suppose buf points to the executed code section being check-
summed: then the locations buf+i are used as taint sources
during backward taint propagation, and the locations buf+0,
buf+1, . . . , buf+N-1 are therefore tainted during this phase.
Forward tainting from the locations buf+i, through the frag-
ment of the trace shown above, will then cause the location
checksum to become tainted. This will then cause the con-
dition code flags to be tainted after the instruction “cmp
checksum, V”. Since the condition code flags are used as in-
puts to the conditional branch instruction“jnz tamper_res-

ponse”, our analysis will identify this conditional branch as
taking tainted inputs (Algorithm 3, line 17) and therefore
flag it as a tamper response instruction.

Example 3.2. This example considers the situation where
a checksum for one piece of code is used as the decryp-
tion key for a second piece of code: any tampering with
the first code region results in the wrong decryption key
being used for the second code section, resulting in the gen-
eration of garbage code by the unpacker. This approach to
self-checksumming-based anti-tampering has been proposed
by Cappaert et al. [5] and Wang et al. [23].

Suppose that, in the code fragment shown below, buf

points to executed code and buf2 points to packed code
that is unpacked using the checksum value for buf as the
decryption key:

3The “tamper response” here may simply involve setting a
flag to indicate a checksum mismatch, with further actions
delayed to enhance stealth, e.g., as suggested by Tan et al.
[19].

/∗ compute checksum ∗/
checksum = 0 ;
for ( i =0; i < N1 ; i++) {

checksum += buf [ i ] ;
}

/∗ decrypt code ∗/
for ( i =0; i < N2 ; i++) {

buf2 ˆ= checksum ;
}

/∗ execute code ∗/
. . .

(a) Self-checksumming code

checksum = 0
checksum += buf [ 0 ]
checksum += buf [ 1 ]
. . .
checksum += buf [N1−1]
buf2 [ 0 ] ˆ= checksum
buf2 [ 1 ] ˆ= checksum
. . .
buf2 [N2−1] ˆ= checksum

. . .
jmp buf2

(b) Trace (fragment)

Since buf and buf2 point to executed code locations, the
memory regions buf+0, . . . , buf+N1-1 and buf2+0, . . . , buf2
+N2-1 are tainted during backward taint propagation. Dur-
ing forward taint propagation, the taint on buf+0, . . . , buf+N1
-1 causes checksum to become tainted. Since buf2+0, . . . ,
buf2+N2-1 are also tainted, this then causes our analysis de-
tects that, in the assignments to buf2, tainted values are
written to an executed location and therefore flags this code
as a tamper response (Algorithm 3, line 18).

Example 3.3. This example shows that a checksum can
be used for initializing a variable. The variable is taken in a
computation whose result is finally displayed to the screen.

/∗ compute checksum ∗/
checksum = 0 ;
for ( i =0; i < N; i++) {

checksum += buf [ i ] ;
}

int p=1+checksumˆ0x1234 ;
while (n > 0) p ∗= n−−;
p r i n t f ( ”%d\n” , p ) ;

(a) Self-checksumming code

checksum = 0
checksum += buf [ 0 ]
checksum += buf [ 1 ]
. . .
checksum += buf [N1−1]
p = 1+ checksumˆ0x1234
p ∗= n
n −= 1
cmp n , 0
jnz loop
. . .
push p
. . .
ca l l p r i n t f

(b) Trace (fragment)

Suppose buf points to an executed code section. Forward
tainting buf+i, the system call “printf” will be identified as
a tamper response instruction because its second parameter
p is tainted (Algorithm 3, lines 20− 21).

3.6 Implementation Considerations
The space and time costs of processing large traces can

potentially be a concern for offline dynamic analyses such
as ours. Trace compression techniques can significantly mit-
igate the storage and I/O costs of processing large traces:
e.g., Bhansali et al. [4] describe a trace compression scheme
that results in roughly 0.5 bits of trace data per dynamic
instruction instance.

Additionally, we use two optimization techniques to speed
up taint propagation, which is at the heart of our analysis:
(i) reducing the number of instructions that have to be ex-
amined for taint propagation; and (ii) reducing the overall
cost of forward taint propagation using parallelism.

Eliminating irrelevant instructions.
In order to reduce the number of instructions processed

during forward taint propagation, we use a pre-tainting phase
to propagate taint information and identify a sub-trace of



the original trace that contains all the relevant instructions
for forward taint propagation (Algorithm 3, lines 3 − 9).
We can prove that forward taint propagation from this sub-
trace is equivalent to forward tainting from the entire orig-
inal trace. This can produce significant improvements in
performance because the sub-trace obtained from this pre-
tainting phase is usually significantly smaller than the origi-
nal trace. As an example of the performance improvements
obtained, for Media Player Classic the total time drops from
480 secs to 240 secs; while for the 50-guards program the to-
tal processing time improves by more than fourfold, going
from 6,282 secs to 1,352 secs.4

Second, to avoid processing irrelevant instructions, we
only trace instructions executed after the target program
reaches its entry point. This avoids tracing and recording
process startup code.

Exploiting concurrency.
We use multi-threading to parallelize forward taint propa-

gation step. Since the trace is a read-only input for forward
taint propagation, it can be processed in parallel without
locking overheads. We partition the locations tainted during
the backward-taint step into a fixed number of subsets and
for each subset create a thread to perform forward tainting.

4. EVALUATION

4.1 Setup
This section discusses our experiences with using a proto-

type tool we developed to evaluate our ideas. Execution
tracing is carried out using an Intel Pin tool [13]. The
data presented here were obtained on a 2.67GHz Intel Xeon
E5640 processor (12 MB L1 cache) with 96 GB of main
memory running Ubuntu 12.04. Our tool was run with 16
parallel threads. The threshold θmin and θmax in Algorithm
1 are set to 16 and 512, respectively.

We used two sets of test programs to evaluate our tool.
In each case, the test program we used is an MD5 compu-
tation program obtained from http://people.csail.mit.

edu/rivest/Md5.c, executed with a text file of Abraham
Lincoln’s Gettysburg Address as input.

• Group 1 consists of seven widely used open source pro-
grams: Media Player Classic 1.7.6; Notepad++ 6.6.7;
FileZilla 3.7.0; WinMerge 2.14.0; DOSBox 0.74; VLC
2.0.5; and 7-Zip 9.20. We used the source code for
these programs to verify that none of them were per-
forming any self-checksumming. This was used as a
baseline to check that there were no false positives re-
ported by our tool.

• Group 2 consists of a set of programs we wrote to im-
plement advanced self-checksumming schemes for which
we could not find any third-party tools.5 In each case,

4These timings refer to single-threaded execution time. The
performance data given in Section 4 refer to multi-threaded
execution times.
5In order to evaluate our algorithm on state-of-the-
art commercial software anti-tampering systems, we also
approached two commercial vendors who market anti-
tampering systems that are based on peer-reviewed research

we modified the MD5 program mentioned above to
incorporate the self-checksumming mechanism. The
checksumming schemes we tested were as follows:

(i) Programs with multiple self-checksumming guards,
as described by Chang et al. [6] and Horne et
al. [9]. The objective was to test whether our ap-
proach can correctly identify multiple overlapping
guards checking each other. We implemented and
tested programs with one, four, ten, and fifty
guards; in the results given below, we refer to
these as 1-guard, 4-guards, 10-guards, and 50-
guards respectively.

(ii) Self-checksumming programs that use the value
of the checksum as a code decryption key, as de-
scribed by Cappaert et al. [5] and Wang et al. [23].
The objective was to test whether our approach
can detect self-checksumming schemes where the
checksum verification and tamper response step
uses dynamic code modification instead of an ex-
plicit control transfer. In the results below, we
refer to this program as decrypt-key.

(iii) Checksumming combined with runtime code un-
packing, as illustrated in Figure 1. The objec-
tive was to test whether our approach could de-
tect self-checksumming when the locations being
checksummed are not themselves executed, but
are used to create code that is executed. We
tested a program with 100 layers of unpacking,
with checksumming carried out after each even-
numbered unpacking layer for a total of 50 differ-
ent checksum computations. In the results given
below, refer to this program as 100-layers.

(iv) The checksum is used for generating a MD5 ini-
tialization constant. The MD5 value is output to
the screen by printf(). In the results given below,
we refer to this program as chksum-md5.

These programs tested the precision and recall of our
approach. The source code for these programs, as well
as the executables obtained from them that we used in
our tests, are available at http://www.cs.arizona.edu
/projects/lynx/Samples/Self-checksumming/.

We validated the results obtained from our analysis as fol-
lows.

• For programs in Group 1, we compile their source code
and generate debug information files. The debug infor-
mation is a representation of the relationship between
the executable program and the original source code.
With these debug information, we validate the result
of programs in Group 1 using a debugger to monitor
the execution of each program.

• For Group 2, we instrumented the programs we con-
structed to report, at runtime, each address range that
was checksummed each time a checksum was com-
puted. This was then compared with the results re-
ported by our tool.

publications on software self-checksumming. The vendors
declined to provide access to their protection tools; one ven-
dor cited concerns about the potential for adverse publicity
resulting from our work.

http://people.csail.mit.edu/rivest/Md5.c
http://people.csail.mit.edu/rivest/Md5.c


4.2 Evaluation Results
The result of the evaluation is given in Table 1. The

“Number of Taint Sources” column gives the total number
of locations tainted during backward tainting; the “No. of
Tainted Instructions” column gives the total number of in-
structions tainted during forward tainting. We did not find
any false positives in the programs in Groups 1 and 2.

4.2.1 Precision of Analysis

Group 1.
We have checked the source code of programs in Group

1, and no checksumming is found in the source code. Our
prototype tool does not find any code checksumming as ex-
pected. In the processing of most programs except Media
Player Classic (MPC), our approach exit early after back-
ward taint analysis because no instruction reads or writes
the executed locations. MPC employs a third party library
to hook system APIs. It writes an unconditional jump in-
struction at the head of the hooked API. The source of the
bytes written is discovered by the backward taint analysis.
But no checksumming is found in MPC as expected.

Group 2.
In Group 2, for programs with multiple guards, our ap-

proach successfully identifies all designed checksummings.
However, the code coverage issues of dynamic analysis man-
ifest themselves (see Section 5): for a specific input, not
all of the protected code is executed at runtime, and since
our approach starts the analysis with the set of executed lo-
cations, not all checksummed locations (i.e., the set of pro-
tected memory locations associated with each checksum ver-
ification instruction) are identified by our approach. Thus,
for some of the checksum guards our tool reports a smaller
range of checksummed locations than is in fact the case be-
cause some checksummed locations were not executed.

In the program with 100 layers unpacking, all checksum-
mings are identified by our approach. Our tool reports that
these checksummings have the same protected code range.
That is because in the source code of this program, the
checksummed code is transformed and checksummed in one
layer, and then it is passed into next unpacking layer.

Our approach also successfully identifies the checksum-
ming in the program that the computed checksum is used
as a decryption key. The code of the checksumming is as
follows.

checksum = compute_checksum(CODE);
for(i = 0; i < size; i++)

CODE[i] -= checksum;

Instructions “CODE[i] -= checksum” and the range of CODE
are reported by our tool.

The checksumming in “chksum-md5” is identified as well.
The checksum is used for generating a MD5 initialization
constant. If the protected code is tampered, the computed
MD5 value is incorrect. The code is as followings.

int cksum = compute_checksum(CODE);
...
// This value should be 0x67452301 ;
mdContext ->buf[0] = chksum + 0x6740E9CB;

...
printf("%s", md5_str );
...

The instruction “call printf” and the code range check-
summed are reported by our tool.

The result of this group indicates that no matter how a
checksum is used in an execution, the activity that comput-
ing a checksum over code will always be discovered by our
approach.

4.2.2 Effects of Performance Optimization
Suppose there are L1 instructions in an instruction trace

and after backward taint analysis, there are L2 locations;
that forward tainting L2 locations produce L3 tainted in-
structions; and the implementation uses N threads. Define
the workload of our approach be the total number of instruc-
tions processed. The number of instructions processed in the
backward taint propagation phase is 2 ∗ L1, while the total
number of instructions processed during forward taint prop-
agation is L2 ∗ L3 without multi-threading and L2 ∗ L3/N
with multi-threading. Thus, the unoptimized and optimized
workloads are given by 2∗L1+L2∗L3 and 2∗L1+L2∗L3/N
respectively. The effect of multi-threading is to significantly
reduce the workload for the forward taint propagation phase.

Table 2 shows that the optimization sharply decreases the
work load. In Group 1, most programs’ analysis exit early
because we found that no instruction reads or writes exe-
cuted locations. Thus, the optimization is not worked and
the work load is 2 ∗ L1. In the analysis of the reset pro-
grams, the optimized approach only processes average 2.92%
instructions of the un-optimized approach while obtaining
the same result. It indicates that excluding irrelevant in-
structions and the parallel processing technology make our
approach more practical to real world binary analysis. When
dealing with the trace file of a large scale program, just sim-
ply split the work load and assign them to more processors.
The more processors join, the less time will take.

Table 2: Work load of the approach without and
with optimizations. The work load is defined as the
number of processed instructions.

Program Without With With/Without
(×106) (×106) (%)

1-guard 609 13 2.16
4-guards 727 16 2.20
10-guards 1,847 45 2.41
50-guards 13,505 540 4.00
100-layers 3,740 161 4.31
decrpt-key 392 11 2.80
chksum-md5 693 18 2.58

4.3 A Case Study
As a case study of our ideas, we applied our prototype tool

to a well-known and widely used Internet communication
application. Our initial experiments use an execution trace
up to the point where the application’s splash screen appears
(approx. 62.6 million instructions).

After the program begins execution, it unpacks some code
(this is done in situ rather than generating code into some
fresh memory region) using the following unpacking logic:



Table 1: Evaluation result
Program Trace Size No. of Tainted No. of No. of Guards Analysis Time

Mbytes Instructions Instructions Taint Sources Found Ground Truth (sec)

1-guard 11 179,339 60,298 3,394 1 1 5
4-guards 13 209,926 71,885 3,641 4 4 6

10-guards 22 375,563 142,483 4,916 10 10 16
50-guards 160 2,780,558 1,760,264 4,855 50 50 237
100-layers 92 1,600,653 1,083,861 2,335 50 50 53
decrpt-key 9 166,581 72,422 2,352 1 1 4

chksum-md5 17 297,068 118,526 2,353 1 1 5

SEED = 0x135a936d;
unsigned char* CODE = &SOME_CODE_SECN; // 0x5bc1f0
for(int i = 0; i < 0x16160; ++i) {

if (i == 0x15f08) i += 0x28; // Skip 0x28 bytes
CODE[i] ^= SEED & 0xFF;
rol(SEED, 3); // rotate left

}

Somewhat later in the execution the application executes
self-checksumming code that is part of the code unpacked
earlier. The checksum computation and validation code has
the following logic:

unsigned int chksum = 0x0A9C35B72;
unsigned char* CODE = &SOME_CODE_SECN; // 0x5bc1f0
for (i = 0; i < 0x16160; i++) {

chksum = (chksum >> 4) + CODE[i];
chksum2 = chksum & 0x0f000000;
if (chksum2 != 0) {

chksum ^= (chksum2 << 0x18);
}
chksum &= ~chksum2;

}

f = BIT_MASK ^ chksum;
...
call f; // validation!
...
return;

The validation code in this case does not explicitly com-
pare the computed checksum against an expected value, but
rather uses it to compute the target of an indirect call (in-
dicated above by the comment ‘validation!’): an incorrect
checksum value simply transfers control to the wrong ad-
dress and results in an incorrect execution.

The for-loop that computes the checksum in the code
shown above contains an if-statement that checks whether
the variable checksum2 is nonzero. Since this is a condi-
tional branch that tests the value of a checksum value, our
tool flags this as a possible validation check. Since this if-
statement is executed each time around the loop, our tool
reports a series of different code regions C0, C1, . . . , Ci, . . .
that are “checked” by this test, such that each Ci is a proper
prefix of each Cj for j > i. It would be straightforward to
modify our tool to detect these overlapped regions and col-
lapse them into a single reported region, however this is a
reporting issue orthogonal to that of detecting and identify-
ing self-checksumming.

We are currently analyzing a longer trace of this appli-
cation (approx. 6.6 billion instructions long) and hope to
report the results at the conference presentation.

5. DISCUSSION AND FUTURE WORK

While the dynamic analysis-based approach we use has
the advantage of being able to deal transparently with anti-
analysis defenses such as runtime code self-modification, it
has the disadvantage of limited code coverage. The code
coverage problem can be mitigated using multi-path explo-
ration techniques [15].

A second problem with offline dynamic analysis is the po-
tential for large trace files, which can incur significant stor-
age and processing costs. This issue can be mitigated using
trace compression techniques, e.g., Bhansali et al. [4] de-
scribe a trace compression scheme that results in roughly
0.5 bits of trace data per dynamic instruction instance.

Finally, while the offline analysis used by our approach
can identify self-checksumming and provide a great deal of
information about the specific defenses being used by a given
program, it does not automatically translate into a straight-
forward way to disable the checksumming. In the exper-
imental evaluation of our prototype, we manually validate
the correctness of detection results. This can be tricky if the
checksumming code is created dynamically at unpredictable
locations in memory.

Our current prototype implementation does not currently
incorporate trace compression or multi-path exploration: we
plan to do so as part of future work to improve execution
performance and code coverage. We also plan to explore on-
line analysis algorithms and to extend our analysis to other
kinds of anti-analysis defenses such as timing-based tracing
detection.

The discussion in this paper focuses on dynamic check-
summing and does not consider static checksumming. It is
not difficult, in principle, to adapt our approach to handle
static checksumming: all we need to do is to keep track
of library/system calls to identify any access the program
file, either through explicit file I/O or by mapping the file
into the process’s virtual address space. Once this has been
done, it is not too difficult to parse the file structure and
identify operations that read from locations within the file
that correspond to code. Incorporation of such logic into
our prototype implementation is the subject of future work.

6. RELATED WORK
There is a considerable body of work on anti-tampering

defenses for software. Much of this work focuses on self-
contained defenses based on code self-checksumming that
meet our assumptions as described in Section 1. Aucsmith
[3] introduced an implementation of a self-checking mech-
anism based on multiple self-modifying and self-decrypting
code blocks that check the validity of the code as it is run-
ning. Chang et al. [6] and Horne et al. [9] discuss self-
checksumming systems that use a network of guards such



that each guard is protected by multiple other guards. Dis-
abling this kind of protection requires all the guards be dis-
abled at once which makes it non-trivial for the attacker.
Tsang et al. use a large number of small size protectors
capable of giving non-pre-programmed tamper responses,
and use multiple versions of a function for creating non-
deterministic execution [20]. Wang et al. [23] and Cappaert
et al. [5] propose the use of checksum values as a key to de-
crypt the encrypted code that is going to be executed, such
that any tampering causes the code to be decrypted with
the wrong key and silently produces incorrect code. Tan et
al. discuss stealthy tamper response techniques that make
it difficult for an attacker to tie the tamper response back
to the checksum verification code [19]. By and large these
works assume a threat model based on pure static analysis;
their self-checksumming defenses can be clearly identified by
our dynamic analysis-based approach. There has also been
some work on anti-tampering defenses where the checksum
verification is performed by an external verifier on a trusted
remote server [14, 18]. These approaches do not use self-
contained self-checksumming defenses, as discussed in Sec-
tion 1, and so fall outside the scope of this work.

The only other work we know of that looks at attacks on
self-checksumming code is that of Wurster et al. [22, 24],
who exploit an assumption underlying self-checksumming
approaches that the same byte values will be retrieved from
a virtual memory address range regardless of whether it is
retrieved as code or data. They show that an adversary
hardware assisted techniques to violate this assumption and
bypass the self-checksumming defense. Giffin et al. show
that self-modifying code can be used to detect this attack [8].
Unlike Wurster et al.’s attack, the work we describe is a
pure-software approach that does not rely on hardware as-
sistance. To the best of our knowledge, this is the first such
pure-software attack against self-checksumming systems. In
terms of relative power, our approach does not seem directly
comparable with that of Wurster et al.: on the one hand, our
approach is unaffected by techniques, such as self-modifying
code, that can defeat Wurster et al.’s attack [8]; on the other
hand, programs that do not satisfy our self-containedness
assumption (see Section 1) cannot be handled using our ap-
proach but may be susceptible to Wurster et al.’s attack.

There is a wide body of literature on various forms of
taint analysis and their applications to software analysis,
e.g., see [17]. To the best of our knowledge none of these
works apply taint analysis to the problem of detecting or
understanding self-checksumming.

Wang et al. proposed a fuzzing tool for software vulner-
abilities detection. They use taint analysis to detect check-
summing on the input data of a program. The checksum-
ming is similar to ours but there two big differences. First,
they identify data checksumming while we focus on code
checksumming. Second, they identify the hot bytes which
are checksummed bytes in the input data such that only the
checksumming with classic verifier can be identified by their
approach. Instead, our approach focus the identification of
checksumming verifiers such that more kinds of checksum-
ming can be identified by our approach.

7. CONCLUSION
This paper describes an information-flow-based attack ag-

ainst software anti-tampering defenses based on self-check-
summing; to the best of our knowledge it is the first pure-

software attack against such defenses. Our approach is based
on dynamic analysis: it uses backward taint propagation to
identify memory locations that are either executed or which
are used to compute the values of locations that are exe-
cuted, followed by a forward taint propagation that identifies
checksum computations on the code. Experiments using a
prototype implementation show that our approach can effec-
tively identify a wide range of self-checksumming behaviors,
including a number of proposals for self-checksumming that
described in the research literature.
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