
Probabilistic Obfuscation through Covert Channels

Jon Stephens Babak Yadegari Christian Collberg Saumya Debray Carlos Scheidegger
Department of Computer Science

The University of Arizona
Tucson, AZ 85721, USA

Email: {stephensj2, babaky, collberg, debray, cscheid}@cs.arizona.edu

Abstract—This paper presents a program obfuscation frame-
work that uses covert channels through the program’s ex-
ecution environment to obfuscate information flow through
the program. Unlike prior works on obfuscation, the use of
covert channels removes visible information flows from the
computation of the program and reroutes them through the
program’s runtime system and/or the operating system. This
renders these information flows, and the corresponding control
and data dependencies, invisible to program analysis tools
such as symbolic execution engines. Additionally, we present
the idea of probabilistic obfuscation which uses imperfect
covert channels to leak information with some probabilistic
guarantees. Experimental evaluation of our approach against
state of the art detection and analysis techniques show the
engines are not well-equipped to handle these obfuscations,
particularly those of the probabilistic variety.

1. Introduction

This paper describes a novel approach to code obfus-
cation that uses covert channels, arising from a program’s
interactions with its execution environment, to conceal in-
formation flow in its computation and thereby confuse in-
formation flow analyses. The ideas presented can be used
for stealthy exfiltration of information in ways that cannot
easily be detected using existing techniques.

Obfuscations that utilize covert channels are fundamen-
tally different from other code obfuscations that have been
discussed in the literature. Traditional obfuscations come
in two flavors: control flow obfuscation, which disguises
the order in which program statements are executed; and
data obfuscation, which disguises the values that are ma-
nipulated by the computation. The former typically intro-
duce additional information flow paths in order to confuse
analyses, while the latter modify the computations in the
existing information flows in order to make them harder
to untangle. In either case, the original information flows
in the program’s computation remain, leaving them open
to examination by information-flow-based attacks [1]. The
covert channel obfuscation techniques we introduce in this
paper, by contrast, hide the presence of data flow, i.e.,
data dependencies. The importance of such obfuscation

arises from the fact that tracking data dependences is an
important component of many security-relevant program
analyses (including information flow analysis). By removing
information flows from the program’s visible computation,
our covert-channel-based obfuscations render these flows
invisible to program analyses and thereby fundamentally
change the attack surface of the obfuscated code.

A second motivation behind this work is the recent emer-
gence of techniques that exploit covert channels to sidestep
privacy protections on mobile systems [2], [3], [4], [5],
[6]. The research literature typically considers these covert
channels used as conceptually distinct and unrelated entities.
This paper provides a general framework for reasoning about
and understanding covert channels and the information flow
obfuscations they enable.

Finally, we introduce the notion of probabilistic obfus-
cation. It is generally assumed that obfuscating transforma-
tions should be semantics preserving. However, there are sit-
uations where some semantic slack may be acceptable, e.g.,
malware writers (who heavily obfuscate their code in order
to protect it from analysis) may be perfectly happy if some
fraction of the millions of malware instances they distribute
fail in the field, as long as they execute correctly “often
enough.” We refer to obfuscating transformations that are
not always completely semantics-preserving as probabilis-
tic obfuscations. Such transformations form interesting and
novel additions to the obfuscation arsenal. In particular, the
construction of probabilistic obfuscation building-blocks—
such as the covert channel data flow primitives presented in
this paper—allow us to construct non-deterministic variants
from traditional deterministic obfuscating transformations.

This paper makes the following contributions:

• it describes a semantic framework for understanding
information transfer via covert channels;

• it describes a novel approach to obfuscation that re-
moves information flows from a program, rendering
them invisible to traditional analysis techniques;

• it describes multiple channels of information flows
that can be exploited in this way to impede analysis;

• it shows that current information-flow-based analy-
ses fail to detect the described covert channels; and

• it introduces the idea of probabilistic obfuscation

S
conv S

conv

S
TMI S

TMI()γ P
()γ P

P

conventional semantics

TMI semantics

P()

()

im
p

le
m

e
n
ta

ti
o
n

γ

a
b
s
tr

a
c
ti
o
n

α

Figure 1. TMI Semantics

and shows that correctness guarantees can be pro-
vided even in the presence of imperfect covert chan-
nels.

The remainder of the paper is organized as follows. Sec. 2
describes a semantic framework for understanding covert
channels. Sec. 3 discusses the attack and defense models
assumed in this work. Sec 4 describes the use of covert
channels for code obfuscation. Sec. 5 explores the notion of
probabilistic obfuscation and correctness guarantees. Sec. 6
presents evaluation results for a prototype implementation.
Finally, Sec. 7 discusses related work and Sec. 8 concludes.

2. Semantic Considerations

In order to understand how a program’s behavior can
be influenced in specific ways by the deliberate use of
covert channels, this section gives a brief and informal
synopsis of how and where covert channels can arise in
the (operational) semantics of a program, which specifies
a program’s execution behavior in terms of a sequence of
state transitions of an abstract machine.

2.1. TMI Semantics

Program execution on a modern computer system in-
volves interactions between many complex components:
the program’s runtime system, the operating system, the
CPU, disk, memory, and various levels of cache. Each
component has its own state that affects, and is affected
by, the program’s execution, and so could plausibly be
part of a semantic description of the program’s execution.
We refer to an operational semantics that gives a detailed
picture of a program’s execution, encompassing both state
changes corresponding to program constructs as well as
those corresponding to implementation-level aspects of the
program’s execution, as TMI Semantics.1

As the name suggests, TMI semantics can have much
more information than necessary. In most cases, such a fine-
grained description simply clutters up the semantics and im-
pedes, rather than helps, with understanding the program’s
behavior. We can get around this problem via an abstraction
function α that maps the TMI semantics to the conventional
semantics by discarding irrelevant implementation-level de-
tail from the TMI semantics. This is illustrated in Figure

1. “TMI” stands for “Too Much Information.”

1. Note that, depending on the amount of detail captured,
a given program can have many different “conventional
semantics” and many different TMI semantics; correspond-
ingly, there is a different abstraction function α for each
STMI and Sconv (). The arrow labeled ‘implementation’ in
Figure 1 should not be understood as mapping each source
program to a unique implementation. A given source pro-
gram can have many different implementations, e.g., corre-
sponding to different compilers or compiler optimizations.
Indeed, correctness of the compiler requires that, for every
program P and any pair of implementations γ1, γ2 of P , it
must be the case that α(STMI (γ1(P))) = α(STMI (γ2(P))).

2.2. Visible vs. Invisible State

In general, states in the TMI semantics consist of many
different components. For a state in the execution of a
given program, for example, these may include: the program
counter; values for (memory locations and registers corre-
sponding to) its variables; the runtime clock; and informa-
tion about the internal state of the runtime system, e.g., the
garbage collector, heap memory allocator, and JIT compiler.
The abstraction function α shown in Figure 1 discards
information about some of these components; components
of the TMI semantics state that are discarded by α are
invisible in the conventional semantics. We refer to such
components as being in the “invisible state.” More formally,
a component I of a TMI semantics STMI is invisible under
an abstraction function α if there exist two TMI states s1
and s2 that differ on the value of the component I but
where α(s1) = α(s2), i.e., the fact that s1 and s2 differ
on the value of component I is not visible once we apply
the abstraction function α. For example, if an abstraction
function discards information about the cache behavior of a
program, then two TMI states that differ only on whether
or not a particular memory location is in the level-1 cache
will not be distinguishable under α; in this case, therefore,
the component of the TMI semantics corresponding to the
cache will be part of the invisible state. As another example,
consider two TMI states in an interpreted system that differ
only on whether or not a particular function has been JIT-
compiled. If α discards information about the execution
speeds of functions, the “JITted-ness” of functions will be
part of the invisible state. An abstraction function α thus
induces a partitioning of the components of each TMI state
s into a “visible” part, which is reflected in α(s), and an
“invisible part” that is not reflected in α(s).

2.3. Code Obfuscation via Covert Channels

A code obfuscation tool takes a program P as input and
transforms it into a program P ′, semantically identical to
P . The goal is for P ′ to be much less amenable to analysis
than P , while minimizing the computational overhead in-
curred. There are many aspects of P that we may want
to obscure, such as control flow, abstraction layers, em-
bedded secrets such as cryptographic keys, etc. Traditional

Figure 2. Information flow through visible and invisible states. The value
a represents “normal” flow and occurs entirely through visible states; the
value b flows through visible states, but is also injected into the invisible
state and subsequently retrieved into c. The flow from b to c occurs through
a covert channel.

obfuscating transformations include virtualization, flatten-
ing [7], branch functions [8], white-box cryptography [9],
and data encoding [10]. On the theory side, there exist
both impossibility results [11] and recent results showing
that cryptographically secure obfuscation is possible under
some models [12], albeit with unacceptably high levels of
computational overhead.

In a conventional view of program execution, values
that are computed and propagated by the computation flow
through components of the visible state. The key idea behind
using covert channels for code obfuscation is the insight that
the flow of values through a computation need not always
go through the visible part of a state, but can sometimes
occur through the invisible part.

In order to realize this functionality, we have to inject
information from the visible state into some component of
the invisible state, and subsequently recover information
from that component of the invisible state back into the
visible state. To this end, we propose two primitives: leakk,
which injects information about a visible-state value a into
the invisible-state component Ik by perturbing the value of
Ik in a way that captures some aspect of the value a; and
retrieve, which returns to the visible state a value retrieved
from the invisible-state component of the program’s state.
This is illustrated in Figure 2, where the leak primitive
injects the value b from the visible state into the invisible
state, and the retrieve primitive later retrieves this value
back into the visible state (possibly into a different variable
c). For example, if the component Ik is the byte code of the
program in an interpreter, then leakk may use a bit in the
value of a visible-state variable x to cause some function in
the program to become JIT-compiled, and retrieve may use
the execution time of the function to determine whether it
has been JIT-compiled and thereby reconstruct the value of
the corresponding bit of the variable x.

In order to be useful, retrieve should return the
information leaked by leak: namely, for all values a,
retrievek(leakk(a)) = a; or, equivalently, they should
compose to the identity function:

retrievek ◦ leakk ≡ id.

If this condition is satisfied, the invisible-state component
Ik forms a usable covert channel. As discussed in Section
5, it may be possible to relax this requirement so that it

holds probabilistically, in which case we get a probabilistic
covert channel.

Later sections of this paper give several examples of
covert channels realized by using different components of
the invisible program state together with the corresponding
leak and retrieve functions.

3. Attack and Defense

For the obfuscation to be successful, some adversary
must not be able to identify the software that leaks infor-
mation using our obfuscation, given some universe of pro-
grams, with a high degree of confidence. This adversary has
unlimited resources and complete control over the system,
allowing them to observe every action taken by the software
(including in the kernel).

3.1. Attack Model

Covert channels can be detected by: either (i) identifying
the covert channel primitives, or (ii) identifying perturba-
tions from normal behavior. Identifying the covert channel
primitives requires discovering at least one of the following
components: (i) a program construct A that affects an
invisible-state component Ik in a way that depends on a
visible-state value (leak); (ii) a construct B that computes
a value that is dependent on the same invisible-state com-
ponent Ik (retrieve); and (iii) reachability of B from A via
the program’s control flow. Identifying perturbations, on the
other hand, requires monitoring for statistical anomalies.

3.1.1. Identifying Primitives. Both the leak and retrieve
primitives can be detected using static program analysis.
The adversary can look for one or both of the primitives
directly in the binary or source code. For example, to detect
a timing channel through the file cache, an adversary may
look for timed file writes.

Another available avenue to detection is for the ad-
versary to observe the flow of information from the leak
primitive to the retrieve primitive using dynamic information
flow techniques such as taint analysis. Static information
flow does not make sense in this context since static analyses
cannot reason about actions taken outside of the source they
are operating on. Since the obfuscation leaks information
through the runtime system, the flow will not be visible in
the source and therefore requires all covert channels in the
runtime system to be simulated. A dynamic analysis, on the
other hand, can be performed at a much lower level and
therefore requires much less simulation.

3.1.2. Identifying Perturbations. An individual channel’s
statistical behavior can be monitored for abnormalities (as is
common for network covert channels [13]). This approach
creates a model for the typical behavior of the target leak
primitive and compares it to the behavior it observes in other
software. Anything that deviates too far from the model will
then be flagged as potentially obfuscated.

3.2. Defense Model

While there are several detection methods available to
the adversary, there are defenses that augment the obfusca-
tion to make it more difficult to detect.

There are several problems with using static program
analysis to detect covert channels. First, since it simply looks
through an executable for the leak and retrieve primitives,
there is no way of discovering new covert channels using
this approach. The adversary must therefore know all of
the exploitable covert channels available on their system to
consistently detect our obfuscation as it is not tied to a single
channel. Second, the attack will only work if the primitives
used for covert channels are unstealthy, i.e., not commonly
used in typical software. Our framework, however, does
not rely on a single primitive to leak or retrieve values
and is easily extensible so that more can be added in the
future. This flexibility allows us to swap infrequently used
primitives for more frequently used ones that are harder to
detect. For example, it may be trivial to detect timed file
reads, but our framework can instead make use of implicit
timing using threads (see Section 4.4), resulting in behavior
that is common in typical software.

Information flow techniques can be applied to detect
covert channels, but since the information flows under con-
sideration have been moved out of the program by the
obfuscations and into the runtime system and/or operating
system, the amount of code that has to be considered has
to encompass all of this code as well. Such analyses there-
fore require an enormous implementation effort due to the
amount of state that must be simulated. The adversary must
be capable of observing all state affected by the actions
of a program so that they can detect all information flows
in the system. As a result, they must simulate state at the
hardware and network level which, while theoretically possi-
ble, requires substantial effort. Therefore, typically the lower
the covert channel communicates in the runtime system, the
more difficult it will be to detect since more elements of the
system will have to be observed or simulated.

Statistical analyses assume that the adversary knows and
can monitor all covert channels in the system and that the
usage of the covert channel will result in a meaningful
deviation from the model derived by the adversary; however,
as discussed by Crespi et al. [14], it is possible to leak
information without violating the adversary’s model. To do
so, the obfuscation can construct its own statistical model of
the channel and modify its behavior based on those statistics
to evade detection. As long as the model derived by the
obfuscator is at least as accurate as the adversary’s model,
detection can be avoided.

4. Obfuscating Data Flow

As mentioned earlier, traditional obfuscations retain the
information flows in the program, but augment and/or mod-
ify them in order to make them harder to analyze. This sec-
tion describes a family of obfuscating transformations that
takes a fundamentally different approach: it conceals data

flow by moving them out of the computation and into the
program’s runtime system or the operating system. While
some of our transformations incorporate ideas previously
discussed in the covert channel literature, they are employed
in a radically different way: rather than using covert infor-
mation flows as an attack to exfiltrate information from a
computing system, we protect a computing system by using
covert flows to hide the presence of data flow from analysis.

The transformations are designed such that a program-
mers can trade off between complexity, diversity, stealth,
level of semantic preservation, and performance. The trans-
formations have been incorporated into a publicly available
C source-to-source obfuscation tool that is capable of trans-
forming real programs written in the gcc dialect of C.2.
The obfuscator supports a large collection of traditional
transformations [15] in addition to the ones presented here:
virtualization, dynamic obfuscation (self-modifying code),
branch functions, control-flow flattening, etc. These trans-
formations can be freely mixed-and-matched, allowing, for
example, code obfuscated with the transformations proposed
in this paper to be further transformed by adding a layer
of virtualization, then again transformed by replacing direct
branches by calls to branch functions, etc.

In the following, we will first describe deterministic
primitives which are well-known techniques from the litera-
ture to obscure data flow. Next, we will present a set of novel
non-deterministic primitives which have been inspired by the
idea of timing-based covert channels. We next present a set
of combiners that allow us to connect deterministic and non-
deterministic primitives in ways that result in obfuscated
data flow of arbitrary complexity and level of semantic
precision. We next present ways to compute time in our
timing-based covert channels without explicitly using the
timing facilities provided by the operating system, since
such code will be unstealthy in many programs. We con-
clude the section with a discussion of practical concerns.

4.1. Deterministic Primitives

Primitive 1 Increment

void P() {
int a = b;

}
⇒

void P ′() {
int i,a = 0;
for(i=0;i<b;i++)

a++;
}

Simple deterministic data flow-obfuscating primitives
have been described previously in the literature [16], [17],
[18]. Primitive 1 shows a trivial example where a is in-
cremented up to the value of b. While there is no direct
data-flow dependence on a and b, there is a control-flow
dependence. This is known as implicit flow and analyses
exist to handle the implicit flow [19], [20], [21].

2. The tool itself and all the test cases referred to in this paper can
be downloaded from https://github.com/triple-blind/submission-1 The exe-
cutable binary of the tool will be publicly available from our website; its
source code will be available to researchers on request.

https://github.com/triple-blind/submission-1

Primitive 2 Signals
unsigned int value;
int bitNo;
void handler(int sig){

value |= 1 << bitNo;
}
void P ′() {

value=0;
signal(31, handler);
for(i in [0. . .(bits in b)-1]) {

if ((ith bit of b)==1) {
bitNo=i;
raise(31);

}
}
signal(31, 1);
a = value;

}

A different technique uses signals to, one bit at a time,
copy the value of b into a. This is shown in Primitive 2.
Again, techniques have been developed to analyze such
codes [22].

It should be noted that for each of these techniques
many variants are possible, and more variants will add to
the diversity of the obfuscated code. Our current implemen-
tation includes 7 deterministic primitives but many more are
possible, and the architecture of the obfuscator is such that
it is easy to plug in new variants.

Primitive 3 Non-deterministic primitive

1 void P ′() {
2 value=0;
3 for(i in [0. . .(bits in b)-1]) {
4 timeT start = time();
5 if ((ith bit of b)==1)
6 slow process(param);
7 else
8 fast process(param);
9 timeT time = time()-start;

10 if (time > threshold)
11 value |= 1 << i;
12 }
13 a = value;
14 }

4.2. Non-Deterministic Primitives

We next describe a method to hide the assignment
a = b that neither displays direct data flow nor implicit
control flow. The idea is to encode the value of a bit
to be copied in the time it takes to execute a particular
process. Conceptually, a = b is transformed into the code
in Primitive 3. Lines 5-8 correspond to the leak function
of Section 2, and lines 4, 9-11 to the retrieve function.

This idea was inspired by attacks on the side channels
found in the implementation of many cryptographic algo-
rithms. In such attacks, bits of a secret are extracted by

measuring artifacts of the execution of the algorithm, such
as time, energy, or electromagnetic radiation [23], [24]. Our
system is similar in that it moves information (bits of a
word to be copied) using execution artifacts, but different
in that the measurement of the artifact is internal to the
program, not external. In the following we will restrict our
measurements to time, since this is readily available from
inside a program, but other channels are certainly possible,
and the principles remain the same.

While it would be trivial to generate two processes
where one is slower than the other—two loops with different
bounds would suffice—this would not sufficiently raise the
bar for the adversary. Instead, we will seek processes that ex-
ploit aspects of the underlying hardware, operating system,
and runtime system. Again, this is inspired by proposed side
channel attacks, such as those that make use of processor
caches [25]. Our ultimate goal is to force the adversary to
encode, in their analysis tools, not only the semantics of
the instruction set and system calls, but also extra-semantic
characteristics of the entire platform, such as the behavior
of instruction caches, file caches, garbage collectors, jit
compilers, etc.

Primitive 4 Data cache
posix_memalign(&buf1,pagesize,64);
posix_memalign(&buf2,pagesize,64);
slow process(param):

for(i=0;i<param;i++){
asm ("mfence\n"
"clflush (%0)\n"::"r"(buf1));
sum += *((long *)buf1);
*((long *)buf1) = sum;

}
fast process(param):

for(i=0;i<param;i++){
asm ("mfence\n"
"clflush (%0)\n"::"r"(buf1));
sum += *((long *)buf2);
*((long *)buf2) = sum;

}

4.2.1. Data cache channel. Our first channel will make use
of characteristics of processor data caches. Conceptually,
depending on the value to be transmitted, the leak function
loads the content of an address into the processor cache or
flushes the cache line at that address. To recover the value,
the retrieve function measures the time taken to load the
data at that address.

Our tool generates the code in Primitive 4. Note that the
only difference between the fast and the slow processes is
how they treat the two buffers, buf1 and buf2. The slow
process first flushes buf1 and then reads from it, forcing
the processor to reload the corresponding cache line. The
fast process, however, flushes buf1 and then reads from
buf2 which is (likely to be) mapped to a different cache
line and thus, after the first read, likely to be cached.

All our non-deterministic primitives have a tunable pa-
rameter (param in Primitive 4). These need to be adjusted
such that the difference in timing between the slow and the

fast processes is significant enough that it can be effectively
measured given the resolution of the clocks used, and also
consistently producing the correct result, given normal fluc-
tuations on the platform. We will discuss training of the
parameters later in this section.

Primitive 5 File cache
process(param,nocache):

posix_memalign(&buf,pagesize,
pagesize);

fd=open("/tmp/file.txt", writing);
fcntl(fd, F_NOCACHE, nocache);
for(i=0; i<param; i++)
write(fd,buf,pagesize);

close(fd);

fd=open("/tmp/file.txt", reading);
fcntl(fd, F_NOCACHE, nocache);
start = time();
for(i=0; i<param; i++)
read(fd,buf,pagesize);

time = time()-start;
close(fd);
unlink("/tmp/file.txt");

slow process(param):
process(param,1);

fast process(param):
process(param,0);

4.2.2. File cache channel. In order for an analysis tool
to process the code in Primitive 4, it needs at least a
rudimentary understanding of the runtime behavior of CPU
caches. We would like to force the analysis tool to have an
understanding not just of the hardware, but of the behav-
ior of every level of the complete platform, including the
operating system. Our second non-deterministic primitive is
also based on caching, but makes use of file caches rather
than instruction caches. Here, the leak function transmits
a value by conditionally loading a file into the file cache,
and the retrieve function recovers that value by the time it
takes to read the file. Our obfuscator generates the code in
Primitive 5.3

4.2.3. Jitting channel. Many programs today are inter-
preted and, in order to reduce the performance overhead of
interpretation, a just-in-time (JIT) translator (included with
the run-time system) compiles the interpreted bytecode to
machine code on the fly. Typically, in order to avoid the
overhead of interpretation, the run-time system will interpret
a function the first few times it is called and, only when it
has decided the function is indeed a hotspot, will it invoke
the JIT translator.

Our obfuscator includes a runtime JIT translator which
can be used by itself as an advanced packer transformation
that only produces machine code for a function when it

3. The code shown is for MacOS/Darwin. The Linux interface is dif-
ferent, passing the nocache flag to the open system call, rather than to
fcntl. Our obfuscator supports both Linux and MacOS.

Primitive 6 Jitting
int freq=0;
void foo(input,output) {

static void (*foop)(...,...);
if (freq==0) {

foop = JIT(bytecodes);
freq++;

}
(*foop)(input,output);

}
slow process(param):

freq=0;
start=time();
foo(...,...);
time=time()-start;

fast process(param):
freq=0;
foo(...,...);
start=time();
foo(...,...);
time=time()-start;

is called. The JITter also forms the basis for dynamic ob-
fuscating transformations that generate self-modifying code.
We make use of this JITter to construct a leak function that
transmits a value by conditionally JIT-compiling a particular
procedure and a retrieve function that recovers the value by
timing a call to the procedure.

The resulting code is shown in Primitive 6. Here, the
slow process measures the time of both the JITter translating
foo to machine code and the call to the jitted function foo
itself. The fast process, on the other hand, only measures,
the time of the JITted function. In this example the JITting
always happens the first time a function gets called but this
can be varied to make the process less predictable to an
analysis tool.

Primitive 7 Garbage collection
process(size):

GC_gcollect();
buildLinkedList(size);
timeT start = time();
GC_gcollect();
timeT time = time() - start;

slow process():
process(large number);

fast process():
process(small number);

4.2.4. Garbage collection channel. Many modern lan-
guages include a garbage collector as part of the runtime
system. This gives us yet another subsystem on which to
build a timing channel. Many possibilities avail themselves,
especially if the particulars of the garbage collection al-
gorithm are known. For example, a copying collector is
expected to be faster when the heap consists mostly of
garbage than when every object is reachable from the roots.
Therefore, we can create a leak function that transmits a
value by varying the reachability of objects on the heap and

a retrieve function that collects that value by timing the
garbage collector.

In the example in Primitive 7 we are using the Boehm
mark-and-sweep collector [26]4. This code first performs a
collection to clear the heap of any existing garbage. Next,
a linked list is created, a long one for the slow process and
a shorter one for the fast process. Finally, a second garbage
collection is performed and timed. With a mark-and-sweep
collector a garbage collection of a heap containing of a very
long chain of reachable objects is expected to be slower than
a collection with fewer reachable objects.

4.3. Flow Combiners

There are several issues with the flow primitives we
have described so far. While there are undoubtedly many
possible techniques yet to be discovered to hide data flow,
deterministic as well as non-deterministic, the number of
such techniques is likely to be finite. This is a problem
since it puts a practical limit on the level of diversity that
an obfuscation tool can achieve. Furthermore, our timing-
based primitives by their very nature will sometimes fail, i.e.
the process meant to be fast will, occasionally, be confused
for a slow process. This will result in an assignment a = b
giving a the wrong value and likely causing program failure.
However, we would like the failure mode to be under the
control of the programmer who is in the best position
to make the appropriate trade-offs between performance,
diversity, and correctness.

To these ends, we introduce the concept of flow combin-
ers. These are operators which can compose the primitives
described above to achieve desired levels of diversity and
correctness. Combiners are recursive, meaning they can
be applied ad infinitum. Our system currently supports 5
combiners:

combiner ::=
| primitive
| compose(list of combiner)
| select(list of combiner)
| majority(list of combiner)
| repeat(combiner, int)
| until(combiner, int, int)

We describe the semantics of combiners by example. In the
following, let di be deterministic and ni non-deterministic
primitives, and ci any combiner. As before, let us transform
the assignment a = b. The combiner compose(c0, c1, . . .)
chains together several combiners, i.e. the output of com-
biner ci becomes the input to combiner ci+1, meaning
a = b is transformed into a = c0(c1(. . . (ci(b)))). The
select(c0, c1, . . . , cn−1) combiner will choose one of its
constituent combiners at random:

4. We have tested the Boehm library to ensure that it forms a feasible
garbage collection channel, but we have not yet integrated it into our
obfuscation tool.

switch (random symbolic
expr % n) {

case 0: a = c0(b)
case 1: a = c1(b)
. . .

}

In our implementation the combiner is chosen pseudo-
randomly, and dependent on input, making the variable a
a symbolic variable. The combiner majority(c0, c1, . . .)(b)
will compute c0(b), c1(b), . . . and choose the most fre-
quently occurring value. repeat(c0, n) is equivalent to

majority(
n︷ ︸︸ ︷

c0, c0, . . .). The combiner until(c0,m, n), finally,
continuously repeats c0(b) m times until there is at least n
agreements on the resulting value.

Flow combiners allow us to generate arbitrarily complex
flow expressions. For example, a = b can be turned into

a = majority(compose(d0, n0), d1, repeat(n1, 5))(b),

They also allow us to increase our confidence in non-
deterministic primitives by combining them using majority
logic:

a = majority(n0, n1, n2, n3, n4)(b)

Furthermore, we can create deterministic flow expressions
from non-deterministic primitives, by combining them with
deterministic ones. For example, the flow expression

a = majority(n0, n1, d0, d1, d2)(b)

will always compute the correct value for a; should one
or both of n0 and n1 fail they will still be outvoted by
d0, d1, d2. Finally, select and repeat allow us to balance
correctness and performance overhead:

a = select(d0, d1, d2, . . . , repeat(n0, 7))(b)

Here, we will mostly execute deterministic primitives (which
tend to be fast) mixed with the occasional (slower) non-
deterministic primitive.

4.4. Stealthy Timing Without Timing

One issue with the timing-based primitives we have seen
is that the act of a program timing itself may be unstealthy in
many programs. While our implementation supports several
timing primitives (such as the X86 RDTSC read timestamp
counter instruction and the gettimeofday system call),
neither is likely to be frequently occurring in many pro-
grams. This could leave our obfuscated code open to static
program analysis attacks as discussed in Section 3.1.

We therefore introduce the ability to replace explicit
timing with implicit timing using threads. The code in
Primitive 8 illustrates the basic idea. Here, we spawn a slow
and a fast thread, these threads write (with a deliberate race
condition) on the variable result, and, finally, a barrier
waits for both threads to finish. At the end, the slow thread
is likely to have finished last thereby assigning the correct
bit to result.

Primitive 8 Thread-based timing
int result;
void threadZero(void (*work)()) {

work();
result = 0;

}
void threadOne(void (*work)()) {

work();
result = 1;

}
void P ′() {

a=0;
for(i in [0. . .(bits in b)-1]) {

zeroWork = slow process;
oneWork = fast process;
if(ith bit of b) {

zeroWork = fast process;
oneWork = slow process;

}
s=thread_create(threadZero, zeroWork);
f=thread_create(threadOne, oneWork);
thread_join(s);
thread_join(f);
if (result)

a |= 1 << i;
}

}

While the code in Primitive 8 should fit in many threaded
programs (high performance codes often use create and
join in this way), depending on the threading behavior
of the input program, this design too may be unstealthy!
Fortunately, there are many variants of the basic idea that
can be matched to the threading behavior of a particular pro-
gram. For example, we have a variant that uses a thread-pool
(obviating the need for multiple conspicuous creates)
and a variant that spawns only one thread instead of two.
Even single-threaded programs can be accommodated by
introducing bogus decoy threads. Finally, suspicious race
conditions on the result variable could be detected [27],
but such potentially unstealthy behavior can be avoided by
introducing bogus locks.

4.5. Training Primitives

Before we can use a non-deterministic primitive n we
have to train it. This means determining two values, param
and threshold, such that the accuracy of n is maximized and
the performance overhead is minimized.

Figure 3 shows a case where we have trained Primi-
tive 5 on a modern laptop. We executed 500 slow and 500
fast samples for each parameter value, here represented by
circles and triangles respectively. The y-axis shows the value
of the parameter (file size, in this case) and the x-axis the
number of CPU ticks, as measured by the x86 instruction
RDTSC. The vertical bars are the thresholds, here computed
as the midpoint between the medians of the slow and fast
samples. Next to each sample is shown two numbers s/f ,
the number of slow and fast failures, where fast failures fall
to the right of the threshold and slow failures fall to the left.

In our current prototype implementation training pro-
ceeds by examining increasingly larger parameter values,
until one is found for which there is a suitable "gap" between
fast and slow samples. Such a gap will allow for some slack
in timing measurements at runtime. In Figure 3, for example,
parameter values less than 16 seem to overlap too much,
whereas param=16 or param=32 display suitable gaps.

4.5.1. Offline vs. On-Demand Training. A question that
arises is when to train for suitable parameter values. There
are three possibilities: offline training determines parameter
values at obfuscation time, before the program is distributed
to its users (and potential adversaries); startup training runs
when the program is first executed, but before user code
starts running; and on-demand training mixes the training
with the execution of user code. Offline training has the
advantage that it has no impact on performance, but suffers
from the problem that it cannot know the machine charac-
teristics of all the platforms on which it may potentially
run. Startup and on-demand training have the advantage
that they run on the actual platform but, as a result, they
will suffer performance overhead, either when the program
starts up, or during execution. On-demand training has the
further advantage that it can adjust parameter values and
thresholds as the program is running, potentially taking into
account changing runtime characteristics of the program
and the environment on which it is running. Our current
implementation supports offline and startup, but not on-
demand, training.

5. Probabilistic Obfuscation

In order for probabilistic obfuscation to become a viable
technique, each non-deterministic transformation must be
accompanied by a correctness guarantee, i.e. a bound on
its failure rate.

In the remainder of this section we will explore such
guarantees for the primitives in Section 4. The training rou-
tines in our current proof of concept implementation choose
parameters and thresholds heuristically, simply looking for
the smallest parameter with a “reasonable” gap between fast
and slow measurements. While this works well in practice,
we would prefer to be able to make statements such as,
“after transformation with non-deterministic primitive n, the
copy a = b will fail no more than once in a million.” This
would also let the programmer compare different primitives,
allowing them to pick one with the correctness guarantees
and performance characteristics appropriate for their situa-
tion.

5.1. Correctness Guarantees

Although there will always be a small probability that
the an assignment a = b transformed with one of the
primitives in Section 4 will go wrong, we can choose the
desired reliability of the process through two parameters:
the target confidence level (which we will call conf), and
the target expected error rate (which we will call r). Our

��

���

����

�����

������

������ ������� ������ ������ ������ ������ ������� �������

����

����

���

���

���

���

���

���

���

���

�
�
��
�

�����

���������������������������

����
����

Figure 3. Training results for Primitive 5 in Section 4.2.2. Timings were collected on a laptop with a 2.9GHz Intel Core i7 with 16GB of main memory
and 2TB of SSD disk. Both axes are base-10 log scales.

bit b = . . .;
int n = d2 · log(r)/ log(ti)e;
timeT[n] times;
for(i=0;i<n;i++) {

timeT start = time();
if (b == 1)

slow process(param);
else

fast process(param);
times[i] = time()-start;

}
timeT m = median(times);
bit a = m > threshold;

Figure 4. Copying a single bit with correctness guarantees.

claim is that the procedure described below will, at the
given confidence level, set the variable a incorrectly at a
rate that is, at most, the expected error rate. For example,
at conf = 99%, r = 10−6, we can expect that at most once
every 100 times the training procedure runs the code will
generate errors at an observed rate of more than one in a
million.

During training we determine three values, Ti, ti, and
threshold, for each non-deterministic primitive ni. ti is the
estimate of the upper bound of the confidence interval of
a Bernoulli random variable at the confidence level conf
(using the Wilson score rule [28]). This is determined by
tallying the total number of successful and failed transmis-
sions during training. Ti is the expected runtime for one
execution of ni, which we estimate by computing the mean
runtime over the training data.

To copy a single bit b to a with the expected error rate

r we need to modify our copy procedure so that the bit is
sent multiple times (see Figure 4).

As a concrete example, consider a situation where during
training we have run 500 tests and determined that 50 of
them fall on the “wrong side” of the threshold. I.e., in 10%
of the tests a slow value was measured as fast or a fast was
measured as slow. In this case, we have 450 successes and
50 failures. By using Wilson’s score rule, we find that at our
chosen confidence level conf = 0.99 and ti ≈ 0.14. Suppose
that r = 10−6, i.e. we are looking for a one in a million
error rate. Then, log(r) = −6 and log(ti) ≈ −0.857, so
n = d2 · log(r)/ log(ti)e = 15. Thus, we need to send each
bit of a word 15 times to get a one in a million error rate.
For a one in a billion error rate, we get a minor increase,
namely n = 21. To see why the algorithm works, notice
that every transmission has at most a ti chance (at a given
confidence level) of being wrong. In order for the decision
using the median value to be incorrect, then, more than half
of the transmissions need to be wrong. We want to bound
this probability, and so we solve for n in t2n+1

i ≤ r (we
take the product of the probabilities since runs of ti are
independent of each other). A small simplification of the
solution then gives the expression for n above.

The claim above works for any technique. But how do
we decide between techniques? We define a cost in runtime
for each reliable transmission, and pick the one that mini-
mizes it. That cost is simply n ·Ti, or 2 · log(r) ·Ti/log(ti).
Since r and ti are both less than 1, it’s easier to work
with the negative of their logs, so we get 2 · (− log(r)) ·
(Ti/ − log(ti)). The quantity Ti/(−log(ti)) characterizes
each primitive ni: our goal is to minimize Ti, and maximize
− log(t). It also characterizes the trade-off. Note that this
trade-off will make us want to pick primitives for which the

individual error rate is relatively high, since they are likely
to be much faster. See Figure 3 for typical runtime and error
rates.

6. Evaluation

We evaluated a prototype implementation of our frame-
work to assess its effectiveness and performance. We con-
sidered two kinds of attacks on our obfuscations. First, since
our obfuscation uses covert channels to conceal information
flows, we analyzed samples obfuscated using our framework
with modern symbolic analysis engines, which are widely
used and represent the state of the art in information-flow-
based program analysis techniques. Second, in order to
evaluate the stealthiness of our approach, we used analyses
proposed in the literature aimed specifically at detecting
covert channels. There is a very wide variety of techniques
that have been proposed in the literature, and as a matter
of practicality we implemented and evaluated a couple of
such techniques that are very general and broadly applicable
against a broad spectrum of covert channels.

6.1. Symbolic Analysis

We evaluated our obfuscation on four state-of-the-art
symbolic analysis engines to determine how much func-
tionality is built into typical symbolic analysis tools and
frameworks. Two of these, S2E [29] and Fuzzball [30], are
complete analysis tools targeted at test case generation, so
they symbolically execute a program in order to maximize
code coverage. The other two engines, ANGR [31] and
Triton [32], are binary analysis frameworks with built-in
symbolic execution engines. They provide the user with
more flexibility by allowing analyses to be customized. As a
result, users can perform more than just symbolic execution
with these frameworks, and can customize the way in which
the program is symbolically explored. For our evaluation, we
wanted to see what could be detected by the two frameworks
by default, and therefore what the user would have to add.
We therefore configured ANGR and Triton to act like a
symbolic analysis tool so that they would provide us with
concrete values for the symbolic variables that result in
unique paths being taken. Among the tools we experimented
with, only S2E is able to trace into kernel code and continue
the analysis within the operating system.5

6.1.1. Evaluation Process. From the simple input program
in Figure 5 our obfuscation tool generated 18 obfuscated
samples for the symbolic analysis engines to analyze. The
program takes an input, stores it into the variable a, and
assigns to b, thereby creating a direct data dependency.
The value in b is then compared to the 32-bit constant
0x55787855 (ASCII "UxxU", a number with an equal
number of 0 and 1 bits) and, based on the result of the
comparison, prints "SUCCESS" or "FAILURE". Therefore,

5. We configured Triton with Intel PIN which does not provide kernel
code access to the analysis.

int a;
int main(int argc, char *argv[]) {

a = *(unsigned int *) argv[1];
int b = a;
if (b == 0x55787855)

printf("SUCCESS");
else

printf("FAILURE");
return 0;

}

Figure 5. Original input program that was obfuscated for the effectiveness
evaluation.

if we mark a as symbolic, the engines should be able to find
two paths in the executable, one leading to "SUCCESS"
when the value of the symbolic variable is 0x55787855,
and one leading to " FAILURE" otherwise. As seen in
Table 1, all symbolic analysis engines achieve exactly this
result when run on the program in Figure 5. Since we know
that each of the engines achieve the correct result for our
input, we know that if they cannot detect the same paths
in our obfuscated programs then the obfuscation must be
successful.

To test our framework, we generated the samples de-
scribed in Table 1 which obfuscate the direct data assign-
ment from a to b of the program in Figure 5. The samples are
organized into 3 classes: deterministic, non-deterministic,
and combined. The deterministic samples perform transfor-
mations on the data flows that deterministically yield the
input value, allowing us to establish if the engines can
follow simple obfuscated data flows. The non-deterministic
channels then check if any of the engines are capable of
tracing information flow through time, either implicitly or
explicitly. The final class uses flow combiners to compose
the various channels so that we can evaluate if combining
flows makes the obfuscation more or less detectable.

To ensure the samples could be run by all of the
symbolic analysis engines, some engine-specific additions
needed to be made. No modification was necessary for
ANGR and Triton since they allow the inputs to a program to
be symbolic. Unlike ANGR and Triton, Fuzzball introduces
symbolic variables by allowing a user to specify a region in
memory to be symbolic. We therefore modified this program
to print out the address of the global variable a. Additionally,
we took out the assignment to a from the program’s input
value since that would overwrite the symbolic variable.
Finally, Fuzzball would only analyze 32-bit binaries. This
constraint was not an issue for most of the samples, but we
were unable to build a 32-bit version of the JIT compiler
obfuscation used in sample 13, so it was not evaluated on
Fuzzball. S2E introduces symbolic variables and controls
path exploration using annotations to the source code. These
annotations were added to each sample so that S2E marked
a as symbolic after the assignment from input and explored
the remainder of the program.

Table 1. COLUMNS 3-6 SHOW THE EFFECTIVENESS OF RUNNING SYMBOLIC ANALYSES ON A SET OF BENCHMARK OBFUSCATIONS. A 3 INDICATES
THAT THE SYMBOLIC ANALYSIS ENGINE SUCCESSFULLY DISCOVERED ALL PATHS, WHILE A 7 INDICATES THAT THE ENGINE WAS NOT SUCCESSFUL.
THE SUBSCRIPTS PROVIDE ADDITIONAL INFORMATION: 7n=n FALSE POSITIVES; 7to=TIME OUT; 7k=KILLED BY OS; 7pc=PYTHON INTERPRETER

CRASH; 7mmap=UNSUPPORTED MMAP OPERATION; 7uv=UNDECLARED VARIABLE ERROR; 7sys=UNSUPPORTED SYSTEM CALL; 3n= n PATHS
FOUND, 2 OF WHICH ARE CORRECT . COLUMN 7 SHOWS THE WALL CLOCK TIMES (IN SECONDS, AS RETURNED BY gettimeofday()) OF COPYING

A 32-BIT VARIABLE WITH EQUAL NUMBER OF BITS SET TO 0 AND 1, 1000 TIMES.

Description Symbolic Analysis Results Execution

ANGR FuzzBall S2E Triton Time

Original sample from Figure 5. 32 32 32 32

Deterministic Primitives

0 Uses an integer counter as shown in Primitive 1. 7k 71 7to 7364 0.00123
1 Same as #0, but with a floating point counter. 7to 71 N/A 7367 0.00138
2 Uses a counter similar to Primitive 1, but raises a signal inside the loop and performs

the increment inside the signal handler.
7to 71 7to 7364 0.93016

3 Performs a simple unrolled bit-copy, similar to Primitive 2, where there is a unique
copy for each bit in a byte and a loop iterates over all the bytes.

32 71 7to 724 0.00009

4 Same as #3, but a single bit is copied at a time and a loop iterates over all bits. 32 71 7to 724 0.00011
5 Performs a bit-copy using a signal as shown in Primitive 2. 7to 71 7to 724 0.04236
6 Writes the value to a file and immediately reads it back. 7pc 71 7to 71 1.08820

Non-Deterministic Primitives

7 Thread-based timing (Primitive 8) of a trivial loop and majority logic, i.e.
repeat(loop/thread, 3).

7k 7mmap 7to 71 7.18277

8 RTDSC-based timing of a trivial loop and majority logic, i.e. repeat(loop/rdtsc, 3). 7to 71 7to 7t 0.06636
9 Primitive 4 with RTDSC-based timing and majority logic, i.e.

repeat(Primitive 4/rdtsc, 3).
7sys 7uv 7to 7t 0.98274

10 Same as #9 but with thread-based timing. 7to 7mmap 7to 7t 24.28911
11 Primitive 5 with RTDSC-based timing and majority logic, i.e.

repeat(Primitive 5/rdtsc, 3).
7sys 71 7255 7t 1761.31898

12 Same as #11, but with thread-based timing. 7k 7mmap 71252 7t 124.27554
13 Primitive 6 with RTDSC-based timing and majority logic, i.e.

repeat(Primitive 6/rdtsc, 3).
70 N/A 7255 7t 1184.09457

Flow Combiners

14 Composes #0, #1, and #6, i.e. compose(counter/int, counter/float, file_write). 7k 71 7to 7242 0.97509
15 Randomly selects one of #0, #1, and #6, i.e.

select(counter_int, counter_float, file_write).
7to 71 7to 3244 0.00004

16 Combines #2, #4, and #10 using majority logic, i.e.
majority(counter/signal,Primitive 4/thread,Primitive 2).

7k 7mmap 7to 7258 8.91555

17 Combines #1, #2, #4, #10, and #11 using majority logic, i.e.
majority(Primitive 4/thread,Primitive 5/time, bitcopy,Primitive 2,Primitive 1)

7to 7mmap 7to 7516 612.05139

6.1.2. Evaluation Platform. ANGR, Triton and S2E bina-
ries were run on a machine with 1TB of RAM and 32 CPUs
with 4 cores each. Fuzzball, due to issues installing it on the
machine just described, was run in a virtual machine with
8 cores and 8GB of RAM. All ANGR samples were given
a timeout of 3 hours, except sample 8 which was allowed
to run for 27 hours. S2E was given a timeout of 8 hours
and Triton 3 hours. All of these timeouts were significantly
longer than the time cited to analyze samples with these
engines in prior publications [31], [33], [29].

6.1.3. Evaluation Results. Table 1 shows the results of our
tests. ANGR was able to fully analyze some of the determin-
istic obfuscations, but none of the non-deterministic ones.
Of the deterministic samples, ANGR successfully detected

two of the bit-copy samples and failed to detect the rest. It
should be noted, though, that in our testing with a smaller
symbolic input ANGR did successfully discover all paths for
sample 0 and sample 1. As a result, we expect that if run
longer ANGR would have been successful in identifying the
implicit flows. The remainder of the deterministic samples
failed for various reasons. Samples 1, 2, and 5 timed out
and were manually killed. Sample 0 was killed by Linux
because of resource exhaustion (no swap space or mem-
ory remained) and sample 6 caused the python interpreter
to crash with a memory error. The non-deterministic and
combined obfuscations failed for similar reasons. The only
difference is that some used an unsupported system call that
caused an error on all of ANGR’s active paths.

Fuzzball was unable to completely explore any of the

Table 2. EFFECTS OF CLOCK PERTURBATION ON AN OBFUSCATED
PROGRAM WITH OFFLINE TRAINING

Max Delay (ms) Success Rate (%) Tx Time (s)
0 99 0.948
5 100 1.210
10 99 1.493
15 0 1.751
20 0 2.067
25 0 2.316
30 0 2.600
35 0 2.876
40 0 3.287
45 0 3.503
50 0 3.928

obfuscated samples. In most cases, Fuzzball found the path
to the failure branch, which is equivalent to running the
software. The remaining samples caused Fuzzball to produce
an error. All of the samples that required multiple threads
failed due to an mmap operation that could not be handled
by Fuzzball; however, since mmap is required to use the
pthreads library, we could not remove mmap from the
sample. The only sample remaining is sample 9, which
caused Fuzzball to fail because it found an undeclared
variable in the disassembled code. We were not sure how
to fix this error and counted it as a failure.

S2E was configured to use a depth-first search strategy to
discover paths that maximize code coverage. However, S2E
was not able to find all viable paths in any of the samples.
As shown in Table 1, S2E produced many concrete counter
examples (ranging from 255 to 1252) that were supposed to
trigger different execution paths, but which only triggered
one of the target paths in the obfuscated sample, leaving
the other undiscovered. In addition, sample 1 triggered an
error in the analysis that caused S2E to abort and all other
samples timed out. Hence, S2E failed on all the samples.

Except for sample 15, Triton’s behavior was similar to
S2E’s: it reported false positive alternative inputs that would
only trigger one of the target paths in the obfuscated sample.
Moreover, for samples 8 through 13, Triton timed out and
did not produce any results; sample 15 was an exception
as the tool was able to successfully discover both possible
execution paths while also reporting about 244 false positive
alternative counterexamples.

6.2. Covert Channel Detection Techniques

To evaluate the stealthiness of our obfuscations against
analyses aimed at detecting covert channels, we considered
two representative kinds of analyses: (i) clock-perturbation
techniques that aim to identify timing channels; and (ii)
analyses that examine the system calls executed by a pro-
gram for indications of suspicious or anomalous behavior.

6.2.1. Clock Perturbation Attacks. The idea behind clock
perturbation (or “clock fuzzing”) is to reduce the bandwidth
of timing covert channels by introducing noise into system
clocks[34], [35]. This noise causes the accuracy of time

Table 3. EFFECTS OF CLOCK PERTURBATION ON AN OBFUSCATED
PROGRAM WITH STARTUP TRAINING

Max Delay (ms) Success Rate (%) Tx Time (s)
0 95 0.737
5 100 1.214
10 99 2.326
15 92 3.680
20 99 5.090
25 99 5.894
30 98 7.893
35 100 8.071
40 100 8.619
45 99 8.744
50 97 9.486

measurements to decrease system wide, meaning timing
channels must have delays larger than the noise since those
near or less than the maximum noise value will generate
random results. In our context, clocks are simulated by
racing “fast” and “slow” threads, which means perturbations
to the system clock would be manifested by corresponding
changes in the observed execution time for these threads.
Based on this observation, we simulated clock perturbation
by adding independent random delays to the transmission
and training threads in our obfuscated programs. These de-
lays inject a random perturbation to each thread’s execution
time; this can, for example, cause the fast thread to run
slower than the slow thread if the delay added to the former
is significantly larger than the latter.

We tested clock perturbation against two obfuscated
programs: one with offline training and one with startup
training. In both cases we set the training confidence to 99%
and varied the maximum delay and averaged the success
rate and secret value transmission time across 100 runs. It
should be noted that despite training to 99%, perturbations
after the training ends can cause failures since we have not
implemented on-demand training, leading to lower success
rates in some cases. As Table 2 shows, with offline training,
clock perturbation quickly reduces the accuracy of the covert
channel as the induced delay increases since the timing
is increasingly influenced by randomness. Startup training
performs much better since the training dynamically deter-
mines an appropriate transmission speed, as shown in table
3. Clock propagation therefore reduces the bandwidth of the
channel, as expected, but does not defeat the obfuscation.

6.2.2. System Call-based Anomaly Detection. There have
been a number of proposals for anomaly detection by ex-
amining the system call behavior of programs (e.g., see
[36], [37]). The usual application of this approach involves
comparing the system calls executed by a program against a
model of its “normal” behavior. However, in a program that
uses covert channels for obfuscation, the normal behavior
includes the system calls used by the covert channels, so the
question to be addressed is: does the use of covert channels
result in unusual system call behaviors? To address this
question, we examined the system calls executed by each
obfuscated program using the strace utility and compared

them with those executed by the corresponding unobfuscated
program; the difference between the two would be the
system calls introduced by the covert channel obfuscation.

In our experiments, we found that if the obfuscation
used alarms, threads, file I/O or JIT, the system call be-
havior would be drastically different. If alarms were used,
one would see many rt_sigreturn and tgkill calls,
which would likely be flagged as anomalous.

The threaded samples contained many calls to the
clone system call due to the fact that every time we leak
a bit, two new threads are created. While this is likely to
be marked as anomalous, implicit timing can be performed
with only one additional thread (as mentioned in section
4.4). When the single thread timing is applied to one of the
obfuscations, the resulting system call behavior is identical
to the original program to which a single dummy thread
had been added. Consequently, a system-call-based detector
would mark all multi-threaded programs as anomalous.

The file I/O channels would likely be suspicious since
the obfuscations read and write to the same file. The file
cache channel, however, can also be performed by purely
using file reads which is much less suspicious [38].

Finally, the JIT based channel has many brk system
calls, due to the implementation of the JIT translator built
into the obfuscator. Consequently, this would not detect the
obfuscation, but the presence of JIT translation. Since JIT
compilers are often included in interpreters such as the Java
Virtual Machine (JVM), it is unlikely that anomaly detection
could be used to detect the JIT based obfuscation in general.

These results show the flexibility of our obfuscation as
the parts that make up the covert channel can be swapped
out to maximize stealth.

6.3. Performance

To investigate the relative performance of the primitives
proposed here we obfuscated a 32-bit assignment a = b
with each of the transformations from Table 1. We report
cumulative wall-clock times of performing each assignment
1000 times. Timings were collected on a laptop with a
2.9GHz Intel Core i7 with 16GB of main memory and 2TB
of SSD disk, running MacOS 10.12.3.

As expected, the transformations based on JITting and
file caching are much more expensive than the other trans-
formations. It should be noted that even such expensive
obfuscations can be useful under the right circumstances:
to defeat symbolic analysis it can be enough to apply a
transformation to one or a few strategic assignments in the
program, and to avoid those that are potential hotspots.

7. Related Work

The work most closely related to ours is that on
side-channel-based information leakage and various covert-
channel attacks. Also related are works on information flow
tracking and symbolic execution. The idea of probabilis-
tic obfuscation was also mentioned in [39] where authors

propose a technique to obfuscate the control flow of the
program such that it is no longer deterministic.

7.1. Covert Channels and Side Channels

Covert channels and side channels are information chan-
nels that use properties of a computation that are distinct
from the actual computation to propagate information. The
distinction between these terms is typically one of intent—
“covert channel” usually denotes deliberate use of a channel
to transmit information, while “side channel” refers to in-
advertent information transmission.

There is a significant body of research on side-channel
attacks that attempt to extract keys from cryptographic
code [40]. A variety of attacks have been proposed in the
literature, based on different kinds of observations, e.g.,
timing characteristics [23], energy usage [24], and cache
hit/miss behavior [38], [41], [42], [43]; Biswas et al. give a
survey [44]. In such scenarios, the programs under attack—
typically, cryptographic codes—are not deliberately engi-
neered to yield the information the attacker is trying to
extract. Correspondingly, the defenses proposed against such
information leakage typically focus on “crypto-like” code:
small fragments with limited and tightly controlled interac-
tions with external code such as libraries, runtime system,
or the operating system [45], [46], [47]. Importantly, the
tightly controlled nature of such software, and the fact that
side-channel information leakage is not deliberate, limits the
side channels that are usefully exploitable.

Such channels can also be deliberately engineered to
leak information. In this case, there may be a wide variety of
covert channels potentially available for use by the program,
and they may be exploited in different ways [6], [48], [2],
[3]. Such mechanisms for information exfiltration represent
an emerging class of malicious behavior that are not handled
by existing analysis frameworks.

7.2. Information Flow Tracking

Information flow tracking systems try to enforce infor-
mation flow policies which are derived by the confidentiality
rules. Security typed languages, in which the types are
augmented with security labels to specify (and enforce)
information flow policies, provide strong guarantees to-
wards secure information flow. Sabelfeld [49] gives a survey
on securely-typed language approaches. These approaches,
however, are too strict and can potentially lead to too many
false positives that render them inapplicable [21]. Moreover,
these approaches are applicable in the context of protecting
secrets from being observed by an attacker (e.g., crypto-
graphic keys) and require source code. The focus of this
paper, however, is in the context of analyzing binary code
where users run untrusted applications that most likely have
access to their personal data (e.g., on mobile phones). In
these situations, securely typed language approaches do not
help to protect the confidentiality of the data [50].

To address these problems, researches have proposed
approaches that mark and track sensitive data (i.e., tainted

data) and prevent the tainted data from being leaked [51],
[52], [53], [54], [55]. An important shortcoming of such
dynamic taint propagation approaches is their inability to
track implicit information flows [17] and imprecise results
in the presence of code obfuscation techniques [56], [57].

7.3. Symbolic Execution

Symbolic execution is used in a wide variety of security-
related analyses [58], [59], [60], [1], [61]. While capable of
sophisticated reasoning about program behavior, symbolic
execution suffers from a number of practical drawbacks,
including path explosion, dealing with indirect references,
and memory modeling and system calls [62], [58]. Symbolic
execution systems can also have trouble in reasoning about
obfuscated code [63], [57], [22], resulting in significant
degradation in performance and precision. Similar to the
previous studies, this work helps researchers better under-
stand the shortcomings of symbolic execution in dealing
with obfuscated code.

Other researchers have used cryptographic hash func-
tions to hide the relationship between branch points and
input values in the code [64], [65]. While effective in
subverting symbolic execution from accurately determining
different execution paths in the program, the use of crypto-
graphic functions raises suspicions in detection mechanisms.
Moreover, these studies target the limits of the underlying
SMT solvers and are useful in determining the theoretical
boundaries of symbolic execution analysis.

8. Conclusion

This paper describes a new obfuscation technique that
exploits covert channels, arising from a program’s runtime
interactions with its execution environment, to obfuscate
information flows and make them harder to track. Unlike
existing obfuscation techniques, our approach removes in-
formation flows from the program’s code, rerouting them
through the runtime system and/or operating system and
thereby rendering them invisible to conventional program
analyses. The work is also motivated by the need to under-
stand the foundations of emergent techniques for sidestep-
ping privacy protections on mobile devices and exfiltrating
sensitive information. We describe a semantic framework for
covert-channel-based information propagation, show how
covert channels can be used as a code obfuscation tech-
nique, and introduce the notion of probabilistic obfuscation.
Experimental evaluation of a prototype implementation of
our ideas shows that our obfuscation is stealthy, success-
fully evades state-of-the-art information flow analysis tools,
and is robust against clock-fuzzing and system-call tracing
analyses aimed at detecting covert channels.

Acknowledgments

This research was supported in part by the National Science
Foundation (NSF) under grant CNS-1525820.

References

[1] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proc.
2015 IEEE Symposium on Security and Privacy, 2015, pp. 674–691.

[2] A. Al-Haiqi, M. Ismail, and R. Nordin, “A new sensors-based covert
channel on android,” The Scientific World Journal, vol. 2014, 2014.

[3] J.-F. Lalande and S. Wendzel, “Hiding privacy leaks in android
applications using low-attention raising covert channels,” in Avail-
ability, Reliability and Security (ARES), 2013 Eighth International
Conference on. IEEE, 2013, pp. 701–710.

[4] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis
of the communication between colluding applications on modern
smartphones,” in Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 2012, pp. 51–60.

[5] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “Accessory:
password inference using accelerometers on smartphones,” in Pro-
ceedings of the Twelfth Workshop on Mobile Computing Systems &
Applications. ACM, 2012, p. 9.

[6] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: a stealthy and context-aware sound trojan
for smartphones.” in NDSS, vol. 11, 2011, pp. 17–33.

[7] C. Wang, J. Hill, J. C. Knight, and J. W. Davidson, “Protection
of software-based survivability mechanisms,” in Dependable Systems
and Networks (DSN), 2001, pp. 193–202.

[8] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proc. 10th ACM conference on
Computer and communications security, 2003, pp. 290–299.

[9] S. Chow, P. Eisen, H. Johnson, and P. van Oorschot, “White-box
cryptography and an AES implementation,” in 9th Annual Workshop
on Selected Areas in Cryptography (sac 2002., 2002.

[10] Y. Zhou, A. Main, Y. X. Gu, and H. Johnson, “Information hiding
in software with mixed boolean-arithmetic transforms,” in Proc. 8th
Int. Conf. on Information Security Applications, 2007, pp. 61–75.

[11] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vad-
han, and K. Yang, “On the (im)possibility of obfuscating programs
(extended abstract),” in Advances in Cryptology - CRYPTO 2001,
2001, lNCS 2139.

[12] B. Barak, “Hopes, fears, and software obfuscation,” Commun. ACM,
vol. 59, no. 3, pp. 88–96, Feb. 2016.

[13] O. Chen, C. Meadows, and G. Trivedi, “Stealthy protocols: Metrics
and open problems,” in Concurrency, Security, and Puzzles. Springer
International Publishing, 2017, pp. 1–17.

[14] V. Crespi, G. Cybenko, and A. Giani, “Engineering statistical be-
haviors for attacking and defending covert channels,” IEEE Journal
of Selected Topics in Signal Processing, vol. 7, no. 1, pp. 124–136,
2013.

[15] C. Collberg and J. Nagra, “Surreptitious software,” Upper Saddle
River, NJ: Addision-Wesley Professional, 2010.

[16] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits of infor-
mation flow techniques for malware analysis and containment,” in
Proceedings of the 5th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA
’08. Springer-Verlag, 2008, pp. 143–163.

[17] ——, “Anti-taint-analysis: Practical evasion techniques against infor-
mation flow based malware defense,” Tech. Rep., 2007.

[18] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar, “On the ef-
fectiveness of dynamic taint analysis for protecting against private
information leaks on Android-based devices.” in SECRYPT, 2013,
pp. 461–468.

[19] A. Russo, A. Sabelfeld, and K. Li, “Implicit flows in malicious and
nonmalicious code,” in Logics and Languages for Reliability and
Security, 2010, pp. 301–322.

[20] Y. Liu and A. Milanova, “Static information flow analysis with
handling of implicit flows and a study on effects of implicit flows vs
explicit flows,” in Proc. 2010 14th European Conference on Software
Maintenance and Reengineering (CSMR), March 2010, pp. 146–155.

[21] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: Can’t live
with ’em, can’t live without ’em,” in Proceedings of the International
Conference on Information Systems Security (ICISS), R. Sekar and
A. K. Pujari, Eds. Springer, 2008.

[22] B. Yadegari, J. Stephens, and S. Debray, “Analysis of exception-based
control transfers,” in Proceedings of the 7th ACM Conference on Data
and Application Security and Privacy (CODASPY), 2017.

[23] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” Lecture Notes in Computer Science,
vol. 1109, pp. 104–113, 1996.

[24] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture
Notes in Computer Science, vol. 1666, pp. 388–397, 1999.

[25] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low
noise, l3 cache side-channel attack.” in USENIX Security, vol. 2014,
2014, pp. 719–732.

[26] H.-J. Boehm and M. Weiser, “Garbage collection in an uncooperative
environment,” Softw. Pract. Exper., vol. 18, no. 9, pp. 807–820, Sep.
1988. [Online]. Available: http://dx.doi.org/10.1002/spe.4380180902

[27] T. Zhang, C. Jung, and D. Lee, “Prorace: Practical data race detection
for production use,” SIGOPS Oper. Syst. Rev., vol. 51, no. 2, pp. 149–
162, Apr. 2017.

[28] E. B. Wilson, “Probable inference, the law of succession, and sta-
tistical inference,” Journal of the American Statistical Association,
vol. 22, no. 158, pp. 209–212, 1927.

[29] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: a platform for in-
vivo multi-path analysis of software systems,” in Proc. 15th Int. Conf.
on Architectural Support for Programming Languages and Operating
Systems, Mar. 2011, pp. 265–278.

[30] D. Babić, L. Martignoni, S. McCamant, and D. Song, “Statically-
directed dynamic automated test generation,” in Proc. 2011 Int. Symp.
on Software Testing and Analysis, 2011, pp. 12–22.

[31] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[32] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execu-
tion framework,” in Symposium sur la sécurité des technologies de
l’information et des communications, SSTIC, France, 2015, pp. 31–
54.

[33] J. Salwan, R. Thomas, and A. Guinet, “Playing with the tigress,”
2016, https://github.com/JonathanSalwan/Tigress_protection.

[34] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of
Computer Security, vol. 1, no. 3-4, pp. 233–254, 1992.

[35] P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason, and C. E.
Kahn, “A retrospective on the VAX VMM security kernel,” IEEE
Transactions on Software Engineering, vol. 17, no. 11, pp. 1147–
1165, 1991.

[36] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system
call detection,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 61–93,
Feb. 2006.

[37] A. Frossi, F. Maggi, G. L. Rizzo, and S. Zanero, “Selecting and
improving system call models for anomaly detection.” in DIMVA.
Springer, 2009, pp. 206–223.

[38] C. Percival, “Cache missing for fun and profit,” 2005.

[39] A. Pawlowski, M. Contag, and T. Holz, “Probfuscation: An obfus-
cation approach using probabilistic control flows,” in Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer,
2016, pp. 165–185.

[40] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework for
the analysis of side-channel key recovery attacks,” in Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2009, pp. 443–461.

[41] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 305–316.

[42] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of aes,” in Cryptographers’ Track at the RSA
Conference. Springer, 2006, pp. 1–20.

[43] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009, pp. 199–212.

[44] A. K. Biswas, D. Ghosal, and S. Nagaraja, “A survey of timing
channels and countermeasures,” ACM Comput. Surv., vol. 50, no. 1,
pp. 6:1–6:39, Mar. 2017.

[45] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact
of a new cryptographic library,” in International Conference on
Cryptology and Information Security in Latin America. Springer,
2012, pp. 159–176.

[46] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The pro-
gram counter security model: Automatic detection and removal of
control-flow side channel attacks,” in International Conference on
Information Security and Cryptology. Springer, 2005, pp. 156–168.

[47] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in 25th USENIX Security
Symposium, 2016, pp. 53–70.

[48] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis
of the communication between colluding applications on modern
smartphones,” in Proceedings of the 28th Annual Computer Security
Applications Conference, ser. ACSAC ’12, 2012, pp. 51–60.

[49] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on selected areas in communications, vol. 21,
no. 1, pp. 5–19, 2003.

[50] L. Cavallaro, P. Saxena, and R. Sekar, “Anti-taint-analysis: Practical
evasion techniques against information flow based malware defense,”
Secure Systems Lab at Stony Brook University, Tech. Rep, pp. 1–18,
2007.

[51] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones,” ACM Trans. Comp. Sys. (TOCS), vol. 32, no. 2, p. 5, 2014.

[52] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” ACM Sigplan Notices, vol. 49, no. 6, pp. 259–269.

[53] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++:
Dynamic taint analysis with targeted control-flow propagation.” in
NDSS, 2011.

[54] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data tainting
and static analysis.” in NDSS, vol. 2007, 2007, p. 12.

[55] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint analy-
sis framework,” in Proceedings of the 2007 international symposium
on Software testing and analysis. ACM, 2007, pp. 196–206.

[56] B. Yadegari and S. Debray, “Bit-level taint analysis,” in Source Code
Analysis and Manipulation (SCAM), 2014 IEEE 14th International
Working Conference on. IEEE, 2014, pp. 255–264.

[57] ——, “Symbolic execution of obfuscated code,” in Proc. 22nd ACM
Conference on Computer and Communications Security, 2015, pp.
732–744.

http://dx.doi.org/10.1002/spe.4380180902
https://github.com/JonathanSalwan/Tigress_protection

[58] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in Security and privacy (SP),
2010 IEEE symposium on. IEEE, 2010, pp. 317–331.

[59] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security. ACM, 2007, pp. 116–127.

[60] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution
paths for malware analysis,” in Security and Privacy, 2007. SP’07.
IEEE Symposium on. IEEE, 2007, pp. 231–245.

[61] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray, and X. Su, “Iden-
tifying and understanding self-checksumming defenses in software,”
in Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. ACM, 2015, pp. 207–218.

[62] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Comm. ACM, vol. 56, no. 2, pp. 82–90, 2013.

[63] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proceed-
ings of the 32nd Annual Conference on Computer Security Applica-
tions. ACM, 2016, pp. 189–200.

[64] Z. Wang, J. Ming, C. Jia, and D. Gao, “Linear obfuscation to
combat symbolic execution,” in European Symposium on Research
in Computer Security. Springer, 2011, pp. 210–226.

[65] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation,” in 15th Annual Network
and Distributed System Security Symposium (NDSS), Feb. 2008.

	Introduction
	Semantic Considerations
	TMI Semantics
	Visible vs. Invisible State
	Code Obfuscation via Covert Channels

	Attack and Defense
	Attack Model
	Identifying Primitives
	Identifying Perturbations

	Defense Model

	Obfuscating Data Flow
	Deterministic Primitives
	Non-Deterministic Primitives
	Data cache channel
	File cache channel
	Jitting channel
	Garbage collection channel

	Flow Combiners
	Stealthy Timing Without Timing
	Training Primitives
	Offline vs. On-Demand Training

	Probabilistic Obfuscation
	Correctness Guarantees

	Evaluation
	Symbolic Analysis
	Evaluation Process
	Evaluation Platform
	Evaluation Results

	Covert Channel Detection Techniques
	Clock Perturbation Attacks
	System Call-based Anomaly Detection

	Performance

	Related Work
	Covert Channels and Side Channels
	Information Flow Tracking
	Symbolic Execution

	Conclusion
	References

