
On Copy Avoidance in Single AssignmentLanguagesSaumya K. DebrayDepartment of Computer ScienceUniversity of ArizonaTucson, AZ 85721, U.S.A.debray@cs.arizona.eduAbstract: Copy avoidance refers to the safe replacement, at compile time, ofcopying operations by destructive updates in single-assignment languages. Con-ceptually, the problem can be divided into two components: identifying memorycells that can safely be reused at a program point via destructive updating; anddeciding how to actually reuse such cells. Most of the work on this problem, todate, has focused on the �rst component, typically via dataow analyses to detectwhen memory cells become dead and may be safely reused. In this paper, we ex-amine the second component of the problem. We give an abstract formulation ofthe memory reuse problem, show that optimal reuse is NP-complete in general, andgive an e�cient polynomial-time approximation algorithm based on graph-matchingtechniques that produces optimal solutions for most commonly encountered casesof memory reuse.1 IntroductionSingle assignment languages, such as pure functional and logic programming lan-guages, do not have any notion of updatable variables: the value of a variable orstructure, once de�ned, does not change during execution. Updates to the value ofa variable or structure have to be e�ected, instead, by creating new copies. Thiscan lead to an undesirable degradation of performance.The problem can be overcome to some extent by using sophisticated compilersthat analyze the program to determine when a structure can be safely updatedin place, and avoid creating copies in such cases. There has been a considerableamount of work in this context, e.g., see [1, 8, 9, 10] in the context of functionalprogramming languages, and [2, 3, 4, 11, 12, 15] in the context of logic programminglanguages. Most of this work is aimed at determining when an update operationcan be safely performed destructively. For example, the work of Bruynooghe [2, 3],Foster and Winsborough [4], Hudak and Bloss [1, 8, 9], Mulkers et al. [12], andSastry et al. [15] focus on compile-time reference counting schemes to determinewhen a data structure being updated has at most one reference to it, and cantherefore be safely updated in place.Conceptually, there are two components to compile-time memory reuse. First,it is necessary to determine when a particular structure can be safely reused|or,equivalently, which structures can be safely reused at any given program point.Then, given a structure that can be safely reused, it is necessary to determine howbest to reuse the memory it occupies. Most of the work to date on compile-timememory reuse has focused on the �rst component: the underlying assumption seemsto be that once the data structures that are updatable at a given program point



have been identi�ed, deciding how to reuse them in a \good" way is straightforward.This paper examines the second component of the memory reuse problem, assumingthat the �rst component has been addressed via existing compile-time analysistechniques, so that we know which data structures are available for reuse at anygiven program point. Any such structure can, in general, be reused in di�erent ways,with di�erent runtime costs (either in space or time), and the compiler should tryto make its reuse decisions in a manner that reduces this cost as far as possible. Wegive an abstract formulation of this problem, show that optimal memory reuse isNP-complete in general, and give a polynomial-time approximation algorithm basedon graph matching techniques that produces optimal solutions for most commonlyencountered cases of memory reuse.We make few assumptions about the language under consideration, except thatit is a single assignment language, i.e., the value of a variable cannot be modi�edonce it has been de�ned. We assume that the language supports some reasonableset of base types, as well as vectors, i.e., objects occupying a sequence of contiguousmemory cells. Thus, an n-element array can be thought of as a vector of n cells,while a cons cell can be considered to be a vector of 2 cells. A term f(t1; : : : ; tn) withn arguments t1; : : : ; tn in logic programming languages such as Prolog is typicallyimplemented as a vector of n + 1 cells: one cell for the constructor f , and n cellsfor (pointers to) the arguments t1; : : : ; tn. The notion of a \memory cell" in thiscontext, may|but need not|coincide with the notion of a word of memory in theunderlying implementation.2 The Memory Reuse ProblemIn this section, we give a general formulation of the memory reuse problem. Tomotivate this formulation, we consider some simple examples.Example 2.1 Consider the following clause, which is taken from the assembler forSB-Prolog: it takes a WAM instruction in symbolic form and consults the sym-bol table to determine the \external form" for that instruction, which refers to adisplacement in the (runtime) symbol table:asm_p2(putstr(Functor,Arity,Reg), Instr, SymTab) :-Instr = put_structure(Disp, Reg),symtab_lookup( (Functor,Arity), SymTab, Disp).Suppose we know that the �rst argument of asm p2 is dead after a call to thatpredicate, so that the memory that it occupies|in this case, if we assume the\usual" WAM representation of terms, four cells|may be reused. There are twoterms constructed in the body: the output instruction put structure(Disp, Reg),which occupies 3 memory cells, and the structure (Functor,Arity), which alsooccupies 3 cells.1 Suppose an assignment operation has cost 1. Then, if the �rstargument is reused to construct the term put structure(Disp, Reg), we needthree assignments, one each for the principal functor and the two arguments, andtherefore incur a cost of 3. On the other hand, if it is used to construct the term(Functor,Arity), we require only one assignment, for the principal functor, since1Most Prolog implementations represent a term (t1; t2) as `,'(t1; t2), i.e., using a binary functionsymbol `,'.



Functor and Arity are already present in adjacent memory cells, and thereforeincur a cost of 1. In this case, therefore, it is cheaper to reuse the memory fromthe �rst argument to construct the term (Functor,Arity), by simply destructivelyupdating the principal functor of this term from putstr/3 to `,'/2. 2This example illustrates two points: �rst, there may be a number of di�erentchoices regarding how the memory for a particular vector should be reused; andsecond, each such choice for a memory reuse decision may have a di�erent cost.A good compiler should, therefore, take such costs into account, and select thecheapest alternative in its memory reuse decisions whenever possible.The next example illustrates the situation where a structure that is available forcompile-time reuse is large enough to be used to construct more than one new datastructure.Example 2.2 Consider the following clause for a quicksort program in Janus [13]2,where |E| denotes the size of the array E and ++ denotes array concatenation:qs(E, K, ^B) :- 0 < K, K < |E| ->qs(E[0..K], ^C), qs(E[(K+1)..(|E|-1)], ^D), B = C++D.Here, the input array E is split into two parts: the �rst, E[0..K], containing the�rst K+1 elements, and the second, E[(K+1)..(jEj-1)], containing the remainderof the array. If we know that the input array E is dead at this point , the memoryoccupied by E can be reused to construct both of the two smaller arrays. 2In general, then, a compile-time memory reuse problem at any given programpoint is characterized by the following:1. There is a set of producers that produce memory that can be reused.2. There is a set of consumers that consume memory. These are structures thathave to be constructed in memory for subsequent use.3. A producer may be used to satisfy the demands of one or more consumers. Inthis case, we can distinguish between two situations:(a) OR-allocation, where a producer can satisfy the memory requirements ofat most one of a set of choices, as in Exampl 2.1; and(b) AND-allocation, where a producer can satisfy the requirements of all ofa set of choices, as in Example 2.2.4. There may be a cost associated with choosing a particular producer to satisfythe requirements of a particular consumer.This suggests the following de�nition of a memory reuse problem:De�nition 2.1 A memory reuse problem is a 5-tuple hP;C; choices; cost; newcosti,where:2The Janus syntax given here is a \attened" version of that used in [13].



{ P is a set of producers;{ C is a set of consumers;{ choices : P �! }(}(C)) is a function that maps each producer to a set ofsets of consumers. Intuitively, given a producer u 2 P , the memory producedby u can be used for any one of the elements of choices(u); each element ofchoices(u) represents a set of consumers that may collectively be allocatedusing u. This function must satisfy the following: ; 2 choices(u) for everyu 2 P , i.e., it is an option to not reuse a producer.{ cost : P � C �! N [ f?g is a function such that for any producer u andconsumer v, the value of cost(u; v) is the cost of constructing v from u.3 Thisfunction must satisfy the following: for any u 2 P and v 2 C, cost(u; v) 6= ?if and only if v occurs in some element of choices(u). The intuition is thatcost(u; v) = ? if and only if v cannot be constructed from u.{ newcost : C �! N is a function that gives, for each consumer c, the cost ofconstructing c from new memory.4A solution to a memory reuse problem is simply a speci�cation of which pro-ducers are to be used to construct which consumers. More formally:De�nition 2.2 Given a memory reuse problem hP;C; choices; cost ; newcosti, afunction alloc : P �! }(C) is a solution to the problem if and only if the fol-lowing hold:1. alloc(u) 2 choices(u) for every u 2 P , i.e., allocation decisions must be legal;and2. for every u; v 2 P , if u 6= v then alloc(u) \ alloc(v) = ;, i.e., at most oneproducer can be used to construct any one consumer.A point to note in this de�nition is that a solution need not reuse every producer:if alloc(u) = ; for some producer u, then u is not being reused in that solution.3W. Winsborough has pointed out to us that in general, the cost of constructing a consumer vfrom a producer u depends also on which portion of u is used to construct v, and that this maybe an issue if a producer is to be AND-allocated to multiple consumers [18]. This can be handledby generalizing cost to be a 4-ary relation such that a tuple hu; v; i; ci 2 cost if and only if thecost of constructing the consumer v at position i of the producer u is c. It has been conjecturedthat given a set of consumers to be AND-allocated from a producer, the problem of mapping theconsumers to positions in the producer in order to minimize the cost of the AND-allocation isNP-complete [18].4An alternative would be to consider \new memory" as a distinguished element of the setof producers. The problem with this is that since any subset of the set of consumers can beconstructed from new memory, all these possibilities have to be accounted for in choices, resultingin characterizations of memory reuse problems that are exponentially larger than one intuitivelyexpects them to be.



Indeed, if there are more producers than consumers, then it will not be possible toreuse every producer.The cost of a solution is the total the cost of reusing memory for those consumersthat are constructed by reusing memory from producers, and of using new memoryfor those consumers that do not reuse memory from producers:De�nition 2.3 Given a memory reuse problem hP;C; choices; cost; newcosti, thecost of a solution alloc to this problem is given by the following: let Reused � C,given byReused = fv j 9u 2 P : v 2 alloc(u)gdenote the set of consumers constructed by reusing producers. Then, the cost ofthe solution alloc is given by the following, withP ; = 0:cost(alloc) =Pfcost(u; v) j u 2 P ^ v 2 Reused \ alloc(u)g+Pfnewcost(v) j v 2 C nReusedg:A solution for a memory reuse problem is said to be optimal if its cost is no greaterthan that of any other solution to that problem.In the remainder of the paper, we will assume, additionally, that the cost of con-structing a structure from new memory is at least as much as the cost of constructingthat structure by reusing a producer. In other words, given a memory reuse prob-lem hP;C; choices; cost ; newcosti, for every u 2 P and v 2 C, if cost(u; v) 6= ?then cost(u; v) � newcost(v). This assumption seems reasonable, since the cost ofconstructing a structure v from new memory requires initializing the �elds of v,together with some additional costs such as checking for availability of memory andthe actual allocation of new memory, which would not be incurred if v were to reusea producer.5 It does not lose generality, since if there is any u 2 P and v 2 C suchthat cost(u; v) 6= ? and cost(u; v) > newcost(v), then reusing u to construct v cannever produce an optimal solution: we can always do better by constructing v fromnew memory. We can therefore delete v from each element of choices(u) withouta�ecting any optimal solution.3 Space- and Time-Optimal SolutionsThere are (at least) two reasonable approaches to measuring the cost of a solution:one can consider either (i) the time cost, such as might be measured by the numberof instructions necessary to construct the consumers; or (ii) the space cost, such asmight be measured by the amount of new memory needed by the consumers. Thetwo are not equivalent: a solution to a memory reuse problem that is optimal withrespect to the time cost may not be optimal with respect to the space cost, andvice versa. This is illustrated by the following example:5However, it is conceivable that the cost of value trailing necessary for destructive updates ina logic programming language might outweigh the cost of allocating and initializing new storage[18].



Example 3.1 Consider the memory reuse problem hP;C; choices; cost; newcosti,where P = fP1;P2g; C = fC1;C2;C3g; and the functions choices, cost, and newcostare de�ned as follows:{ choices = fP1 7! f;; fC1g; fC2gg; P2 7! f;; fC2g; fC3ggg;{ cost = f(P1;C1) 7! 5; (P1;C2) 7! 2; (P2;C2) 7! 6; (P2;C3) 7! 1g;{ newcost = fC1 7! 9; C2 7! 8; C3 7! 7g.Suppose the functions cost and newcost specify the time cost of memory reuse,while the space cost of constructing a consumer x from new memory is givenby newcost(x) � 1. Then, the optimal solution if we want to minimize timecosts is fP1 7! fC2g;P2 7! fC3gg, with time cost cost(P1;C2) + cost(P2;C3) +newcost(C1) = 12. However, the space cost of this solution is newcost(C1)� 1 = 8.If we want to minimize space costs instead, the optimal solution is given byfP1 7! fC1g;P2 7! fC2gg. The space cost for this solution is newcost(C3)� 1 = 6,but its time cost is cost(P1;C1) + cost(P2;C2) + newcost(C3) = 18. 2This example shows that a space-optimal solution to a memory reuse problemneed not be a time-optimal one, and vice versa. However, when compiling a programwe know whether time costs are to be given greater importance than space costs orvice versa, and can accordingly de�ne the function cost in memory reuse problemsencountered. De�nition 2.3 therefore captures both approaches to measuring thecost of a solution.4 Algorithms for Memory Reuse ProblemsWe �rst consider arbitrary memory reuse problems. The following result suggeststhat the existence of e�cient algorithms for computing optimal solutions to suchproblems is unlikely:Theorem 4.1 The determination of an optimal solution to an arbitrary memoryreuse problem is NP-complete. It remains NP-complete even if each producer hasat most one nonempty alternative for OR-allocation, and all memory reuses havethe same cost.Proof (sketch) Optimal memory reuse can be formulated as a decision problemas follows: \Given a memory reuse problem M and an integer K � 0, is there asolution to M with cost no greater than K?" The proof is by reduction from theOne-in-Three Satis�ability problem where no clause contains a negated literal (seeproblem LO4 in [5]), which is known to be NP-complete [5, 16]. Given an instanceI of the One-in-Three Satis�ability problem involving a set U of variables and acollection S of clauses, each containing 3 literals of which none are negated, theidea is to construct a memory reuse problem M (I) � hU; S; choices; cost; newcosti,where the functions choices, cost, and newcost are de�ned as follows:{ for each u 2 U , let S(u) = fs 2 S j u 2 sg, then, choices(u) = f;; S(u)g.{ for any u 2 U and v 2 S, cost(u; v) = 1 if u occurs in v, and is ? otherwise.



{ newcost(x) = jSj+ 1 for every x 2 S.It is not di�cult to see that M (I) can be constructed in time polynomial in thesize of I. It can be shown that I has a solution � if and only if the memory reuseproblem M (I) has a solution alloc de�ned as :alloc(u) = if � (u) = true then S(u) else ;.with cost(alloc) = jSj. 2We therefore seek approximation algorithms for memory reuse problems thatare e�cient and achieve good solutions for common cases. Now in practice, it isoften the case that each dead data structure that is reused is used to create just asingle new structure. Memory reuse problems that satisfy this condition are said tobe \simple":De�nition 4.1 A memory reuse problem hP;C; choices; cost ; newcosti is simple iffor every u 2 P , 8x 2 choices(u) : jxj � 1.It turns out that optimal solutions for simple memory reuse problems are e�-ciently computable:Theorem 4.2 Let M � hP;C; choices; cost; newcosti be a simple memory reuseproblem, then an optimal solution to M can be computed in time O(mn logn),where n = jP j+ jCj and m = jf(u; v) j cost(u; v) 6= ?gj.Proof We transform the memory reuse problemM into a maximum-weightmatch-ing problem for a weighted bipartite graph G = (V;E) de�ned as follows:{ V = P [C;{ there is an edge (u; v) in E if and only if cost(u; v) 6= ?; and{ the weight of an edge (u; v) is newcost(v) � cost(u; v).Intuitively, the weight of an edge represents the savings realized by constructing vfrom u rather than from new memory. From the assumption that newcost(v) �cost(u; v) for all u and v such that cost(u; v) 6= ?, it follows that every edge in Ghas nonnegative weight.A matching on G is a set of edges E0 � E such that no two edges in E0 have acommon vertex. A matchingE0 on G, corresponds to a solution alloc to the originalmemory reuse problem M : for any u 2 P ,alloc(u) = if (u; v) 2 E0 then fvg else ;.By de�nition, (u; v) 2 E0 � E implies that cost(u; v) 6= ?, which can happen if andonly if v occurs in some element of choices(u). Since M is a simple memory alloca-tion problem, it follows that every nonempty element of choices(u) is a singleton,



which means fvg 2 choices(u), and therefore alloc(u) 2 choices(u). Further, sinceno two edges in E0 share a common endpoint, E0 does not contain two edges (u; v)and (u0; v) with u 6= u0. It is easy to show that this implies that for all u; u0 2 P ,u 6= u0 implies that alloc(u) \ alloc(u0) = ;. This veri�es that alloc is a solution toM . It is straightforward to show that such a solution is optimal if and only if thecorresponding matching has maximum weight. It is known that the maximum-weight matching problem for a bipartite graph with n vertices and m edges canbe solved, using network ow techniques, in time O(mn log2+m=n n) [17].6 Thetheorem follows. 2For simple memory reuse problems, therefore, we can determine optimal solu-tions e�ciently using graph matching techniques. We next show how approximatesolutions to arbitrary memory reuse problems can be obtained using similar tech-niques. The idea is straightforward: what makes the determination of an optimalsolution to an arbitrary memory reuse problem I algorithmically di�cult is thepresence of AND-allocation constraints, so we simplify I by \lumping together" allAND-allocation constraints that are \related", i.e, that share a consumer. Fromthis we can obtain a weighted bipartite graph for which a maximum-weight match-ing can be computed in polynomial time. This matching can then be translatedinto a solution to the original memory reuse problem I. It is possible, however, thatsimplifying I to lump together various AND-constraints can force us to omit certainallocation possibilities that are available in I. As a result, the solution computedmay not reuse a producer even though it is possible and pro�table to do so. Tocatch such possibilities, we \delete" from I the producers reused by the solution wehave computed and the consumers that reused them. This yields another (smaller)memory reuse problem, and we can repeat the above procedure on the residualproblem to obtain a solution that can be used to augment the earlier solution andcompute a second residual problem, and so on. This procedure is repeated until nofurther memory reuse is possible. Details are given in Figure 1.Example 4.1 Consider the memory reuse problem of Figure 2, where the producersare A and B and the consumers are a; b; c; d; e; f; g; h. A can be reused to constructeither fa; b; cg with a savings of 1 each, for a total savings of 3; or fc; d; eg withsavings of 1, 2, and 1 respectively, for a total savings of 4. B can be reused toconstruct either fe; fg, with savings of 3 and 2 respectively, for a total savingsof 5; or fa; e; gg with savings of 1, 3, and 2 respectively, for a total savings of6; or fhg with savings 1. The problem is illustrated pictorially in Figure 2(a): toreduce clutter, we have grouped various sets of AND-allocations together, with reusedecisions indicated by one thick line for each group of AND-allocations labelled bythe total savings for that group.This problem is �rst simpli�ed by merging sets of consumers that are not mu-tually disjoint. The graph of the resulting problem is shown in Figure 2(b). Thegraph is simpli�ed further by removing multiple edges between nodes to retain onlythe heaviest edge between any pair of nodes. This yields the bipartite graph ofFigure 2(c). A maximum weight matching to this graph consists of the edge withweight 6: this translates to a (partial) solution to the original problem that reuses6Note that labelling the edges of G with costs rather than savings, in order to compute aleast-cost solution, yields a generalization of the Minimum Maximal Matching problem, which isNP-complete even for bipartite graphs [5].



B to construct fa; e; gg. The reused producers and consumers are then deleted fromthe original problem to obtain the residual reuse problem of Figure 2(d). Noticethat because B has been deleted, there are no producers for f and h. The wholeprocedure is now repeated on this smaller problem: its solution, which is to reuse Ato construct fc; dg with total savings 3, is used to augment the partial solution com-puted earlier. The residual problem after this contains no producers and so yieldsan empty matching at the next iteration, whereupon the algorithm terminates.The resulting solution reuses A to construct fc; dg and B to construct fa; e; gg,with a total savings of 9. The remaining consumers, i.e., b, f and h, are constructedfrom new memory. 2Given an arbitrary memory reuse problem M � hP;C; choices; cost; newcosti,let jP j+ jCj = n, jf(u; v) j cost(u; v) 6= ?gj = m, and j [u2P choices(u)j = k. Theworst-case complexity of this algorithm can be computed as follows:1. Consider the cost of a single call to the function simplify with input M . Toconstruct the graph G, we have to construct bC, which can be done as follows:�rst, construct a graph H whose vertices are the elements of C, and wherethere is an edge from a vertex v1 to a vertex v2 if and only if there is some u 2 Psuch that v1 and v2 appear in some element of choices(u); then, the elementsof bC correspond precisely to the connected components of H. To compute theedges of H, we consider each nonempty element s appearing in the range ofchoices; and for each such s, arbitrarily pick an element v 2 s and add an edgefrom v to each element w 2 s such that v 6= w. Now there are O(k) elementsin the range of choices, each containing at most O(n) elements and thereforecontributing O(n) edges to H. Thus, H contains n vertices and O(nk) edges,and can be constructed in time O(nk). The connected components in H canthen be identi�ed in time O(nk) using depth-�rst search. Thus, the set bC canbe constructed in time O(nk).The graph G constructed after this has O(n) vertices. Identifying its edgesin a naive way would incur cost O(n2k2), since each edge can be identi�edin O(k) comparisons, each of cost O(n), and there are at most O(nk) edges.However, we can do better by maintaining some additional information whilemanipulating the graph H. Initially, every node in H is unlabelled. Foreach u 2 P and v 2 choices(u), we compute cuv = Pw2v cost(u;w), andpick an arbitrary element x 2 v and label it with the pair (u; cuv). Duringthe depth-�rst search to �nd the connected components of H, whenever wereach a node x that has a label (u; c), we add an edge in the graph G withweight c between the vertex corresponding to u and that corresponding tothe connected component of x. Using this approach, the edges of G can beidenti�ed in time proportional to the number of vertices in H, i.e., in timeO(nk).Thus, the total cost of a call to simplify is O(nk).2. Given a weighted bipartite graph with v vertices and e edges, the cost of com-puting a maximum-weightmatching is O(ve log v) [17]. The graph returned bysimplify has O(n) vertices and O(k) edges, so the cost of computing a match-ing is O(nk logn). Finally, the updating of the solution using the matching socomputed, and of computing the residual reuse problem, can be done in time



Input: A memory reuse problem I = hP;C; choices; cost; newcosti.Output: A solution S to I.Method: return S = solve(I);function solve(I) /* I is an arbitrary memory reuse problem */beginlet I � hP;C; choices; cost ; newcosti;S := ;;repeatG := simplify(I);compute a maximum-weight matching M for G;if M 6= ; thenfor each edge (u; v) 2M with weight n do{ �nd a set v0 2 choices(u) such that v0 � v andPw2v0 cost(u;w) = n;{ augment the solution S with the memory reuse decisionu 7! v0;{ delete u from P ;{ delete each element of v0 from C and from each element ofchoices(u);od�untilM = ;;return S;endfunction simplify(I) /* I is an arbitrary memory reuse problem */beginlet I � hP;C; choices; cost ; newcosti;bC := [fchoices(u) j u 2 Pg n ;;merge subsets of bC that are not pairwise disjoint;let G = (V;E) be the weighted bipartite graph de�ned as follows:{ V = P [ bC; and{ for each u 2 P and v 2 bC, there is an edge (u; v) 2 E with cost nfor every v0 2 choices(u) such that v0 � v, wheren =Pw2v0 cost(u;w);for every u 2 P; v 2 bC doif there are multiple edges between u and v, delete all but the heaviestsuch edge;odreturn G;endFigure 1: An Algorithm for Arbitrary Memory Reuse Problems
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Program T0 (ms) T1 (ms) T2 (ms) �0 (%) �1 (%) � (%)nrev 352.0 244.1 178.5 49.3 26.9 60.8disj 437.8 413.3 399.7 8.7 3.3 55.5qsort 616.0 510.0 470.7 23.6 7.7 37.1prime 702.1 651.5 635.3 9.5 2.5 32.0insert 2039.4 1954.8 1696.9 16.8 13.2 304.8queen 4074.0 3932.5 3849.3 5.5 2.2 58.8Key :T0 : execution time, no memory reuseT1 : execution time, \naive" memory reuseT2 : execution time, intelligent memory reuse�0 = (T0 � T2)=T0 : speed improvement due to intelligent memoryreuse, relative to no reuse�1 = (T1 � T2)=T1 : speed improvement due to intelligent memoryreuse, relative to naive reuse� = (T1 � T2)=(T0 � T1) : speed improvement due to intelligent reuserelative to naive reuse, compared to the speed improvement due tonaive reuse compared to no reuse.Table 1: Speed Improvements due to Intelligent Memory ReuseO(n + k). Thus, the total cost of each iteration in the body of the functionsolve takes time O(nk + nk logn+ n + k) = O(nk logn).3. In the worst case, each iteration succeeds in matching one producer with oneconsumer, so the size of the problem decreases by 2 at each iteration. Thetotal number of iterations is therefore O(n), and the overall worst case costof the algorithm is O(n2k logn).Thus, given an arbitrary memory reuse problem with n producers and consumersand k choices for reuse, the algorithm described above runs in time O(n2k logn).Moreover, for simple memory reuse problems it runs in time O(nk logn) =O(nm logn), and the solution computed is optimal.5 PerformanceTo test the e�cacy of our algorithm, we experimented with a number of smallbenchmarks on the jc system [6], running on a Sparcstation-2. The results arereported in Table 1. The benchmarks tested were the following:nrev : the \naive reverse" program, run on a list of length 1000.disj : a program to transform a propositional formula to its disjunctivenormal form|in our experiment, the input formula contained a total of62 connectives and variables, while the output contained 1319 variablesand connectives altogether.



qsort : the quicksort program, run on an ordered list of 1000 integers (thiscauses the program to exhibit its worst-case O(n2) behavior).prime : a program to compute a list of prime numbers upto 5000, using theSieve of Eratosthenes.insert : a program that creates a binary tree of 1000 integers.queen : a program to determine all solutions to the 10-queens problem.The programs nrev, qsort, prime, insert, and queen were obtained by a directtranslation, from FGHC to Janus, of benchmarks used by Sundararajan, Sastryand Tick [15]; the disj benchmark was translated from a Prolog program due toJ. Ja�ar, discussed in [7]. These programs all gave rise to simple memory reuseproblems, for which our algorithm computes optimal solutions in polynomial time.The second, third, and fourth columns of Table 1 give the runtimes with, re-spectively, no memory reuse; naive memory reuse (where memory is reused but noattempt is made to avoid reinitializing cells that already have the desired valuein place, as in [15]); and intelligent memory reuse using our algorithm. The �fthand sixth columns give the percentage speed improvement due to intelligent reuse,compared, respectively, to the cases with no reuse and with naive memory reuse.The numbers indicate that on typical programs, intelligent memory reuse leads toa speed improvement of roughly 2% to 13%, compared to \naive" memory reuse,and about 5% to 24% compared to no reuse at all (we do not consider nrev in thesenumbers, since it performs so little \interesting" computation that the speed gainsfrom intelligentmemory reuse are magni�ed unrealistically). The latter numbers areactually somewhat conservative, since they do not reect the speed improvementsdue to reduced runtime garbage collection.However, these numbers do not, of themselves, give an accurate estimate of theutility of intelligent memory reuse compared to naive reuse, since they do not distin-guish between programs with many opportunities for memory reuse and programswith few such opportunities (the point is that in a program with comparatively fewopportunities for local reuse, our algorithm will not produce very large speedups|but this is due to the very nature of the program, rather than a de�ciency in ouralgorithm). It would be more reasonable, in our opinion, to compare the addi-tional speed improvement is obtained by intelligent memory reuse (relative to naivereuse) with the speed improvement due to naive reuse (relative to no reuse). This�gure is reported in the seventh column, and it shows that the additional speedimprovements due to intelligent reuse, compared to the speed improvements due tonaive reuse, are quite substantial. A point to note is that in all of the benchmarkstested except insert, the data structures being reused are cons cells, which meansthat each instance of intelligent reuse simply manages to avoid one assignment (bynot having to update the head of the cons pair)|despite this, the incremental im-provement due to intelligent reuse is quite signi�cant, ranging from 32% to 58%.In insert, on the other hand, where each node of the binary tree being processedis a term with three arguments, intelligent reuse avoids two assignments, and thespeed improvement due to intelligent reuse is a factor of 3 greater than the speedimprovement due to naive reuse.Finally, it should be noted that while the intelligent memory reuse scheme de-scribed here can be expected to produce performance improvements compared tonaive reuse, it may or may not be faster than a system that does no memory reuse



at all, depending on the details of the cost model used. The problem is similar tothat of common subexpression elimination during compilation: in order to reusethe memory for a data structure, it is necessary to keep track of its whereabouts,which requires tying up a register or incurring some memory reads and writes. Ifthe cost model does not take such low level costs into account, the expense of keep-ing track of a dead data structure until it can be reused may outweigh the savingsincurred from its reuse, and produce code that runs slower (this is a phenomenonthat we observed while experimenting with the disj benchmark mentioned above|disregarding such low level costs led, on some inputs, to a slowdown of about 20%compared to code with no memory reuse). It should be noted, however, that thisproblem is inherent in compile-timememory reuse|that is, a memory reuse schemethat is not careful about low level costs and tradeo�s may produce code slower thanthat without reuse, regardless of what reuse scheme is being used. However, ourmodel for intelligent memory reuse is exible enough to allow such low level coststo be taken into account in an implementation.6 ConclusionsConceptually, there are two components to compile time memory reuse: it is nec-essary to determine, �rst, which memory cells may be safely reused at a particularprogram point; and second, how they are to be \best" reused. Most of the researchon compile-time memory reuse has, to date, concentrated on the �rst component,typically via dataow analysis: the underlying assumption seems to be that oncethis has been solved, dealing with the second component is straightforward. Inthis paper, we focus on the second component of the memory reuse problem. Wegive an abstract characterization of the problem, show that determining an opti-mal solution is NP-complete, and give an e�cient polynomial-time heuristic usinggraph-matching techniques. Our algorithm produces optimal solutions for mostcommonly encountered memory reuse problems.Acknowledgements: This paper has bene�ted greatly from discussions with A.Prasad and Will Winsborough. Comments by Evan Tick helped improve the pre-sentation of the paper greatly. I am also grateful to Evan Tick and Nevin Heintzefor providing the code for the benchmarks. This work was supported in part by theNational Science Foundation under grant CCR-9123520.References[1] A. Bloss, Path Analysis and Optimization of Non-strict Functional Languages,PhD Dissertation, Dept. of Computer Science, Yale University, 1989.[2] M. Bruynooghe, \Compile-Time Garbage Collection", Proc. IFIP WorkingConference on Program Transformation and Veri�cation, Elsevier, 1986.[3] M. Bruynooghe, A. Mulkers, and K. Musumbu, \Compile-Time Garbage Col-lection for Prolog", Draft report, Dept. of Computer Science, Katholieke Uni-versiteit Leuven, Belgium, 1988.[4] I. Foster and W. Winsborough, \Copy Avoidance through Compile-TimeAnal-ysis and Local Reuse", Proc. 1991 International Symposium on Logic Program-ming, San Diego, Nov. 1991, pp. 455{469. MIT Press, Cambridge.
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