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Abstract: Copy avoidance refers to the safe replacement, at compile time, of
copying operations by destructive updates in single-assignment languages. Con-
ceptually, the problem can be divided into two components: identifying memory
cells that can safely be reused at a program point via destructive updating; and
deciding how to actually reuse such cells. Most of the work on this problem, to
date, has focused on the first component, typically via dataflow analyses to detect
when memory cells become dead and may be safely reused. In this paper, we ex-
amine the second component of the problem. We give an abstract formulation of
the memory reuse problem, show that optimal reuse is NP-complete in general, and
give an efficient polynomial-time approximation algorithm based on graph-matching
techniques that produces optimal solutions for most commonly encountered cases
of memory reuse.

1 Introduction

Single assignment languages, such as pure functional and logic programming lan-
guages, do not have any notion of updatable variables: the value of a variable or
structure, once defined, does not change during execution. Updates to the value of
a variable or structure have to be effected, instead, by creating new copies. This
can lead to an undesirable degradation of performance.

The problem can be overcome to some extent by using sophisticated compilers
that analyze the program to determine when a structure can be safely updated
in place, and avoid creating copies in such cases. There has been a considerable
amount of work in this context, e.g., see [1, 8, 9, 10] in the context of functional
programming languages, and [2, 3, 4, 11, 12, 15] in the context of logic programming
languages. Most of this work is aimed at determining when an update operation
can be safely performed destructively. For example, the work of Bruynooghe [2, 3],
Foster and Winsborough [4], Hudak and Bloss [1, 8, 9], Mulkers et al. [12], and
Sastry et al. [15] focus on compile-time reference counting schemes to determine
when a data structure being updated has at most one reference to it, and can
therefore be safely updated in place.

Conceptually, there are two components to compile-time memory reuse. First,
1t is necessary to determine when a particular structure can be safely reused—or,
equivalently, which structures can be safely reused at any given program point.
Then, given a structure that can be safely reused, it is necessary to determine how
best to reuse the memory it occupies. Most of the work to date on compile-time
memory reuse has focused on the first component: the underlying assumption seems
to be that once the data structures that are updatable at a given program point



have been identified, deciding how to reuse them in a “good” way is straightforward.
This paper examines the second component of the memory reuse problem, assuming
that the first component has been addressed via existing compile-time analysis
techniques, so that we know which data structures are available for reuse at any
given program point. Any such structure can, in general, be reused in different ways,
with different runtime costs (either in space or time), and the compiler should try
to make its reuse decisions in a manner that reduces this cost as far as possible. We
give an abstract formulation of this problem, show that optimal memory reuse is
NP-complete in general, and give a polynomial-time approximation algorithm based
on graph matching techniques that produces optimal solutions for most commonly
encountered cases of memory reuse.

We make few assumptions about the language under consideration, except that
it is a single assignment language, i.e., the value of a variable cannot be modified
once it has been defined. We assume that the language supports some reasonable
set of base types, as well as vectors, i.e.; objects occupying a sequence of contiguous
memory cells. Thus, an n-element array can be thought of as a vector of n cells,
while a cons cell can be considered to be a vector of 2 cells. A term f(¢q,...,t,) with
n arguments ¢y, ...,%, in logic programming languages such as Prolog is typically
implemented as a vector of n + 1 cells: one cell for the constructor f, and n cells
for (pointers to) the arguments ¢1,...,¢,. The notion of a “memory cell” in this
context, may—but need not—coincide with the notion of a word of memory in the
underlying implementation.

2 The Memory Reuse Problem

In this section, we give a general formulation of the memory reuse problem. To
motivate this formulation, we consider some simple examples.

Example 2.1 Consider the following clause, which is taken from the assembler for
SB-Prolog: it takes a WAM instruction in symbolic form and consults the sym-
bol table to determine the “external form” for that instruction, which refers to a
displacement in the (runtime) symbol table:

asm_p2(putstr(Functor,Arity,Reg), Instr, SymTab) :-
Instr = put_structure(Disp, Reg),
symtab_lookup( (Functor,Arity), SymTab, Disp).

Suppose we know that the first argument of asm_p2 is dead after a call to that
predicate, so that the memory that it occupies—in this case, if we assume the
“usual” WAM representation of terms, four cells—may be reused. There are two
terms constructed in the body: the output instruction put_structure(Disp, Reg),
which occupies 3 memory cells, and the structure (Functor,Arity), which also
occupies 3 cells.! Suppose an assignment operation has cost 1. Then, if the first
argument is reused to construct the term put_structure(Disp, Reg), we need
three assignments, one each for the principal functor and the two arguments; and
therefore incur a cost of 3. On the other hand, if it is used to construct the term
(Functor,Arity), we require only one assignment, for the principal functor, since

!Most Prolog implementations represent a term (¢1,¢2) as *,’(¢1,%2), i.e., using a binary function
symbol ¢,’.



Functor and Arity are already present in adjacent memory cells, and therefore
incur a cost of 1. In this case, therefore, it is cheaper to reuse the memory from
the first argument to construct the term (Functor,Arity), by simply destructively
updating the principal functor of this term from putstr/3 to ‘,’/2. O

This example illustrates two points: first, there may be a number of different
choices regarding how the memory for a particular vector should be reused; and
second, each such choice for a memory reuse decision may have a different cost.
A good compiler should, therefore, take such costs into account, and select the
cheapest alternative in its memory reuse decisions whenever possible.

The next example illustrates the situation where a structure that i1s available for
compile-time reuse is large enough to be used to construct more than one new data
structure.

Example 2.2 Consider the following clause for a quicksort program in Janus [13]2,
where |E| denotes the size of the array E and ++ denotes array concatenation:

qs(E, K, "B) :- 0 <K, K < |[E|] —>
qs(E[0..K], ~C), qs(E[(K+1)..(|E[-1)], "D), B = C++D.

Here, the input array E is split into two parts: the first, E[0. .K], containing the
first K+1 elements, and the second, E[(XK+1) .. (|E|-1)], containing the remainder
of the array. If we know that the input array E 1s dead at this point , the memory
occupied by E can be reused to construct both of the two smaller arrays. O

In general, then, a compile-time memory reuse problem at any given program
point is characterized by the following:

1. There is a set of producers that produce memory that can be reused.

2. There is a set of consumers that consume memory. These are structures that
have to be constructed in memory for subsequent use.

3. A producer may be used to satisfy the demands of one or more consumers. In
this case, we can distinguish between two situations:

(a) OR-allocation, where a producer can satisfy the memory requirements of
at most one of a set of choices, as in Exampl 2.1; and

(b) AND-allocation, where a producer can satisfy the requirements of all of
a set of choices, as in Example 2.2.

4. There may be a cost associated with choosing a particular producer to satisfy
the requirements of a particular consumer.

This suggests the following definition of a memory reuse problem:

Definition 2.1 A memory reuse problem is a 5-tuple (P, C, choices, cost, newcost),
where:

?The Janus syntax given here is a “flattened” version of that used in [13].



— P is a set of producers;
— (' 1s a set of consumers;

— choices : P — p(p(C)) is a function that maps each producer to a set of
sets of consumers. Intuitively, given a producer v € P, the memory produced
by u can be used for any one of the elements of choices(u); each element of
choices(u) represents a set of consumers that may collectively be allocated
using u. This function must satisfy the following: @ € choices(u) for every
u € P, 1.e., 1t is an option to not reuse a producer.

- cost : P x C — N U{—} is a function such that for any producer u and
consumer v, the value of cost(u,v) is the cost of constructing v from u.? This
function must satisfy the following: for any v € P and v € C, cost(u,v) # —
if and only if v occurs in some element of choices(u). The intuition is that
cost(u,v) = — if and only if v cannot be constructed from w.

— newcost : C' — N is a function that gives, for each consumer ¢, the cost of
constructing ¢ from new memory.*

A solution to a memory reuse problem is simply a specification of which pro-
ducers are to be used to construct which consumers. More formally:

Definition 2.2 Given a memory reuse problem (P, C| choices, cost, newcost), a
function alloc : P — p(C) is a solution to the problem if and only if the fol-
lowing hold:

1. alloe(u) € choices(u) for every u € P, i.e., allocation decisions must be legal;
and

2. for every uw,v € P, if u # v then alloc(u) N alloc(v) = @, i.e., at most one
producer can be used to construct any one consumer.

A point to note in this definition is that a solution need not reuse every producer:
if alloc(u) = @ for some producer u, then u is not being reused in that solution.

3W. Winsborough has pointed out to us that in general, the cost of constructing a consumer v
from a producer v depends also on which portion of u is used to construct v, and that this may
be an issue if a producer is to be AND-allocated to multiple consumers [18]. This can be handled
by generalizing cost to be a 4-ary relation such that a tuple {u,v,7,c) € cost if and only if the
cost of constructing the consumer v at position ¢ of the producer u is ¢. It has been conjectured
that given a set of consumers to be AND-allocated from a producer, the problem of mapping the
consumers to positions in the producer in order to minimize the cost of the AND-allocation is
NP-complete [18].

4An alternative would be to consider “new memory” as a distinguished element of the set
of producers. The problem with this is that since any subset of the set of consumers can be
constructed from new memory, all these possibilities have to be accounted for in choices, resulting
in characterizations of memory reuse problems that are exponentially larger than one intuitively
expects them to be.



Indeed, if there are more producers than consumers, then it will not be possible to
reuse every producer.

The cost of a solution is the total the cost of reusing memory for those consumers
that are constructed by reusing memory from producers, and of using new memory
for those consumers that do not reuse memory from producers:

Definition 2.3 Given a memory reuse problem (P, C, choices, cost, newcost), the
cost of a solution alloc to this problem is given by the following: let Reused C C,
given by

Reused = {v | Ju € P :v € alloc(u)}

denote the set of consumers constructed by reusing producers. Then, the cost of
the solution alloc is given by the following, with > @ = 0:

cost(alloc) = {cost(u,v) | v € P Av € Reused N alloc(u) }+
> {newcost(v) | v € C'\ Reused}.

A solution for a memory reuse problem is said to be optimal if its cost is no greater
than that of any other solution to that problem. g

In the remainder of the paper, we will assume, additionally, that the cost of con-
structing a structure from new memory is at least as much as the cost of constructing
that structure by reusing a producer. In other words, given a memory reuse prob-
lem (P, C, choices, cost, newcost), for every v € P and v € C, if cost(u,v) # —
then cost(u,v) < newcost(v). This assumption seems reasonable, since the cost of
constructing a structure v from new memory requires initializing the fields of v,
together with some additional costs such as checking for availability of memory and
the actual allocation of new memory, which would not be incurred if v were to reuse
a producer.® It does not lose generality, since if there is any 4 € P and v € C such
that cost(u,v) # — and cost(u, v) > newcost(v), then reusing u to construct v can
never produce an optimal solution: we can always do better by constructing v from
new memory. We can therefore delete v from each element of choices(u) without
affecting any optimal solution.

3 Space- and Time-Optimal Solutions

There are (at least) two reasonable approaches to measuring the cost of a solution:
one can consider either (7) the time cost, such as might be measured by the number
of instructions necessary to construct the consumers; or (i) the space cost, such as
might be measured by the amount of new memory needed by the consumers. The
two are not equivalent: a solution to a memory reuse problem that is optimal with
respect to the time cost may not be optimal with respect to the space cost, and
vice versa. This is illustrated by the following example:

5However, it is conceivable that the cost of value trailing necessary for destructive updates in
a logic programming language might outweigh the cost of allocating and initializing new storage
[18].



Example 3.1 Consider the memory reuse problem (P, C, choices, cost, newcost),
where P = {P1,P2}; C = {C1, 02, C3}; and the functions choices, cost, and newcost
are defined as follows:

— choices = {P1 — {0, {C1},{C2}}; P2 — {6,{C2}, {C3}}};
— cost = {(P1,C1) — 5;(P1,C2) — 2;(P2,C2) — 6,(P2,C3) — 1};
— newcost = {C1 — 9;C2— §;C3 — T}.

Suppose the functions cost and newcost specify the time cost of memory reuse,
while the space cost of constructing a consumer z from new memory is given
by newcost(z) — 1. Then, the optimal solution if we want to minimize time
costs is {P1 — {C2},P2 — {C3}}, with time cost cost(P1,C2) + cost(P2,C3) +
newcost(C1) = 12. However, the space cost of this solution is newecost(C1) — 1 = 8.
If we want to minimize space costs instead, the optimal solution is given by
{P1 — {C1},P2 — {C2}}. The space cost for this solution is newcost(C3) — 1 = 6,
but its time cost is cost(P1, C1) 4 cost(P2,C2) + newcost(C3) = 18. O

This example shows that a space-optimal solution to a memory reuse problem
need not be a time-optimal one; and vice versa. However, when compiling a program
we know whether time costs are to be given greater importance than space costs or
vice versa, and can accordingly define the function cost in memory reuse problems
encountered. Definition 2.3 therefore captures both approaches to measuring the
cost of a solution.

4 Algorithms for Memory Reuse Problems

We first consider arbitrary memory reuse problems. The following result suggests
that the existence of efficient algorithms for computing optimal solutions to such
problems is unlikely:

Theorem 4.1 The determination of an optimal solution to an arbitrary memory
reuse problem is NP-complete. It remains NP-complete even if each producer has
at most one nonempty alternative for OR-allocation, and all memory reuses have
the same cost.

Proof (sketch) Optimal memory reuse can be formulated as a decision problem
as follows: “Given a memory reuse problem M and an integer K > 0, is there a
solution to M with cost no greater than K77 The proof is by reduction from the
One-in-Three Satisfiability problem where no clause contains a negated literal (see
problem LO4 in [5]), which is known to be NP-complete [5, 16]. Given an instance
I of the One-in-Three Satisfiability problem involving a set U of variables and a
collection S of clauses, each containing 3 literals of which none are negated, the
idea is to construct a memory reuse problem M (I) = (U, S, choices, cost, newcost),
where the functions choices, cost, and newcost are defined as follows:

— for each w € U, let S(u) = {s € S| u € s}, then, choices(u) = {0, S(u)}.

— forany u € U and v € S, cost(u,v) = 1 if w occurs in v, and is — otherwise.



— newcost(x) = |S| + 1 for every z € S.

It is not difficult to see that M (I) can be constructed in time polynomial in the
size of 1. It can be shown that I has a solution 7 if and only if the memory reuse
problem M (7) has a solution alloc defined as :

alloc(u) = if 7(u) = true then S(u) else .

with cost(alloc) = |S|. O

We therefore seek approximation algorithms for memory reuse problems that
are efficient and achieve good solutions for common cases. Now in practice, it is
often the case that each dead data structure that is reused is used to create just a
single new structure. Memory reuse problems that satisfy this condition are said to
be “simple”:

Definition 4.1 A memory reuse problem (P, C| choices, cost, newcost) is simple if
for every u € P, Va € choices(u) : 2| < 1. m

It turns out that optimal solutions for simple memory reuse problems are effi-
ciently computable:

Theorem 4.2 Let M = (P,C, choices, cost, newcost) be a simple memory reuse
problem, then an optimal solution to M can be computed in time O(mnlogn),

where n = |P| 4 |C| and m = |{(u,v) | cost(u,v) # —}|.

Proof We transform the memory reuse problem M into a maximum-weight match-
ing problem for a weighted bipartite graph G = (V| F') defined as follows:

- V=PUC(,

— there is an edge (u,v) in E if and only if cost(u,v) # —; and

bl

— the weight of an edge (u,v) is newcost(v) — cost(u,v).

Intuitively, the weight of an edge represents the savings realized by constructing v
from u rather than from new memory. From the assumption that newcost(v) >
cost(u,v) for all v and v such that cost(u,v) # —, it follows that every edge in G
has nonnegative weight.

A maltching on G is a set of edges E' C E such that no two edges in £’ have a
common vertex. A matching F’ on G, corresponds to a solution alloc to the original
memory reuse problem M: for any u € P,

alloc(u) = if (u,v) € F’ then {v} else .
By definition, (u,v) € E' C E implies that cost(u,v) # —, which can happen if and

only if v occurs in some element of choices(u). Since M is a simple memory alloca-
tion problem, it follows that every nonempty element of choices(u) is a singleton,



which means {v} € choices(u), and therefore alloc(u) € choices(u). Further, since
no two edges in E’ share a common endpoint, E’ does not contain two edges (u, v)
and (u',v) with u # «'. Tt is easy to show that this implies that for all u, v’ € P,
u # u' implies that alloc(u) N alloc(u’) = @. This verifies that alloc is a solution to
M.

It is straightforward to show that such a solution is optimal if and only if the
corresponding matching has maximum weight. It is known that the maximum-
weight matching problem for a bipartite graph with n vertices and m edges can
be solved, using network flow techniques, in time O(mnlogyy,,/, 7) [17].° The
theorem follows. O

For simple memory reuse problems, therefore, we can determine optimal solu-
tions efficiently using graph matching techniques. We next show how approximate
solutions to arbitrary memory reuse problems can be obtained using similar tech-
niques. The idea is straightforward: what makes the determination of an optimal
solution to an arbitrary memory reuse problem [ algorithmically difficult is the
presence of AND-allocation constraints, so we simplify I by “lumping together” all
AND-allocation constraints that are “related”, i.e, that share a consumer. From
this we can obtain a weighted bipartite graph for which a maximum-weight match-
ing can be computed in polynomial time. This matching can then be translated
into a solution to the original memory reuse problem 7. It is possible, however, that
simplifying I to lump together various AND-constraints can force us to omit certain
allocation possibilities that are available in /. As a result, the solution computed
may not reuse a producer even though it is possible and profitable to do so. To
catch such possibilities, we “delete” from I the producers reused by the solution we
have computed and the consumers that reused them. This yields another (smaller)
memory reuse problem, and we can repeat the above procedure on the residual
problem to obtain a solution that can be used to augment the earlier solution and
compute a second residual problem, and so on. This procedure is repeated until no
further memory reuse is possible. Details are given in Figure 1.

Example 4.1 Consider the memory reuse problem of Figure 2, where the producers
are A and B and the consumers are a,b,¢,d, e, f, g, h. A can be reused to construct
either {a, b, c} with a savings of 1 each, for a total savings of 3; or {e¢,d, e} with
savings of 1, 2, and 1 respectively, for a total savings of 4. B can be reused to
construct either {e, f}, with savings of 3 and 2 respectively, for a total savings
of 5; or {a,e, g} with savings of 1, 3, and 2 respectively, for a total savings of
6; or {h} with savings 1. The problem is illustrated pictorially in Figure 2(a): to
reduce clutter, we have grouped various sets of AND-allocations together, with reuse
decisions indicated by one thick line for each group of AND-allocations labelled by
the total savings for that group.

This problem is first simplified by merging sets of consumers that are not mu-
tually disjoint. The graph of the resulting problem is shown in Figure 2(b). The
graph is simplified further by removing multiple edges between nodes to retain only
the heaviest edge between any pair of nodes. This yields the bipartite graph of
Figure 2(c). A maximum weight matching to this graph consists of the edge with
weight 6: this translates to a (partial) solution to the original problem that reuses

6Note that labelling the edges of G' with costs rather than savings, in order to compute a
least-cost solution, yields a generalization of the Minimum Mazimal Matching problem, which is
NP-complete even for bipartite graphs [5].



B to construct {a, e, g}. The reused producers and consumers are then deleted from
the original problem to obtain the residual reuse problem of Figure 2(d). Notice
that because B has been deleted, there are no producers for f and h. The whole
procedure is now repeated on this smaller problem: its solution, which is to reuse A
to construct {e, d} with total savings 3, is used to augment the partial solution com-
puted earlier. The residual problem after this contains no producers and so yields
an empty matching at the next iteration, whereupon the algorithm terminates.

The resulting solution reuses A to construct {¢, d} and B to construct {a,e, g},
with a total savings of 9. The remaining consumers, 1.e., b, f and h, are constructed
from new memory. 0O

Given an arbitrary memory reuse problem M = (P, C| choices, cost, newcost),
let |P|+ |C| = n, [{(u,v) | cost(u,v) # —}| = m, and | Uyep choices(u)| = k. The
worst-case complexity of this algorithm can be computed as follows:

1. Consider the cost of a single call to the function simplify with input M. To
construct the graph G, we have to construct €', which can be done as follows:
first, construct a graph H whose vertices are the elements of ', and where
there 1s an edge from a vertex v; to a vertex vy if and only if there i1s some u € P
such that vy and vy appear in some element of choices(u); then, the elements
of C correspond precisely to the connected components of H. To compute the
edges of H, we consider each nonempty element s appearing in the range of
choices; and for each such s, arbitrarily pick an element v € s and add an edge
from v to each element w € s such that v # w. Now there are O(k) elements
in the range of choices, each containing at most O(n) elements and therefore
contributing O(n) edges to H. Thus, H contains n vertices and O(nk) edges,
and can be constructed in time O(nk). The connected components in H can
then be identified in time O(nk) using depth-first search. Thus, the set C can
be constructed in time O(nk).

The graph G constructed after this has O(n) vertices. Identifying its edges
in a naive way would incur cost O(n?k?), since each edge can be identified
in O(k) comparisons, each of cost O(n), and there are at most O(nk) edges.
However, we can do better by maintaining some additional information while
manipulating the graph H. Initially, every node in H is unlabelled. For
each u € P and v € choices(u), we compute cyy = ), cost(u,w), and
pick an arbitrary element # € v and label it with the pair (u,cyy). During
the depth-first search to find the connected components of H, whenever we
reach a node « that has a label (u,¢), we add an edge in the graph G with
weight ¢ between the vertex corresponding to u and that corresponding to
the connected component of . Using this approach, the edges of G can be
identified in time proportional to the number of vertices in H, i.e., in time

O(nk).
Thus, the total cost of a call to simplify is O(nk).

2. Given a weighted bipartite graph with v vertices and e edges, the cost of com-
puting a maximum-weight matching is O(ve log v) [17]. The graph returned by
simplify has O(n) vertices and O(k) edges, so the cost of computing a match-
ing is O(nk logn). Finally, the updating of the solution using the matching so
computed, and of computing the residual reuse problem, can be done in time



Input: A memory reuse problem I = (P, C, choices, cost, newcost).
Output: A solution S to [I.

Method: return S = solve(]);

function solve(I) /* I is an arbitrary memory reuse problem */
begin

let I = (P, C, choices, cost, newcost);

S =0,

repeat

G = simplify(1);
compute a maximum-weight matching M for G
if M # 0 then
for each edge (u,v) € M with weight n do
— find a set v’ € choices(u) such that ' C v and
Y oweyr COst(u,w) = n;
— augment the solution S with the memory reuse decision
U v’
— delete u from P;
— delete each element of v' from C' and from each element of
choices(u);
od
fi
until M = §;
return 5;
end

function simplify(I) /* I is an arbitrary memory reuse problem */
begin
let I = (P, C, choices, cost, newcost);
C' := U{choices(u) | u € P} \ 0
merge subsets of ' that are not pairwise disjoint;
let G = (V, E) be the weighted bipartite graph defined as follows:
-V=PU 6’; and
— for each u € P and v € 6’, there is an edge (u,v) € E with cost n
for every v € choices(u) such that v' C v, where
n =73,y cost(u,w);
for every u € P,v € C do
if there are multiple edges between u and v, delete all but the heaviest
such edge;
od
return G;
end

Figure 1: An Algorithm for Arbitrary Memory Reuse Problems
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Figure 2: The Memory Reuse Problem of Example 4.1




Program | Ty (ms) | Ty (ms) | T3 (ms) | 60 (%) [ 61 (%) | A (%) |

nrev 352.0 244.1 178.5 49.3 26.9 60.8

dis) 437.8 413.3 399.7 8.7 3.3 55.5

qsort 616.0 510.0 470.7 23.6 7.7 37.1

prime 702.1 651.5 635.3 9.5 2.5 32.0

insert 2039.4 1954.8 1696.9 16.8 13.2 304.8

queen 4074.0 3932.5 3849.3 5.5 2.2 58.8
Key :

Ty : execution time, no memory reuse
T1 : execution time, “naive” memory reuse
Ty : execution time, intelligent memory reuse

do = (To —T3)/Ty : speed improvement due to intelligent memory
reuse, relative to no reuse

0y = (Th —T3)/Ty : speed improvement due to intelligent memory
reuse, relative to naive reuse

A= (Ty —T2)/(To — T1) : speed improvement due to intelligent reuse
relative to naive reuse, compared to the speed improvement due to
naive reuse compared to no reuse.

Table 1: Speed Improvements due to Intelligent Memory Reuse

O(n + k). Thus, the total cost of each iteration in the body of the function
solve takes time O(nk + nklogn + n+ k) = O(nklogn).

3. In the worst case, each iteration succeeds in matching one producer with one
consumer, so the size of the problem decreases by 2 at each iteration. The
total number of iterations is therefore O(n), and the overall worst case cost
of the algorithm is O(n?klogn).

Thus, given an arbitrary memory reuse problem with n producers and consumers
and k choices for reuse, the algorithm described above runs in time O(n%klogn).
Moreover, for simple memory reuse problems it runs in time O(nklogn) =
O(nmlogn), and the solution computed is optimal.

5 Performance

To test the efficacy of our algorithm, we experimented with a number of small
benchmarks on the jc system [6], running on a Sparcstation-2. The results are
reported in Table 1. The benchmarks tested were the following:

nrev : the “naive reverse” program, run on a list of length 1000.

disj : a program to transform a propositional formula to its disjunctive
normal form—in our experiment, the input formula contained a total of
62 connectives and variables, while the output contained 1319 variables
and connectives altogether.



gsort : the quicksort program, run on an ordered list of 1000 integers (this
causes the program to exhibit its worst-case O(n?) behavior).

prime : a program to compute a list of prime numbers upto 5000, using the
Sieve of Eratosthenes.

insert : a program that creates a binary tree of 1000 integers.

queen : a program to determine all solutions to the 10-queens problem.

The programs nrev, qsort, prime, insert, and queen were obtained by a direct
translation, from FGHC to Janus, of benchmarks used by Sundararajan, Sastry
and Tick [15]; the disj benchmark was translated from a Prolog program due to
J. Jaffar, discussed in [7]. These programs all gave rise to simple memory reuse
problems, for which our algorithm computes optimal solutions in polynomial time.

The second, third, and fourth columns of Table 1 give the runtimes with, re-
spectively, no memory reuse; naive memory reuse (where memory is reused but no
attempt is made to avoid reinitializing cells that already have the desired value
in place, as in [15]); and intelligent memory reuse using our algorithm. The fifth
and sixth columns give the percentage speed improvement due to intelligent reuse,
compared, respectively, to the cases with no reuse and with naive memory reuse.
The numbers indicate that on typical programs, intelligent memory reuse leads to
a speed improvement of roughly 2% to 13%, compared to “naive” memory reuse,
and about 5% to 24% compared to no reuse at all (we do not consider nrev in these
numbers, since it performs so little “interesting” computation that the speed gains
from intelligent memory reuse are magnified unrealistically). The latter numbers are
actually somewhat conservative, since they do not reflect the speed improvements
due to reduced runtime garbage collection.

However, these numbers do not, of themselves, give an accurate estimate of the
utility of intelligent memory reuse compared to naive reuse, since they do not distin-
guish between programs with many opportunities for memory reuse and programs
with few such opportunities (the point is that in a program with comparatively few
opportunities for local reuse, our algorithm will not produce very large speedups—
but this is due to the very nature of the program, rather than a deficiency in our
algorithm). Tt would be more reasonable, in our opinion, to compare the addi-
tional speed improvement is obtained by intelligent memory reuse (relative to naive
reuse) with the speed improvement due to naive reuse (relative to no reuse). This
figure is reported in the seventh column, and it shows that the additional speed
improvements due to intelligent reuse, compared to the speed improvements due to
naive reuse, are quite substantial. A point to note is that in all of the benchmarks
tested except insert, the data structures being reused are cons cells, which means
that each instance of intelligent reuse simply manages to avoid one assignment (by
not having to update the head of the cons pair)—despite this, the incremental im-
provement due to intelligent reuse is quite significant, ranging from 32% to 58%.
In insert, on the other hand, where each node of the binary tree being processed
is a term with three arguments, intelligent reuse avoids two assignments, and the
speed improvement due to intelligent reuse is a factor of 3 greater than the speed
improvement due to naive reuse.

Finally, it should be noted that while the intelligent memory reuse scheme de-
scribed here can be expected to produce performance improvements compared to
naive reuse, it may or may not be faster than a system that does no memory reuse



at all, depending on the details of the cost model used. The problem is similar to
that of common subexpression elimination during compilation: in order to reuse
the memory for a data structure, it is necessary to keep track of its whereabouts,
which requires tying up a register or incurring some memory reads and writes. If
the cost model does not take such low level costs into account, the expense of keep-
ing track of a dead data structure until it can be reused may outweigh the savings
incurred from its reuse, and produce code that runs slower (this is a phenomenon
that we observed while experimenting with the disj benchmark mentioned above—
disregarding such low level costs led, on some inputs, to a slowdown of about 20%
compared to code with no memory reuse). It should be noted, however, that this
problem is inherent in compile-time memory reuse—that is, a memory reuse scheme
that is not careful about low level costs and tradeoffs may produce code slower than
that without reuse, regardless of what reuse scheme is being used. However, our
model for intelligent memory reuse is flexible enough to allow such low level costs
to be taken into account in an implementation.

6 Conclusions

Conceptually, there are two components to compile time memory reuse: it is nec-
essary to determine, first, which memory cells may be safely reused at a particular
program point; and second, how they are to be “best” reused. Most of the research
on compile-time memory reuse has, to date, concentrated on the first component,
typically via dataflow analysis: the underlying assumption seems to be that once
this has been solved, dealing with the second component is straightforward. In
this paper, we focus on the second component of the memory reuse problem. We
give an abstract characterization of the problem, show that determining an opti-
mal solution is NP-complete, and give an efficient polynomial-time heuristic using
graph-matching techniques. Our algorithm produces optimal solutions for most
commonly encountered memory reuse problems.
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